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Abstract
Hydrodynamicmodels of heavy-ion collisions have been very successful at describing experimental data. A peculiar exception
is anisotropic flow in ultra-central collisions. No existing model for the initial stages of a heavy-ion collision, when used as
initial conditions for hydrodynamics simulations, can provide a satisfactory description of flow in ultra-central collisions. It
is therefore useful to understand what properties the initial stages must have in order to be compatible with experimental
data. To this end, we parameterize the early-time energy density and its fluctuations via its 1-point and 2-point function and
constrain them by using experimental data for vn2 in conjunction with hydrodynamic simulations. We find that it is possible
to describe experimental data, but it requires larger fluctuations in regions of low density, as compared to existing Monte
Carlo models. We comment on the implications of this finding, as well as the limitations of this initial analysis and how it
can be improved in the future.

1 Introduction

In an ultra-relativistic heavy-ion collision, there is a large
energy deposition, and we suppose that there is a “breakup”
of the hadronic structure and the partons from participant
nucleons are not confined anymore. That is, a phase transi-
tion1 occurs to a system composed by free partons which
behave as a strongly coupled fluid. This phase is called
Quark-Gluon Plasma - QGP.

Due to the short duration of this phase, it is not possible
to directly observe this phase of matter, and so conclusions
are formulated about its behavior from the final charac-
teristics, such as the multiplicity of charged hadrons and
their azimuthal distribution, through the analysis of har-
monic flows coefficients vn . The latter can be related with the
anisotropy of initial conditions, represented by eccentricities
εn . We will show throughout the text that ε2 has geometric
and fluctuation contributions, while ε3 have nuclei fluctua-
tions contributions only. Thus, we can think, for instance,

1 Calculus on lattice QCD shows a crossover, i.e., a smooth transition
from hadron gas to QCD matter when baryon density is very low.
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that v3 < v2 and this result is true for most cases, as we can
see in [1], for instance.

However, in ultra-central events, i.e., events within cen-
trality bins,we observe results as v3 � v2 and nomodel could
describe these results until now, as we can see in Fig. 1, from
Luzum et al. [13]. Gianinni et al. [8] and Kuroki et al. [11]
also discuss the emergence of this issue and show that no
attempt can solve it until now. The fact that we have a trian-
gular flow bigger than elliptic flow makes us think about the
influence of the fluctuations and how it should be a model so
that it generates the initial conditions which harmonic flows
agree with experimental data. Thus, the present work aims
to study if it is possible to describe the initial conditions in
order that calculated harmonic flows be as close as possi-
ble to experimental data from ATLAS [1] at the LHC. For
this purpose, we put constraints on the n-point functions that
describe fluctuations of the initial energy density, according
to Grönqvist et al. [9], in order to have a relationship between
the fluctuations and the correlations and the initial conditions.

Besides, in this work, it is assumed that viscosities do
not change along the system temperature. This is a naive
approach but can serve as a starting point for studying these
cases.

The fluctuations in the early-time density of the system are
naturally characterized by its N−point correlation functions,
as we can see in Gronqvist et al. [9]. In this work, we try to
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Fig. 1 Experimental values
(green bars) of the ATLAS
collaboration with centrality
class 0 − −1% and the values
obtained by several models
proposed for vn . Image from
[13]

answer whether it is possible to describe the observables in
this centrality regime, using the approach mentioned above.

To do this, we make use of the known relationships
between final measured flow vn and the initial spatial
anisotropy εn , combined with relations between the latter
and the N−point functions of the initial density of the sys-
tem. By comparing to measured vn{2} data in centralities of
0 − 1% or less, we thus constrain these fluctuations.

In Sec. 2, we review the formalism and the approximations
employed in this work. In Sec. 3, we compute the required
hydrodynamic response coefficients Kn ≡ vn{2}/εn{2} over
awide range in parameter space. Finally, in Sec. 4, wemake a
comparison between measured data and parameterized fluc-
tuations and determine the necessary values of fluctuation
parameters.

2 N−point Function Formalism

The final momentum anisotropy of particles, as quantified
in flow harmonics vn , can be simply related to the spatial
anisotropy of the system. A systematic expansion can be
constructed from cumulants of the initial energy density in
a given event, with lowest order terms representing the large
scale structure, to which corrections that can be added as
higher-order cumulants and higher powers of anisotropic
cumulants. For central collision in particular, the lowest-
order, linear relations form a good approximation [6]:

vn � Knεn (1)

εn = −
∫
d2xρ(�x)rneinφ

∫
d2xρ(�x)rn (2)

Here, εn represents all the relevant properties of the initial
state for describing harmonic n (and which fluctuates from
event to event). The response coefficients Kn , on the other
hand, contain all information about themedium that is created
and the subsequent evolution of the system. It is constant
within a centrality bin. Event-averaged observables from the
final state (such as 2-particle cumulants vn{2}) can therefore
be simply related to the initial state:

vn{2} ≡
√

〈|vn|2〉 (3)

εn{2} ≡
√

〈|εn|2〉 (4)

�⇒ vn{2} � Knεn{2} (5)

In Refs. [2, 9], the authors derived analytic expressions
for RMS eccentricity εn{2}, which we make use of in this
work. To summarize, we write the local energy density in the
transverse plane in a single event as an average value plus a
fluctuation:

ρ(�x) = 〈ρ(�x)〉 + δρ(�x) (6)

Two important approximations are used to guide the
derivation. First, we assume that the transverse distance over
which fluctuations are correlated is much smaller than the
overall transverse size of the system. In that case, we can
ignore these correlations and approximate the system as
delta-correlated, with local fluctuations. That is, the con-
nected N−point correlaters of the density ρ can be written as

〈ρ(�x)〉 = κ1(�x) (7)

〈δρ(�x1)δρ(�x2)〉 = κ2(�x)δ(�x2 − �x1) (8)
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〈δρ(�x1)δρ(�x2)δρ(�x3)〉 = κ3(�x)δ(�x2 − �x1)δ(�x3 − �x1) (9)

...

and the useful information about fluctuations is contained
in the functions κn , which describe the local fluctuations in
the density of energy that is deposited near mid-rapidity in
a particular centrality class. Our goal is to characterize what
properties these functionsmust have in order to describemea-
sured data in ultra-central collisions.

To obtain analytic expressions for RMS eccentricities, a
series expansion is constructed in powers of the fluctuation
δρ. That is, an approximation of small fluctuations is made.
To leading order in fluctuations, only the 1-point and 2-point
functions contribute:

εn{2} =
√ ∫

d2x r2n⊥ κ2(�x)
(
∫
d2x rn⊥κ1(�x))2 , (10)

while higher-order fluctuations κn appear at higher order in
the power-series expansion. Here, r⊥ = √

x2 + y2 is the
transverse radial coordinate.

To summarize, by making the approximation of small,
local fluctuations, we can obtain an analytic expression of
RMS eccentricities in terms of the local mean and variance
of initial density fluctuations. In the following, we will be
particularly interested in characterizing the fluctuations κ2
via a parameterization and comparison to experimental data.

3 Computing the Hydrodynamic Response

3.1 The CGCModel

According to Lappi [12], this model can also be used to
determine initial conditions and is mathematically similar to
Glauber’s optical model, according to which nucleons move
independently of each other and in path linear tubes (called
flow tubes). The term optical comes in the sense of saying
what each nucleon “see” through the flux tube. The essential
difference betweenCGCandGlauber is that the former refers
to multiple events, while the Glauber model focuses on the
results of a collision event. Furthermore, as mentioned pre-
viously, the CGCmodel proposes a description for the nuclei
immediately before the collision, which makes it more inter-
esting from a phenomenological point of view.

In other words, we have

〈ρ(x, y)〉 = N · TA(x, y) · TB(x, y) (11)

In this expression, TA and TB are the nuclear thickness
functions for the incident and target nuclei, respectively, and
are defined as the probability that a nucleon in nucleus A

is in position �x = (x, y). We use this model because our
analysis focuses on an average over multiple events and not
on studying the behavior of an individual event.

It was used MUSIC [15] to calculate the Kn . This soft-
ware uses the CGC model with a deformation in the spatial
distribution of energy density, so that the code calculates
the eccentricities and performs the hydrodynamic. That is,
if we do N hydrodynamic simulations with the same input
file,MUSICwill provide the same initial conditions (In other
words, if we did not introduce deformation, we would have
a completely symmetric system, i.e., εn = 0 and vn = 0).

3.1.1 Deformed CGCModel

This is a change made to the CGC model described in the
previous section. This deformation consists of the addition of
an asymmetry term called stretch. This treatment had already
been proposed within MUSIC for a Gaussian profile of the
initial energy density, as used by Franco et al. [5].

stretch =
N+1∑

n=2

ecc[n − 1] · cos(n · φ − n · ψ[n − 1]); (12)

In this equation, ecc[n−1] ≡ an−1 represents the (n-1)-th
spatial asymmetry term that is put ad hoc into the input file,
ψ[n − 1] is the angular asymmetry term, which was consid-
ered null in our simulations, and N is themaximumharmonic
considered. The angle φ is defined as φ ≡ arctg( yx ), and the
index n can vary up to as many harmonics as we want to
calculate, and, in our case, we use up to the 5th harmonic.

This term deforms the spatial distribution of energy den-
sity in the initial configuration of the system. To do this, it is
added to the expression that determines the energy density
distribution, and, in our case, it was added to the Woods-
Saxon potential expression, which is the expression typically
used to determine the approximate shape of the nucleus.
Thus, we arrive at the following expression:

f (x, y, z) = ρ0

1 + e(
√

((x2+y2)·stretch+z2)−R0)/χ
(13)

Then, this expression is used to calculate the thickness
functions and the mean in the energy density distribution.

T (x, y) =
∫ ∞

−∞
dz f (x, y, z)

ρ(x, y) ∝ N (TA(x, y))2 (14)

whereN is a normalization constant that determines themul-
tiplicity of charged hadrons ( dNch

dη
).We squared the thickness

function, as the simulations were carried out with impact
parameter b = 0 and the two identical cores, as we are
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concerned with the effects of fluctuations in symmetric col-
lisions, so that the effects arising solely from fluctuations are
more evident. Figure 2 illustrates the effect of adding the
stretch term for each harmonic (e.g., for the first plot, an = 0
for n 
= 2 and a2 = 0.1. For the second one, a3 = 0.1 and
an = 0 for n 
= 3 and so on) and the effect of adding a term
with all non-zero terms. In these graphs, we can observe the
anisotropy in the distribution of energy density.

3.2 Obtaining Kn(
�
s )

As previously stated, in ultra-central events, there is a linear
relationship between the initial conditions (εn) and the hydro-
dynamic response (vn). This can be seen in Fig. 3, obtained
from simulations carried out in MUSIC.

In this work, it was assumed that the response coefficients
Kn depend only on the shear viscosity

η
s and that this param-

eter is constant throughout the evolution of the system. To
determine the behavior of Kn , we carried out several sim-
ulations with different values for the normalization factor
N and different viscosities, in order to find a relationship
between the factorN , themultiplicity, and shear viscosity. In
Fig. 4, the terms “ fn(x)” in the legend represent the adjust-
ments made for each viscosity value assigned in the input
file. The results are illustrated in Fig. 4 where a logarithmic
adjustment was made between N and the multiplicity dNch

dη
.

Figure 5 shows the value of N in terms of the viscosity η
s

for dNch
dη

= 2000 [3]. As we can see in the same figure, the
factorN is inversely proportional to the shear viscosity. This
fact was expected because multiplicity is proportional to vis-
cosity. Therefore, to keep the multiplicity constant, we must
decrease the value of the factor as the viscosity increases.

With the knowledge of this relationship, using a script
written in bash, we carried out simulations in which the
normalization factor was changed in order to keep the
multiplicity of charged hadrons per unit of pseudorapidity
(
dNch
f i xeddη). This was done to highlight the relationship

only between the flow (represented by the factor Kn ≡ vn
εn
)

and the shear viscosity, as we see in Fig. 6, where η means
the pseudorapidity [14] of emergent beam.

Table 1 displays the coefficients found when making a
straight line adjustment, that is, Kn(

η
s ) = fn · η

s + gn , for
each harmonic for ATLAS

4 Constraining �2

To leading order in fluctuations, the RMS eccentricity (10)
depends only on the mean and variance of the local energy

Fig. 2 Energy density distribution using the deformed CGC model.
We can observe the anisotropy in the energy density distribution for the
different strain terms added and when all terms are non-zero
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Fig. 3 Relationship between vn
and εn with results obtained
using the deformed CGC model
and with a linear adjustment
over each harmonic, with f2(x)
being a linear adjustment
between v2 and ε2, f3(x) an
adjustment between v3 and ε3,
and so on
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fluctuations via functions κ1 and κ2. Ultra-central collisions
generally consist of collisions with small impact parameter,
with spatial asymmetry dominantly generated by fluctua-
tions. We therefore expect the average density κ1 to have
approximate rotational symmetry, and only the radial falloff
in density must be specified. Here, we take inspiration from
the Color Glass Condensate [12] (as well as the Glauber
wounded nucleonmodel) and assume an average energy den-
sity that is a product of nuclear thickness functions (i.e., the
probability density for finding a nucleon at transverse posi-
tion �x). Since b � 0, this reduces to a square of the nuclear

thickness function:

κ1(�x) = κ1(r⊥) = N T 2
A(r⊥) (15)

TA(�x) = TA(r⊥) =
∫

dz
1

1 + e(r−R)/a
(16)

where r =√
x2+y2+ z2, R=6.62 fm and a=0.546 fm are

the radius and skin thickness of a Pb nucleus, respectively,
and N is a normalization factor that depends on collision
energy. Here, we omit the separate normalization factor in
the definition of the thickness function TA (nominally a

Fig. 4 Multiplicity of charged
hadrons as a function of the N
factor adopted with the
experimental cuts of the CMS
collaboration, namely,
0.3 < pT < 3.0Gev
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Fig. 5 Factor N as a function of
viscosity for dNch

dη
= 2000 with

the same experimental cuts as in
the previous graph
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normalized probability density), so that it is absorbed into
the constant N , which therefore has dimensions of energy
density per unit area, E/L5. Note that due to the strong initial
longitudinal expansion, the energy density, and therefore N ,
also depends on the timewhen the density is being evaluated.

The main focus is on the fluctuations, encoded by κ2(�x).
Symmetry again dictates that it only depends on transverse
radius r⊥. Instead of parameterizing the radial dependence
directly, it is perhaps more physically transparent to treat it

as a function of the local density. So we write κ2 as a param-
eterized function of κ1, whose parameters we can constrain
by comparison with data. Specifically, we write

κ2(r⊥) = C2N 2−2pκ1(r⊥)2p. (17)

For example, a Gaussian distribution has variance equal
to the square of the mean and so would correspond to p = 1,
and the Gamma distribution has p = 0.5 because κ2 ∝ κ1.

Fig. 6 Response coefficient K
in terms of shear viscosity η

s for
a fixed value of eccentricities.
Values calculated with the
experimental cuts from the
ATLAS collaboration, namely,
|η| < 2.5 e 0.5 < pT < 3.0
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Table 1 Angular fn and linear
gn coefficients of the linear fit
for each response coefficient to
ATLAS 0 − 1% cent. bin

n fn gn

2 −0.276 0.304

3 −0.482 0.218

4 −0.362 0.102

5 −0.193 0.039

The parameterC (with non-integer dimension L10−4p/E2)
is defined for convenience so that it represents a multiplica-
tive constant in the RMS eccentricity, and the parameter p
encodes how the fluctuations depend on density (or equiva-
lently, transverse radius)

εn{2} = C

√∫
d2x r2n⊥ (TA)4p

(
∫
d2x rn⊥TA)2

. (18)

It is important to highlight that the convenience of using
(18) instead of obtaining the RMS eccentricity by numerical
methods lies in the fact that we can identify, from this expres-
sion, the influence of fluctuations in the initial state on the
final observables, since we start from the parameterization
κ2 = C2κ

2p
1 .

5 Results

Now, the flow harmonics will be calculated using the n-point
function method [9] and the least squares method [16] for
comparison with experimental results (Fig. 7).

As shown in Fig. 6, the response coefficients Kn decrease
with increasing viscosity, and this can be explained by

Table 2 Values of p, C , η/s, their uncertainties, and χ2 related to
ATLAS 0 − 1%

p C σC η/s σ η
s

χ2
dof cent. bin

0.12 10.58 3.6 0.16 0.005 1.42 0 − 1%

remembering that increasing viscosity means a decrease in
the interaction between particles, implying a decrease in
the hydrodynamic behavior of the system. Thus, using the
expressions of Kn(η/s) and the definitions of eccentricity
from the 2-point function (Eq. 18), we obtain 4 equations:

v2{2} = K2 · ε2{2} (19)

v3{2} = K3 · ε3{2} (20)

v4{2} = K4 · ε4{2} (21)

v5{2} = K5 · ε5{2} (22)

From the knowledge of the factors Kn , we apply the least
squares method, calculating the factor Q:

Q =
5∑

n=2

(v
exp
n {2} − Kn(η/s) · εn{2})2 · (ω

exp
n )2, (23)

where (ω
exp
n )2 is the inverse of the square of the uncertainties.

Thus, from ad hoc values of the parameter p, we calculate the
critical points for the unknown parameters, which in our case
are the shear viscosity η/s and the factorC of proportionality
between the mean and variance. In other words, the optimal
value of p was achieved by trial and error, considering the
following bonds to be physically valid:

Fig. 7 Experimental and
calculated values of vn{2}
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Table 3 Experimental and calculated values of vn{2}with their respec-
tive uncertainties for ATLAS 0 − 1%

n v
exp
n σ

exp
vn vcalcn σ calc

vn

2 0.0236 0.00118 0.0240 0.00048

3 0.0253 0.00101 0.0239 0.00048

4 0.0137 0.00068 0.0145 0.00029

5 0.0047 0.00060 0.0046 0.00009

• The viscosity must be positive and have a small value,
i.e., η

s � 1. [13].
• χ2 must be small compared to other calculations already

performed.2

∂Q

∂(
η
s )

= 0 (24)

∂Q

∂C
= 0 (25)

In order to get the results accuracy, we calculated χ2

χ2 =
5∑

n=2

(v
exp
n {2} − vcalculadon )2 · (ω

exp
n )2 (26)

Finally, it was calculated the parameter uncertainties to
obtain the uncertainties of the calculated results, as it will be
shown in Appendix A.

Thus, they have obtained the results for vn{2} that are in
Tables 2 and 3 and their parameters η/s, C , and p, which are
in Table 2.

6 Final Considerations

In this work, we study collisions in the ultra-central regime
and tried to describe the experimental results from com-
puter simulations. We implement the deformed CGC, with
the addition of asymmetry terms in the mean density of
energy. From this model, we verified the existence of a lin-
ear relationship between the initial conditions, represented
by eccentricities εn{2} and the final conditions of the system,
represented by flow harmonics vn{2}.

This relationship obtained is approximately linear due to
the fact that the collisions are in an ultra-central regime,
where the eccentricities are small and arising from fluctua-
tions. These fluctuations originate mainly from randomness

2 In other words, the results calculated by the n-point function must be
as close as possible to the experimental data.

from the position of the participating nucleons and due to
quantum effects, and the latter are the responsible for event-
to-event fluctuations, as seen in Giacalone et al. [7].

With this procedure and the use of the power parameteri-
zation (Eq. (17)), which establishes a direct relation between
the energy density and their fluctuations, we got reasonable
results for vn{2} (i.e., accurate results related to the experi-
mental values from [1]), and the values obtained for η

s are
in agreement with previous works, such as Luzum et al. [13]
and in Heinz et al. [10].

In future works, one can think of adding more parameters,
as the bulk viscosity ζ

s for instance, and assume a temperature
dependence over the hydro parameters, by some parameteri-
zation, as proposed by JETSCAPE collaboration [4] in order
to improve the presented results.

Appendix A: Uncertainties of the Parameters

The parameters uncertainties are calculated from

(M−1) j j (27)

WithM being an invertible matrix, defined by

[ ∑5
i=2 ω2

i f I (vi )
2 ∑5

i=2 ω2
i f I (vi ) f I I (vi )∑5

i=2 ω2
i f I I (vi ) f I (vi )

∑5
i=2 ω2

i f I I (vi )
2

]

With f I and f I I being the derivatives of the flow coeffi-
cient expressions, i.e.,

f I (vi ) = ∂vi

∂(
η
s )

(28)

f I I (vi ) = ∂vi

∂C
(29)

The uncertainties about the parameters are given by
(M−1) j j = 1

Det(M)
· cof (M j j ). Then,

ση
s

= 1

Det(M)
· (M22) (30)

σC = 1

Det(M)
· (M11) (31)

Finally, the uncertainty about the fitted value of each
harmonic vn is calculated using the definition of error prop-
agation [16].

σ(vn) =
√

(
∂vn

∂(
η
s )

σ η
s
)2 + (

∂vn

∂C
σC )2 (32)
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