

# The influence of $Nb_2O_5$ in the linear and nonlinear properties of fluorophosphates glasses

Artur Barbedo<sup>1</sup>, José L. Clabel H.<sup>1</sup>, Leandro O. E. Silva<sup>2</sup>, Danilo Manzani<sup>2</sup>, Cleber R. Mendonça<sup>1</sup>

<sup>1</sup>São Carlos Institute of Physics, University of São Paulo, P.O. Box 369, 13560-970, São Carlos, São Paulo, Brazil

<sup>2</sup>São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, 13560-970, São Carlos, São Paulo, Brazil

[crmendonca@ifsc.usp.br](mailto:crmendonca@ifsc.usp.br)

In nonlinear optics, glasses play an important role in applications, such as telecommunication and integrated optics [1]. The fluorophosphate glasses have stood out, within this group, presenting excellent properties of both phosphate and fluorites, such as chemical stability, lower hygroscopicity, and high transmittance between UV and infrared [2]. Modifiers, such as  $Nb_2O_5$ , proved an interesting way to enhance some desirable characteristics in glasses, including improvements in both linear and nonlinear optical properties [3]. Adding higher concentrations of  $Nb_2O_5$  can also promote higher polarizability, attributed to forming non-bridging oxygens (NBOs), crucial in enhancing nonlinear responses. This work studies the linear and nonlinear optical response of fluorophosphate glasses with different concentrations of  $Nb_2O_5$ , presenting higher  $n_2$  than conventional glass systems, such as silicate, pyrophosphate, or borogermanate glasses [4,5], with the potential for even greater optical applications.

FPNMgy glasses with nominal composition (80-y) %NaPO<sub>3</sub> - 20%MgF<sub>2</sub> - y%Nb<sub>2</sub>O<sub>5</sub> (y = 0.05-0.2 mol%) were investigated. Density was measured using the Archimedes method with Shimadzu AUY 220 balance. Structural features were examined by a confocal Raman microscope. The nonlinear refractive index ( $n_2$ ) in the visible-NIR range was determined via Nonlinear Elliptic Rotation (NER) method [6], employing a femtosecond laser system.

The UV-Vis spectra (Figure 1a) show a broad transparency window between 500 and 800 nm for all samples, which is important for nonlinear optical applications. As the niobium oxide concentration increases, the band gap decreases, causing a redshift in the absorption edge compared to FPNMg5%. This shift arises from structural changes in the glass network, notably increased NBO, which modify the electronic structure and lower the band gap. The Raman spectra (Figure 1b) confirm these findings, showing increased intensity near 910 cm<sup>-1</sup>, attributed to Nb-O bonds in the NbO<sub>6</sub> octahedra, as the  $Nb_2O_5$  concentration increases from 5 mol% to 20 mol%. These structural modifications boost the network polarizability and enhance the nonlinear optical response, highlighting the critical role of  $Nb_2O_5$ .

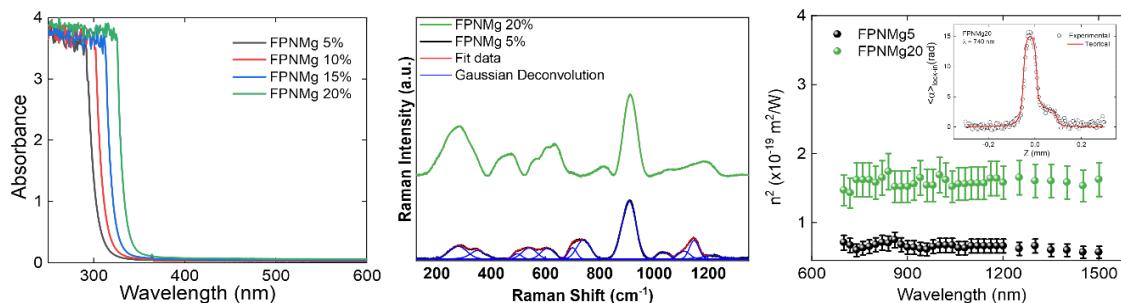



Fig. 1 (a) UV-Vis spectra from 200-800 nm for all glasses, (b) The Raman spectra of FPNMg5% and FPNMg20%, (c) Nonlinear refractive index dispersion of FPNMg5% and FPNMg20% from 700 to 1500 nm, and experimental result of the NER measurement.

The nonlinear refractive index ( $n_2$ ) of the bismuth phosphate glasses, shown in Figure 1c, reveals consistent values across the measured wavelength range (700-1500 nm), with negligible dispersion within experimental error. The sample with 5% of Nb<sub>2</sub>O<sub>5</sub> exhibits a  $n_2$  approximately  $0.6 \times 10^{-19} \text{ m}^2/\text{W}$ , about twice the value of fused silica. Increasing the Nb<sub>2</sub>O<sub>5</sub> concentration enhances  $n_2$ , reaching  $1.6 \times 10^{-19} \text{ m}^2/\text{W}$  in FPNMg20%, five times higher than silica. This increase is attributed to the higher Nb<sub>2</sub>O<sub>5</sub> content, which promotes the formation of NBOs and enhances the network polarizability.

In conclusion, their high  $n_2$ , stability, and broad transparency make these glasses excellent candidates for various photonic technologies, including ultrafast optical switching and other nonlinear applications.

- [1] W. Blanc, Y. Gyu Choi, X. Zhang, M. Nalin, K.A. Richardson, G.C. Righini, M. Ferrari, A. Jha, J. Massera, S. Jiang, J. Ballato, L. Petit, The past, present and future of photonic glasses: A review in homage to the United Nations International Year of glass 2022, *Prog Mater Sci* 134 (2023).
- [2] X. Wang, Y. Tian, Y. Zhang, D. Tang, B. Li, J. Zhang, S. Xu, Effect of Al (PO<sub>3</sub>)<sub>3</sub>, NaF, and SrF<sub>2</sub> on structure and properties of fluorophosphate glass, *J Non Cryst Solids* 602 (2023) 122089.
- [3] D. Manzani, T. Gualberto, J.M.P. Almeida, M. Montesso, C.R. Mendonça, V.A.G. Rivera, L. De Boni, M. Nalin, S.J.L. Ribeiro, Highly nonlinear Pb<sub>2</sub>P2O<sub>7</sub>-Nb<sub>2</sub>O<sub>5</sub> glasses for optical fiber production, *J Non Cryst Solids* 443 (2016) 82–90.
- [4] F.R. Henrique, A.G. Pelosi, J.M.P. Almeida, D.F. Franco, L.H.Z. Cocco, J.L. Clabel H., M. Nalin, V.R. Mastelaro, L. De Boni, C.R. Mendonça, Nonlinear refraction in high terbium content borogermanate glass bulk and fiber, *Opt Mater* 147 (2024) 114635.
- [5] G.O. Campos, J.L. Clabel H., A.G. Pelosi, L.O.E. da Silva, V.R. Mastelaro, D. Manzani, C.R. Mendonça, Effect of WO<sub>3</sub> in the third-order optical nonlinearities of tungsten lead pyrophosphate glasses, *Opt Mater* 150 (2024) 115278.
- [6] M.L. Miguez, E.C. Barbano, J.A. Coura, S.C. Zilio, L. Misoguti, Nonlinear ellipse rotation measurements in optical thick samples, *Appl Phys B* 120 (2015) 653–658.

# The Influence of $\text{Nb}_2\text{O}_5$ in the Linear and Nonlinear Properties of Fluorophosphates Glasses

Publisher: IEEE

[Cite This](#)[PDF](#)Artur Barbedo ; José L. Clabel H. ; Leandro O. E. Silva ; Danilo Manzani ; Cleber R. Mendonça [All Authors](#)

9

Full Text Views

**Abstract****Abstract:**

In nonlinear optics, glasses play an important role in applications, such as telecommunication and integrated optics [1]. The fluorophosphate glasses have stood out, within this group, presenting excellent properties of both phosphate and fluorites, such as chemical stability, lower hygroscopicity, and high transmittance between UV and infrared [2]. Modifiers, such as  $\text{Nb}_2\text{O}_5$ , proved an interesting way to enhance some desirable characteristics in glasses, including improvements in both linear and nonlinear optical properties [3]. Adding higher concentrations of  $\text{Nb}_2\text{O}_5$  can also promote higher polarizability, attributed to forming non-bridging oxygens (NBOs), crucial in enhancing nonlinear responses. This work studies the linear and nonlinear optical response of fluorophosphate glasses with different concentrations of  $\text{Nb}_2\text{O}_5$ , presenting higher  $n_2$  than conventional glass systems, such as silicate, pyrophosphate, or borogermanate glasses [4], [5], with the potential for even greater optical applications.

**Authors**

**Published in:** 2025 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)

**Figures**

**Date of Conference:** 23-27 June 2025

**References**

**Date Added to IEEE Xplore:** 15 August 2025

**Keywords**

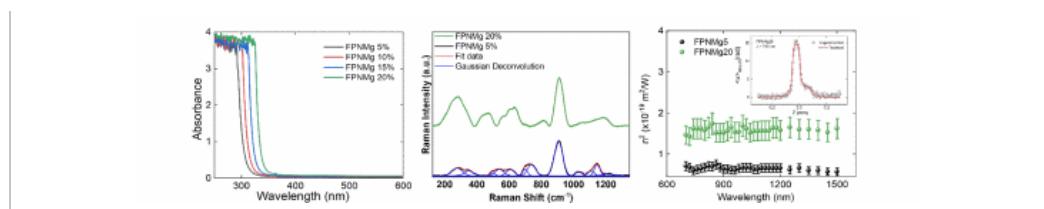
**ISBN Information:**

**Metrics**

**ISSN Information:**

**More Like This**

**DOI:** [10.1109/CLEO/Europe-EQEC65582.2025.11110842](https://doi.org/10.1109/CLEO/Europe-EQEC65582.2025.11110842)


**Publisher:** IEEE

**Conference Location:** Munich, Germany

In nonlinear optics, glasses play an important role in applications, such as telecommunication and integrated optics [1]. The fluorophosphate glasses have stood out, within this group, presenting excellent properties of both phosphate and fluorites, such as chemical stability, lower hygroscopicity, and high transmittance between UV and infrared [2]. Modifiers, such as  $\text{Nb}_2\text{O}_5$ , proved an interesting way to enhance some desirable characteristics in glasses, including improvements in both linear and nonlinear optical properties [3]. Adding higher concentrations of  $\text{Nb}_2\text{O}_5$  can also promote higher polarizability, attributed to forming non-bridging oxygens (NBOs), crucial in enhancing nonlinear responses. This work studies the linear and nonlinear optical response of fluorophosphate glasses with different concentrations of  $\text{Nb}_2\text{O}_5$ , presenting higher  $n_2$  than conventional glass systems, such as silicate, pyrophosphate, or borogermanate glasses [4], [5], with the potential for even greater optical applications.

FPNMgy glasses with nominal composition  $(80-y)\% \text{NaPO}_3 - 20\% \text{MgF}_2 - y\% \text{Nb}_2\text{O}_5$  ( $y = 0.05-0.2$  mol%) were investigated. Density was measured using the Archimedes method with Shimadzu AUW 220 balance. Structural features were examined by a confocal Raman microscope. The nonlinear refractive index ( $n_2$ ) in the visible-NIR range was determined via Nonlinear Elliptic Rotation (NER) method [6], employing a femtosecond laser system.

The UV-Vis spectra (Figure 1a) show a broad transparency window between 500 and 800 nm for all samples, which is important for nonlinear optical applications. As the niobium oxide concentration increases, the band gap decreases, causing a redshift in the absorption edge compared to FPNMg5%. This shift arises from structural changes in the glass network, notably increased NBO, which modify the electronic structure and lower the band gap. The Raman spectra (Figure 1b) confirm these findings, showing increased intensity near  $910 \text{ cm}^{-1}$ , attributed to Nb-O bonds in the  $\text{NbO}_6$  octahedra, as the  $\text{Nb}_2\text{O}_5$  concentration increases from 5 mol% to 20 mol%. These structural modifications boost the network polarizability and enhance the nonlinear optical response, highlighting the critical role of  $\text{Nb}_2\text{O}_5$ .



**Fig. 1**

(a) UV-Vis spectra from 200–800 nm for all glasses, (b) The Raman spectra of FPNMg5% and FPNMg20%, (c) Nonlinear refractive index dispersion of FPNMg5% and FPNMg20% from 700 to 1500 nm, and experimental result of the NER measurement.