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We use a new compilation of the hadronic R-ratio from available data for the process e e~ — hadrons to
determine the strong coupling, a,. We make use of all data for the R-ratio from threshold to a center-of-
mass energy of 2 GeV by employing finite-energy sum rules. Data above 2 GeV, for which at present
far fewer high-precision experimental data are available, do not provide much additional constraint
but are fully consistent with the values for a, we obtain. Quoting our results at the 7 mass to facilitate
comparison to the results obtained from analogous analyses of hadronic z-decay data, we find a,(m?) =
0.298 4+ 0.016 4+ 0.006 in fixed-order perturbation theory, and a,(m?) = 0.304 +0.018 +0.006 in
contour-improved perturbation theory, where the first error is statistical, and the second error reflects
our estimate of various systematic effects. These values are in good agreement with a recent determination

from the OPAL and ALEPH data for hadronic = decays.
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I. INTRODUCTION

There are many hadronic quantities from which the
strong coupling, a,(s), can be extracted, at many different
energy scales E = /s, as long as s is large enough that
QCD perturbation theory can be expected to apply. The
range of scales employed in such determinations ranges
from above the Z mass, where nonperturbative effects are
negligible, down to the 7z mass, where these effects,
although subdominant, must be taken into account care-
fully in an accurate extraction of a,. Not all of these
determinations lead to values for a, (quoted, for instance, in
the 5-flavor, MS scheme at the Z mass) that are competitive
when comparing the errors.! Nevertheless, determinations
over a wide range of scales are interesting, because they
directly test the running of the coupling predicted by QCD.
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As such, it is interesting to consider determinations of «, at
scales as low as the 7 mass.

Some years ago, a calculation of the five-loop contri-
bution to the Adler function [2] revived interest in the
determination of @, from nonstrange hadronic 7 decays; for
recent work see Refs. [3—12]. The results of these efforts
have been controversial,2 because it is difficult to disen-
tangle nonperturbative contributions to the spectral func-
tions extracted from hadronic 7 decays, and, in fact, it is not
obvious that this can be done in a completely satisfactory
way. Moreover, it is difficult to make progress in the
context of hadronic 7 decays, because the z mass puts a
limit on the scales that can be probed within this approach.

It would thus be interesting to apply and test the same
techniques in a similar setting where no such limit exists.
This leads us to consider, instead of 7 decays, the R-ratio
R(s), measured in the process e”e™ — hadrons(y), which
is directly proportional to the electromagnetic (EM) QCD
vector spectral function.” The same technology used in
extracting «, from the nonstrange, / = 1, vector and axial

ZSee, in particular, Refs. [11,12] for a clear account of the
controversy.

The symbol (y) indicates that the hadronic final state is
inclusive of final-state radiation.
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spectral functions measured in hadronic 7 decays can also
be used to extract a,; from the EM spectral function. The
technology used in 7 decays, which we apply here to R(s)
instead, is that of finite-energy sum rules (FESRs) [13-15].

The idea of comparing the predictions from QCD
perturbation theory with R(s) at large enough s is an old
and obvious one. However, the extraction of a(s) from
R(s) at a single value of s leads to a very large uncertainty,
which makes the resulting «; compatible with other
extractions, but uninteresting as a source of precise infor-
mation about the coupling.” The use of FESRs, instead,
allows us to make use of all data for R(s) from threshold to
some s = s, to extract ¢, with a much higher precision than
can be obtained from a “local” determination at the scale
s = 5¢. The reason a FESR determination is expected to be
more precise is that, rather than relying only on a single
local R(s) result, FESRs employ weighted integrals over the
experimental spectral distribution for s running from thresh-
old to some upper limit s,. Since the experimental data are
more precise at lower s, the weighted spectral integrals for
so in the region where R(s) starts to behave perturbatively
are typically much more precise than are the values of R(s)
in the same region. The associated FESR determinations of
a;, are thus also expected to be much more precise than those
obtained by matching the perturbative expression for R(s)
to the spectral data directly. As we will see, a new
compilation of R(s) combining all available experimental
electroproduction cross-section results [19] makes it pos-
sible to determine a; at scales s, for m2 < sy <4 GeV?
with an error small enough to make the comparison with
other determinations of «, interesting.” Moreover, we
expect that future, more precise data for R(s) will allow
us to improve this determination of a,, because at present
the errors turn out to be dominated by those coming from
the experimental errors on R(s).®

As this paper will show, it is the data for the FESR
integrals over R(s) up to s, for values between s, ~ m? and
so = 4 GeV? that will contribute most to the accuracy with
which we can determine «,. Of course, data for R(s)
beyond 4 GeV? exist, but their accuracy is not yet sufficient
to have a significant impact on the error in the determi-
nation of a,. Although the 7 mass plays no physical role in
the current analysis, we will nonetheless quote our ny = 3
flavor results for ; at the scale 4 = m, in order to facilitate
direct comparison to the results of the analogous z-based
analyses.

4See, for instance, Refs. [16-18] and, in particular, Table 3 in
Ref. [17].

5Throughout this paper, we will actually use a version of the
R(s) data set of Ref. [19] slightly different from that employed in
the evaluation of the leading order Hadronic Vacuum Polarization
contribution to (g—2), described in Ref. [19], for reasons
ex[%lained in Sec. IITA.

Another recent compilation similar to, but independent of, the
compilation of Ref. [19] can be found in Ref. [20].

The controversies that have plagued the determination of
a, from 7 decays are primarily related to the need to model
violations of quark-hadron duality associated with the
clearly visible effects of hadronic resonances in the vector
and axial spectral functions for s < m2. At energies beyond
the = mass, duality violations are expected to decrease
exponentially, making this a major motivation for consid-
ering the determination of a, from e"e~ — hadrons(y).
Indeed, while resonance effects are still present in the
region m? < s < 4 GeV?, it turns out that our central value
for a, from R(s) is much less sensitive to the treatment of
residual duality violations than was the case for z-based
analyses, with the modeling of these effects only needed as
part of the analysis of systematic errors. It turns out that,
given the current experimental errors on R(s), our estimate
for the systematic error due to duality violations is rather
small.

This paper is organized as follows. In Sec. II, we provide
a brief review of the necessary theory of FESRs.
Contributions from perturbation theory (in the MS scheme)
and the operator product expansion (OPE) are discussed in
Sec. II B and the inclusion of electromagnetic corrections in
the OPE (necessitated by the fact that the hadronic final
states include photons) in Sec. II C. The contributions from
duality violations are considered in some detail in Sec. II D.
We describe and discuss the data in Sec. III, before turning
to our analysis in Sec. IV. Section IV A contains our main
fits to the data; Sec. IV B discusses systematic errors; and
Sec. IV C contains our results, including a conversion to the
five-flavor Z-mass scale. In Sec. IV D we compare these
results to those obtained from an analogous z-based
analysis. Section V contains our conclusions.

II. THEORY

In this section, we review the FESR methodology, as
applied to the case of the two-point function of the three-
flavor EM current,

1

- 1_ 1
3dy#d——syﬂs = J; —|——J,§,

3 V3
where the superscripts 3 and 8 label the neutral / = 1 and
I = 0 members of the SU(3) octet of three-flavor vector
currents, respectively. The EM vacuum polarization H(qz)
is defined through7

2
JM =iy ,u (2.1)

3

MM (g) = i / x0T {JE (x)EM(0)}0),

= (Q/lql/ - ng/w)n(qz)’ (22)

"Note that, with this definition, in the isospin limit, the / = 1
part of T1(g*) has a normalization one-half that of the corre-
sponding isovector flavor ud polarization encountered in the
analysis of hadronic 7 decays.
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and the corresponding spectral function is obtained, as
usual, from the imaginary part of II(¢?) as®

1 1

ps) = ;ImH(s) = TﬂzR(s). (2.3)

The second equality in Eq. (2.3) follows from the fact that
the imaginary part of I1(g?) is directly related to the cross

section for e™e™ — hadrons, through the optical theorem.
Here R(s) is defined by

3s O¢te~—had (S)
R(S) EW"@*@’—»hadrons(y)(s) = o : l‘jni(E’; s (24)
e'e =uu

where «a is the fine-structure constant, and the second
equation holds for values of s for which we can neglect the
muon mass. The y in parentheses indicates that hadronic
states with final-state radiation are included in addition to
purely hadronic states.

In Sec. I A we review the FESRs which relate R(s),
which is available from experimental data for e*e™ —
hadrons, to a theoretical representation of I1(g?) at large
g*. In Secs. IIB and I1C we review the theoretical repre-
sentation for large g*> away from the Minkowski axis g> = s,
based on the OPE. As is well known, the OPE does not
capture the nonanalytic behavior of I1(¢?) on the positive
real ¢° axis that corresponds to the presence of hadronic
resonances in p(s). In Sec. II D we discuss our method for
modeling these “duality-violating” effects and the use of this
approach in estimating the systematic uncertainty associated
with neglecting duality-violating effects in the determination
of a, from FESR analyses of T1(g?).

A. Finite-energy sum rules

Extending z = ¢* to the complex plane, the function
I1(z) is analytic everywhere except on the positive real
z-axis. Therefore, the integral of I1(z) times any analytic
function of z, along the contour shown in Fig. 1, vanishes.
From this, employing Eq. (2.3), one has, for any poly-
nomial weight w(y), the FESR relation

1 So S
1M (s0) = mA a’sw(Q)R(s)
= —— dzw| — |II(z). 2.5
27isg J|z|=s, S (2) (25)

We will use experimental data for R(s) to evaluate the
integrals on the left-hand side of Eq. (2.5). As already
indicated in Eq. (2.4), these data also include EM correc-
tions, and the threshold value of s is thus equal to m2,
corresponding to the opening of the channel e*e™ — 7%.

*We will drop the superscript EM on I1(¢?).

Re ¢?

FIG. 1. Analytic structure of I1(¢?) in the complex z = ¢?
plane. There is a cut on the positive real axis starting at s =
q* = m2 (see text). The solid curve shows the contour used in
Eq. (2.5).

In this paper, we will consider the weights

wo(y) = 1,

wy(y) =1 -y

w3 (y) = (1= )*(1+2y),

wy(y) = (1=y%)% (2.6)

where the subscript indicates the degree of the polynomial.
The weight w,(y) has a single zero at z = s, (a single
“pinch”), suppressing contributions from the region near
the timelike point z = s, on the contour. The weights ws(y)
and wy(y) are doubly pinched, with a double zero at z = sy.
All weights are chosen such that no linear term in y
appears; the reason for this is discussed in the next section.
The weights (2.6) form a linearly independent basis for
polynomials up to degree 4 without a linear term.

B. Perturbation theory and the OPE
We begin with splitting T1(z) into two parts:

(z) = Mopg(z) + [T(z) — Hopg(2)] = Mopg(z) + A(z),
(2.7)

where Topg(z) is the OPE approximation to I1(z),

Mopg(z) = i Culo)

=0 (-2)*

We will return to A(z) in Sec. II D. Each of the coefficients
C»i(z), for k > 1, is a sum over contributions from different
condensates of dimension D = 2k. The D = 0 term cor-
responds to the purely perturbative contribution obtained in
massless perturbation theory; the D =2 term to the
perturbative contributions proportional to the squares of

(2.8)
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the light quark masses. Each contribution depends loga-
rithmically on z, and this dependence can be calculated in
perturbation theory. In practice, it is convenient to consider,
instead of I1(z), the Adler function D(z) = —zdIl(z)/dz,
which is finite and independent of the renormalization scale
u. The D = 0 contribution, Dy(z), to D(z) takes the form

Dy(z) = =29

nntl

1 ((a(w?) —z\*!
_@ZO< pn kz_;kcnk log'u—z s (29)

where the coefficients ¢, are known to five-loop order, i.e.,
order at [2]. It is straightforward to rewrite the D = 0
contributions to the right-hand side of Eq. (2.5) in terms of
Dy(z) via partial integration. The independence of D(z) on
w implies that only the coefficients c,; are independent; the
¢« With k > 1 can be expressed in terms of the c,; through
use of the renormalization group, resulting in expressions
also involving the coefficients of the function.’ In the MS
SCheme, Cor — C11 = 1, Cy = 163982, C31 — 6.37101 and
c41 = 49.07570, for three flavors [2."° While Csp 1S not
currently known, we will use the estimate c5; = 283
provided in Ref. [3], to which we assign an uncertainty
+283. For the running of a, we use the four-loop MS
p-function, but we have checked that using five-loop
running instead [23] leads to differences of order 107*
or less in our results for a, at the 7 mass.

Beyond the uncertainty in cs;, it is common practice to
consider different guesses about higher orders in perturba-
tion theory, in order to obtain insight into the effect of
neglecting terms beyond those explicitly included in
evaluating the D = 0 contribution to the right-hand side
of Eq. (2.5). Two commonly used prescriptions are fixed-
order perturbation theory (FOPT), in which y is chosen to
be a fixed scale, here u’> = s, and contour-improved
perturbation theory (CIPT) [24], in which the scale p? is
set equal to —z, thus resumming to all orders the running of
the coupling point by point along the contour, using the
four-loop beta function [so only terms with k = 1 survive in
Eq. (2.9)]. The two procedures lead to different values of
a,. This difference is a source of systematic uncertainty in
this type of analysis.

We next turn to the quadratic, mass-dependent pertur-
bative contributions encoded in the D = 2 term, C,(z), of
Eq. (I B). With terms proportional to the squares of the
light quark masses m, ; safely negligible, C,(z) is propor-
tional to m2, the square of the strange quark mass, and takes
the form

°See for instance Ref. [21]. L
In this paper, we will restrict ourselves to the MS scheme,
even though it may be interesting to investigate other “physical”
schemes as well [22].

Q(@-”’“"”i(“s(”2>>"ifnk(log;—§>k. (2.10)

z =0

By choosing u?> = —z, one recovers the result derived in
Refs. [25], with foy = 1, f19 = 8/3 and f,y, = 23.26628,
truncating the series at three-loop order. Here we will use
the fixed-order expression with > = s, in Eq. (2.10). The
coefficients f,; with kK > 0 can again be expressed in terms
of the f,, by using the renormalization group; they involve
the coefficients of the f function and the mass anomalous
dimension y. With the D = 2 contribution representing a
small correction to the D = 0 term,'" the impact on the
values of a, obtained in our analysis of a shift from the
fixed-order to contour-improved scheme for treating
the D =2 contribution is safely negligible.]2 We will
run the strange quark mass to the scale s, from y = m,,
employing the MS value m,(m2) = 97 MeV as input."

The D = 4 term, C,(z), does not contribute to the sum
rules (2.5) if we ignore its logarithmic dependence on z,
because none of the weights in Eq. (2.6) contains a term
linear in y. The z dependence for these weights enters the
right-hand side of Eq. (2.5) only at order a2. These effects
were found to be safely negligible in the analogous sum-
rule analysis of hadronic 7 decay data reported in Ref. [6].
Since in this paper we will work at values of s larger than
those employed in the z-based analysis, it is safe to neglect
these effects here as well. This means that the D = 4 term
plays no role in our analysis. Our avoidance of sum rules
involving the D = 4 term is motivated by the results of
Ref. [28], in which a renormalon-model-based study
indicated that perturbation theor?/ for sum rules with such
weights is particularly unstable. 4

We will also ignore the logarithmic z dependence of the
higher-order coefficients Cp, with D > 6, for the simple
reason that no complete information on this dependence is
available. We note that, of course, the z dependence is again
suppressed by a power of @,. This means that the FESR
with weight w, will involve C¢, the FESR with weight w;
will involve C¢ and Cg, and the FESR with weight w, will
involve Cg¢ and C;j. The presence of Cg in different sum
rules provides an additional consistency check on our fits.
As the OPE itself diverges as an expansion in 1/z, it is safer

s presence shifts the value of a; by about 1%—2%.

"’The treatment of the rather similar D = 2 OPE series for the
flavor ud — us V + A polarization, which is obtained from that in
Eq. (2.10) after rescaling by 9 and setting foo = 1, f10 = 7/3,
J20 =19.93 and f;, = 208.75, has been studied by comparing
lattice and OPE results in Ref. [26]. The results of that study favor
the use of three-loop truncation and the FOPT scheme. It is thus
reasonable to expect these choices to be optimal here as well.

YThis corresponds to the 2+1 flavor, MS value m; (n=
2 GeV) = 92 MeV, taken from Ref. [27].

“Earlier considerations along the same lines can be found in
Refs. [3,6,21].
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to include sum rules with low-degree weights such as wy
and w, in the analysis.

C. EM corrections

Since the experimental data for R(s) include EM
corrections, we also have to incorporate such corrections
on the right-hand side of the sum rules (2.5). It turns out
that the only numerically significant correction is the
leading-order correction to the D = 0 term [29] and, in
our analysis, we thus correct the n = 0 term in Eq. (2.9) by
the replacement

1 1 a
6—”26'01 —’@Cm (14—@), (211)

where a is the fine-structure constant. The numerical effect
of this replacement is to shift the value for a,(m?2) obtained
in our analysis by about —0.001. EM corrections sublead-
ing to the correction shown in Eq. (2.11) turn out to be
completely irrelevant, numerically.

D. Duality violations

We next turn to the contribution of A(z), defined in
Eq. (2.7), to the sum rules (2.5). As shown in Refs. [30,31],
under the condition that the integral over w(z/sq)A(z)
around the circle with radius s, goes to zero for sy — oo,
this integral can be rewritten such that the sum rule takes
the form

1 Z
1™ (s) = — dzw( = )11
(50) 2risg ]liso w <So> OPE(Z)
1 [o s
- dSW(—>PDV(S>,
S0

S0 Jso

pov(s) = %ImA(s). (2.12)
In this form, the origin of the extra term in the FESR
becomes clear: the duality-violating part of the spectral
function, ppy (s), represents the part of the spectral function
which is not captured by the OPE. In physical terms, this
results from the deviations from the monotonic OPE
behavior resulting from the presence of resonances in
the spectrum, for large s.

Building on earlier work [32], a framework for the
understanding of duality violations in terms of a general-
ized Borel-Laplace transform of I1(¢*) and hyperasymp-
totics was developed in Ref. [33]. Employing the 1/N.
expansion, working in the chiral limit, and assuming that
for high energies the spectrum becomes Regge-like in the
N, — oo limit, it was shown that, for a given QCD channel,
ppv(s) can be parametrized as

pov(s) = e 0 sin(a + fs), (2.13)

for large s, up to slowly varying logarithmic corrections in
the argument of the sine factor, and with y ~ 1/N, small
but nonzero."”” The parameter f is directly related to the
Regge slope, and the parameter y to the (asymptotic) ratio
of the width and the mass of the resonances in a given
channel. This form was sufficient for use in the case of
hadronic 7 decays, where we considered only the non-
strange [ = 1 channel.'®

Here, the situation is more complicated. First, the EM
current consists of two parts, the / = 1 and I = 0 parts Jf,
and J fﬁ of Eq. (2.1), respectively. Furthermore, it is not clear
whether one can neglect the strange quark mass in the
context of duality violations and use the chiral limit result
Eq. (2.13) for the strange quark component of the EM
current. For m; = 0, SU(3) flavor symmetry implies that the
duality-violating parameters 8, y,  and a in Eq. (2.13) must
be the same for the / = 1 and / = O channels. However, the
methods of Ref. [33] do not allow for a straightforward
generalization to the case of a nonzero quark mass, and this
leaves us with the question as to how to parametrize the
I1=0 part OprV(S)'

The I = 1 duality-violating contributions to the weighted
EM spectral integrals analyzed in this paper can, of course,
be estimated using the results of the fits to the / = 1 vector
channel duality-violation parameters obtained in the analy-
sis of I =1, vector-channel, flavor-ud r decay data,
described in detail in Refs. [6,7,10]. The exponential damp-
ing of ppy(s) with increasing s means that even a modest
increase in s, can serve to significantly reduce residual
integrated duality-violating contributions. The ability to
employ, in the EM case, values of s, all of which exceed
the maximum possible in z-decay-based analyses, i.e.,
so = m2, is thus a major advantage for the EM study.
A useful measure of the potential importance of residual
I = 1 duality-violating contributions is the ratio of the size
of integrated / = 1 duality-violating contributions to the
corresponding integrated a,-dependent D = 0 OPE contri-
butions (which dominate the explicit @, dependence of the
theory side of the various FESRs). Over the range of s
employed in the analysis below, the resulting estimate of this
ratio is, e.g., less than 1.2% for the singly pinched weight
w,(y) and less than 0.2% for the doubly pinched weight
w3 (y). Such integrated / = 1 duality-violating contributions
should thus play a negligible role, on the scale of the other
errors in the analysis, in determinations of a, employing
these weights.

This, however, still leaves the question of the size of
integrated / = 0 duality-violating contributions. While
I =0 and [ =1 duality-violating contributions are in

This form was first used in Ref. [30], and subsequently
further studied and employed in Refs. [6,7,10,31,34].

In the case of 7 decays we took the parameters in Eq. (2.13)
different in the vector and axial channels, reflecting the
differences in the resonance locations and widths in the two
channels.
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principle related by SU(3)-flavor symmetry, the breaking
of SU(3)-flavor shifts the peaks of the duality-violating
oscillations in the I = 0 spectral function associated with
excited ¢ states to higher s than duality-violating I =1
peaks associated with the corresponding excited p reso-
nances. It is thus possible that larger-than-naively-expected
integrated / = 0 duality-violating contributions may be
present in the EM analysis.

As a first step to testing this possibility, one may simply
consider running the analysis with the range of weights
considered here, assuming integrated [/ =0 duality-
violating contributions are also negligible. One can check
this assumption for self-consistency by comparing the
results for a, and the fitted OPE condensates obtained
from differently weighted FESRs, whose dependence on
duality-violation parameters is also very different. A lack of
agreement in the values obtained from different FESRs
would then signal the presence of non-negligible duality
violations. As will be described in detail in Sec. IV, within
the current precision, this test yields no evidence for the
presence of non-negligible duality violations. The results of
Ref. [12], however, show that such self-consistency tests
can sometimes be passed even in the presence of non-
negligible residual duality-violating contributions. In order
to be cautious, we have thus also attempted an explicit
study of potential 7 = 0 duality-violating contributions.
Unfortunately, the R(s) data are insufficiently precise to
allow an analysis in which independent sets of I =0
and / = 1 duality-violation parameters, in addition to a;
and the relevant set of OPE condensates, are all fit
simultaneously. As a result, some simplifying assumptions
have to be made.

In order to investigate integrated / = O duality-violating
contributions we thus carry out an analysis in which results
from the z-decay-based analysis of Ref. [10] are used as
constraints on the / =1 EM contributions. This imple-
ments, in particular, the constraints on / =1 duality-
violation parameters known from the 7 analysis. The
I = 0 duality-violation parameters are then to be fitted
using R(s) data. We stress again that the integrated 7 = 1
duality-violating contributions implied by the 7 analysis
constraints play a very small role in the FESRs that we
consider, so this strategy serves simply as a means of
investigating whether larger-than-expected integrated / = 0
duality-violating contributions might be present and affect
our final results for @,. The inclusion of the unpinched
weight, w = 1, in the analysis is particularly useful for this
purpose since integrated duality-violating contributions are
less suppressed for w =1 than for pinched weights,
making it more likely that small residual / = 0 duality-
violating contributions can be successfully fitted.

We now provide explicit details of the / = 0 duality-
violation study outlined above. We proceed as follows. First,
in considering duality-violation corrections, we will ignore
disconnected contributions, which include strange-light

mixing, as this is doubly SU(3)-flavor and 1/N,. suppressed
in the EM polarization.17 Based on the experimental
observation that the p meson s%)ectrum and the @ meson
spectrum are nearly degenerate, ¥ we will assume that, far
enough above the narrow w(782) resonance, the duality-
violating part of the nonstrange I = 0 spectral function is
degenerate in shape with that of the I = 1 spectral function.
For the strange I = 0 part we will use a parametrization as in
Eq. (2.13), but not assume that all parameters are the same as
those for the nonstrange part. Taking into account the
relevant charge factors, we then arrive at the ansatz

5
EM _ —5 — .
pduality—violation(s) - § e~ Sln(al + ﬁl S)

1
+ 56_50‘705 sin(ag + fos).  (2.14)

We emphasize that, while the framework of Ref. [33]
provides strong arguments for the use of such an ansatz
in the SU(3) chiral limit (in which §, = §;, etc.), additional
assumptions are needed in order to arrive at this form. The
factor 5/9 has been chosen such that the expression
e~ gin(a; + Bs) corresponds, in the isospin limit, to
the duality-violating I = 1 contribution p’5;}(s) employed
in the analysis of hadronic 7z decays in Refs. [6,7,10]. The
factor 1/9 is the square of the strange quark charge. In this
form, the / = 0 and / = 1 duality-violation parameters must
become equal in the SU(3) limit. Some shifts are, however,
expected away from this limit, e.g., to take into account the
fact that the resonance peaks in the strange I = 0 contribu-
tions are shifted to higher s.

Even the form (2.14) is not directly usable given the
quality of the data we will be working with, and more
simplifications are needed. First, we will take the 7 =1
parameters &, y;, a; and f; and their associated cova-
riances from the sum-rule analysis of hadronic z-decay data
reported in Refs. [7,10]. As we will see below, this strategy
is reasonable since phy! (s), with parameters taken from the
7 analysis, leads to an acceptable description of the / = 1
component of the R-ratio data. Furthermore, we will take
Po = P, as this parameter is directly proportional to the
asymptotic Regge slope, which we will assume not to be
affected by SU(3) flavor symmetry breaking. Likewise, we

"Note that the leading OPE contribution to the sum of
disconnected contributions comes from perturbative contributions
which are fourth order in the light-quark masses. These contri-
butions to pPM(s) are suppressed by a factor of (m? —m?)?/
(N_s?), the fourth order mass dependence arising because two
mass insertions are required in each of the disconnected loops if the
loop integral is to survive after the sum over all of u, d and s
running around the loop is performed.

We observe that the first three resonances are nearly
degenerate, and have approximately equal width over mass ratios
[except the w(782), for which the width is restricted by phase
space].
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FIG. 2. R-ratio data from Ref. [19], as a function of s, the
hadronic invariant squared mass. The three-flavor, massless
parton-model value is 2. See Fig. 3 for a comparison with
perturbation theory.

will assume, as an approximation, y, = yl,lg thus leaving
us with only the two new free parameters J, and «.

All these assumptions put significant limitations on our
ability to study duality violations in the case of the EM
vacuum polarization. We emphasize however that, as we
will see below, our main results for @, will come from
fits for which duality violations can be neglected; fits
including duality violations will only serve as a consistency
check on our central values and provide us with a means
of estimating the systematic uncertainty resulting from
neglecting these contributions. In contrast to the case of
hadronic 7 decays, where data are limited to the region
s < m?, in the case of e* e~ — hadrons we can go to larger
s, where duality violations turn out to be less significant, as
one would expect.

III. DATA

In this section, we discuss the experimental data for R(s)
employed in the fits described in this paper. Our data for
R(s) are taken from a new compilation, incorporating all
available experimental results, presented first in Ref. [19],
where this compilation was used for new determinations of
the hadronic vacuum polarization contribution to the muon
anomalous magnetic moment and the QED coupling at the
scale Mz, a(M2).

The data are shown in Fig. 2, where they are plotted
against s, the square of the center-of-mass energy for the
process e e~ — hadrons(y). The plot is restricted to results
on the interval from s = 0to 9 GeV?, just below the charm
threshold, which, as we will see below, is the region most

"This corresponds to neglecting the difference between the
widths of the p and w resonances and the, in general somewhat
smaller, widths of the ¢ resonances in the same mass region.

30 — . .
1
|
I
251 ! i
gt TR g g
20} i
|
I
i
I
10 - . .
2 3 4 5 6
s (GeV?)
FIG. 3. A blowup of the region 2 < s < 6 GeV? in Fig. 2. The

red solid and red dashed lines show the results obtained from
perturbation theory with a,(m2) = 0.28 and a,(m?) = 0.32,

respectively. The vertical dashed line is s = m2.

relevant for our fits. For more figures showing these data,
we refer to Ref. [19].

A. Inclusive vs exclusive data

In Fig. 3, we show a blowup of Fig. 2, focusing on the
region 2 < s < 6 GeV2. The vertical axis range shown is
centered on the parton-model value, R = 2, for this region.

One difference that should be pointed out between the
data set used here and that employed in Ref. [19] is the
choice concerning the data input for R(s) at about 4 GeV>.
Below this energy, the R-ratio is obtained as a sum over all
exclusive hadronic channels. Results for each individual
hadronic channel are obtained by combining the available
data from many different experiments, where the combi-
nation procedure fully incorporates all available correlated
uncertainties into the determination of the mean values and
uncertainties of the combined cross section. Above about
4 GeV?, R(s) is instead obtained from the available
measured inclusive data (all hadronic channels) using the
same procedure to combine the inclusive data from differ-
ent experiments as with the exclusive channels.”’ The
inclusive data combination extends only down to s around
3.39 GeV?. Moreover, in the lower part of this region, few
such data points are available. In principle, one could use

“Below about 4 GeV2, it becomes increasingly difficult to
experimentally measure the inclusive R-ratio and requires a de-
tailed understanding of the experimental efficiencies for exclusive
states which contribute. Older inclusive measurements do exist
slightly below 4 GeV? (see the discussions in Refs. [19,35-37]
concerning these data). However, these data are imprecise and
of poor quality, making them impractical for use in the determi-
nation of R(s). In addition, very few of the exclusive states
contributing to the hadronic R-ratio have been measured above
4 GeV?. For details concerning all combined experimental data,
we refer to Ref. [19].
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FIG. 4. Two mock data sets generated with the covariance matrix of the real data, in the inclusive region, 4 < s < 9 GeVZ. The blue
data points are the actual data, and the orange data points the mock data. The curve shows perturbation theory with a,(m2) = 0.3.

either the sum of exclusive states or the inclusive data
combination in the range 3.39 < s < 4 GeV?. In Ref. [19],
the choice was made to transition from the sum of exclusive
states to the inclusive data at s ~ 3.75 GeV2. However, in
the region of overlap, the results obtained by summing
exclusive data are more precise. In this work, we have
chosen to retain the full information from the sum of
exclusive channelsup to s = 4 GeV2, for reasons which we
will now discuss in more detail.

The determination of a, from electroproduction in this
paper is very similar to that from hadronic 7 decays, but has
the advantage that the experimental spectral data are
kinematically unconstrained and hence are available above
s =m2. We would thus like to use the full range of
available R-ratio data, up to at least the charm threshold
at s ~9 GeV2. However, as we will see below, the errors on
the data in the inclusive region, s > 4 GeV2, are too large
to allow for a precision determination of ¢, in which these
data play a major role.

In Fig. 3, we also show the theoretical prediction for R(s)
from five-loop perturbation theory (including the six-loop
estimate c5; = 283); the solid red curve corresponds to
a,(m?) = 0.28, and the dashed red curve to a,(m?) = 0.32.
The data in the inclusive region s > 4 GeV? all lie above
the perturbative prediction. Contrary to what one might
naively conclude, however, this does not imply that the data
are inconsistent with the expectations of perturbation theory,
but rather reflects the size of the errors and the influence of
the strong correlations present in the inclusive data.

In order to investigate this question, we used the actual
data covariance matrix to generate several mock data sets
drawn from a multivariate Gaussian distribution”’ with
central values determined by perturbation theory, i.e., the
D = 0 part of Eq. (2.8), with a,(m?) = 0.3. From a small
number of mock data sets we extracted the two sets shown

*'We note that the experimental covariance matrix is not
singular in the region 4 < s < 9 GeV?.

in Fig. 4. The left-hand panel shows a mock data set that,
by eye, is perfectly consistent with perturbation theory,
while the right-hand panel shows a set very similar to the
actual experimental data. These examples demonstrate,
visually, that there is no inconsistency between the data
and perturbation theory. Instead, the apparent discrepancy
between the actual data and perturbation theory is con-
sistent with a statistical fluctuation, one in which the strong
correlations in the region play an important role.

One can also investigate the compatibility of the inclu-
sive data with perturbation theory by performing a y? fit
of perturbation theory to the R(s) data in the inclusive
region. One finds perfectly acceptable fits, with y*/dof < 1,
p-values ~0.4 and above, corresponding to values of
a,(m?) ~ 0.4 + 0.1 which are within ~16 of the current
world average but have errors much larger than those
achievable in the FESR analysis which is the topic of
this paper.

While the outcome of these tests is very reassuring,
it also implies that the existing inclusive R(s) data set
places only weak constraints on perturbation theory. This
is unfortunate, as perturbation theory becomes more
reliable at larger s. More precise data would be needed
in this region to make an impact on the determination of «;
from electroproduction data. The upshot is that the pre-
cision of our electroproduction-based determination of a
will be almost entirely driven by data from the exclusive
region s < 4 GeV?.

B. Nature of the peak at s ~ 2.8 GeV?

Next, let us consider the data in the region
2 <5 <4 GeV?. First, even though the determination of
a, benefits primarily from the region s < 4 GeV?, we note
that this allows us to work at scales significantly higher than
the maximum, s = m2 = 3.157 GeV?, accessible in had-
ronic 7 decays (shown as the vertical dashed line in Fig. 3).
It is, however, clear from Fig. 3 that non-negligible duality
violations remain present in the spectral function in this

074030-8



STRONG COUPLING FROM ete™ — HADRONS BELOW ...

PHYS. REV. D 98, 074030 (2018)

3 o——— T

25} 1

D

20f !

27%p(s) I

0.0

s(GeV?)

FIG. 5. The I =1 spectral function as a function of s. Shown
are the OPAL 7 data from Ref. [39] in blue, the ALEPH 7 data
from Ref. [9] in red, and the / = 1 R-ratio data in gray. All data
have been normalized such that the parton-model version of the
spectral function (not shown in the figure) would be a horizontal
line at 27%p(s) = 1/2. The orange band shows the fit to ALEPH
data from Ref. [10] described in Sec. IV B, for s extending down
to the lowest value, 1.575 GeV?Z, for which the duality-violation
ansatz was employed in that fit.

region.22 The question that remains is, of course, how much
they affect the determination of a;.

To understand this region in more detail, we attempted a
separation of the R-ratio data into / = 0 and / = 1 parts.
The result is shown in Fig. 5. This separation follows
closely the strategy employed by ALEPH [38] and OPAL
[39] in separating vector and axial vector contributions to
the nonstrange hadronic 7z decay distribution.

In the electroproduction case the separation relies on the
observation that the isovector current J3 is G-parity even
and the isoscalar current JE G-parity odd. Up to isospin-
breaking corrections, which should be safely small away
from the low-s regions near the narrow @ and ¢ resonances,
where such corrections can be locally enhanced by reso-
nance interference effects, G-parity can thus be used to
uniquely assign the contributions of exclusive modes with
well-defined G-parity to either the / = 0 or / = 1 channel.
A significant fraction of the exclusive modes contributing
to R(s) in the region below s =4 GeV?, in fact, have
definite G-parity. States consisting of an even (odd) number
of pions only, e.g., can be uniquely assigned to the I = 1
(I = 0) channel. Exclusive states involving, in addition to
some number of pions, also a G-parity even 7 or G-parity
odd @ or ¢ are, similarly, uniquely assignable using
G-parity. States for which such a unique G-parity assign-
ment is not possible are those containing a KK pair not
identifiable as coming from the ¢ resonance. Among such
states, additional information is available only for KK,

22Appalrent faint oscillations in the inclusive data above
4 GeV? are, in contrast, not statistically significant.

where BABAR [40] observed a dominance by K*K below
s~4 GeV? and performed a Dalitz plot analysis to
separate the / =0 and 1 components of the K*K cross
section. We take advantage of these results. Contributions
from modes lacking a unique G-parity assignment, and for
which no additional information on the isospin separation
is available, are treated in a maximally conservative manner
by assigning to each of the / =0 and 1 channels (50 £
50)% of the sum of these contributions. The results of this
separation exercise are shown in Fig. 5, for / = 1.

This figure shows the data for the / = 1 part of the EM
spectral function in gray. It shows that these data are in
good agreement with data for the corresponding spectral
functions obtained from hadronic 7 decays by OPAL [39],
shown in blue, and ALEPH [9], shown in red. The orange
band shows the results of one of the fits of Ref. [10] to the
ALEPH 7 data, starting from s where the previous analysis
suggests the asymptotic duality-violation ansatz (2.13) is
valid (described in more detail and employed in Sec. IV B
below). To the extent that the z-based data and the I =1
part of the EM data agree, it is clear that this fit also
provides a reasonable representation of the / = 1 EM data,
although the figure suggests that the / = 1 EM data might
prefer a somewhat smaller value of f; (with accompanying
adjustments in the other / = 1 parameters).

IV. ANALYSIS

In this section, we will present our main analysis, employ-
ing the sum rule (2.5) with weights (2.6). At first, we will
ignore duality violations, while retaining all relevant terms in
the OPE (2.8), with the assumptions detailed in Sec. II B. To
perform these fits, we need the integrated data, as a function
of s, i.e., the integrals 1) (s) of Eq. (2.5). We perform the
fits of these integrals as a function of s, ranging from a value
s between 2.5 and 3.8 GeV? to sf™ = 4 GeV?, with the
separations of adjacent s, as close as possible to Asy =
0.05 GeV2. In some cases, it turns out that the integrated data
are too strongly correlated to obtain good fits (as measured by
their p-value), in which case we enlarge the spacing to
Asy =~ 0.1 GeV2. We will refer to this procedure as “thin-
ning” by a factor 2. For more details on the use of thinning,
we refer to Sec. IVA. It should be noted that even using
the spacing As, ~ 0.05 GeV? corresponds to a thinning of
the data, because throughout the spectrum below 4 GeV?, the
binning of the data is much finer than 0.05 GeV?.

The central values for the weighted spectral integrals
1) (s), i = 0, 2, 3, 4, on the left-hand side of Eq. (2.5)
are obtained from the data using the trapezoidal rule.”
Despite the fact that the integrated data, i.e., the moments
10w (s9), are strongly correlated between different values of
5o, we find that these integrated data allow us to perform

BWe checked that using a different method, such as a
histogram rule, makes no significant difference.
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TABLEL  Fits to 1" (s,) from 5o =s§"" to 5o = sy =4 GeV>.
FOPT results are shown above the double line, and CIPT below.
Fits below the single horizontal lines are used in the average of
Eq. (4.1); those marked with an asterisk are thinned by a factor 2.

TABLEIL  Fits to 1(*2) (5) from sy =" to sy = s =4GeV?.
FOPT results are shown above the double line, and CIPT below.
Fits below the single horizontal lines are used in the average of
Eq. (4.2); those marked with an asterisk are thinned by a factor 2.

s (GeV?)  Number of dof’s 42 p-value a,

3.00 20 76.5 2x107%  0.233(13)
3.15 17 34.6 0.007 0.275(13)
3.25 15 27.8 0.02 0.287(14)
3.00 10%* 53.3 7 x107%  0.236(13)
3.15 8%* 16.0 0.043 0.279(13)
3.25 T* 9.33 0.23 0.292(14)
3.35 13 19.0 0.12 0.297(14)
3.45 11 14.9 0.19 0.304(14)
3.55 9 14.2 0.12 0.302(15)
3.60 8 10.8 0.21 0.304(15)
3.70 6 7.21 0.30 0.296(16)
3.80 4 6.98 0.14 0.298(17)
3.00 20 76.4 2x107% 0.236(14)
3.15 17 34.6 0.007 0.282(15)
3.25 15 28.0 0.02 0.295(16)
3.00 10%* 53.2 7 %1078 0.239(14)
3.15 8* 16.0 0.04 0.287(16)
3.25 7* 9.64 0.21 0.301(17)
3.35 13 19.6 0.11 0.306(17)
3.45 11 15.7 0.15 0.314(17)
3.55 9 14.9 0.09 0.311(18)
3.60 8 11.6 0.17 0.313(18)
3.70 6 7.65 0.27 0.305(18)
3.80 4 7.46 0.11 0.306(20)

fully correlated fits, on the interval 2.5 GeV? < Sg <
4.0 GeV2. Tt is thus the results of these correlated fits that
we present in this paper.

A. Fits

In Table I we show the results for fits using the weight
wqy = 1, for a range of choices of sg‘i“. As the weight wy is
unpinched, the FESR for this weight is the most susceptible
to possible non-negligible duality-violating effects. The
first column gives the values of sT" employed, and the
second column the number of degrees of freedom in the fit,
i.e., the number of s, values between s(‘}lin and s§'™* minus
the number of parameters in the fit. The third column gives
the minimum of y? found in the fit, the fourth column the
corresponding p-value, and the final column the value of a;
obtained in the fit. Results above (below) the double
horizontal line are obtained using FOPT (CIPT).

It is obvious that the fit quality increases strongly with
increasing sT", as does the value of a,, with the latter leveling
off when the fits become good, and peaking at somi“z
3.45 GeV?, after which it decreases somewhat. We find
that, for sg‘i“ = 3.25 GeV?, the quality of the fits improves
significantly if we thin out the data by a factor 2 (i.e., use
Asy = 0.1 GeVz), as shown in Table I: the p-values

sg‘i" Number

(GeV?) of dof’s 2 p-value ay Ce in GeV®
3.00 19 534 0.00004 0.239(13) —0.0027(13)
3.15 16 25.1  0.07 0.278(14)  0.0033(19)
3.00 9% 38.0  0.00002 0.253(13) —0.0011(15)
3.15 7* 13.6  0.06 0.287(14)  0.0049(21)
3.25 14 173 024 0.292(14)  0.0062(23)
3.35 12 13.6 0.33 0.298(15)  0.0078(26)
3.45 10 10.3 042 0.305(15)  0.0097(27)
3.50 8 945 0.31 0.302(16)  0.0088(30)
3.60 7 945 0.22 0.302(16)  0.0088(31)
3.70 5 532 038 0.293(16)  0.0057(34)
3.80 3 5.14 0.16 0.296(18)  0.0064(38)
3.00 19 53.3  0.00004 0.242(14) —0.0029(13)
3.15 16 252  0.07 0.284(15)  0.0026(17)
3.00 9* 37.9  0.00002 0.257(14) —0.0013(14)
3.15 7* 13.8 0.06 0.294(16)  0.0040(18)
3.25 14 176 023 0.298(16)  0.0051(20)
3.35 12 140 030 0.306(17)  0.0065(22)
3.45 10 10.8 0.37 0.313(17)  0.0081(23)
3.55 8 9.90 0.32 0.309(18)  0.0073(25)
3.60 7 9.90 0.19 0.309(18)  0.0073(26)
3.70 5 5.57 0.35 0.300(18)  0.0045(29)
3.80 3 542 0.14 0.302(19)  0.0050(32)

increase, while the fit parameters remain stable. For
smin < 3.25 GeV?, there is no clear improvement from
thinning out, and p-values are bad or marginal. (We will
return to fits with these values of sg‘i“ in Sec. IV B below.) For
higher values of sJ", the fits are already good and do not
improve significantly with thinning. By p-values, the fits
with s§i" ranging from 3.25 to 3.80 GeV? are preferred; in
the table, they are the fits below the single horizontal lines.
Averaging these values of «, yields the estimates

0.299(15)(6)
0.308(18)(6)

(FOPT),

a(m?)l,, = { (CIPT).

These values were obtained by a simple average; while one
can devise various weighted averages, they all yield very
similar results. The first error is the average fit error, the
second half the difference between the lowest and highest
value entering the average. As Table I shows, the variation in
the values of a; as a function of s§" is in fact smaller than the
average fit error of 0.015 and £0.018, for FOPT and CIPT,
respectively, and might also be statistical in nature. However,
since these values of a, are highly correlated, it is likely that
there is a systematic component as well. Hence, we choose to
be conservative, and show the second error as a separate error.

Before we discuss further the results of the fits shown in
Table I, we present the results from fits employing the other
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TABLE III.  Fits to /0"3) (s9) from sy = sm‘“ t0 59 = 5§ =4 GeV?2. FOPT results are shown above the double line, and CIPT below.
Fits below the single horizontal lines are used in the average of Eq. (4.3); those marked with an asterisk are thinned by a factor 2.
ST (GeV?) Number of dof’s 7 p-value ay Ce in GeV® Cg in GeV?®
3.15 15 44.8 0.00008 0.276(15) 0.0027(20) —0.0184(51)
3.25 13 31.9 0.003 0.292(15) 0.0059(23) —0.0278(61)
3.35 11 26.0 0.006 0.296(15) 0.0068(25) —0.0305(67)
3.15 6* 9.79 0.13 0.293(15) 0.0055(22) —-0.0261(57)
3.25 5% 7.60 0.18 0.299(15) 0.0070(25) —0.0307(65)
3.35 4% 5.62 0.23 0.305(16) 0.0084(27) —0.0353(73)
3.45 9 12.9 0.17 0.303(16) 0.0085(27) —0.0360(75)
3.55 7 11.6 0.11 0.301(16) 0.0081(29) —0.0346(83)
3.60 6 11.1 0.09 0.298(17) 0.0071(32) —0.0311(95)
3.70 4 5.68 0.22 0.292(18) 0.0049(35) —0.023(11)

3.80 2 2.31 0.32 0.289(19) 0.0036(39) —0.019(12)

3.15 15 44.9 0.00008 0.279(13) 0.0022(15) —0.0177(41)
3.25 13 322 0.002 0.297(16) 0.0051(20) —0.0266(56)
3.35 11 26.4 0.006 0.301(17) 0.0059(22) —0.0290(64)
3.15 6* 9.94 0.13 0.298(16) 0.0047(19) —0.0250(54)
3.25 5% 7.86 0.16 0.305(17) 0.0061(22) —0.0293(62)
3.35 4% 5.97 0.20 0.310(17) 0.0074(24) —0.0336(70)
3.45 9 13.3 0.15 0.308(17) 0.0075(24) —0.0342(72)
3.55 7 12.0 0.10 0.306(18) 0.0070(26) —0.0329(79)
3.60 6 114 0.08 0.303(18) 0.0061(29) —0.0294(91)
3.70 4 5.87 0.21 0.297(19) 0.0040(31) —-0.022(10)

3.80 2 2.45 0.29 0.293(20) 0.0028(35) —-0.017(12)

three weights, w, 34 of Eq. (2.6). They are collected in
Tables II to IV. Table II shows good p-values for sgin
between 3.25 and 3.80 GeV?; thinning does not appear to
improve the fit for s7'" = 3.15 GeV?. Taking the average of
the fits with sT" between 3.25 and 3.80 GeV? yields

o [0.298(16)(6) (FOPT),
()l _{0.305(18)(7) (CIPT).

For fits with the weights w3 and w, we find that, for lower
values of s§i", the quality of the fits improves significantly if
we thin out the data by a factor 2 (i.e., use Asy = 0.1 GeV?),
as shown in Tables Il and IV: the p-values increase, while, at
least for sP" =3.25 and 3.35 GeV2, the fit parameters
remain stable. Also the fit with si" = 3.15 GeV? hasa good
p-value after thinning, but parameter values are not stable;
cf. Table IIL.** For higher values of smin_ the fits are already
good and do not improve 51gn1ﬁcant1y with thinning.

**Fits thinned by a factor 3 (i.e., using Asy = 0.15 GeV?) with
siin = 3,15 GeV? cause the p-values to decrease to about 0.03,
but yield stable fit parameters in comparison with the fit with
Asy = 0.1 GeV2. One could, thus, also consider including the
results of the thinned fits with sT" = 3.15 GeV? in the average.
Since this turns out not to alter the average reported in Eq. (4.3) at
the level of accuracy reported there, we choose to average here
over the same set of sT" used in arriving at the w, average in

Eq. (4.2). The same comments apply to the w4 average reported in
Eq. (4.4).

Table I1I shows good p-values for sT" between 3.25 and
3.80 GeV? if for sfi" = 3.25 and 3.35 GeV? we take the
thinned fits; taking the average yields

()], = {0.298(16)(8) (FOPT), “3)

0.303(18)(8) (CIPT).

We note that the weight for which we report results in
Table IV justtrades Cy for C, and thus does not increase the
number of parameters in the fits. It shows good p-values for
siin between 3.45 and 3.80 GeV? and for sJ" = 3.25 and

3.35 GeV? if we thin as for wj; taking the average yields

o [0.297(16)(8) (FOPT),
% (), = {0.303(18)(8) (CIPT).

In Fig. 6 we show the fits for the lowest s§" value used in the
averages reported in Egs. (4.1)-(4.4). Other fits show
equally good visual matches between data and fit curves.
The oscillatory behavior as a function of s seen in the data in
the upper left panel of Fig. 6 is what one typically expects to
see when integrated duality violations are not entirely
negligible. Such residual duality violations are expected
to be most visible for the unpinched weight wy. The absence
of oscillatory behavior in the other panels is consistent with
the suppression of duality violations by the pinching of the
other weights.
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TABLE IV. Fits to 0%+ (s9) from sy = somin to 5 = sg* =4 GeV?. FOPT results are shown above the double line, and CIPT below.
Fits below the single horizontal lines are used in the average of Eq. (4.4); those marked with an asterisk are thinned by a factor 2.

sgin (GeV?) Number of dof’s Ve p-value ay Cg in GeV® Cio in GeV'"
3.15 15 45.0 0.00008 0.275(15) 0.0027(20) 0.079(14)
3.25 13 32.0 0.002 0.292(15) 0.0060(24) 0.107(17)
3.35 11 26.0 0.006 0.296(15) 0.0069(25) 0.115(19)
3.15 6* 9.76 0.14 0.292(15) 0.0056(22) 0.101(16)
3.25 5% 7.55 0.18 0.299(15) 0.0071(25) 0.115(18)
3.35 4% 5.59 0.23 0.304(15) 0.0086(27) 0.130(21)
3.45 9 12.9 0.17 0.302(16) 0.0087(28) 0.133(22)
3.55 7 11.6 0.11 0.300(16) 0.0082(30) 0.129(25)
3.60 6 11.0 0.09 0.297(17) 0.0072(32) 0.117(30)
3.70 4 5.69 0.22 0.292(18) 0.0050(35) 0.089(34)
3.80 2 2.30 0.32 0.288(19) 0.0037(39) 0.072(40)
3.15 15 45.2 0.00007 0.279(16) 0.0022(17) 0.077(123)
3.25 13 32.3 0.002 0.297(13) 0.0051(15) 0.104(12)
3.35 11 26.4 0.006 0.301(17) 0.0059(22) 0.112(18)
3.15 6* 9.92 0.13 0.298(16) 0.0047(19) 0.098(15)
3.25 5% 7.82 0.17 0.305(17) 0.0061(22) 0.112(18)
3.35 4% 5.96 0.20 0.310(17) 0.0074(24) 0.126(20)
3.45 9 13.3 0.15 0.308(17) 0.0075(24) 0.129(21)
3.55 7 12.0 0.10 0.306(18) 0.0071(26) 0.124(24)
3.60 6 11.4 0.08 0.303(18) 0.0061(29) 0.112(29)
3.70 4 5.90 0.21 0.297(19) 0.0040(31) 0.084(33)
3.80 2 2.44 0.30 0.293(20) 0.0028(35) 0.067(39)
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FIG. 6. Comparison of the data for / (W‘)(so) with the fits on the interval s{)“i“ =3.25 to 4 GeV?, for i = 0 (upper left panel), i = 2
(upper right panel), i = 3 (lower left panel), and i = 4 (lower right panel). Solid black curves indicate FOPT fits, dashed curves CIPT.
The fit window is indicated by the dashed vertical lines. For 1(*0) (s), I(3)(s4) and 104 (s,) the fit curve is from the thinned fits in
Tables I, 11T and IV, while the data for s, values spaced by 0.05 GeV? are shown.
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The fit qualities (p-values) improve going from weight
wy to weight w,, especially for lower values of sg‘i“, as can
be seen by comparing corresponding fits in Tables I and II.
This provides additional evidence that pinching indeed
suppresses duality violations [whether they are asymptotic,
in the sense of being described by Eq. (2.14), or not].
However, this improvement does not appear to persist with
more pinching, as can be seen in Tables III and IV. There
are several possible reasons for this.

One of these is that the theoretical model underlying the
fits with weights w; and w, may be less good than the one
underlying the fit with weight w,. The higher-degree
weights employed in these fits probe higher orders in
the OPE, and it is possible that with these higher-D terms
we enter the region (at these values of s;) where the OPE
converges less well. An indication of this is that, for s
values in the range 3 to 4 GeV?, the D = 8 and D = 10
terms are of about the same size as the D = 6 term, if we
employ the values for Cq g 1o reported in these tables, in the
sIin range with good p—values.25 A possible interpretation
is that use of the weight w, provides an optimal balance
between suppression of duality violations (because of its
zero at s = ), and the convergence properties of the OPE,
in this range. We note that the D = 6 contribution is always
very small compared to the D = 0 (i.e., purely perturba-
tive) term.

Another possibility is statistical in nature. The order of
magnitude of the smallest eigenvalues of the correlation
matrices for the unthinned fits is 107° for W, 10~° for w,
and 107" for w; and w4.26 The smallness of these
eigenvalues, which reflects the very strong correlations
between data at different values of s, originates in the fact
that we integrate the same data to obtain all of the () (s).
While we take the consistency of our results across the
different weights (note, in particular, the consistency for
both o, and Cy) as a confirmation of the reliability of the
correlated fits, it is possible that the very small eigenvalues
in the case of weights w3 and w, result in somewhat larger
values of y> for these fits, thus reducing associated
p-values. Indeed, we find that the fits with weights w;
and wy, for which these lowest eigenvalues are very small,
improve by thinning out the data: p-values increase, while
fit parameter values remain stable, for sg‘i“ =3.15, 3.25
and 3.35 GeV?, as shown in Tables III and IV. Thinning by

Bt is also worth noting that, from the results in Table IV, the
central Cj, value is large, and it lies many ¢’s from zero. Using
the effective condensates from Tables III and IV, it is also easily
shown that the assumption made in a number of z-based analyses
that integrated D = 10 and higher contributions can be neglected,
relative to integrated lower dimension nonperturbative contribu-
tions, for s, as large as m2 would fail quite badly for the
ana&lﬁogous EM case considered here.

The smallest eigenvalue in each case is not very sensitive to
smin_at least in the range s§i" = 3.00 to 3.55 GeV>. The largest

eigenvalue is always of order 10.

a factor 2 changes the lowest eigenvalues for these weights
from ~107!2 to ~107°. A similar effect occurs for sgi" =
3.25 GeV? and weight w,, where the lowest eigenvalue
changes to ~10~. For values of sTi" below 3.25 GeV?, we
typically find no such clear improvement and stability,
suggesting a breakdown of the theoretical representation
employed in the fits. Indeed, already at s = 3.15 GeV?
some instability of the fit parameters for weights w3 and wy
is visible, even if p-values do improve. For the weight w,,
the p-value does not increase with thinning, for
sgin = 3.15 GeV2.

Based on the tables, we make the following further

observations:

(1) Fits for all weights with sgli“ values lower than those
shown in the tables have extremely small p-values,
and these fits do not improve with thinning out the
data. We attribute this behavior to the fact that, for
such s(, one is in the region where sizable duality
violations are present in the spectrum, as evidenced
by the peak in R(s) around s = 2.8 GeV?; cf. Figs. 2
and 3. We will return to this point in Sec. IV B.

(i) All FOPT fits at a given sJ'" are consistent with each
other across all these tables, as are all CIPT fits at a
given sgﬁ“. Note that not only the values of «,, but
also the values of Cg are consistent, with Cg being
determined by all fits with pinched weights.

(ii1)) The difference between FOPT and CIPT results for
a,(m?) is about 0.009 from Eq. (4.1), about 0.007
from Eq. (4.2), about 0.005 from Eq. (4.3) and about
0.006 from Eq. (4.4). This is much smaller than
corresponding differences obtained from hadronic
7-decay analysis, which are 0.022 from the OPAL
data [7] and 0.016 from the ALEPH data [10]
(cf. Sec. IV D). The FOPT-CIPT difference is still
significant, because, for a given weight and a given
sin_the FOPTand CIPT values of o, are very close to
100% correlated.

(iv) The effect of the D = 2 term (2.10) is small, but not
completely negligible. Its presence has an effect of
shifting the values of a,(m?) obtained in our fits by
an order of 1%—2%. This confirms that the details of
its treatment are indeed insignificant.

B. Tests

Before we use the results thus far obtained to extract a
final value for a, we perform a number of tests probing the
stability of the values reported in Egs. (4.1)-(4.4). The most
important of these is a test for the effects of including the
model for duality violations, described in Sec. IID, in
the fits.

We have performed fits including Eq. (2.14), as
described in Sec. II D. As input we used the results and
covariances for @, and I = 1 parameters 6, y;, a; and j;
from the sfi" = 1.575 GeV?, vector-channel fit with
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TABLE V. Fits to I0%)(sy) from sy = s to 5o = sP™ =
4 GeV?2. FOPT results are shown above the double line, and CIPT
below. The fits include duality violations with input from the
determination of Ref. [10] of the I = 1 parameters (and a,) added
as priors.

siin Number

(Gev?) of dof’s 2 povalue  a, 5o ay
2.75 24 38.6 0.03 0.285(7) —0.41(55) 3.90(80)
2.85 22 344  0.05 0.285(7) —0.18(58) 3.15(90)
2.95 20 25.8  0.17 0.286(7) 0.20(57) 2.02(94)
3.00 19 21.7 030 0.287(7) 0.46(57) 1.4(1.0)
3.15 16 17.0 039 0.292(8) 1.15(60) 1.0(1.0)
3.25 14 16.8  0.27 0.291(8) 1.08(67) 0.9(1.1)
3.35 12 132 036 0.2929) 1.23(71) 1.1(1.0)
345 10 11.9  0.29 0.295(9) 1.48(70) 1.3(1.1)
3.55 8 11.0  0.20 0.293(9) 1.34(74) 1.0(1.2)
3.60 7 8.04 033 0.29509) 1.43(72) 1.1(1.2)
3.70 5 437 0.50 0.292(10) 1.34(73) 0.4(1.3)
3.80 3 3.97 026 0.292(10) 1.31(74) 0.4(1.4)
2.75 24 37.8  0.04 0.294(8) —0.49(56) 3.83(80)
2.85 22 33.8  0.05 0.295(8) —0.30(59) 3.12(91)
2.95 20 255 0.18 0.296(9) 0.05(58) 1.97(96)
3.00 19 216 025 0.29709) 0.30(58) 1.3(1.0)
3.15 16 174 0.36 0.303(10) 0.94(61) 0.9(1.1)
3.25 14 17.1 0.25 0.302(10) 0.85(69) 0.8(1.1)
3.35 12 13.6 0.33 0.303(11) 0.98(72) 0.9(1.1)
3.45 10 124 0.26 0.306(11) 1.22(73) 1.2(1.1)
3.55 8 11.5  0.11 0.304(12) 1.08(76) 0.8(1.2)
3.60 7 8.56 0.29 0.306(12) 1.18(75) 1.0(1.2)
3.70 5 4.84 044 0.302(12) 1.09(76) 0.2(1.3)
3.80 3 443 022 0302(12) 1.06(77) 0.2(1.5)

weight w, to the ALEPH data for the nonstrange vector-
channel spectral function obtained from hadronic 7 decays
[9], reported in Ref. [10]; the FOPT fit version of the I = 1
spectral function predicted by this fitis graphically shown as
the orange band in Fig. 5. The fit was performed by adding a
prior to our y? function, employing the full, five-parameter
covariance matrix obtained in these fits. Explicitly, we add to
the y? function from the R(s) data the term

x:p) = (p—p.) - (CPP)™" - (p —p,).

where p is the vector of parameters that are being fitted, p,
are the central values of these parameters from the z-based
fits, and C(?P) is the corresponding covariance matrix.
We expect such a constrained fit to work because of the
excellent consistency between the value of a, obtained from
the z-based analysis with that obtained here from R(s). The
x* value of constrained fit serves as a diagnostic for this: if
these values were not consistent, it would result in a bad y?
for the constrained fit. The FOPT or CIPT results from
Ref. [10] were used, respectively, for our FOPT or CIPT fits
of the R-ratio data.

We report the results of fits including Eq. (2.14) in the wy
sum rule in Table V. In this table, to save space, we do not

(4.5)
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FIG.7. Spectral representation of the FOPT fit of 1(*0)(s,) with
smin = 3.15 GeV? of Table V.

report the / = 1 duality-violating parameters, but note that
they are always consistent with the prior parameter values.
We do show the values of the I = 0 parameters , and a0.27
The errors on a,(m?) are smaller than those reported in
Table I; the reason for this is the fact that we added the
results of Ref. [10], including the value of aj, as priors.
Since the goal of this study is an R(s)-based determination
of ay, the results for a, reported in Table V are not used in
fixing the central values reported in Sec. IV C; they are,
instead, used only to estimate the uncertainty induced by
the presence of residual duality violations on these central
results.”®

From this table, one observes that fits to much lower
values of sT" now have decent p-values, yielding values
for at;(m?2) which are significantly more stable as a function
of s than those reported in Table 1. However, the
decrease of p-values toward lower sgﬁn, as well as the
“wandering” values of d, and «, suggest that the ansatz
(2.14) may not adequately describe duality violations for
values of s, < 3.0 GeV2. We ascribe this to the sizable
duality-violating peak around s = 2.8 GeV? seen in Fig. 3,
which is a feature of the I = 0 part of the R-ratio data, as it
is not seen in the / = 1 part shown in Fig. 5. We conclude
that for / = 0, the asymptotic region in which Eq. (2.14) is
conjectured to hold is probably not yet reached for
s <3 GeV?. We show the spectral function corresponding
to the FOPT fit of Table V with s" = 3.15 GeV? in Fig. 7.
This figure confirms that it is very difficult to fit the peak
around s = 2.8 GeV? with the ansatz (2.14), while a

reasonable representation is obtained for s = 3 GeV2?

*"Recall that in our model of Sec. IID we set 7o =¥ and
boz P o
A combined determination from these data as well as
hadronic z-decay data may be interesting in its own right.
PRecall that the apparent mismatch in the inclusive
region above 4 GeV? is not excluded by the data in that region;
cf. Sec. IIT A.
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FIG. 8. The contribution from duality violations to the weighted
spectral integrals with weights w( (blue dashed curve), w, (black
dotted-dashed curve) and wj (red solid curve), as a function of s,
normalized to the difference between perturbation theory [D = 0
term in Eq. (2.8)] and the parton model contribution. The duality-
violating parameters employed are those from the FOPT, sfi® =
3.15 GeV? fit of 100 (s,) reported in Table V.

Figure 8 shows the contributions from duality violations
to weighted integrals for w, (blue dashed curve), w, (black
dotted-dashed curve) and wj (red solid curve), as a function
of sy, normalized to the a,-dependent part of the integrated
perturbative contribution (the difference between the full
perturbation theory result and the parton model contribu-
tion), employing the duality-violating parameters from the
FOPT, s§i" = 3.15 GeV? fit of Table V. This ratio quantifies
the size of integrated duality violations on the scale of the
a,-dependent integrated D = 0 contributions from which we
aim to determine «,. This figure illustrates how pinching
indeed suppresses duality violations, for those values of s for
which the asymptotic behavior of Eq. (2.14) applies. As we
have seen, this appears to work reasonably well for / = 1
(cf.Fig.5)fors > 1.6 GeV?, butmay only work for I = 0 for
§ >3 GeV2. It is clear that the effect of pinching is
significant, and more so in the region above the 7z mass
(s = 3.157 GeV?) than below. We note that this figure
should be taken as indicative only, because the data do
not allow a full investigation of duality violationsinthe / = 0
channel, for which no information is provided by 7 decays.

As can be seen from the dotted-dashed black and solid
red curves in Fig. 8, single-weight fits with duality
violations and pinched weights w,3,4 are unlikely to
effectively constrain duality violations. Nevertheless, we
found that fits to 1(*2)(s) are possible, with results that are
fully compatible with Table V for ay, §, and a;,. Analogous
fits for w3 and wy, for which duality violations are even
more suppressed, are, unsurprisingly, not stable.

Using now the range sI" € {3.15,3.80} GeV?, we
distill the results in Table V into the following estimates
for a,(m?). We apply the same procedure as in Sec. IVA
and find

0.28 -

0.22 1 | 1 1
2.8 3.0 3.2 34 3.6 3.8 4.0

spin(GeV?)

FIG.9. The FOPT strong coupling a,(m?) as a function of sJ".
Blue data points (diamonds) represent values of a,(m?) from
Table I, red (open squares) those from Table II, green (filled
squares) those from Table III, and black data points (filled circles)
correspond to the values from Table V. The solid, purple
horizontal line shows the value 0.298, with the dashed horizontal
lines showing the values 0.298 £ 0.005. The red, blue and black
data points have been slightly offset horizontally for visibility.

(FOPT),

oy [0293(9)(2)
{ (CIPT).

a;(mz) [y = 0.304(11)(2)

Given the caveats with our investigation of duality
violations, we use these results only to estimate the size
of the systematic error associated with the presence of
duality violations in the region above s = 3 GeV?2. We see
that (a) the value of o, (m?) stabilizes when duality violations
are included and (b) that it is lower by 0.006 (0.004), for
FOPT (CIPT), from comparing Eq. (4.1) with Eq. (4.6).

As an example of the impact of integrated duality viola-
tions on FESRs involving pinched weights, we note that,
for w, and ws, the maximum sizes of integrated duality-
violating contributions relative to integrated «,-dependent
D = 0 terms shown in Fig. 8, in the range of s, entering the
averages (4.2) and (4.3), are 0.3% and 0.07%, respectively.
The maximum shift induced in «, at a single s, in this
region is then less than 0.001 in both cases, much smaller
than any of the other errors in the analysis.

We will take an error of +0.005 as the systematic error
from duality violations. This estimate reflects the difference
between the results quoted in Egs. (4.1) and (4.6), and also
safely incorporates the variations in the results reported in
Egs. (4.1)—(4.4). We do not also include the second errors
shown in Egs. (4.1)—(4.6), because it is very likely that the
spread in values among Egs. (4.1)—(4.6) is measuring
essentially the same uncertainty, insofar as these second
errors are due to systematic effects.

The result is illustrated in Fig. 9 for FOPT, which shows
values of a,(m?2) as a function of s from Table I (blue
diamonds), Table II (red open squares), Table I1I (green filled
squares), and Table V (black filled circles). Also shown is the
central value for a,(m?) obtained in Eq. (4.2) (purple
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TABLE VL  Fits to /0%)(s) from varying s, = s to varying
sg®. FOPT results are shown above the double line, and CIPT
below. The fits marked with an asterisk are thinned by a factor 2.

sg‘i“ sg Number

(GeV?) (GeV?) of dof’s e p-value a;
3.25 4.98 14% 22.5 0.07 0.297(13)
3.25 8.85 26%* 32.8 0.17 0.299(13)
3.55 8.85 23%* 26.8 0.26 0.310(14)
4.10 8.85 18 16.5 0.56 0.280(21)
6.13 8.85 15 15.6 0.41 0.302(24)
3.25 498 14* 21.9 0.08 0.309(16)
3.25 8.85 26%* 324 0.18 0.310(16)
3.55 8.85 23% 26.9 0.26 0.321(17)
4.10 8.85 18* 16.1 0.59 0.288(24)
6.13 8.85 15 14.8 0.46 0.314(28)

horizontal line), with variations +0.005 (dashed horizontal
lines). The figure does not show the values reported in
Table 1V, to avoid clutter. However, these additional fits do
not change the picture. For the sake of brevity we do not show
the analogous CIPT results as these are very similar.

We investigated several other systematic issues. One of
these is the unknown value of the perturbative six-loop
Adler coefficient, cs5;, for which we used an estimate
c51 = 283. Varying the value of this coefficient by
4283, we find, on average, a variation of about 4+0.003
in the fitted values for a,(m?). We will thus allow for an
additional systematic error equal to +0.003.

We also considered extending the range of s, values over
which we fit to values larger than 4 GeV?. We show examples
of such fits of 1(*0) (s ) in Table VI, for both FOPT and CIPT.
The first three fits in each case have s§i" below 4 GeV?, in the
exclusive data region, and s§™* larger than 4 GeV?, in the
inclusive dataregion. The other two have both sTi" and s in
the inclusive data region. Given the rapid decrease of
integrated duality violations with increasing s, (see

J

() { 0.298 +0.016 £ 0.005 4+ 0.003 = 0.298 = 0.017
ag(m;) =
0.304 £+ 0.018 £ 0.005 + 0.003 = 0.304 = 0.019

2

The first error is the average fit error, the second error our
estimate of the uncertainty produced by residual duality
violations, and the third error is due to the variation in cs;.
Since these errors may be considered as independent, we
combine them in quadrature to obtain our final aggregate
errors. While we quote values for FOPT and CIPT
separately, their difference should be interpreted as another
systematic error, representing our incomplete knowledge
of higher orders in perturbation theory. While the differ-
ence, equal to 0.006, is small, it is nonetheless significant,
because the FOPT and CIPT values for a,(m2) are
essentially 100% correlated.

Fig. 8), and the fact that the impact of integrated duality
violations on a; was already seen to be small for the lower s,
of purely exclusive region fits, we expect such duality-
violating contributions to be safely negligible for fits with
both s§" and sT in the inclusive region, even for w. In most
cases, indicated in the table, thinning was needed to obtain
good fits. We see that extending s§'** into the inclusive region
yields results in good agreement with the results of Sec. [IVA
used in the averages, with similar errors. While the individual
errors are competitive with those in Table I when
smin < 4 GeV?2, the spread between different fits becomes
larger. We should also emphasize the importance of corre-
lations when considering the results of these fits. For
example, taking into account correlations, we have verified
that the larger differences between the o, values obtained with
sIx = 8.85 GeV? and s varying from 3.55 GeV? to
4.10 GeV? are consistent with statistical fluctuations.

Similar results can be obtained for the weights w,, w;
and w, and are again in good agreement with the results of
Sec. IV A, although typically for these weights thinning
with a factor larger than 2 is necessary to obtain good fits.
We therefore will only use our fits with all data in the
exclusive region to obtain our central values, considering
the fits of Table VI as a consistency check. In short, the data
in the inclusive region appear to be consistent with those
below s = 4 GeV?, but with the current precision, they do
not improve the accuracy in the value of a, that can be
obtained from R-ratio data. This consistency with the
analysis involving only the exclusive data justifies quoting
the results with the smallest total errors, which are those of
the exclusive-data-only analysis.

C. Results

Following the analysis of Secs. IVA and IV B, we
quote as our central results for the strong coupling from
the R-ratio data of Ref. [19] the MS, three-flavor values

(FOPT),

(CIPT). (4.7)

These three-flavor results convert to the following five-
flavor results at the Z mass:

(m2 { 0.1158 £0.0022 (MS, n; = 5,FOPT),
a,(mz) = —
e 0.1166 +0.0025 (MS, n; = 5, CIPT).

(4.8)
The central values are somewhat low compared to the PDG
world average of 0.1181 4+ 0.0011 [41] and also compared

to the recent high-accuracy value 0.11852 4 0.00084 of
Ref. [42], but are consistent with these results within errors.

074030-16



STRONG COUPLING FROM ete™ — HADRONS BELOW ...

PHYS. REV. D 98, 074030 (2018)

D. Comparison with the determination from
hadronic 7 decays

We can also compare our results with those obtained
from the recent analyses of OPAL and ALEPH hadronic
7-decay data reported in Refs. [7,10]. A combination of
these results yielded [10]

SmT

5 {0.30:&0.009 (MS,n; =3,FOPT),
~ 10319+£0.012 (MS,n,=3,CIPT).

These values are in excellent agreement with Eq. (4.7),
differing by 0.3 and, respectively, 0.7¢. While the z-based
values have smaller total errors, we note that the difference
between FOPT and CIPT values is larger for the values
obtained from 7 decays, in comparison with the values we
obtained here from electroproduction, making the electro-
production-based determination more competitive with the
z-based determination than the errors shown in Eqgs. (4.7)
and (4.9) indicate. We also reiterate that duality violations
play a significantly larger role in the z-based analyses,
where the sum rules are limited by kinematics to lower
values of sy [12].%

V. CONCLUSION

Recently, a new compilation of the hadronic R-ratio from
all available experimental data for the process ete™ —
hadrons(y) became available [19]. In this paper, we used
finite-energy sum rules for a determination of the strong
coupling based on these data.

In contrast to the case of hadronic 7 decays, there is no
inherent limit on s in e e~ — hadrons(y), and this allowed
us to go to higher energies, where we need to rely less on
models to take into account the nonperturbative effects
associated with violations of quark-hadron duality. In a
marked difference, only the errors in our determination,
Eq. (4.7), required the modeling of duality violations,
whereas in the case of 7 decays, duality-violating contri-
butions had to be included in all self-consistent fits
employed to extract a, from the data. Because ete™ —
hadrons(y) allowed us to probe energies above the 7 mass,
and because of the exponential, and hence fairly rapid,
decay of the strength of duality violations, we were able to
obtain stable results for a; from sum rules which on the
theory side involve only the OPE. This was not a priori
obvious, considering that the inclusion of the effects from
duality violations has been shown to be important for the
determination of «, from 7 decays [12]. It is thus a
nontrivial result that the values for a, that we obtain from
the R-ratio are in very good agreement with the values for
a, obtained from 7 decays. They are also consistent within
errors, when converted to values at the Z mass, with the
world average as reported in Ref. [41], albeit with

*This has been disputed in Ref. [11].

somewhat lower central values. This result provides a
nontrivial test, at the current level of precision, of the
perturbative running of a, predicted by QCD even at rather
low scales, a result which is far from obvious [43].

As has become common in these determinations from
finite-energy sum rules, we reported two values for aj,
corresponding to two different assumptions about how to
resum unknown higher orders in perturbation theory, FOPT
and CIPT. The difference represents our ignorance of these
higher orders, assuming that, at these energies, we have not
yet reached the order in perturbation theory where its
asymptotic nature becomes manifest [3]. The difference
between CIPT and FOPT that we find from the R-ratio is
smaller than the one found in hadronic 7 decays. It is likely
that some of this reduction can be ascribed to the extraction
of a; using sum rules at a higher s,. However, since the
convergence properties of the perturbative expansions
for the various (linear combinations of) moments of the
spectral function are not universal [28], it is not clear that a
direct comparison of this difference between the determi-
nations from the R-ratio and 7 decays can be made. It is for
this reason that we refrain from just adding the difference
between FOPT and CIPT as another systematic error to the
total error in our determinations of «,.

Our final result, Eq. (4.7), shows that the largest error is
the fit error, which is experimental in nature. This implies
that more precise future data for the R-ratio would help in
making the determination from the R-ratio more precise
and provide a more stringent test on the workings of QCD
perturbation theory at lower energies. The biggest impact
on our determination comes from the region below 2 GeV,
where the R-ratio is compiled from very many carefully
measured exclusive-channel contributions. While much
improved inclusive data in the region between 2 and
3 GeV have more recently become available [16-18],
we found that, at present, these inclusive data do not have
much impact on the precision of our determination. In this
respect, prospects for the release of new inclusive R-ratio
data by BESIII [44] and the experiments at Novosibirsk
(SND, CMD-3, KEDR) are potentially promising. In
addition, efforts at Novosibirsk to determine the inclusive
R-ratio at lower energies than 2 GeV [45] would allow
further study into the choices of the transition region
between the sum of exclusive states and the inclusive data.

In the meantime, a project that may be worth considering
is a determination of a; combining hadronic R-ratio data
and z-decay data. Such an approach appears to be sensible
in view of the consistency between our determinations of a
from each of these separately.
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