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The behavior of the pressure along trajectories of finite-sized nuclei in isotropic homogeneous turbulence is
investigated using direct numerical simulations at Reλ = 150. Trajectories of nuclei of different sizes are
computed solving a modified Maxey-Riley equation under different buoyancy conditions. Results show that
larger nuclei are more attracted to the vortex cores and spend more time at low-pressure regions than smaller
nuclei. The average frequency of pressure fluctuations towards negative values also increases with size. These
effects level off as the Stokes number becomes greater than one.

Buoyancy, characterized by the terminal velocity w, counteracts the attraction force toward vortex cores
while simultaneously imposing an average vertical drift between the nuclei and the fluid. Computational
results indicate that weak vortices, associated to moderately low pressures, loose their ability to capture
finite-sized nuclei if w ≥ u′. The attraction exerted by the strongest vortices on the largest of the considered
nuclei, on the other hand, can only be overcome by buoyancy if w ≥ 8u′.

The quantitative results of the study are shown to have a significant impact on modeling cavitation inception
in water. For this purpose, the Rayleigh-Plesset equation is solved along the nuclei trajectories with realistic
sizes and turbulence intensities. The simulations predict cavitation inception at mean pressures several kPa
above vapor pressure.

I. INTRODUCTION

Many environmental and industrial processes deal with
the transport of particles suspended in different carrier
fluids. Some examples are sediment transport, plankton-
algae dynamics, combustion mixing, pollutant disper-
sion, cloud-rain formation and bubbly flow in chemical re-
actors, among many others. These particles, which could
be solid, liquid (droplets) or gaseous (bubbles), travel
within the flow and are subject to the local flow vari-
ables (e.g., pressure, temperature, humidity, etc.). The
study discussed here focuses on the pressure fluctuations
experienced by suspended particles in turbulent flow. It
is motivated by the presence of gas nuclei in the liquid
flow around general lifting surfaces and propellers, or in
turbines, pumps, spillways, control valves, and engines.
Depending on the pressure history experienced by each
nucleus, the phenomenon known as cavitation can take
place, which is particularly critical due to its adverse ef-
fects of vibration, noise and erosion1,2.

As the working conditions of a hydraulic device are
varied and its minimum pressure is decreased, the first
instances of cavitation in the flow are known as cavitation
inception. The ability to predict cavitation inception is
important to understand its causes and improve the de-
vice’s design. If the flow is turbulent, the statistics of the
random pressure fluctuations along the particles’ paths

a)pablo-carrica@uiowa.edu

(i.e., Lagrangian statistics) have an impact on the initial
presence of cavitation3. Quantifying this impact in tech-
nologically relevant flows is thus an essential ingredient
for predictive models of cavitation inception. Recently,
Agarwal et al. 4 presented experimental evidence relat-
ing pressure fluctuation statistics to cavitation inception
for a backward facing step flow. While complex tur-
bulent flows often result in canonical vortex interaction
leading to cavitation inception, see for instance Chang
et al. 5 , Liu, Tan, and Cao 6 , homogeneous isotropic tur-
bulence provides a flow that approximates the sub-grid
models for Large Eddy Simulation, and is thus of aca-
demic and practical interest7.

Pressure fluctuations in homogeneous isotropic turbu-
lence have been extensively studied theoretically, exper-
imentally and numerically. Batchelor8 studied different
spatial correlations involving pressure fluctuations in ho-
mogeneous turbulence. He found the root mean square
of pressure fluctuations to be 0.58ρ(u′2) (where u′ is the
turbulence intensity) and determined a correlation to es-
timate pressure gradient in the flow based on the diffusion
rate of marked particles from a fixed source.

These analyses were further developed by Uberoi9.
The advent of Direct Numerical Simulation (DNS) al-
lowed for more detailed investigations. Pumir10 numer-
ically studied pressure fluctuations in three-dimensional
homogeneous isotropic turbulence for a range of Reynolds
numbers (Reλ = 21.6 to 77.5, where Reλ = λu′/ν). He
reported that the probability density function (pdf) of
the pressure has an exponential tail on the negative side
for Reλ < 60, becoming super exponential for larger Reλ.
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Holzer and Siggia11 analytically confirmed that at very
low pressure, the pressure probability density function of
a Gaussian velocity field has negative skewness and ex-
ponential tail. Cao et al.12 used conditional averaging
in high-resolution DNS to investigate statistical relations
among pressure, vorticity, dissipation, and kinetic en-
ergy. According to their study, the negative tail becomes
super-exponential and moves upwards as Reλ increases.
A strong correlation of high vorticity to low pressure was
reported by Cao et al.12 and Pumir10 by qualitative anal-
ysis of pressure-vorticity iso-surface visualization.

The Lagrangian statistics of pressure, with focus on
their time dependence, were first computed in a recent
work by Bappy et al.13 They considered neutral tracer
particles and extracted the frequency and duration of La-
grangian low-pressure events from DNS data. However,
depending on density and size, particle motion may be
quite different from that of a tracer. Studies have shown
that lighter particles preferentially concentrate in high-
vorticity regions and heavy particles concentrate in high-
strain regions, and that this effect increases with particle
size14. The statistics of Lagrangian pressure fluctuations
thus depend on the size of the particle, increasing the
probability of lower pressures for gaseous nuclei as their
size increases.

This is one of the mechanisms by which cavitation in-
ception and cavitation dynamics depend on the nuclei
size distribution15–19. Recently, Bappy et al.20 reported
some preliminary results showing that nuclei size has a
very significant impact on Lagrangian pressure statistics:
larger nuclei are more attracted to the low-pressure vor-
tex cores and stay there longer, experiencing more and
longer low pressure events20. This article significantly
extends those results in three ways. Firstly, the statis-
tical significance of the results is improved by a four-
fold increase in the simulated time, allowing for a more
meaningful and detailed analysis. Secondly, buoyancy
effects are incorporated into the study. Mathai et al.21

did an excellent review on bubbles and buoyant particles
in turbulence and discussed their importance in contrast
to neutrally buoyant and heavy particles. Ruetsch and
Meiburg22 showed, with an example of bubbles around
a Stuart vortex, that buoyancy can have a significant
impact on the entrapment of bubbles inside vortices.
Thirdly, the direct consequences of the Lagrangian pres-
sure fluctuations on cavitation prediction are demon-
strated with a concrete example. The Rayleigh-Plesset
equation that models bubble expansion is solved with
the nuclei pressure histories as forcing, computing the
frequency of explosive growth events and thus the effi-
ciency of low-pressure fluctuations to produce cavitation
of the nuclei.

II. METHODS

A. Turbulence dataset

The DNS database of homogeneous isotropic turbu-
lence is obtained by solving the incompressible Navier-
Stokes (NS) equations,

∂tui + uj∂jui = −∂ip+ ν∂kkui + fi, (1)

∂iui = 0, (2)

in a three-dimensional, periodic domain on a basis of N/2
Fourier modes in each direction. In (1) and (2), ui is
the i-th component of the velocity vector, p is the mod-
ified pressure, ν is the kinematic viscosity and fi is a
body-force term per unit mass. Repeated indices imply
summation.

The non-linear terms of the NS equations are fully
dealiased by phase-shifting procedure. A third-order
Runge-Kutta method with semi-implicit treatment of the
linear terms is used for the time integration. To sustain
turbulence in a steady state, a linear body-force is imple-

mented, f̂i = γ ûi, which is only applied to low wavenum-
bers (|k| < 2), where ·̂ denotes the Fourier transform and
k is the wavenumber vector. The forcing coefficient is set
so that, at each time, the total kinetic energy injected in
the system is constant and equal to the time- and volume-
averaged dissipation, ε, i.e,

γ =
ε∑

|k|≥2 ûi(k, t)û
∗
i (k, t)

: |k| < 2, (3)

γ = 0 : |k| ≥ 2. (4)

In Equation 3, (·)∗ denotes the complex conjugate and
the sum in the denominator is the kinetic energy con-
tained above |k| = 2 at each time. The dissipation ε
is set equal to unity and the kinematic viscosity ν is
tuned to keep a numerical resolution r = kmaxη = 1.5,
where η = (ν/ε4)3/4 is the Kolmogorov length scale and

kmax =
√

2N/3 is the maximum wavenumber magnitude.
For a fixed resolution the kinematic viscosity is ν =
(r/kmax)4/3. The time scales associated with the Kol-
mogorov and the integral length scales are tη = (η2/ε)1/3

and tL = L/u′, respectively, with u′ the amplitude of the

velocity fluctuations and L =
∫∞

0
E(k)
k dk/

∫∞
0
E(k)dk

the integral length scale. The Taylor microscale Reynolds
number is Reλ = λu′/ν, where λ = u′

√
15(ν/ε) is the

Taylor microscale.

For the adimensionalization of the equations the Tay-
lor microscale λ, the velocity fluctuation intensity u′ and
the liquid density ρ are used as reference length, velocity
and density, respectively. The nondimensional coordi-
nates, velocities, accelerations, pressure, time and parti-
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cle radius are computed, respectively, as

x̃ = x/λ (5)

ũ = u/u′ (6)

ã = aλ/u′2 (7)

p̃ = p/(ρu′2) (8)

t̃ = tu′/λ (9)

R̃ = R/λ (10)

Note that the choice of the Taylor microscale as refer-
ence length scale is arbitrary and the Kolmogorov length
scale could have been chosen instead, leading to use of
the Kolmogorov time scale tη =

√
ν/ε as reference time

scale instead of λ/u′.
In the next sections (from II B to III D) all the variables

presented are in nondimensional form, omitting the tilde
(˜ ) to ease the notation. Dimensional variables (and the
tilde notation for nondimensional ones) are used again in
section IV.

B. Model of bubble motion

For the computation of trajectories (i.e., tracking)
the nuclei are modeled as small, spherical and non-
interacting particles moving in the turbulence fields with
fixed radius R0. Stokes law gives their non-dimensional
inertial time τ as

τ =
Reλ

9
R2

0. (11)

The Stokes number St = τ/tη is then related to R0 by
em St = 64.6R2

0 when Reλ = 150.
The trajectories of the nuclei in the turbulence field

are computed by integrating

dx(t)

dt
= v(t), (12)

where x(t) and v(t) are the nucleus’ position and veloc-
ity at time t, respectively, and d/dt represents the time
derivative along the particle trajectory. The initial con-
dition is x(0) = x0.

The velocity v of a finite-sized particle differs from
that of the fluid surrounding it. If the particle diameter
is small compared to the Kolmogorov length scale η a
simple equation can be written for v23, namely,

dv

dt
=

1

τ
(u + w − v) + 2a +

du

dt
. (13)

In it, u and a are the fluid velocity and acceleration at the
particle position and at time t, respectively, and w is the
non-dimensional bubble terminal velocity, which is taken
as w = w ě where ě is the vertical unit vector and w is a
parameter that depends on the bubble size which will be
referred to as buoyancy parameter. For Stokes flow the
dimensionless terminal velocity is w = 2

9gR
2
0Reλ. We

assumed that w is an independent parameter because g
is in principle an independent parameter (one could be
studying cavitation in Mars or in an accelerating rocket).
In normal conditions in earth g is fixed and w is depen-
dent only on turbulence parameters (that determine the
dimensionless g and Reλ) and R0, thus R0 is the only
parameter other than the quantities defining the turbu-
lence. In this case the dimensionless terminal velocity
can be rewritten as w = 2

9R
2
0 × 9.81

u′ν . An upper limit for
w can be determined by using the largest nuclei radius
R0 and the smallest u′ of interest. For typically large
nuclei R0 = 100µm we have w = 0.0218

u′ .

Equation (14) is solved with the initial condition
v(0) = v0, which in all computations is set equal to the
local fluid velocity u(x0, 0). Maxey and Riley23 used this
equation to model the motion of small particles in an un-
steady Stokes flow. Several authors22,24,25 later proposed
a corrected form of (13) by replacing the added mass term
du/dt by the fluid acceleration a. The corrected equation
reads

dv

dt
=

1

τ
(u + w − v) + 3a. (14)

For low Reynolds number the instantaneous difference
between the two approaches is small23, yet upon integra-
tion this difference can cause a noteworthy change in the
particle trajectory and pressure history20. All the results
presented in this article are obtained using (14), which is
the nowadays favoured form of the model. Equation (14)
incorporates the effects of Stokes drag, buoyancy, added
mass and fluid acceleration while the Basset-Boussinesq
history and the Faxén correction terms are neglected.

The main outcome of the tracking computations, for
each R0, is a set of particle trajectories {x(i)(t)} (i =
1, . . . ,M , with M the number of particles), obtained by
solving (12) and (14) from t = 0 to t = T with different

initial positions {x(i)
0 }. Along each of these trajectories,

the local pressure field is stored as the pressure history
P (i) of the particle. For the i-th particle, the definition
reads

P (i)(t) = p(x(i)(t), t) . (15)

In the following section, the impact of size (R0) and
of buoyancy (quantified by w) on pressure statistics of
suspended gas nuclei in the DNS flow are evaluated.

C. Numerical algorithm for tracking

An unconditionally stable, second-order semi-implicit
predictor-corrector scheme20 has been used for numeri-
cal integration of the coupled equations (12) and (14).
For n = 0, 1, 2, . . ., considering the variables at time tn
already computed, the algorithm proceeds as follows:
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Predictor:

x∗ = xn + ∆tvn, (16)

u∗ = u(x∗, tn+1), (17)

v∗ =
vn + ∆t

[
u∗+w
τ + 3an

]
1 + ∆t

τ

. (18)

Corrector:

xn+1 = xn +
∆t

2
(vn + v∗) , (19)

un+1 = u(xn+1, tn+1), (20)

an+1 = a(xn+1, tn+1), (21)

vn+1 =
1

(1 + ∆t
2τ )

[
vn +

∆t

2

(
3 (an + an+1)

+
un + un+1 + 2w − vn

τ

)]
. (22)

Equations (17), (20) and (21) represent spatial interpo-
lations, at time tn+1, of the DNS fields u and a. A three-
dimensional third-order polynomial scheme is adopted for
this operation.

The DNS is solved with very high temporal resolu-
tion (time step equal to tη/240). Since it is very costly
to track and store the variables of all the particles, we
adopted a coarser time step to integrate the trajectories.
Equations (16) to (22) are solved at every fourth DNS
time step with corresponding ∆t = 4.3 × 10−3. This
makes ∆t sixty times smaller than Kolmogorov timescale
(∆t ' tη/60), providing a good compromise between ac-
curacy and computational cost. A time step study was
performed to check that pressure statistics do not change
upon further reduction of ∆t.

D. Low-pressure events

A set of negative pressure thresholds is defined as
p− = −2.0,−2.2,−2.4, ... to represent various levels of
low-pressure fluctuations experienced by the Lagrangian
particles. If a nuclei experiences a pressure history P (t),
we define a low-pressure event with threshold p− and
starting time tstart if P (t) goes from above to below p−
at time tstart. The ending time tend of the event is de-
fined as the first later instant at which P (t) takes val-
ues greater than p−. The duration of the event is, thus,
d = tend−tstart. Figure 1 shows a sketch of a low-pressure
event for p− = −3.2.

If n(p−, T ) is the number of low-pressure events with
threshold p− detected from the histories of M particles
evolving over a total time T in the turbulence field, the
average rate (or frequency) of events with that threshold
can be estimated as

ζ(p−) =
n(p−, T )

MT
. (23)

figs/fig1.PNG

FIG. 1. Definition of a low-pressure event.

III. RESULTS AND DISCUSSION

A total of M = 643 nuclei are initially placed uni-
formly in a cubic setup in the turbulent velocity field.
The initial distance between neighboring nuclei is four
times the DNS grid spacing. The velocity field trans-
ports all the nuclei within the three-dimensional periodic
domain of size 2π × 2π × 2π. As discussed in §II C, one
in every four of the 90,000 DNS solutions available were
used; i.e., 22,500 time steps were used for tracking of
the nuclei. The corresponding nondimensional time is
t = 97.065 (≈ 380 tη , or 25TL) with a time step size of
4.3 × 10−3 or tη/60. Nuclei trajectories along with cor-
responding pressure are recorded at all time steps for a
set of cases with different nuclei sizes R0 and buoyancy
parameters w. Table I shows the list of cases run for this
study. The dependence on R0 is studied in the range 0
to 0.05, but R0 up to 0.3 is used in §IV to study cav-
itation inception. Notice that the model equation (14)
is rigorously valid up to R0 ' 0.08, which corresponds
to twice the Kolmogorov length scale (η = 0.041). At
this size the gas nuclei will interfere with the dissipation
processes, occurring at the smallest scales. However, ex-
perimental evidence26 shows that the overall turbulent
kinetic energy dissipation rate is little affected at void
fractions below 1%, a value at least two orders of magni-
tude higher than those of interest in this paper, justifying
the one-way coupled approach used here. Low pressure
structures are considerably larger than the largest nuclei
sizes considered, so forces due to the pressure gradients
are properly evaluated. Larger nuclei sizes will make iner-
tial time to deviate from Eq. (11) but the trends are still
valid, noting that for nuclei size of interest in this work
the drag coefficient differences with the Stokes drag law
are limited to about 10%, see for instance Ishii and Zu-
ber 27 . For gas nuclei in water R0 will rarely exceed 0.05,
and larger values are of interest to observe trends. Notice
in Eq. (10) that R0 is non-dimensionalized with λ. There
may be situations where nuclei may be too small com-
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TABLE I. Nuclei sizes R0 and buoyancy parameters w consid-
ered for this studya. First row indicates the nuclei sizes and
the first column indicates buoyancy parameters. Checkmark
(X) indicates cases considered.

0.00 0.01 0.02 0.03 0.04 0.05

0.0 X X X X X X

1.0 × X × X × X

2.0 × X X X X X

4.0 × X X X X X

6.0 × × × × × X

8.0 × X X X X X

a Some additional sizes larger than 0.05 have also been used for
pressure statistics and cavitation inception computation. They
will be mentioned when reported.

pared to λ and therefore behave as tracers, which would
be the case of large scale turbulence compared to typical
nuclei sizes (R0 < 100 microns). In these cases Reλ will
also be typically large. On the other end, strong small
scale turbulence will have small λ and R0 can be large.

A. Basic statistics of pressure fluctuations

Pressure experienced by nuclei in homogeneous
isotropic turbulence varies significantly depending on the
size of the nuclei and the magnitude of the buoyancy act-
ing on them. The pressure gradient force increases with
size due to the larger surface area while Stokes drag in-
creases linearly with radius, making larger nuclei more
attracted towards the low-pressure regions. The larger
nuclei experience lower average pressure, as shown in
Fig. 2(a). The drop in average pressure decreases with
increasing buoyancy. Higher buoyancy gives rise to a
vertical drift of the nuclei which counteracts the motion
towards vortex cores caused by the pressure gradient.
Fitting results of average pressure as function of the ra-
dius R0 of the nuclei and of the buoyancy parameter w
results in the approximation

pmean = −
(
75R0

2 + 2R0

)
e−w/2, (24)

shown as dashed lines in Fig. 2(a).
The variance σ2

p of the pressure fluctuations, on the
other hand, increases with increasing nuclei size and de-
creases with increasing buoyancy as shown in Fig. 2(b).
The combined dependence can be fitted as

σ2
p =

(
150R0

2 + 3.75R0

)
e−w/2 + 0.725 (25)

(shown as dashed lines in the figure). The temporal
derivative of the pressure fluctuations is very sensitive
to buoyancy but much less to size. An appropriate fit,
depicted with a dashed line in Fig. 2(c), reads

σ2
dp/dt = 1.1w2 + 0.335w + 1.25. (26)

figs/fig2.pdf

FIG. 2. Average pressure statistics of gas nuclei in homo-
geneous isotropic turbulence as a function of nuclei size and
buoyancy. (a) Mean pressure fluctuation, (b) variance of pres-
sure fluctuation, (c) variance of time-derivative of pressure
fluctuation and (d) Taylor timescale. Dashed lines in (a), (b)
and (c) correspond to (24), (25) and (26), respectively.

The Lagrangian Taylor time scale τp, defined as

τp =

[
σ2
p

σ2
dp/dt

]1/2

, (27)

shows a decay with increasing buoyancy. It increases
slightly with the nuclei size (R0), especially if buoyancy
is low (Fig. 2(d)). Equations (24)-(27) can be used to
estimate pressure statistics, for instance for cavitation
inception models.

The behavior of these quantities when w = 0 is con-
sistent with the known higher attraction of larger nuclei
towards the thin, very low-pressure vortex cores. Be-
cause the vortices have finite lifetime, this attraction to
the vortex cores makes the nuclei to experience not only
lower average pressures, but also larger pressure varia-
tions. Buoyancy (w > 0) counteracts this effect, which is
reasonable since it adds a force that, in general, does not
point towards the vortex core. Buoyancy also makes that
the nuclei see, on average, the turbulent flow “passing
by” at speed −w. This explains the quadratic increase
σ2
dp/dt ∼ w

2 for larger w.
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figs/fig3.pdf

FIG. 3. Probability density functions of pressure fluctuations
with different nuclei size for (a) w = 0, (b) w = 4 and (c)
w = 8.

B. Probability density function of pressure

Further insight into the interaction of finite-sized nu-
clei with vortex cores can be attained by studying the
pressures experienced by the nuclei transported along La-
grangian trajectories. Fig. 3(a) shows the pdf’s of the
pressure experienced by the nuclei for R0 varying from
zero to 0.30.

Compared to the Eulerian pressure pdf, which coin-
cides with that of R0 = w = 0, the effect of nuclei size is
to skew the distribution more and more towards negative
pressures, as expected, up to R0 ' 0.1. The negative tail
of the pdf keeps its exponential shape, with its logarith-
mic slope decreasing with nuclei size. For larger R0 this
trend seems to level off. We believe that two factors con-
tribute to this saturation in the effect of R0. Firstly, the
low-pressure vortices have relatively small volume so that
their inward pull can only attract a finite number of nu-
clei from their immediate neighborhood before they dis-
sipate. Also, larger nuclei have larger response times to
the vortex attraction and arrive later to the low-pressure
cores. For the larger sizes the delay may become compa-
rable to the lifetime of the vortices.

Figures 3(b) and (c) show the pdfs for various R0 at
two other buoyancy values, namely w = 4 and 8. They
confirm that buoyancy counteracts the attraction of nu-
clei towards low-pressure regions. The case with w = 4
is particularly interesting. At this level of buoyancy, the
pdf is independent of R0 for positive and mildly nega-
tive values of p, while a strong effect of size remains for
lower pressures. This indicates that, as buoyancy is in-
creased, it first destroys the correlation between positive
and moderately negative pressure fluctuations and nuclei
positions. The very low pressure fluctuations, associated
to strong vortices, maintain their efficiency in trapping
nuclei up to higher values of buoyancy. Eventually, as
seen in the case w = 8, the whole pressure pdf coincides

figs/fig4.pdf

FIG. 4. Probability density functions of pressure fluctuations
at different buoyancy conditions for (a) R0 = 0.01, (b) R0 =
0.03 and (c) R0 = 0.05.

with the Eulerian one. To better illustrate this observa-
tion, in Fig. 4 we compare the pdfs obtained for different
values of w in cases with R0 = 0.05. The value w = 2
already makes the pdf to coincide with the Eulerian one
for p > −2. Increasing the value to w = 4 extends the
coincidence down to p > −5. It is remarkable that the
probability of a nucleus being exposed to very low pres-
sure (p < −12) is practically unaffected by buoyancy
unless w > 4 (terminal velocity four times larger than
the turbulence intensity u′).

C. Low-pressure events

From the pressure pdf it is evident that the probability
of a nucleus experiencing a fluid pressure below some
given threshold p− increases with its size and decreases
with its terminal velocity. The fraction of time a nucleus
spends at pressures below p− can be computed as the
cumulative distribution function (cdf), defined as

cdf(p−) =

∫ p−

−∞
pdf(p) dp . (28)

The pdf, on the other hand, does not say whether the
nucleus undergoes many excursions below p−, each last-
ing a very short time, or just a few long excursions. In
fact, cdf(p−) can be factored as the product of the aver-
age duration d(p−) and the average frequency ζ(p−) of
events of threshold p−. The effects of size and buoyancy
on each of the factors are explored below.

Figure 5 shows the average frequency of low-pressure
events as a function of p− for a range of nuclei sizes at
w = 0, 4 and 8. The plots corresponding to w = 0 in-
dicate that the attraction of larger nuclei towards vortex
cores significantly increases the frequency of low-pressure
excursions. The average frequency increases by a factor
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of up to 300. This is more prominent for events with
lower p−, as is the saturation of the curves for R0 ≥ 0.15.
Figure 6 displays the average duration as a function of
size. One can see that the changes in d are much smaller
than those in ζ, and not monotonous. The duration
increases with size for the smallest nuclei, as expected.
However, for larger sizes the trend is the opposite, which
we attribute to the larger response time of larger nuclei
making them to arrive later to the low-pressure region.
Overall, in the absence of buoyancy the dominant effect
of size is that more nuclei enter the low-pressure vortical
regions and thus Lagrangian low-pressure events happen
significantly more often.

The effect of buoyancy is apparent from Figs. 5 (b)
and (c). For very small nuclei (R0 = 0.01), which are not
significantly trapped by vortices, increasing w produces
an overall shift upwards of the frequency curves. This is
consistent with the increase in σ2

dp/dt already discussed

and is essentially a consequence of the average relative
velocity between the fluid and the cloud of nuclei. For
larger sizes, buoyancy has the additional effect of pulling
the nuclei out of the vortex cores. As a result, prac-
tically no increase of ζ with R0 is observed if w = 8,
while at w = 4 a weak effect is visible and only at very
low values of p−. These combined effects are clear when
the effect of buoyancy is put forward by replotting the
same data as in Fig. 7. For very small nuclei, the av-
erage frequencies at all pressure thresholds increase with
w by the same factor, consistent with Lagrangian pres-
sure pdf being independent of buoyancy and equivalent
to the Eulerian one, as discussed in reference to Fig. 4(a).
For larger nuclei, buoyancy disrupts their attachment to
all but the strongest vortices, so that the net effect (see
Figs. 7 (b) and (c)) is increasing the frequency of events
for higher thresholds (p− ' −2) and decreasing if for
lower thresholds (p− ' −12). The average duration of
events at w = 4 confirms this picture, see Fig. 6: (a)
there is an overall decrease in duration as compared to
the w = 0 case, especially for the smaller nuclei and
higher values of p−, while (b) the average duration of
events for the largest nuclei considered (R0 = 0.3) and
the lowest thresholds (p− = −10 or −12) are similar with
and without buoyancy.

D. Concentration of nuclei

By careful observation of the distribution of nuclei at a
given instant one can notice their preferential concentra-
tion accompanying the vortex cores. An example can be
seen in Fig. 8, which is a snapshot of the nuclei colored
with pressure. The blue filaments correspond to vortex
cores, and they appear very well defined because of the
increased density of nuclei there. Computational cells
with two or more nuclei are shown in Fig. 9, again col-
ored with pressure. These cells are quite rare, since the
average density is 643/2563 = 0.016 nuclei/cell. Their
correlation with the low-pressure filaments in Fig. 8 is

figs/fig5.pdf

FIG. 5. Frequency of low-pressure fluctuation events with
different nuclei sizes at buoyancy values (a) w = 0, (b) w = 4
and (c) w = 8.

figs/fig6.pdf

FIG. 6. Average duration of low-pressure fluctuation events
with different nuclei sizes at buoyancy values (a) w = 0 and
(b) w = 4.

evident. For an average high concentration of nuclei in
water of 107 nuclei/m3 and a nuclei size of 30 µm, 2 nu-
clei per cell corresponds to a void fraction of 0.015%, low
enough to still assume nuclei are dilute.

Finally, the same visualization used in Fig. 8 is
adopted in Fig. 10 to depict the effects of both size and
buoyancy on the tendency of nuclei towards vortex cores.
All snapshots correspond to the same instant and view-
point of Fig. 8. Panel (a) shows results corresponding to
R0 = 0.03 and R0 = 0.02 at w = 0. As the nuclei size de-
creases the filaments get blurred because fewer nuclei get
to the vortex core. A similar blurring occurs in panel (b)
as a result of increasing w to 2 and then 4, while keeping
R0 = 0.05; notice in Fig. 8 the stronger concentration of
particles in cores for w = 0.

The contrast between Figs. 8 and 10 for concentration
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figs/fig7.pdf

FIG. 7. Frequency of low-pressure fluctuation events at dif-
ferent buoyancy values for (a) R0 = 0.01, (b) R0 = 0.03 and
(c) R0 = 0.05.

figs/fig8.pdf

FIG. 8. Instantaneous lateral view of the fluid domain for the
case with R0 = 0.05 and no buoyancy (w = 0). Nuclei are
shown as spheres colored with pressure.

of bubbles in low pressure cores as the terminal velocity
increases or nuclei radius decreases is consistent with the
quantitative results shown in Figs. 3 and 4. From inspec-
tion of Fig. 3 the conditions in Fig. 10(a) still produce
lower pressures than tracer particles (R0 = 0) which are
essentially randomly distributed in the flow.

IV. APPLICATION TO CAVITATION INCEPTION

The low-pressure fluctuations studied above, under
suitable conditions, can produce the cavitation of a
gaseous particle even if the average pressure is above va-
por pressure. This phenomenon is studied here by solv-
ing the Rayleigh-Plesset equation1 for each nucleus as it
is subjected to the pressure along its tracked trajectory.

figs/fig9.pdf

FIG. 9. Iso-surface of nuclei density at 2 nuclei/dx3 colored
with pressure. Nuclei are of size R0 = 0.05 and no buoyancy
is acting. Filaments of nuclei subject to low pressure are
clearly visible, showing that neighboring nuclei align them-
selves within the vortex cores and follow the core until it dis-
sipates. When the core vorticity decays the filament starts to
diffuse and eventually disappears.

This model is valid for small and very disperse gaseous
particles, and thus is especially well-suited for incipient
cavitation conditions. The Rayleigh-Plesset equation de-
scribes the evolution of the bubble radius R(t) (hereafter
the notation without tilde represents dimensional vari-
ables) that results from a time-dependent local pressure
P (t). It reads

ρ`

(
3

2
Ṙ2 +RR̈

)
+

4µ`Ṙ

R
=

pvap +

(
peq +

2S

Req
− pvap

)
R3γ

eq

R3γ
− 2S

R︸ ︷︷ ︸
FNN(R)

−P (t) , (29)

where Ṙ = dR/dt, R̈ = d2R/dt2, ρ` and µ` correspond
to the fluid density and viscosity respectively, pvap is the
vapor pressure of the liquid (temperature dependence is
neglected), S is surface tension, γ is the polytropic ex-
ponent of the non-condensable gas, and Req corresponds
to the radius that the bubble adopts when, neglecting
gravitational effects, is in equilibrium with the liquid at
rest at a uniform temperature Teq and external pressure
peq.

Equation (29) is an ordinary differential equation
which is driven by its right-hand side, FNN(R) − P (t).
The function FNN(R) is depicted in Fig. 11 for some typ-
ical values of the parameters. Its minimum value, which
takes place at a radius that we denote by R∗, is known
as cavitation pressure or Blake threshold pressure28,

pcav = min
R>0

FNN(R) = FNN(R∗) =
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figs/fig10a.pdf

(a)

figs/fig10b.pdf

(b)

FIG. 10. Snapshots of a lateral view of the nuclei in the
turbulent field colored with pressure. (a) Cases with w = 0
and R0 = 0.03 (left) and R0 = 0.02 (right). (b) Cases with
R0 = 0.05 and w = 2 (left) and w = 4 (right).

= pvap −
3γ − 1

3γ

 (2S)3γ

3γ
(
peq + 2S

Req
− pvap

)
R3γ

eq

 1
3γ−1

.

(30)
If P (t) is a given constant P0, and if P0 > pcav, the bub-
ble radius stabilizes at a value R0 < R∗ which satisfies

FNN (R0) = P0. If P0 < pvap two solutions exist for R0,
but the larger one (> R∗) is mechanically unstable. On
the other hand, if P0 < pcav the initially tiny bubble
grows rapidly and reaches detectable sizes, i.e., a cavita-
tion event takes place. For non-constant functions P (t)
that dip below pcav for some limited time it is not obvi-
ous whether the bubble will grow to detectable sizes or
not.

figs/fig11.pdf

FIG. 11. Function FNN(R) for typical values of the pa-
rameters and Req equal to 30, 50, 75 and 100µm. Specif-
ically: Teq = 300 K, pvap(Teq) = 2340 Pa, peq = 10 kPa,
S = 7 × 10−2 Pa-m, γ = 1.4.

In this section we investigate solutions of (29) with
P (t) = P0 +P1(t), where P0 > pcav and P1(t), which has
zero mean, corresponds to the pressure fluctuations along
the trajectories described in the previous sections. That
is, the dimensional pressure history of the i-th simulated
particle is taken as

P (i)(t) = P0 + ρ` u
′2 P̃ (i)

(
u′

λ
t

)
, (31)

where P̃ (i) is a non-dimensional pressure history com-
puted as described in §II and discussed in §III. The cor-
responding solution models the evolution R(i)(t) of the
particle’s radius. We vary the pressure P0 and simulate
bubbles of different sizes. The size is specified as the ra-
dius R0 that is in equilibrium at pressure P0 (i.e., in (29)
we impose peq = P0 and Req = R0). The initial condi-

tions to start the integration are Ṙ(0) = 0 and R(0) such
that FNN (R(0)) = P (0). Notice that P (0), which varies
from bubble to bubble, is in general different from the
average pressure P0 of the flow.
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The material parameters were given fixed values: ρ` =
1000 kg/m3, µ` = 10−3 Pa-s, S = 0.07 Pa-m, γ = 1.4
and pvap = 2340 Pa. These values are representative of
water at ambient conditions. The numerical procedure
adopted is a 4th-order embedded Runge-Kutta method
with adaptive time step29 applied to a scaled version of
the equation (to reduce round-off errors).

The main criterion adopted here to define a cavitation
event is that the bubble radius reaches the value 10R0.
As discussed by Hilgenfeldt et al. 28 , this criterion ensures
that the bubble will experience a strong collapse when
pressure goes back above pcav, which can be detected by
acoustic methods. Another criterion used for comparison
corresponds to visual detection. It considers that the
bubble cavitates when it reaches some fixed size that can
be visually detected (we adopted R = 250µm) regardless
of the initial size.

If bubble i satisfies the cavitation criterion at time t∗,
then the integration of (29) is stopped, the cavitation
event is counted and another bubble is reseeded at a later
time t∗∗ such that P (i)(t∗∗) > pcav, with radius R(i)(t∗∗)
such that FNN (R(i)(t∗∗)) = P (i)(t∗∗).

By changing the values of P0, R0 and u′, different cases
were considered in the investigation of cavitation rates.
For a given bubble size and turbulence intensity, P0 is
given values that start at 3 kPa with increments of 200 Pa
until no cavitation is observed. The values of R0 are
obtained from the values of R̃0 whose trajectories were
previously calculated. They are also constrained by the

choice of u′, since R0 = R̃0λ, λ = Reλν/u
′ and Reλ is

fixed at 150. We simulated the cases of u′ = 0.75 and
1 m/s, and the corresponding values of R0 are presented
in Table II. No buoyancy effect was considered (w̃ = 0)
as the terminal velocities for these bubbles are several
orders of magnitude smaller than u′.

TABLE II. Bubble sizes considered in the cavitation simula-
tion for Reλ = 150 and w̃ = 0.

u′ = 0.75 m/s u′ = 1 m/s

λ = 2 × 10−4 m λ = 1.5 × 10−4 m

R̃0 R0 [µm] R0 [µm]

0.05 10 7.5

0.10 20 15.0

0.15 30 22.5

0.20 40 30.0

0.25 50 37.5

0.30 60 45.0

Figure 12 shows two examples of time series of P (t)
and their corresponding solutions of (29), obtained for
R0 = 30µm, P0 = 3 kPa and u′ = 1 m/s. Note that the
size of the bubble does not change significantly until P (t)
takes values below pcav. This justifies the use of the tra-
jectory of a bubble with constant size. It also explains
why in this section the (dimensional) threshold to define
a low-pressure event is p− = pcav. The bubble in panel

figs/fig12.pdf

FIG. 12. Examples of pressure histories (dashed lines) and
corresponding evolution of bubble radius (solid lines) for R0 =
30µm and u′ = 1 m/s. Both bubbles experience P (t) < pcav,
but only the one in the lower panel reaches the R(t) = 10R0

criterion and cavitates.

(a) of the figure does not reach the cavitation criterion
and eventually collapses. Notice that the integration of
(29) is also stopped when collapse occurs, since it is of no
interest to our study and heavily burdens the computa-
tions. Also remarkable is the effect of inertia in causing
a significant delay (of more than one Taylor timescale)
between the increase of pressure to values above pcav and
the collapse of the bubble (Fig. 12(a)). Panel (b), on the
other hand, shows R(t) for a bubble that ends up cavi-
tating. The pressure fluctuation in this case goes further
below pcav and for a longer time.

The average rate of low-pressure events flp and the
average cavitation rate fcav were estimated as

flp,cav =
Nlp,cav

M(λT̃/u′)
, (32)

where Nlp (or Ncav) is the number of low-pressure (or
cavitation) events counted in the simulation, M is the

total number of particles (M = 323 for all cases) and T̃

is the non-dimensional DNS simulated time (T̃ = 28.8).
Figure 13 presents the estimated values of flp for each

case tested, and it shows the expected increase with R0

and roughly exponential decrease with P0. Also shown
are plots of fcav, for which the dependence on R0 is less
obvious. This is explained by the larger inertia of larger
bubbles, which reduces the cavitation efficiency (defined
as fcav/flp, see panels (e) and (f) in the figure).

The most immediate use of fcav estimations is the pre-
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figs/fig13.pdf

FIG. 13. Average rate of low-pressure events (flp, (a) and
(b)), average rate of cavitation events (fcav, (c) and (d)) and
cavitation efficiency (fcav/flp, (e) and (f)) for u′ = 0.75 m/s
(left panels) and u′ = 1 m/s (right panels). Shaded area cor-
responds to one standard deviation in (a), (b), (c) and (d)
(assuming a Poisson process) and a confidence interval of 95%
in (e) and (f) (assuming a binomial process with fixed number
of events).

diction of the average rate F of cavitation events (in
events/m3/s) in some region of a flow in which homo-
geneous and isotropic turbulence conditions can be as-
sumed with mean pressure P0 and turbulent variables u′

and λ. If φ(R) is the nuclei size distribution function (in
particles/m4), then

F =

∫ Rmax

Rmin

φ(R)fcav(R)dR, (33)

where Rmin and Rmax are the minimum and maximum
radii of the particles in the distribution. Such F would
decrease with increasing P0, and cavitation inception can
thus be defined as the highest value of P0 for which F is
large enough to be detectable.

Figure 14 shows an estimation of φ(R) obtained by fit-
ting several experimental nuclei size distribution func-
tions, with a nuclei void fraction of 9× 10−7 considering
nuclei up to 100 microns30. To use the average cavitation
rates computed above, we approximate F numerically by

F '
6∑
i=1

φ(R0i) fcav(R0i)Wi (34)

where i runs over the six available values of R0, with the
weights Wi depicted by the columns superimposed to the

curve φ(R). This approximates the main part of the inte-
gral, since at the lower end of the integral the cavitation
rate fcav is already approaching zero (see Figs. 13(c) and
(d)), and on the other end of the integral the value of the
density distribution decreases exponentially. The numer-
ical values of F are shown on the right column of Fig. 14.
Assuming a detectability threshold of 105 events/m3/s,
the effect of turbulent fluctuations is that inception is
predicted at P0 = 7.5 kPa when u′ = 0.75 m/s, and at
P0 = 12 kPa when u′ = 1 m/s. This estimation does not
change significantly if the cavitation criterion is that R(t)
reaches 250µm instead of 10R0 (see Fig. 14(b) and (d)).
However, these values would be underestimated (5.5 kPa
and 9 kPa, respectively) if the cavitation computations
were performed with the pressure histories along fluid
trajectories (equivalent to R0 = 0).

V. SUMMARY AND CONCLUSION

The Lagrangian pressure statistics of gas nuclei in
homogeneous isotropic turbulence at Reλ = 150 has
been studied and reported in this article. A DNS HIT
database has been created and stored at Univ. Polit.
de Madrid, Spain, with very fine temporal resolution to
ensure accurate tracking of gas nuclei in the turbulent
flow field and long simulation time (≈ 380tη ) to provide
statistically significant results. A large number of non-
interacting point particles were seeded in the turbulence
velocity field and transported according to the Maxey-
Riley equation. The trajectories and pressure histories
were recorded, and statistics of low-pressure events were
determined. It was possible to visualize the association
of turbulent structures with preferential concentration of
the nuclei, and to study the dependence of the variables of
interest on the size of the nuclei and on their buoyancy-
induced terminal velocity. Notice that the simulations
are one-way coupled, in that the forces exerted by the
particles on the fluid are neglected. It should also be
mentioned that the model did not include the effects of
Faxen correction and Basset history forces. The study
covered a wide range of sizes, corresponding to Stokes
number (τ/tη in our notation) from 0 to 1.

Strong vortices attract larger nuclei towards their low-
pressure cores as stronger pressure gradients there in-
crease the relative velocity pointing towards the center
of the vortical filaments. When the size of the nuclei is
larger, more nuclei concentrate around the vortex cores.
As a result, the mean pressure on the nuclei decreases and
the pressure variability becomes larger as nuclei more of-
ten probe the very low pressures of vortex cores.The pdf
of pressure responds very significantly to any change in
size of the nuclei. As the size is increased the super-
exponential tail of the pdf (towards negative pressures)
moves up as the probability of nuclei being in the low-
pressure regions increases. On the positive-pressure side
of the pdf, the trend is downwards which indicates lesser
nuclei being present in the higher pressure regions. The
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average frequency of low-pressure events behaves accord-
ingly, increasing with size by a factor of up to 300 as R0

goes from 0 to 0.15, and then leveling off. The average
duration of low-pressure events, on the other hand, varies
much less with size and in a non-monotonous way.

Gravity acts on bubbles as a buoyant force that can
be characterized by the vertical terminal velocity w in a
still fluid. We considered cases with no buoyancy (w = 0)
and others with moderate (w ≈ u′) to very high buoyancy
(w = 8u′). Buoyancy has interesting consequences on the
pressure statistics of the nuclei. As a gravitational pres-
sure gradient it competes with the flow-induced pressure
gradient that attracts nuclei towards the vortex cores,
so that as buoyancy is increased only the strongest vor-
tices (and eventually not even them) can capture nuclei.
The effect on the pressure pdf of finite-sized bubbles is to
make it tend to the R0 = 0 (Eulerian) pdf as buoyancy is
increased, this tendency being slower at the lowest pres-
sure values. The effect on the frequency of low-pressure
fluctuations is similar, but superimposed to an overall
shift upwards produced by buoyancy. This shift results
from the average relative velocity ≈ w of the nuclei with
respect to the fluid, which also induces a reduction of the
average duration of low-pressure events.

The pressure fluctuations experienced by the nuclei can
make them cavitate in homogeneous turbulence with av-
erage pressure P0 significantly above the vapor pressure.
The cavitation frequency strongly depends on P0 and on
the size of the nuclei. The latter not only affects the tra-
jectories and thus the pressure history undergone by the
nuclei, but also the efficiency with which low-pressure
fluctuations make the nuclei to cavitate. Calculations
were performed to quantify these phenomena, and the
results were then applied to predict the value of P0 that
would correspond to incipient cavitation with a realistic
polydisperse nuclei distribution. At a turbulent intensity
u′ of 0.75 m/s inception is predicted at 7 kPa, while if
u′ = 1 m/s the prediction increases to 12 kPa. Such high
values show that the fluctuations studied in this work can
have technologically relevant consequences.

Due to unavailability of very fine time-resolved DNS
databases of turbulent flow at higher Reynolds number,
this work has been limited to Reλ = 150. In many sit-
uations of turbulent cavitating flow the Reynolds num-
ber can be much larger. La Porta et al. 31 define the
Reλ using the velocity fluctuations and the Taylor mi-
croscale at the scale of their experiment, yielding Reλ
larger than 1600. We are motivated by estimating sub-
grid scale pressure fluctuations in CFD simulations to
improve computation of cavitation inception7. For a
CFD simulation with LES, the Taylor Reynolds num-
ber at the sub-grid level can be estimated from the
residual turbulent kinetic energy and the dissipation as

Reλ ≈ 1.5ε
1
6

(
∆
π )

2
3

√
15
ν . This in most cases yields for

properly resolved LES Reλ < 400, and more typically
Reλ ∼ 100. Notice that as the grid spacing ∆ decreases
Reλ decreases, eventually resulting in a DNS computa-
tion where all pressure fluctuations are explicitly resolved

and no pressure fluctuations at the sub-grid scale exist.
Based on this analysis, Reλ = 150 is a reasonable param-
eter for studying sub-grid scale pressure fluctuations. An
increase in Reλ results in lower minimum pressures and
extended low pressure tails in the pdf’s, as described by
Cao et al.12 and Bappy et al.13, while lower Reλ yield
milder pressure fluctuations. Future work will focus on
creating databases that characterize low-pressure fluctu-
ations and cavitation at a range of higher and lower Reλ.
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figs/fig14a.pdf

figs/fig14b.pdf

FIG. 14. Density distribution of nuclei (φ(R0), (a) and (c))
from Li and Carrica 30 and average cavitation rate (F , (b) and
(d)) for u′ = 0.75 m/s (upper panels) and u′ = 1 m/s (lower
panels). Rectangles in (a) and (c) correspond to the area used
in the numerical integration of (33). In (b) and (d), solid lines
use bubble trajectories in the calculation, dashed line uses

fluid trajectories (or R̃0 = 0). The solid line uses cavitation
criterion of 10R0 and the dotted dashed line corresponds to
the cavitation criterion of 250µm.
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