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The Cech number of C,(X) when X is an
ordinal space
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ABSTRACT. The Cech number of a space Z, C(Z), is the pseudochar-
acter of Z in 7. In this article we obtain, in ZFC and assuming SCH,
some upper and lower bounds of the Cech number of spaces Cp(X) of
realvalued continuous functions defined on an ordinal space X with the
pointwise convergence topology.
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1. NOTATIONS AND BASIC RESULTS

In this article, every space X is a Tychonoff space. The symbols w (or N), R,
I, @ and P stand for the set of natural numbers, the real numbers, the closed
interval [0, 1], the rational numbers and the irrational numbers, respectively.
Given two spaces X and Y, we denote by C(X,Y) the set of all continuous
functions from X to Y, and C,(X,Y) stands for C(X,Y) equipped with the
topology of pointwise convergence, that is, the topology in C'(X,Y) of subspace
of the Tychonoff product YX. The space Cp(X,R) is denoted by Cp(X). The
restriction of a function f with domain X to A € X is denoted by f [ A. For
a space X, X is its Stone-Cech compactification.

Recall that for X C Y, the pseudocharacter of X in Y is defined as

U(X,Y) = min{|{] : U is a family of open sets in ¥ and X = ﬂU}
Definition 1.1.
(1) The Cech number of a space Z is C(Z) = V(Z, BZ).

(2) The k-covering number of a space Z is keov(Z) = min{|K| : K is a
compact cover of Z}.
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We have that (see Section 1 in [8]): C(Z) = 1 if and only if Z is locally
compact; C(Z) < w if and only if Z is Cech-complete; C(Z) = keov(BZ \ Z);
if Y is a closed subset of Z, then keov(Y) < keov(Z) and C(Y) < C(Z);
if f:Z — Y is an onto continuous function, then keov(Y) < keov(Z); if
f:Z —Y is perfect and onto, then kecov(Y) = keov(Z) and C(Y) = C(Z); if
bZ is a compactification of Z, then C(Z) = V(Z,bZ).

We know that C(C,(X)) < N if and only if X is countable and discrete
([7]), and C(Cp(X, 1)) < R if and only if X is discrete ([9]).

For a space X, ec(X) (the essential cardinality of X) is the smallest car-
dinality of a closed and open subspace Y of X such that X \ YV is discrete.
Observe that, for such a subspace Y of X, C(C,(X, 1)) = C(Cp(Y,I)). In [8] it
was pointed out that ec(X) < C(Cp(X, 1)) and C(Cp(X)) = | X|- C(Cp(X, 1))
always hold. So, if X is discrete, C(Cp(X)) = |X|, and if |X| = ec(X),
C(Cy(X)) = C(Cy(X, T)).

Consider in the set of functions from w to w, Yw, the partial order <* defined
by f <% g if f(n) < g(n) for all but finitely many n € w. A collection D of
(Yw, <%) is dominating if for every h € “w there is f € D such that h <* f.
As usual, we denote by ? the cardinal number min{|D| : D is a dominating
subset of “w}. It is known that 0 = keov(P) (see [3]); so 0 = C(Q). Moreover,
w1 < 0 < ¢, where ¢ denotes the cardinality of R.

We will denote a cardinal number 7 with the discrete topology simply as 7;
so, the space 7" is the Tychonofl product of k copies of the discrete space 7.
The cardinal number 7 with the order topology will be symbolized by [0, 7).

In this article we will obtain some upper and lower bounds of C(Cy(X, 1))
when X is an ordinal space; so this article continues the efforts made in [1]
and [8] in order to clarify the behavior of the number C(Cy(X, I)) for several
classes of spaces X.

For notions and concepts not defined here the reader can consult [2] and [4].

2. THE CECH NUMBER OF Cj(X) WHEN X IS AN ORDINAL SPACE

For an ordinal number «, let us denote by [0, @) and [0, o] the set of ordinals
< « and the set of ordinals < «, respectively, with its order topology. Observe
that for every ordinal number o < w, [0, ) is a discrete space, so, in this case,
C(Cp([0,a),I)) = 1. If w < @ < wy, then [0, @) is a countable metrizable space,
hence, by Theorem 7.4 in [1], C(Cy([0, @), I)) = d. We will analyze the number
C(Cp([0,a),I)) for an arbitrary ordinal number a.

We are going to use the following symbols:

Notations 2.1. For each n < w, we will denote as &, the collection of intervals
[0,1/27Fh), (1/27F2,3/2"+2), (1/2"+1,2/2"F), (3/2"F2, 5/2"+2), ..
o (2 = 2) /2742, (2042 _ 1)/242) (2 — 1) /27, 1],
Observe that &, is an irreducible open cover of [0, 1] and each element in &,

has diameter = 1/2"*!. For a set S and a point y € S, we will use the symbol
[¥S]= in order to denote the collection of finite subsets of S containing y.
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Moreover, if v and « are ordinal numbers with v < «a, [y,a] is the set of
ordinal numbers A which satisfy v < A < a. The expression agp < a7 < ... <
oy < ... /" 7y will mean that the sequence (o, )n< of ordinal numbers is strictly
increasing and converges to «.

Lemma 2.2. Let v be an ordinal numbervsuch that there 1s w < ag < a1 <
v <ap < ... /7y Then C(Cp([0,4], 1) < C(Cp([0,7),1) - keov(|~]¥).

Proof. For m < w, F € [y[am,7]]"Y = {M C [am,7] : |[M]| < R and v € M}
and n < w, define
B(m,F,n)= | ] B(m,FE)
EE€E,
where B(m, F, ) = HIE[D,'y] Jp with J, = E if ¢ € F, and J, = I otherwise.
(So, B(m, F,n) is open in 1) Define

B(m,n) = n{B{m,F, n) : F € [y[am,7]]~“}.

Observe that B(m,n) is the intersection of at most |y| open sets B(m, F, n).
Define G(n) = J B(m,n), and G =), . G(n).
Claim: G is the set of all functions g : [0,~] — [0, 1] which are continuous at
5.
Proof of the claim: Let g : [0,~] — [0, 1] be continuous at . Given n < w there
is E € &, such that g(+) € E. Since g is continuous at «, there is § < v so that
g(t) € Eif t € [3,7]. Fix m < w so that 3 < ay,. For every F € [y[am,v]]<¥
we have that g € B(m, F,E) € B(m, F,n); hence, g € B(m,n) C G(n). We
conclude that g belongs to G.
Now, let h € G. We are going to prove that h is continuous at . Assume the
contrary, that is, there exist € > 0 and a sequence ty < t; < ... <t, < ... 7
such that

(1) 1f(t5) — f()] = €,
for every j < w. Fix n < w such that 1/2"+1 < .

Since h € G, then h € G(n) and there is m > 0 such that h € B(m,n).
Choose tn, > am and take F' = {t,,,v}. Thus h € B(m, F,n), but if E € &,
and h(y) € E, then h(t,,) ¢ E, which is a contradiction. So, the claim has
been proved.

Now, we have I°7\ G =, _,(I""1\ G(n)), and
"Nemy= U U\ B@m,Fn)).
M<w Feylom, 7)Y
So I\ G(n)) is an F},js-set. By Corollary 3.4 in [8], kcov(I°71\ G(n)) <

kcov(|y|*). Hence, C(G) = keov(I%M\ G) < Vg - keov(|y]?). Thus, it follows
that

m-<w n<w

C(Cp([0,7], 1) < C(Cp([0,7), 1) - keov(|y[*).
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Lemma 2.3. If v < a, then C(Cy([0,7),1)) < C(C,([0,a),T)).
Proof. First case: v = 3+ 1.

In this case, [0,7) = [0, 5] and the function ¢ : [0,a) — [0, 3] defined by
¢(x) =z if x < F and ¢(x) = B if > [ is a quotient. So, ¢7 : Cp([0,4],1) —
Cp([0, @), I) defined by ¢#(f) = fog, is a homeomorphism between Cy ([0, 3], I)
and a closed subset of Cp([0, ), I) (see [2], pages 13,14). Then, in this case,
C(Cp([0,7).1)) < C(Cp([0, ), I)).

Now, in order to finish the proof of this Lemma, it is enough to show that
for every limit ordinal number a, C(Cp([0,a),I)) < C(Cy([0,al, I)).

Let kK = ecof(a), and ag < a1 < ... < ay < ... /" «a with A < &.
For each of these A, we know, because of the proof of the first case, that
rx = C(Cp([0, ], 1)) < C(Cp([0,a],1)). Let, for each A < &, {VE’\ 1€ < kal
be a collection of open subsets of 1% such that C,([0,a,], 1) = Ne<ry VEA.
For each A < x and each £ < k), we take Wg = VEA x J(@%)  Each Wg is open
in 1% and M, _, Ne<y Wé\ = Cp([0,a),I)). Therefore, C(Cyp([0,a),1)) <
k- sup{ry : A < K} < w-C(Cy([0,a],1)). But & < |a] = ec([0,a]) <
C(Cy(10,a), ). ,

Then, C(Cy([0,), 1)) < C(Cp([0, l, ). 0

Lemma 2.4. Let « be a limit ordinal number > w. Then
C(CP([O?Q)': I)) = |“| : Sup'y{aé(cp([ov 7): ID
In particular, C(Cp([0, ), I)) = sup, . ,C(Cp([0,7),1)) if cof (a) < .

Proof. By Lemma 2.3, sup., . ,C(Cp([0,7),1)) < C(Cy([0,@).T)), and, by Corol-
lary 4.8 in [8], | < C(Cy([0, @), ).

For each v < a, we write i, instead of C(Cp([0,7),1)). Let {V : X < xy}
be a collection of open sets in I7 such that Cp([0,7),1) = My, V). Now
we put W:\Y = V; x I:)] We have that W:\Y is open for every v < a and
every A < 7, and CP([DJQ):I) = ﬂ'}f{a ﬂA{n,r. W; SO? C(Cp([ov QJ?I)) =
|af - supy<aC(Cp([0,7),1)). O

In order to prove the following result it is enough to mimic the prove of
5.12.(c) in [5].

Lemma 2.5. If « is an ordinal number with cof(a) > w and f € Cy([0, ), 1)),
then there is vy < « for which f | [vo, @) is a constant function.

Lemma 2.6. If a is an ordinal number with cofinality > w, then C(Cy([0,a], 1))
C(CP([O? 0)1 I))

Proof. Let = C(Cp([0,a),I)). There are open sets Vy (A < k) in I(>% such
that Cp([0,@),I) =y, Va. For each A < k, we take Wy = Vi x I1®}. Each
Wi is openin I and ", _, Wx ={f:[0,a] = I | f][0,a) € Cp([0,),I)}.

For each (7,§, E) € axax &, we take B(v,{, E) =[], Jx where Jy = E

if A € {£+7,a}, and Jy = I otherwise. Let B(v,{,n) = Upee, B(1,€ E).
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Finally, we define B(vy) = UE{-Q B(~,&,n), which is an open subset of IO,
We denote by M the set [, _, Win[)
Cy([0,a], 1) = M.

Let f € Cp([0, ], I). We know that f € (1,_,. Wi, so we only have to prove
that f € ,., B(7). For n < w, there is E' € &, such that f(a) € E. Since
f e C(0,a],I), there are vy < o and 19 € I such that f(A) =rgif 99 < A < a.
Let x < @ such that x +v = ~. Thus, f € B(v,x,n) € B(v). Therefore,
Cy([0,a], 1) c M.

Take an element f of M. Since f € (,_., W, f is continuous at every
v < a, thus f [ [yo,a) =19 for a 9 < « and an rg € I.

For each n < w, and each v = 7, f € B(v,&,n) for some & < a. Then,
[ro — f(a)| = |f(v + &) — f(a)] < 1/2". But, these relations hold for every
n. So, f(a) must be equal to rp, and this means that f is continuous at every
point.

Therefore, C(Cy([0,a],1)) < |a| - C(Cy([0,a),I)). Since C(Cy([0,a),1)) =
ec([0,)) = |a|, C(Cy([0,a],1)) < C(Cp([0,a),I)). Finally, Lemma 2.3 gives
us the inequality C(Cp([0,a),1)) < C(Cp([0,al,I)). O

| <a B(~). We are going to prove that

Theorem 2.7. For every ordinal number o > w,
o] -0 < C(Cy([0, @), 1)) < keov(|al?).

Proof. Because of Theorem 7.4 in [1], Corollary 4.8 in [8] and Lemma 2.3 above,
lal -2 < C(Cy([0,a), ). v

Now, if w < a < wy, we have that C(Cp([0,a), 1)) < kcov(|a|?) because of
Corollary 4.2 in [1].

We are going to finish the proof by induction. Assume that the inequality
C(Cp([0,7),1)) < keov(|y|*) holds for every w < v < a. By Lemma 2.4 and
inductive hypothesis, if « is a limit ordinal, then

O(Cy([0,0).1)) < |o] - supy<akeon(y[) < keov(lal*).
If o = y9+2, then C(Cy([0,a), I)) = C(Cp([0,70+1),1)) < keov(|yo+1|) =

keov(|a]¥).

Now assume that & = vy + 1, 70 is a limit and cof(v) = w. We know by
Lemma 2.2 that C(Cy([0,70 + 1),1)) < C(Cp([0,70),I) - kcov(]y0]*). So, by
inductive hypothesis we obtain what is required.

The last possible case: a = 9 + 1, v is limit and cof(vg) > w.

By Lemma 2.6, we have C(Cy([0,70 + 1),1)) = |a| - C(Cy([0,70),1). By
inductive hypothesis, C(C,([0,70), I) < kecov(|a|). Since |a| < keov(|a|?), we
conclude that C(Cp([0,a),I)) < keov(|al?). O

As a consequence of Proposition 3.6 in [8] (see Proposition 2.11, below) and
the previous Theorem, we obtain:

Corollary 2.8. For an ordinal number w < a < w,,, C(Cy([0,a),1)) = |a| - 2.
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In particular, we have:
Corollary 2.9. C(Cp([0,w1),1)) = C(Cy([0,w1], 1)) = 0.

By using similar techniques to those used throughout this section we can
also prove the following result.

Corollary 2.10. For every ordinal number o« > w and every 1 < n < w,
lal -2 < C(Cy([0,a)", 1)) < keov(lal*).

For a generalized linearly ordered topological space X, x(X) < ee(X), so
x(X) < C(CH(X, 1)), where x(X) is the character of X. This is not the
case for every topological space, even if X is a countable EG-space, as was
pointed out by O. Okunev to the authors. Indeed, let X be a countable dense
subset of Cp(I). We have that x(X) = x(Cp(I)) = ¢ and C(Ch(X,I)) = 0.
So, it is consistent with ZFC that there is a countable EG-space X with
V(X) > C(Cy(X, 1)),

One is tempted to think that for every linearly ordered space X, the relation
C(Cp(X, 1)) < keov(x(X)¥) is plausible. But this illusion vanishes quickly; in
fact, when 9 < 2% and X is the doble arrow, then X has countable character and
ec(X) = |X| = 2¢. Hence, C(Cp(X, 1)) = 2¥ > d = kecov(x(X)*) (compare
with Theorem 2.7, above, and Corollary 7.7 in [1]).

In [8] the following was remarked:

Proposition 2.11.

(1) For every cardinal number w <1 < wy,, kcov(t¥) =71-0,
(2) for every cardinal T > X, keov((77)*) = 75 - keov(T), and,
(3) if ef(1) > A, then keov(t*) = 7 - sup{kcov(p?) : p < 7}.

Lemma 2.12. For every cardinal number k. with cof(k) = w, we have that
keov(kY) > k.

Proof. Let {K) : A < 1} be a collection of compact subsets of k¥. Let ag <
a1 < ... < ap < ... be an strictly increasing sequence of cardinal numbers
converging to x. We are going to prove that [J,_, K\ is a proper subset of
k“. Denote by m, : k¥ — k the n-projection. Since m, is continuous and K
is compact, 7, (K ) is a compact subset of the discrete space &, so, it is finite.
Thus, we have that |[J, ., 7n(Kx)| < an < & for each n < w. Hence, for every
n < w, we can take &n € £\ Uyo,, ™n(Ky). Consider the point § = (§n)n<w
of k. We claim that £ & [J,_,. Ka. Indeed, assume that £ € Ky,. There is
n < w such that Ay < a,,. So, &, € U)\{an (K )) which is not possible. O

Recall that the Singular Cardinals Hypothesis (SCH ) is the assertion:

For every singular cardinal number r, if 2°°/(F) < . then k(%) = g+,

A proposition, apparently weaker than SCH, is: “for every cardinal number
k with cof(k) = w, if 2¥ < Kk, then k¥ = kT.” But this last assertion is
equivalent to SC'H as was settled by Silver (see [6], Theorem 23).
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Proposition 2.13. If we assume SCH and ¢ < (w,)", and if 7 is an infinite
cardinal number, then

70 fw<T<wy
(*) keov(t¥) =< T if T > w, and cof (1) > w
™ if T >w and cof (1) = w

Proof. Our proposition is true for every w < 7 < w,, because of (1) in Propo-
sition 2.11.

Assume now that £ > w, and that (*) holds for every 7 < k. We are going
to prove the assertion for x.

Case 1: cof(k) = w. By Lemma 2.12, keov(k¥) > k. On the other hand,
keov(k¥) < k¥,

First two subcases: Either ¢ < w, or ¥ > wy,. In both subcases, we can
apply SCH and conclude that keov(k?”) = k™.

Third subcase: ¢ = (w,)" and k = w,. In this case we have keov((w,)¥) <
(ww)¥ < ¥ = ¢ = (ww)T. Moreover, by Lemma 2.12, (w,)" < keov((wy)¥).
Therefore, kcov((wy)¥) = (ww)T.

Case 2: cof(k) > w. By Proposition 2.11 (3), kcov(r®) = & - sup{kcov(p*) :
w < p < k}. By inductive hypothesis we have that for each u < k

-0 ifw<py<w,
(%) keov(p?) =< p if p > w, and cof(p) > w
pt it p>wand cof(p) =w

First subcase: k is a limit cardinal. For every p < k, keov(p®) < k (be-
cause of () and because we assumed that k¥ > (w,)™ > ¢ > 0); and so
sup{kecov(p®) : p < k} = k. Thus, keov(k¥) = k.

Second subcase: Assume now that k = ,ua'. In this case, by Proposition 2.11,
keov(k¥) = k-keov(pg ). Because of (#x) and because pg > wy,, keov(pg)® < k.
We conclude that keov(k¥) = k. O

Proposition 2.14. Let k be a cardinal number with cof (k) = w. Then
C(CP([U': h:]': I)) > K.

Proof. Let 0 = ag < a1 < -+ < ayn < ... be a strictly increasing sequence of
cardinal numbers converging to k. Assume that {V) : A < k} is a collection
of open sets in I which satisfies C,([0, %], 1) C Macr Va. We are going to
prove that (), ., Vi contains a function A : [0, ] — I which is not continuous.
In order to construct h, we are going to define, by induction, the following
sequences:
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(i) elements tg, ..., ¢y, ... which belong to [0, ] such that

(1) 0=tg <ty <-- <ty <...,

(2) t; = e for each 0 <14 < w,

(3) each t; is an isolated ordinal, and

(4) k= lim(ty);
(ii) subsets Gy, ..., G, ... C [0, k] with |G;| < «; for every i < w, and such that
each function which equals 0 in G; and 1 in {fo, ..., #;} belongs to [, o V, for
every 0 <i < w and (|J,, Gn) N {to, s tn, ...} = &;

(iii) functions fo, f1,..., fn,... such that fy = 0, and f; is the characteristic
function defined by {tg, ..., ti—1} for each 0 < i < w.

Let fy be the constant function equal to 0. Assume that we have already
defined tg,...,t:_1, Go,...,Ge_1 and fy,..., fs_1. We now choose an isolated
point t; € [, k] \ Go U ... U G4_1 (this is possible because |Gy U ... UG,_1| <
k). Consider the characteristic function defined by {tg,...,ts_1,ts}, fe. This
function is continuous, so it belongs to [, «, Va- For each A < ay, there is
a canonical open set A§ of the form [fs;:sf?...,:sis(A); 1/m*(\)] = {f € 1071 :
[fe(zf) — fzf)] < 1/m5(A) ¥V 1 < i < n®(\)} satisfying f. € A C V). For
cach A < a; we take FY = {zf,...,z;.\}. Put Gs = Uyoo, FX\ {to, ., ts}
It happens that {f € %% : f(x) =0V z € G; and f(t;) =1V 0 <i < s} is
a subset of [,_,. Va. This finishes the inductive construction of the required
sequences.

Now, consider the function & : [0,x] — [0,1] defined by h(x) = 0 if = &
{tos -y tn,.--}, and h(t,) = 1 for every n < w. This function h is not continuous
at k because h(k) =0, k = lim(¢, ), and h(t,) =1 for all n < w.

Now, take A\g € . There exists [ < w such that Ay < «;. Since h is equal
to 0 in Gy and 1 in {to,...,#:}, then h € N, _, Va. Therefore, h € V),. So,
Cy([0, K], 1) is not equal to (., Va. This means that C(Cy([0,x],1)) > k. O

Theorem 2.15. SCH + ¢ < (w,)" implies:

(1 ifa <w
ol -0 fa>wandw < |a| < wy
|ev] if la| > wy, and cof (|a|) > w
C(Cp([0,a),1)) =1 |af if cof (|e|]) = w and a is a cardinal number > w,
|ev] if |o| = wy and 0 < (w,)™
la|™  if cof(|a]) =w, |a| > wy, a is not a cardinal number
o)t if la] = wy and 0 = (w,)T

\

Proof. If a < w, Cp([0,a), 1) = I so C(CH([0, ), 1)) = 1.

If « > wand w < |a| < w,, we obtain our result because of Theorem 2.7
and Proposition 2.13.

If |a| > wy and cof(|a|) > w, by Theorem 2.7 and Proposition 2.13,

laf - = |a] < C(Cy(0, @), 1)) < keov(|al*) = |al].
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If cof(|er]) = w and e is a cardinal number > w,,, by Lemma 2.4,
C(Cp([0, @), 1)) = |al - sup, .o C(Cp([0,7), ).
The number « is a limit ordinal and for every v < «,
C(Cp([0,7),1)) < " -2

Since ? < (wy,)t < |al, then C(Cy([0,a), 1)) = |al.
By Lemma 2.4 and Theorem 2.7, if |a| = w,,, then

wo -0 < C(Cp([0,0),1)) = |a| - sup, ., C(Cp([0,7), 1)) < |e] - sup, o (I7[* -0).

Thus, if |a| = w, and d < (w,) T, C(Cp([0,a),I)) = |al.

Assume now that cof(|a|) = w, || > w, and « is not a cardinal number.
There exists a cardinal number « such that k = |a| and [0, @) = [0, k]®[rk+1, a).
So, C(Cp([0,a),T)) = C(Cy([0, 5], T)) - C(Cylls + 1,a), T)) = C(Cy([0, ], )
(see Proposition 1.10 in [8] and Lemma 2.3). By Theorem 2.7 and Proposition
2.14, -0 < C(Cp([0,k],1)) < k. Being k a cardinal number > w, with
cofinality w, it must be > (w,); so k > 0 and, then, k < C(Cp([0,x],1)) < k™.
Now we use Proposition 2.14, and conclude that C(Cy([0,a), 1)) = kT = |a*.

Finally, assume that |a| = w, and ? = (w,)". By Theorems 2.7 and Propo-
sition 2.13 we have

la] -9 < C(Cy([0, @), 1) < keov(lal*) = (wu)*.

And we conclude: C(Cy([0, ), 1)) = |a|*. O
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