

Correction to: Some results and examples concerning Whyburn spaces

OFELIA T. ALAS, MAIRA MADRIZ-MENDOZA AND RICHARD G. WILSON

ABSTRACT

We correct the proof of Theorem 2.9 of the paper mentioned in the title (published in *Applied General Topology*, 13 No.1 (2012), 11-19).

2010 MSC: Primary 54D99; Secondary 54A25; 54D10; 54G99

KEYWORDS: Whyburn space, weakly Whyburn space, submaximal space, scattered space, semiregular, feebly compact

There is an error in the proof of Theorem 2.9. A correct proof is as follows.

Theorem 2.9. If X is weakly Whyburn, then $|X| \leq d(X)^{t(X)}$.

Proof. If X is finite, the result is trivial; thus we assume that X is infinite. Suppose that $d(X) = \delta$, $t(X) = \kappa$ and $D \subseteq X$ is a dense (proper) subset of cardinality δ . Let $D = D_0$ and define recursively an ascending chain of subspaces $\{D_\alpha : \alpha < \kappa^+\}$ as follows:

Suppose that for some $\alpha \in \kappa^+$ and for each $\beta < \alpha$ we have defined dense sets D_β such that $|D_\beta| \leq \delta^\kappa$ and $D_\gamma \subseteq D_\lambda$ whenever $\gamma < \lambda < \alpha$. If α is a limit ordinal, then define $D_\alpha = \bigcup\{D_\beta : \beta < \alpha\}$ and then $|D_\alpha| \leq |\alpha| \cdot \delta^\kappa \leq \kappa^+ \cdot \delta^\kappa = \delta^\kappa$. If on the other hand $\alpha = \beta + 1$, and $D_\beta \not\subseteq X$, then since X is weakly Whyburn there is some $x \in X \setminus D_\beta$ and $B_x \subseteq D_\beta$ such that $|B_x| \leq \kappa$, $\text{cl}(B_x) \setminus D_\beta = \{x\}$; thus necessarily, we have that $|\text{cl}(B_x)| \leq \delta^\kappa$ and we define

$$D_\alpha = \bigcup\{\text{cl}(B) : B \subseteq D_\beta, |B| \leq \kappa, |\text{cl}(B)| \leq \delta^\kappa\}.$$

Clearly $D_\alpha \supsetneq D_\beta$ and since there are at most $(\delta^\kappa)^\kappa$ such sets B it follows that $|D_\alpha| \leq \delta^\kappa$. If $D_\alpha = X$ for some $\alpha < \kappa^+$, then we are done. If not, then we define $\Delta = \bigcup\{D_\alpha : \alpha < \kappa^+\}$, and clearly $|\Delta| \leq \kappa^+ \cdot \delta^\kappa = \delta^\kappa$.

Thus to complete the proof it suffices to show that $\Delta = X$. Suppose to the contrary; then, since Δ is not closed and X is weakly Whyburn and has tightness κ , there is some $z \in X \setminus \Delta$ and some set $B \subseteq \Delta$ of cardinality at most κ , such that $\text{cl}(B) \setminus \Delta = \{z\}$ and hence $|\text{cl}(B)| \leq \delta^\kappa$. Since the sets $\{D_\alpha : \alpha < \kappa^+\}$ form an ascending chain and $\text{cf}(\kappa^+) > \kappa$, it follows that for some $\gamma < \kappa^+$, $B \subseteq \bigcup\{D_\alpha : \alpha < \gamma\}$ and hence $z \in D_{\gamma+1} \subseteq \Delta$, a contradiction. \square

It should also be noted that Theorem 2.6 is not as claimed, an improvement on the cited result of Bella, Costantini and Spadaro, since a Lindelöf P -space is regular.

(Received October 2012 – Accepted October 2012)

O. T. ALAS (alas@ime.usp.br)

Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 66281, 05311-970 São Paulo, Brasil.

M. MADRIZ-MENDOZA, R. G. WILSON (seber@xanum.uam.mx, rgw@xanum.uam.mx)
 Departamento de Matemáticas, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Avenida San Rafael Atlixco, #186, Apartado Postal 55-532, 09340, México, D.F., México.