
Vol.:(0123456789)1 3

Structural and Multidisciplinary Optimization (2022) 65:34 
https://doi.org/10.1007/s00158-021-03118-4

RESEARCH PAPER

Topology optimization of turbulent fluid flow via the TOBS method 
and a geometry trimming procedure

Renato Picelli1   · Eduardo Moscatelli2   · Paulo Vinícius Miyuki Yamabe2   · Diego Hayashi Alonso2   · 
Shahin Ranjbarzadeh2   · Rafael dos Santos Gioria1   · Julio Romano Meneghini3   · Emílio Carlos Nelli Silva2 

Received: 23 February 2021 / Revised: 20 October 2021 / Accepted: 15 November 2021 / Published online: 6 January 2022 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
One of the current challenges for topology optimization methods is the consideration of high Reynolds fluid flow analy-
sis, especially including turbulence models. The issues in current pseudo-density-based methods are threefold. The fluid 
boundaries are unknown during optimization, the convergence to {0, 1} designs might be highly dependent on the tuning of 
the optimization parameters and it is difficult to specify the maximum value of the inverse permeability to avoid the presence 
of fluid flowing inside the modeled solid medium. This paper proposes a methodology to tackle these three problems. The 
Topology Optimization of Binary Structures (TOBS) method and a geometry trimming procedure are employed to create 
the TOBS-GT method. This method uses a binary {0, 1} design variable, which naturally creates explicit fluid boundaries 
during optimization and avoids the need for tuning the material model interpolation parameters. The geometry trimming 
procedure removes the solid regions and create a CAD model with only the fluid analysis domain and smooth walls. Since 
there is no solid region inside the analysis mesh, the problem of having fluid flowing through a solid region is avoided. The 
k-� and k-� turbulence models are chosen to illustrate that the method may be applied to any turbulence model. The equi-
librium equations are solved using the finite element method. The total fluid energy dissipation is minimized considering 
a fluid volume constraint. Numerical results show that the TOBS-GT method is well-fitted for topology optimization of 
turbulent fluid flow problems.

Keywords  Fluid flow topology optimization · Turbulent flow · Turbulence · TOBS · Integer linear programming · Finite 
Element Method

1  Introduction

Topology optimization (TO) is a computational engineer-
ing tool used to provide optimized geometries, with highly 
attractive applications in the areas of structural and fluid 

flow path designs. The main goal of TO is to solve a material 
distribution problem within the design domain considering 
an objective function and a set of possible constraints. In 
the case of fluids, the design variables {1} and {0} usually 
indicate regions of the domain where the fluid is free to flow 
(“fluid”) and restricted to flow (“solid”), respectively. How-
ever, current TO methods usually relax the binary variable 
{0, 1} , which occasionally leads to grayscale regions, with 
intermediate properties between fluid and solid. That is not 
an issue for some problems; however, it is an essential aspect 
of fluid dynamics since the contour in a fluid mesh must be 
modelled with caution, especially in high Reynolds flows.

The use of the TO method for fluid problems began 
with the seminal work of Borrvall and Petersson (2003). 
The authors proposed to minimize the fluid energy dis-
sipation in 2D channels, subject to a volume constraint 
using the incompressible Stokes flow equations and add-
ing the Brinkman penalization on the design variables. 

Responsible Editor: Julián Andrés Norato

 *	 Renato Picelli 
	 rpicelli@usp.br

1	 Department of Mining and Petroleum Engineering, 
Polytechnic School of the University of São Paulo, 
São Paulo, SP, Brazil

2	 Department of Mechatronics and Mechanical Systems 
Engineering, Polytechnic School of the University of São 
Paulo, São Paulo, SP, Brazil

3	 Department of Mechanical Engineering, Polytechnic School 
of the University of São Paulo, São Paulo, SP, Brazil



	 R. Picelli et al.

1 3

34  Page 2 of 25

Gersborg-Hansen et al. (2006) extended the work in Bor-
rvall and Petersson (2003) by optimizing the flow for a 
wider range of Reynolds numbers considering inertial fluid 
effects and nonlinearities, i.e., using the incompressible 
Navier-Stokes (N-S) equations. After these advances, 
interesting applications were achieved, e.g., the design 
of fluid devices in valves (Song et  al. 2009), mixers 
(Andreasen et al. 2009), rectifiers (Jensen et al. 2012) and 
flow machine rotors (Romero and Silva 2014). Sá et al. 
(2018) performs the complete development cycle of a 
small-scale pump designed using the TO method. The 2D 
swirl flow model is applied in TO to reduce the computa-
tional cost for designing 2D swirl flow devices in relation 
to using a complete 3D model (Alonso et al. 2018). Pin-
gen and Maute (2010) and Hyun et al. (2014) considered 
non-Newtonian fluid effects in the systematic design of 
fluidic systems dealing with blood. All these works show 
the outstanding capabilities of TO when designing inno-
vative fluid devices at low-speed flow. On the other hand, 
when it comes to higher levels of complexity of fluid flow, 
such as larger and higher speed fluid flow systems, TO’s 
current methodologies are still not sufficiently developed. 
In practice, these are the targets of many engineering 
applications, such as in the aerospace, automotive, and 
oil and gas industries, to cite a few. For these problems, the 
works mentioned above cannot incorporate well or cannot 
incorporate fluid model’s complexity at all.

One of the current most challenging applications of TO 
methods for fluid flow design includes the consideration of 
turbulence (Alexandersen and Andreasen 2020). Othmer 
(2008) pointed up the first research direction for turbulent 
flow TO by exploring sensitivity maps via the continuous 
adjoint approach. However, the “frozen turbulence” assump-
tion was adopted, in which the variation in the turbulent vis-
cosity with respect to the design variables is neglected. Later 
on, Kontoleontos et al. (2013) presented an exact continuous 
adjoint formulation for TO, that takes into consideration the 
differentiation of the low-Reynolds number Spalart-Allmaras 
model. The challenges rapidly showed to be the modelling 
of the turbulence and the computations of its sensitivities. 
Papoutsis-Kiachagias and Giannakoglou (2016) and Yoon 
(2016) developed the complete TO frameworks for turbulent 
flows using the Spalart-Allmaras model by considering the 
sensitivity related to the wall distance computation. Dilgen 
et al. (2018a) used the Spalart-Allmaras and k-� models 
for performing TO for turbulent flows, also exploring the 
benefits of automatic differentiation. The same research 
group applied the method to heat sink design with turbulent 
forced convection (Dilgen et al. 2018b). More recently, Yoon 
(2020) modified the k-� turbulence model to carry out TO 
and Sá et al. (2021) introduced a rotation correction for the 
turbulence evaluation when rotating frames are considered 
using the Spalart-Allmaras model. Lee et al. (2020) explored 

the use of simplified sensitivities by neglecting the exact 
adjoint analysis, for an aero-thermal system.

All of these previous works are based on the continuous 
pseudo-density distribution within the fluid design domain 
and attempt to improve the turbulence modelling and sen-
sitivity calculation in the TO framework. A material inter-
polation model (e.g. SIMP, RAMP or the model proposed 
by Borrvall and Petersson (2003)) is required to allow for 
continuous pseudo-density changes. An inverse permeability 
term is employed in the attempt of restricting the fluid not 
to flow inside the modeled solid regions. In this context, 
one can point out three issues. First, intermediate pseudo-
densities create a large amount of grayscale, leading the fluid 
domain walls not to be explicitly defined due to the con-
tinuous transition between the fluid and solid regions. This 
is numerically not recommended in some fluid dynamics 
problems and represents a considerable obstacle when deal-
ing with fluid flows that require mesh refinement or specific 
boundary conditions at walls – e.g. turbulence wall func-
tions. Second, the material interpolation model leads the 
numerical analysis to be highly dependent on a penalization 
factor. Frequently, the tuning of the penalization parameters 
during optimization is non-intuitive and should be changed 
dynamically in order to push intermediate pseudo-density 
values to the {0, 1} bounds. Third, the value of the inverse 
permeability may be difficult to be determined and may be 
case-dependent. These three issues preclude the pseudo-
density-based TO method to account for more rigorous 
numerical analysis, including turbulence models with wall 
functions. Even when the design successfully converges to 
{0, 1} topologies, the fluid velocity is dropped towards zero 
when going from 1 (fluid) to the interfaces, by decreasing 
the solid material permeability, but no actual wall function 
or boundary condition is applied. These issues motivate the 
development of TO methods that do not rely on interme-
diate pseudo-densities, such as the level-set (Feppon et al. 
2019) and binary approaches (Souza et al. 2021). Recently, 
Kubo et al. (2021) developed a level set framework for tur-
bulent flow TO with wall functions, but assuming frozen 
turbulence.

This work’s main objective is to propose a TO meth-
odology that tackles the three aforementioned problems 
while considering its application to turbulent flow TO. 
The Topology Optimization of Binary Structures (TOBS) 
method is a fair candidate for such a case (Sivapuram and 
Picelli 2018). The method employs binary {0, 1} design 
variables. This feature produces explicitly defined fluid 
boundaries during optimization, which allows the direct 
application of turbulent wall functions and other relevant 
conditions. Also, the effects of penalizing intermediate 
pseudo-density values are naturally avoided since no inter-
mediate pseudo-densities are present. The TOBS method 
generalizes the binary TO problem by using sequential 
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integer linear approximation and move limits. The method 
differs from other binary approaches by the use of Integer 
Linear Programming (ILP) (Paul 2009). Herein, the Finite 
Element Analysis (FEA) is used to solve the Reynolds-
Averaged Navier-Stokes (RANS) equations. The total fluid 
energy dissipation (considering the viscous and turbulent 
effects) is minimized subject to a volume constraint. The 
governing equations and adjoint sensitivities are solved 
Via COMSOL MultiphysicsⓇ ’ fluid dynamics and auto-
matic differentiation modules. Souza et al. (2021) first 
applied the TOBS method to fluid flow optimization using 
the standard inverse permeability approach. Herein, the 
use of a geometry trimming procedure is proposed in order 
to remove the modeled solid regions from the analysis, 
consequently eliminating the inverse permeability term. 
The inverse permeability is still used to aid the sensitiv-
ity analysis but with no actual effect in the final topology 
solution due to the absence of a modeled solid region. Fur-
thermore, the permeability term is modeled with a linear 
interpolation scheme. The geometry trimming approach 
has been idealized for fluid-structure interaction problems 
by (Picelli et al. 2020a) but herein formalized. First, a set 
of optimization grid points is defined as design domain 
by a regular structured mesh. The countours of the {0, 1} 
designs produced by TOBS are extracted and smoothed. 
A CAD (computer-aided design) model is produced by 
trimming the solid regions (where the variable is {0} ) out 
of the initial full geometry. The remaining geometry is left 
to be automatically meshed by the finite element software 
based on the physics to be solved. A brief illustration of 
the method is given in Fig. 1. Herein, the TOBS method 
added with the geometry trimming step is so called TOBS-
GT. The trimming process automatically generates walls 
for the fluid flow that can be directly treated according to 
the fluid flow requirements. Herein, the k-� or k-� turbu-
lence wall functions are employed. Besides, freely gen-
erated meshing can also offer benefits when refining the 
mesh in appropriate regions, e.g., near walls and geometric 

features. In fact, the TOBS-GT method aims to allow the 
digital {0, 1} framework to accommodate convenient tools 
from CAD modelling and Computational Fluid Dynam-
ics simulation via its surface-capturing approach. To the 
authors’ best knowledge, this is the first work to solve 
turbulent fluid flow TO imposing explicit turbulence wall 
functions without the frozen turbulence assumption. Other 
contributions include the use of an ILP solver and the solu-
tion for three-dimensional problems. The main novelties 
of this work are the following:

–	 A new surface-capturing method (TOBS-GT) is created 
for topology optimization by combining binary design 
variables, smooth contour extraction and geometry trim-
ming;

–	 The proposed method may be independent of the penali-
zation for the pure fluid optimization problem;

–	 The proposed TOBS-GT designs tend to look like solu-
tions of standard fluid flow topology optimization but 
with no need to select the inverse permeability values 
nor penalization parameters.

–	 Topology optimization of turbulent fluid flow problems 
is carried out imposing turbulence wall functions;

The remainder of the paper is organized as follows. In 
Sect. 2, the governing equations for the turbulent fluid flow 
modelling are presented. In Sect. 3, the formulation of the 
topology optimization method is presented alongside the 
TOBS algorithm. In Sect. 4, the geometry trimming pro-
cedure is detailed and the TOBS-GT method is formalized. 
In Sect. 5, two-dimensional (2D) and three-dimensional 
(3D) numerical examples are presented. In Sect. 6, some 
conclusions are inferred.

Fig. 1   Illustration of the FEA set up produced by the TOBS-GT method
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2 � Governing equations

2.1 � RANS equations

The turbulent motion of a fluid particle inside a fluid flow 
domain Ωf (see Fig. 2) can be described by the RANS equa-
tions (Wilcox 1998; Larsson 1998) and can be solved by the 
Finite Element Method. Assuming a steady-state, homoge-
neous, isothermal, incompressible and Newtonian fluid flow 
without body forces, the RANS equations can be written as

where �f is the fluid density, v is the statistical time-averaged 
velocity, p is the statistical time-averaged pressure, �(�) is 
the inverse permeability (used in topology optimization, 
being described in Sect. 2.2), I is the identity matrix, and 
� f is the shear stress tensor that includes the viscous and 
turbulent effects over the fluid, which is given by

where � is the fluid dynamic viscosity and �T is the isotropic 
eddy viscosity calculated with a turbulence model. The fric-
tion force term �(�)v is added in Eq. (1) in a similar fashion 
as in standard pseudo-density-based methods. However, 
when using the geometry trimming procedure, this term 

(1)�f(v ⋅ ∇v) = ∇ ⋅

[
−pI + � f

]
+ �(�)v in Ωf,

(2)∇ ⋅ v = 0 in Ωf,

(3)
� f = 2

(
� + �T

)
�(v),

�(v) =
1

2

(
∇v + (∇v)T

)
,

only influences the sensitivity, with no effects in the analysis 
(simulation), because the pseudo-density is binary, with the 
solid material being trimmed out of the analysis mesh. This 
is further explained in Sect. 2.2.equations can be written as

In contrast to laminar flow, the isotropic eddy viscosity 
�T is present in order to account for the normal and shear 
stresses caused by turbulent eddies on the fluid. The calcula-
tion of �T depends on the engineering application. Several 
approximation theories have been developed depending on 
the physical interpretation of the eddy viscosity models, 
each one presenting specific numerical limitations. These 
theories can also be referred as turbulence models. The k-� 
and k-� models are common choices for a wide range of tur-
bulence problems, and are used in this paper to illustrate that 
the proposed optimization procedure should work regardless 
the adopted model.

2.1.1 � k‑" turbulence model

The inclusion of the turbulent effects via the standard k-� 
model is based on the transport of two additional turbulent 
quantities, namely the turbulent kinetic energy k and its 
dissipation rate � (Wilcox 1998). In steady-state, these two 
additional balance equations can be written as

where � and �T account for the molecular and turbulent 
effects of the viscosity, respectively, and the latter is defined 
in terms of the two additional turbulent fields

The material model terms �(�)k and �(�)� are added to Eqs. 
(4) and (5), respectively, in order to obtain the derivatives 
with respect to the k-� turbulence variables. This approach 
is based on the work performed by Yoon (2020). The source 
terms in Eqs. (4) and (5) are written as a function of Pk , 
defined as

The k-� model has five constants: C
�
 = 0.09, C

�1 = 1.44, C
�2 

= 1.92, Ck = 1.0, and C
�
 = 1.3.

The wall functions are such that the computational 
domain is assumed to be located a distance �w from the wall 

(4)�fv ⋅ ∇k = ∇ ⋅

((
� +

�T

Ck

)
∇k

)
+ Pk − �f� + �(�)k,

(5)
�fv ⋅ ∇� =∇ ⋅

((
� +

�T

C
�

)
∇�

)
+ C

�1

�

k
Pk

− C
�2�f

�
2

k
+ �(�)�,

(6)�T = �fC�

k2

�

.

(7)Pk = �T

(
∇v ∶

(
∇v + (∇v)T

))
.

p = pout
Γout

Γin

Ωf
Γw

Γw

v = vin

Γw

Γw

Fig. 2   Illustration of the turbulent fluid flow problem. The fluid flows 
from an inlet boundary Γin through a domain Ωf bounded by the walls 
Γ
w
 and exiting at an outlet boundary Γout
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(COMSOL 2019). The distance �w is automatically com-
puted so that

where v
�
= C

1∕4
�

√
k is the friction velocity. The correspond-

ing wall boundary conditions for the velocity are: a no-pene-
tration condition v ⋅ n = 0 and a shear stress condition given 
as

where

being �V the von Kárman constant and B a constant equal to 
5.2 (COMSOL 2019).

2.1.2 � k‑! turbulence model

The revised k-� model (Wilcox 2008) calculates the turbu-
lent eddy viscosity �T as

where � is the specific dissipation rate in this model. Simi-
larly to the k-� model, two additional equations are solved to 
obtain the k-� quantities (Wilcox 1998). They are:

w h e re  �T = �0f�  ,  f
�
=

1 + 70X
�

1 + 80X
�

 ,  X
�
=

ΩijΩjk�ki

(�∗
0
�)3

 , 

�
∗ = �

∗
0
f
�
∗ , where

with Xk =
1

�
3
(∇k ⋅ ∇�) , being Ωij =

1

2

(
�vi

�xj
−

�vj

�xi

)
 the mean 

rotation-rate tensor and �ki =
1

2

(
�vk

�xi
+

�vi

�xk

)
 the strain-rate 

tensor. The closure constants are �T = 0.52 , �0 = 0.104 , 
�
∗
0
= 0.09 , � = 0.5 , and �∗ = 0.5 . The material model terms 

�(�)k and �(�)� are added to Eqs. (12) and (13), respec-
tively, in order to obtain the derivatives with respect to the 

(8)�
+
w
=

�fv��w

�

= 11.06,

(9)� f ⋅ n −
(
n ⋅ � f ⋅ n

)
n = −�fv�

v

v+
,

(10)v
�
= max

⎛
⎜⎜⎜⎝

�v�
1

�V

ln �+
w
+ B

,C1∕4
�

√
k

⎞
⎟⎟⎟⎠
,

(11)�T = �f

k

�

,

(12)
�fv ⋅ ∇k = Pk − �f�

∗k� + ∇ ⋅

((
� + �

∗
�T

)
∇k

)
+ �(�)k,

(13)
�fv ⋅ ∇� = �T

�

k
Pk − �f�T�

2 + ∇ ⋅

((
� + ��T

)
∇�

)
+ �(�)�,

(14)f
𝛽
∗ =

⎧⎪⎨⎪⎩

1 Xk ≤ 0

1 + 680X2
k

1 + 400X2
k

Xk > 0
,

k-� turbulence variables. This approach is based on the work 
of Dilgen et al. (2018a). Wall boundaries are treated with the 
same type of boundary conditions as for the k-� model with 
C
�
 replaced by �∗

0
 . It can be pointed out that because of the 

geometry trimming, the material models for all equations 
can be identical.

2.1.3 � Boundary conditions

In order to solve the RANS equations, the following boundary 
conditions are applied:

Eq. (15) represents the velocity profile given at the inlet 
boundary Γin , which depends on the coordinates Γxyz and the 
average inlet velocity vin,ave.

The inlet velocity profile that is used ( v0
(
Γxyz, vin,ave

)
 ) is 

given differently depending on each numerical example. In the 
case of considering a fully developed flow condition, the fully 
developed flow condition from COMSOL MultiphysicsⓇ is 
imposed, which determines the inlet velocity profile by solving 
for the fluid flow in an extension of the inlet boundary (“inlet 
channel”, with length ten times the inlet edge length in 2D, 
and length ten times the square root of the inlet area in 3D) 
while imposing zero tangential velocity ( v − (v ⋅ n)n = 0 ) on 
Γin . The constrained pressure value at the outlet boundary Γout 
is given by Eq. (16). The laminar sublayers at the fluid walls 
are not resolved when wall functions are imposed. Thus, fluid 
velocity at walls is non zero when a turbulent fluid flow is 
solved.

The turbulent flow settings for the inlet Γin are the turbulent 
intensity IT and turbulence length scale LT , which are related 
to the turbulence variables via the following equations (COM-
SOL 2019):

when solving for the k-� model, and

when solving for the k-� model. The values IT = 0.05 and 
LT = 0.01 m are prescribed. For the outlet Γout , the bound-
ary conditions for the turbulence quantities are n ⋅ ∇k = 0 , 
n ⋅ ∇� = 0 and n ⋅ ∇� = 0.

(15)v = v0

(
Γxyz, vin,ave

)
on Γin,

(16)n
T
[
−pI + � f

]
n = −p̂0 on Γout,

(17)p̂0 ≤ pout.

(18)

k =
3

2

(|v|IT
)2

and � = C3∕4
�

k3∕2

LT
, on Γin,

(19)

k =
3

2

��v�IT
�2

and � =

√
k

�
�
∗
0

�1∕4
LT

on Γin,



	 R. Picelli et al.

1 3

34  Page 6 of 25

On the walls Γw , the turbulent kinetic energy is subject 
to a homogeneous Neumann boundary condition n ⋅ ∇k = 0 
(COMSOL 2019). When solving the k-� equations, the 
boundary condition for � is given by

When solving for the k-� model the boundary condition for 
� at the walls is given by

2.2 � Material model

The Brinkman equations (Brinkman 1947) inspire adding 
friction forces by considering that low permeability regions 
represent solid domains and high permeability regions rep-
resent the domains where the fluid is free to flow. The sup-
plementary forces are added to enforce zero or near-zero 
velocities in the solid domains in standard fluid flow topol-
ogy optimization. These forces’ magnitude is controlled 
by the maximum inverse permeability value present in the 
material model function. The standard topology optimiza-
tion methods become then quite dependent on the choice of 
this value, often leading to poorly-performing local minima 
(Pizzolato 2018). Sometimes, this issue is only solved by an 
endless and frustrating parameter tuning. Herein, by using 
the trimming geometry procedure, the effects of adding the 
material model are low. This is explained by looking into 
the linear interpolation scheme used in this work, given as

where �max is the maximum inverse permeability value. In 
practice, for the proposed geometry trimming method, it is 
employed �max = 1 kg/(m3

⋅s), i.e. �max is not actually used; 
however, the term is included in Eq. (22) for the comparison 
against the standard permeability approach analysis carried 
out in Sect. 5.1. In summary, when � = 1 , the interpolation 
scheme leads to �(�) = 0 , and Eq. (1) becomes the origi-
nal RANS equations without the interpolation term. In the 
geometry trimming procedure, the regions where � = 0 are 
trimmed out of the FE analysis domain, creating a CAD 
geometry that only models the regions where � = 1 . There-
fore, the addition of the interpolation term in the RANS 
and turbulence equations is not active in the point of view 
of the fluid flow analysis that is performed in the trimmed 
geometry. The interpolation scheme is employed only to aid 
the sensitivity analysis. The same would be valid if the tra-
ditional term by Borrvall and Petersson (2003) was used.

(20)� =
C
3∕4
�

k3∕2

�V�
+
w

on Γw.

(21)�w =
�fk

�V�
+
w
�

on Γw.

(22)�(�) = �max(1 − �),

This work is the first attempt to carry out turbulent fluid 
flow topology optimization using binary design variables. 
The k-� and k-� turbulence models are chosen to illustrate 
that the proposed method might work regardless of the tur-
bulence model. The authors advocate that, when it comes 
to binary {0, 1} topology designs, the choice of the phys-
ics modelling is a matter of the application, as there is no 
interference of material interpolation, as described above. 
Therefore, the methodology proposed in this work may be 
directly extended to other fluid flow physics or conditions.

3 � Topology optimization framework

3.1 � Optimization problem

In this work, the total fluid energy dissipation (considering 
the viscous and turbulent effects) is minimized subject to a 
volume constraint. The total fluid energy dissipation is given 
by (Borrvall and Petersson 2003; Yoon 2016)

where u is being used to represent the state vector, which 
includes the velocity ( v ), pressure (p) and turbulence vari-
ables (k and � , or k and � , depending on the turbulence 
model).

The topology optimization formulation can then be 
expressed as

where u(�) is the state vector computed for a given design 
variable distribution � , V

�
= ∫

Ω
�dΩ is the fluid vol-

ume computed for a given design variable distribution � , 
V = f ∫

Ω
dΩ is the constrained fluid volume, and f is the 

maximum allowed fluid volume fraction.

3.2 � Sensitivity analysis

The TOBS method is a gradient-based algorithm, meaning 
that the derivatives (sensitivities) of the objective function 
and constraints are required. A general way of computing 
the sensitivity of the objective function Φ is via the adjoint 
method (Haftka and Gürdal 1992). The adjoint equation is 
then expressed as

(23)

Φ(u, �) =

∫Ωf

(� + �T )(∇v + (∇v)T ) ⋅ (∇v + (∇v)T )dΩf

+ ∫Ωf

�(�)v ⋅ vdΩf,

(24)

Minimize
�

Φ(u(�), �)

Subject to V
�
⩽ V

�. ∈ {0, 1}
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where � is the adjoint variable, Φ is the objective function 
and R is the residual (given from the weak formulation of 
the fluid flow problem). Therefore, the sensitivity dΦ

d�
 can be 

computed as

The sensitivity of the volume constraint depends on V
�
 . The 

discrete form of V
�
= ∫

Ω
�dΩ is given as

where Vj is the volume of the element j, �j is the value of the 
design variable in the element j, and Nd is the total number 
of elements. Then, the sensitivity of this term is given in the 
discrete form as:

3.3 � TOBS method

The TOBS (Topology Optimization of Binary Structures) 
method is based on sequential approximations to integer 
linear optimization subproblems and on their solutions. By 
representing the design variable ( � ) in its discrete form ( � ), 
and by considering a Taylor’s series expansion and truncat-
ing its first term (linear part), the objective function and 
volume constraint can be expressed as follows, for the opti-
mization iteration n:

where the truncation error is given as O(||||Δ�n||||22) , and Δ�n 
is the vector that represents the changes in the design vari-
able. The changes in the design variable should be restricted 
in order to keep the design variable with integer (i.e., binary) 
values. For example, by considering an element that contains 
a fluid material ( �j = 1 ), the changes in the design variable 
can be restricted as Δ�j ∈ {−1, 0} , meaning that this ele-
ment may either turn into a solid material ( �j = 0 ) or keep 
its value ( �j = 1 ) in the optimization iteration. The same 
procedure is analogous for an element that contains a solid 
material ( �j = 0 ). The bound constraints for Δ�j can then be 
expressed as,

(25)
(
��

�u

)T

� = −
(
�Φ

�u

)T

,

(26)
dΦ

d�
=

�Φ

��

+ �
T ��

��

.

(27)V
�
=

Nd∑
j=1

�jVj,

(28)
dV

�

d�j
= Vj.

(29)
Φ(�) ≈ Φ(�n) +

dΦ(�n)

d�
⋅ Δ�n + O(||||Δ�n||||22),

V
�
(�) ≈ V

�
(�n) +

dV
�
(�n)

d�
⋅ Δ�n + O(||||Δ�n||||22),

or, in a unified form,

where Δ�n
j
∈ {−1, 0, 1} . In order to maintain the linear 

approximation from Eq. (29) valid, the truncation error 
O(||||Δ�n||||22) should be sufficiently small. The value of the 
truncation error is controlled by including an additional con-
straint to the optimization subproblem, which restricts the 
number of “flips” of �n from 1 to 0 and vice-versa. The 
truncation error constraint can be expressed as

In topology optimization, the truncation error constraint 
given by Eq. (32) means that the number of elements that 
may turn from fluid to solid and vice-versa is restrained to a 
fraction ( � ) of the total number of elements ( Nd ). By using 
small values of the fraction � , the number of flips is ensured 
to be kept low at each iteration n, meaning that the trunca-
tion error is also kept small.

By considering the sequential linear approximations 
from Eq. (29), the integer variable constraint from Eq. 
(31), and the truncation error constraint from Eq. (32), the 
approximate integer linear subproblem is given as

Eq. (33) shows the sequential optimization subproblems 
in the standard TOBS formulation, where the truncation 
error constraint (Eq. (32)) restrains the topology from 
undergoing great changes. However, when the constraint is 
bounded with ΔVn

�
= V − V

�

(
�n

)
 , the constraint may pos-

sibly become infeasible in the current optimization iteration 
n. This undesirable effect may be avoided by modifying the 
bound of the constraint ( ΔVn

�
 ) such that the optimization 

subproblems yield feasible solutions. This approach also 
helps in generating feasible subproblems when the initial 
guess of the design variable is distant from feasibility – for 
instance, when the initial guess consists of a “fully-fluid” 
design domain whilst having a small allowed fluid volume 
fraction (f). Therefore, the constraint bounds are modified 
by considering

(30)

{
0 ⩽ Δ�n

j
⩽ 1 if �n

j
= 0,

−1 ⩽ Δ�n
j
⩽ 0 if �n

j
= 1,

(31)Δ�n
j
∈ {−�n

j
, 1 − �

n
j
},

(32)||||Δ�n||||1 ⩽ �Nd.

(33)

Minimize
Δ�k

dΦ(�n)

d�
⋅ Δ�n,

Subject to
dV

�
(�n)

d�
⋅ Δ�n

⩽ V − V
�

(
�
n
)
∶= ΔVk

�
,

||||Δ�n||||1 ⩽ �Nd,

Δ�n
j
∈ {−�n

j
, 1 − �

n
j
}, j ∈ [1,Nd].
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where � is the relaxation parameter corresponding to the 
constraint given by V

�
 . Although the TOBS formulation is 

being described for a single constraint, more constraints can 
be considered (Picelli et al. 2020b; Sivapuram et al. 2018), 
and any other differentiable function can be used as a con-
straint (Picelli et al. 2020b; Sivapuram et al. 2018).

The integer optimization subproblems generated by using 
sequential linearizations (Eq. (33)) can be solved through 
Integer Linear Programming (ILP). An ILP problem is 
essentially the same as a Linear Programming (LP) prob-
lem, but imposing additional constraints to ensure that the 
design variables can only achieve integer values. Therefore, 
ILP-based solutions become suboptimal with respect to 
the LP-based solutions. Nevertheless, since fluid topology 
optimization aims to achieve a binary ( {0, 1} ) solution, the 
use of integer programming should be naturally understand-
able. In this work, the ILP problem is solved by using the 
branch-and-bound algorithm from the CPLEXⓇ optimization 
library, which is developed by IBMⓇ . The branch-and-bound 
method consists of an algorithm based on a tree data struc-
ture, in which the ILP problem is first solved without any 
integer constraints (by using a linear optimization technique 
such as the Simplex method); then, branches of LPs are cre-
ated with additional inequality constraints being imposed on 
the design variables in order for the solution to be yielded as 
integer (Land and Doig 1960; Vanderbei 2014). Sivapuram 
and Picelli (2020) present a study that indicated that the 
computational time required by the ILP solver and by the 
FEA increases, linearly and exponentially with the mesh 
size, respectively, for the traditional fixed grid approach; 
hence, the bottleneck of the optimization is still the FEA.

4 � Numerical implementation

4.1 � Details of FEA software setup

The RANS equations (Eqs. (1) and (2)) including the k-� 
(Eqs. (4) and (5)) and k-� (Eqs. (12) and (13)) turbulence 
models with wall functions are solved via the commercial 
FEA software COMSOL MultiphysicsⓇ . For convection-
dominated transport problems, the FEA may lead to numeri-
cal instabilities, namely, oscillations in the solution. In order 
to prevent this phenomenon, the Streamline and Crosswind 
Diffusion stabilizations are applied.

The interpolation function from Eq. (22) is employed via 
COMSOL’s Topology Optimization module. The penaliza-
tion terms related to �(�) are implemented as body forces 

(34)

ΔVn
𝛼
=

⎧
⎪⎨⎪⎩

−𝜖V
𝛼

�
�n

�
∶ V < (1 − 𝜖)V

𝛼

�
�n

�
,

V − V
𝛼

�
�n

�
∶ V ∈ [(1 − 𝜖)V

𝛼

�
�n

�
, (1 + 𝜖)V

𝛼

�
�n

�
],

𝜖V
𝛼

�
�n

�
∶ V > (1 + 𝜖)V

𝛼

�
�n

�
,

on the fluid flow domain for the RANS and turbulence 
equations.

4.2 � The TOBS‑GT method

The proposed methodology is based on the decoupling of 
the optimization grid and the FEA mesh. The process is 
illustrated in Fig. 3. The fluid flow and sensitivity analyses 
are carried out using COMSOL MultiphysicsⓇ . First, a CAD 
model is created with the analysis domain. The geometry is 
then freely meshed by using the option physics con-
trolled in COMSOL MultiphysicsⓇ . The option takes 
into account some built-in physics requirements when mesh-
ing. This choice can be of some benefit when dealing with 
complex fluid flow, which is a problem that requires cer-
tain levels of mesh refinement at the walls, or even different 
types of elements for the boundary layers. The forward and 
adjoint problems are solved, computing velocities, pressures 
and sensitivities. These three entities are computed using 
nodal variables at the finite element software. The sensi-
tivities are obtained via automatic differentiation. After 
that, optimization grid is created and the sensitivities are 
interpolated at the TOBS-GT optimization points. The finite 
element shape functions can be used to interpolate the sen-
sitivities at such points. Standard spatial filtering (Picelli 
et al. 2020b) is applied at the sensitivities defined at the 
optimization (structured) grid. The ILP solver is then used 
to find a new set of binary design variable values. The new 
topology is then used at the next iteration. Besides the analy-
sis domain, the contours of the holes defined by the binary 
variables are first identified and stored in points coordinates, 
creating a staircase contour. Then, the contour coordinates 
are filtered to create a smooth representation. In 2D, the 
smoothing is carried out by using the Savitzky–Golay fil-
ter (Savitzky and Golay 1964), and in 3D, by the Shrink 
Wrap tool from ANSYS. The smooth contours are saved 
(as .dxf for 2D and .stl for 3D problems) and provided 
to the FEA package. A new CAD model can be created by 
trimming out the holes from the analysis domain. This is 
carried in the geometry building section from COMSOL 
MultiphysicsⓇ with the command difference. In this way, 
the modeled solid regions, usually modeled with the inverse 
permeability term in traditional methods, are not considered 
in the simulation. This procedure eliminates the influence 
of the maximum inverse permeability value. Another ben-
efit of decoupling the optimization variables and the FEA is 
that the optimization grid can be relatively coarse and still 
produce crisp topologies with smooth walls while the FEA 
mesh can be also maintained in a certain size with a rela-
tively low computational cost. The authors advocate that the 
TOBS-GT should be a general idea. Other new or standard 
tools can be incorporated in the methodology according to 
convenience, e.g., in the FEA solution, the type of sensitivity 
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analysis, different physics applications or techniques for wall 
smoothing.

4.3 � Sensitivity computation

The forward problem is computed with a stationary study 
solver added by the sensitivity module in COMSOL Mul-
tiphysicsⓇ for computing the sensitivities from automatic 
differentiation.

The fluid energy dissipation function can be written 
directly in the software and coupled to an integration 
operator defined over the analysis domain. The sensitivi-
ties concerning the material model can be extracted via 
fsens(dtopo1.theta_�)∕���� . In COMSOL Mul-
tiphysicsⓇ , the variable �����_� is used to represent the 
vector of design variables (“�”). The sensitivities com-
putation is done considering the averaging of the element 
volumes for mesh independence purposes. A set of grid 
points coincident with the optimization grid can be cre-
ated to extract the sensitivities at those points and then 
carry out the communication between the FEA and the 

optimization, as illustrated in Fig.  3. Sensitivities for 
points in the (trimmed out) solid regions are zero as no 
physical analysis is carried out for those regions. Regard-
less, in this flow channel problem, they should also be zero 
for the standard inverse permeability approach as the fluid 
velocities should tend to zero in those regions. Herein, the 
sensitivities in the FEA software are output as NaN and 
substituted by zero before passing them to the optimizer. 
Back to the optimization module, the spatial filtering is 
used in the sensitivity field, populating the solid regions 
outside the FEA domain with sensitivities.

4.4 � Algorithm

In summary, the algorithm of the proposed TOBS-GT 
method is the following: 

	 1.	 Define the optimization parameters.
	 2.	 Create the optimization grid and assign an initial {0, 1} 

topology.

Fig. 3   Illustration of the 
TOBS with geometry trim-
ming procedure (TOBS-GT) 
applied to fluid flow design. The 
illustration shows a few of the 
intermediate optimization steps 
until the convergence

FEM

TOBS

FEM

geometry FE mesh problem sensitivities (AD)

TOBS-ILP
sensitivity
filtering

{0,1}

TOBS
{0,1}

... convergence

TOBS-ILP
sensitivity
filtering

Sensitivity 
interpolation to the 

structured mesh

Sensitivity 
interpolation to the 

structured mesh



	 R. Picelli et al.

1 3

34  Page 10 of 25

	 3.	 Extract and smooth the topology contours and save 
holes’ contour information (if any) as .dxf (for 2D) 
or .stl (for 3D).

	 4.	 Define the fluid flow problem in CAD and create initial 
geometry.

	 5.	 Trim the CAD geometry with holes contours informa-
tion (if any) and create the fluid flow analysis domain.

	 6.	 Mesh the trimmed geometry.
	 7.	 Solve the RANS equations (including turbulence wall 

functions).
	 8.	 Extract sensitivities in a grid coincident with the opti-

mization grid.
	 9.	 Apply spatial filtering on the sensitivity field consider-

ing the optimization grid position.
	10.	 Solve the linearized optimization subproblem from Eq. 

(24) with the branch-and-bound algorithm.
	11.	 Update design variables to build a new {0, 1} topology.
	12.	 If converged, stop. If not, iterate from step 3.

In this work, the steps from 4 to 8 are carried out in COMSOL 
MultiphysicsⓇ , while the others are done in MATLABⓇ using 
the TOBS implementation available at www.​github.​com/​renat​
opice​lli/​tobs.

5 � Numerical results

This section presents numerical results and discussions on 
the application of the proposed TOBS-GT method. First, a 
comparison against the standard fluid flow optimization with 
inverse permeability is carried out for low Reynolds regime, 
as it does not require wall functions. Then, 2D and 3D turbu-
lence examples with geometry trimming are explored.

5.1 � Investigation of the geometry trimming 
approach

The U-bend design problem illustrated in Fig. 4 is chosen for 
optimization. A similar example was investigated by Dilgen 
et al. (2018a). Herein, the U-bend is first used to verify the 
proposed geometry trimming approach against the standard 
inverse permeability methodology for low Reynolds flow 
regime. The fluid enters the inlet boundary Γin with a fully 
developed flow condition and average velocity computed as 
function of the Reynolds number Re as

where H is the characteristic length of the flow. The fluid 
should make a U-turn around the “always solid” stem in 
the center and exit through the outlet Γout , which is set for 
pout = 0 . The fluid is considered to have dynamic viscosity 
� = 5 ⋅ 10−5 Pa s and density �f = 1 kg/m3 . In the standard 

(35)vin,ave =
Re ⋅ �

�f ⋅ H
,

fluid flow topology optimization (Borrvall and Petersson 
2003), the solid regions are modeled with the inverse perme-
ability term introduced in Eq. (22). In the present TOBS-GT 
method, these regions are trimmed out and only the analysis 
domain has the inverse permeability for sensitivity calcula-
tion purposes.

To understand the effect of trimming the solid regions 
out of the analysis, the U-bend is optimized with the stand-
ard TOBS approach with inverse permeability and initial 
guess from Fig. 5 for different values of �max . For better 
comparison, the Reynolds number used is 300, i.e., the 
fluid flow is assumed to be in the low Reynolds regime 
( �T = 0 ). The characteristic length used is H = 0.2 m, the 
same size as the inlet. The TOBS parameters are � = 0.01 
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Fig. 4   U-bend example. Regions in black color are modeled with the 
inverse permeability term and fixed as solid material. Dimensions in 
m

Fig. 5   Baseline solution for the U-bend example used as initial guess 
design



Topology optimization of turbulent fluid flow via the TOBS method and a geometry trimming…

1 3

Page 11 of 25  34

and � = 0.05 and the maximum allowed fluid volume frac-
tion is set as f = 0.30 . The optimized topologies obtained 
by using the inverse permeability approach are presented 
in Figs. 6a–c for different values of �max . For the case with 
trimmed geometry, given in Fig. 6d, �max = 1 kg/(m3

⋅s). 
By comparing the inverse permeability results with the 
trimmed geometry solution, it is possible to observe that 
the geometry trimming solution tends to be equivalent to 
running the optimization with a high inverse permeability. 
Hence, the advantage of the TOBS-GT method is that the 
topology optimization analysis does not require selecting 
and testing for various �max values. Besides, a large area 
of solid region is not unnecessarily solved in the FEA. 
Figure 7 presents the CAD geometry and the velocity and 
pressure fields for the solution obtained with the geometry 
trimming procedure.

The solutions for the U-bend topology optimization 
from both the standard TOBS with inverse permeability 
and the TOBS-GT method are asymmetric according to 
Fig. 6. The topologies present an asymmetry about the 
horizontal axis cutting the pipe halfway. To verify that 
this asymmetry is indeed optimal, the optimization is also 
run by enforcing symmetry and the result is presented in 
Fig. 8b. By checking the objective function values for the 
asymmetric ( Φ = 3.88 ⋅ 10−5 W/m) and the symmetric 
solution ( Φ = 4.44 ⋅ 10−5 W/m), it is possible to see that 
the asymmetric solution presents less energy dissipation 
and the asymmetry is not induced by the optimization 
algorithm.

5.2 � Two‑dimensional turbulence problems

The previous example explored the fluid flow optimization 
in the low Reynolds regime as the standard inverse perme-
ability approach only emulates the fluid boundaries and it is 
currently unable to include wall functions. In this subsection, 
topology optimization is carried out for turbulent fluid flow 
using the proposed TOBS-GT method, which is suitable for 
the inclusion of turbulence wall functions.

5.2.1 � Pipe‑bend

The pipe-bend example illustrated in Fig. 9 is chosen as a 
benchmark for the geometry trimming procedure. The fluid 
Ωf flows through the inlet Γin with a fully developed flow 
condition and exits via the outlet Γout with pout = 0 . The 
fluid is considered to have dynamic viscosity � = 4 ⋅ 10−5 
Pa s and density �f = 1 kg/m3 . The k–� turbulence model is 
employed. The design domain is considered to be the 1 m 
× 1 m domain.

The TOBS-GT method is applied with optimization 
parameters � = 0.01 and � = 0.02 and maximum allowed 
fluid volume fraction is set as f = 0.2513 , the same area of 
a quarter torus of inner radius 0.7 m and outer radius 0.9 m 
that fits to the inlet and outlet of the pipe-bend. The TOBS-
GT optimization grid is chosen to be 200×200. For Re = 
5000 and characteristic length H = 0.2 m, Fig. 10 presents 
the snapshots of the pipe-bend optimization, including the 
velocity field plots. The proposed TOBS-GT method decou-
ples the optimization grid from the finite element mesh. Fig-
ure 11a presents the zoomed details of the optimization grid. 

Fig. 6   Effect of �max on the U-bend optimization problem: a–c using the standard TOBS with inverse permeability and d using the proposed 
TOBS-GT method for Re = 300, showing topology solutions and velocity field streamlines
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A CAD model (shown in Fig. 11b) is created after extracting 
the smoothed contours of the {0, 1} design defined in the 
optimization grid. Finally, a convenient finite element mesh 
is generated for the fluid dynamics calculations. This repre-
sents a new surface-capturing method for topology optimiza-
tion. Although some of its features are similar to body-fitted 
level set methods, the TOBS-GT is still in the digital {0, 1} 
optimization framework.

The pipe-bend example from Fig. 10 was optimized via 
the TOBS-GT method in a total time of 3.33 hours using 
an Intel Xeon Silver 4114 - 2x CPU 2.20 GHz - 128 GB 
RAM. Figure 12a shows the breakdown times for all steps 

in the TOBS-GT method. It can be seen that the FEA solver 
(forward and adjoint problems) requires the largest com-
putation time, similarly as for other standard methods. The 
times required by the FEA solver varies along the iterations, 
which might be explained by looking at the fluid walls and 
flow complexities. As seen in Fig. 10a–d, the intermediate 
topologies present more holes due to fluid flow recirculation 
zones, behaviour that goes until around iteration 70 in the 
optimization, point where the FEA solver started to require 
less computational time. The same is observed for the gener-
ated finite element mesh, as it can be seen in Fig. 12b. Until 
iteration 60, the times for the finite element mesh generation 
were in average about 3 seconds due to the complexity of 
the CAD model. Another novel and important point of the 
present method is the use of an ILP solver. This step required 

Fig. 7   U-bend topology optimization obtained by the TOBS-GT 
method for Re = 300

Fig. 8   U-bend topology optimization obtained by the TOBS-GT 
method for Re = 300: a regular solution and b solution obtained 
when enforcing symmetry
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less than a second per iteration to solve for 40,000 binary 
variables. Therefore, ILP is feasible for topology optimiza-
tion in the present TOBS-GT method.

In our numerical experience, the TOBS-GT method 
shows the tendency of reaching similar minima. To illus-
trate that, Fig. 13 presents the optimization of the pipe-bend 

example starting with an initial guess design of a fluid flow 
around a square solid. It can be seen that the optimizer starts 
with the removal of the bottom left passage, while later on 
it shapes the flow path and converges to the same solution 
as in Fig. 10, but with 90 iterations. Figure 14 presents 
the convergence history of both pipe-bend optimizations. 
Larger variations can be observed in the case starting with 
the initial full fluid, possibly explained by the changes in the 
smooth boundaries locations. For the case with an initiall 
guess design, the convergence was relatively smooth.

Although the pipe-bend is a simple benchmark example, 
only Yoon (2016) previously presented solutions for this 
problem, surprisingly. In general, it seems that the designs in 
Yoon (2016) tend to connect the inlet and outlet in a straight 
pipe but with some curved shapes. Fairly, when an outlet 
tube is used, a curved pipe design is obtained, more similarly 
to these present solutions.

5.2.2 � U‑bend

The U-bend design problem from Sec. 5.1 is explored here, 
however now solely with the geometry trimming procedure 
and turbulence models. Three different types of inlet/outlet 
configurations are explored for the U-bend example, namely, 
a case with a smaller outlet tube, a case with neither inlet 
nor outlet tubes and a case with a larger outlet tube. These 
cases are illustrated in Fig. 15. In all U-bend’s, the fluid 
Ωf flows through the inlet Γin with a fully developed flow 

Γout

Γin

Γw

Γw

Γw

Γw

Ωf

0.2

0.8

0.1

0.10.20.8

0.2

0.2

passive region

passive region

Fig. 9   Pipe bend example. Dimensions in m

Fig. 10   Pipe-bend example optimized with the TOBS-GT method for minimum fluid energy dissipation. Velocity field in m/s
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condition and exits via the outlet Γout with pout = 0 . The fluid 
is considered to have dynamic viscosity � = 4 ⋅ 10−5 Pa s and 
density �f = 1 kg/m3 . The TOBS-GT method is applied with 
optimization parameters � = 0.01 and � = 0.05 and maxi-
mum allowed fluid volume fraction f = 0.27 , the same area 
of the baseline design showed in Fig. 5. The optimization 
grid is chosen to be 200 × 200 . The problem is solved with 
both turbulence models k-� and k-� . The Reynolds number 
is first set to Re = 5000, when computing it with charac-
teristic length H = 0.2 m. Fig. 16 presents the velocity (in 
m/s) and pressure (in Pa) fields for the optimized U-bend 
optimized topologies using the case with smaller outlet tube 
and for both k-� and k-� turbulence models. This is similar 
to the case investigated by Dilgen et al. (2018a).

Although the topology solutions presented in Fig. 16a 
and b are somehow similar between each other, noticeable 
differences appear in the fluid wall locations and the fluid 
flow responses due to the chosen governing equations. In 
contrast to k-� , the solution obtained using the k-� turbu-
lence model shows the tendency of disconnecting the flow 
from the upper side of the stem wall, obtaining a wider turn 
around the stem. This also observed for the other solutions 
obtained in this work using k-� . It can be pointed out that, 
in this example, a small layer of optimization pixels were 
kept fixed in the connection zone between the inlet/outlet 
tubes and the design domain. This, in combination with the 
smoothing wall filter, ensured a smooth connection between 
those regions, differently from the design showed in 8. The 
solutions in Fig. 16 were obtained defining and computing 

the objective function only within the 1 × 1 m design domain. 
Figure 17a presents the topology obtained when including 
the inlet and outlet tubes in the objective function evaluation. 
Both solutions are basically similar, with almost unnotice-
able differences in the bottom shapes of the U-bend that 
cause less recirculation in the outlet when including that 
region in the objective function computation. Figure 17b 
and c present the U-bend designs using the k-� turbulence 
model for the cases with no tubes and the larger outlet tube, 
respectively. In the design without inlet/outlet tubes, the flow 
exits the domain with some inclination. The U-bend solution 
for the case with the larger outlet tube is more similar to the 
one with the smaller tube, however, presenting even less 
recirculation in the beginning of the outlet region, exiting 
the domain with a fully developed flow profile.

The geometry trimming procedure favors the selection 
of different fluid flow physics and the combination of the 
optimization with off-the-shelf finite element packages. This 
procedure can be particularly advantageous for turbulence 
problems, as it provides explicitly defined fluid walls and 
turbulence wall functions can be directly employed. Fig-
ure 18 shows the U-bend optimized designs for Re = 5000, 
Re = 10,000 and 20,000, when using the k-� turbulence 
model. As optimization and analysis are decoupled in the 
TOBS-GT method, increasing the flow velocities do not 
imply in further challenges for the optimization method 
itself, but to the convergence of the analysis. In this case, 
the technical challenges are related only to the CFD side of 
the problem.

Fig. 11   Zoomed details of the a {0, 1} design optimized in a 200 × 200 fixed grid, b CAD model created via the smoothed topology contours 
and (c) freely generated finite element mesh (26257 triangular, 4111 quadrilateral, 992 edge and 646 vertex elements)
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In order to further check the designs, a cross-check 
analysis is carried out comparing the U-bend obtained by 
the TOBS-GT method against the solution with enforced 
symmetry and the baseline solution for the case with nei-
ther inlet/outlet tubes. This symmetric design tends to look 
more similar to the U-bend designs obtained by Dilgen et al. 
(2018a) and the baseline solution is chosen as a simpler 
design connecting the inlet and outlet. The k-� turbulent 

flow is used and the Reynolds number is set to be Re = 
5000. Fig. 19 presents the described cross-check analysis, 
including the velocity fields, in m/s, and the local energy dis-
sipation (� + �T )(∇v + (∇v)T ) ⋅ (∇v + (∇v)T ) , in W/m. It is 
possible to observe that the solution obtained by the TOBS-
GT method presents lower energy dissipation. This might be 
explained by the presence of smaller regions of flow recir-
culation in the obtained solution and larger regions of local 
energy dissipation in the symmetric and baseline solutions.

5.3 � Three‑dimensional turbulence problem

The 3D pipe-junction example presented in Fig. 20 is con-
sidered for optimization. The example considers two inlets 
and one outlet with different cross sections as depicted in 
Fig. 20a. The pipe-junction should be designed inside a 
cubic domain of 1 m × 1 m × 1 m. The positions of the cen-
troids of the inlet 1, the inlet 2 and the outlet faces touching 
the cubic design domain are, respectively, (0.35, 0.35, 0.00), 
(0.25, 1.00, 0.25) and (1.00, 0.50, 0.50), with units in m. 
The lengths of both inlets and the outlet are 0.2 m. An initial 
guess design full of fluid as indicated in Fig. 20c is chosen to 
start the optimization. To produce this initial guess design, 
the regions that satisfy the following conditions should be 
trimmed out of the full design domain: (z > 0.70), (x > 0.50 
and z < 0.30), (x > 0.50 and y < 0.30), (x > 0.50 and y > 
0.70), (x > 0.50 and y > 0.70) and (y > 0.70 and z > 0.50), 
in a Cartesian plane (x, y, z) with units in m.

The TOBS-GT method is applied with optimization 
parameters � = 0.05 and � = 0.10 and maximum allowed 
fluid volume fraction f = 0.20 . A grid of 100 × 100 × 100 
optimization points is considered. The fluid is considered to 
have dynamic viscosity � = 5 ⋅ 10−5 Pa s and density �f = 1 
kg/m3 . The fluid enters the two inlets with constant veloc-
ity profile. First, the fluid flow is optimized in the laminar 
regime with Re = 0,001, when using the characteristic length 
of H = 0.2 m, and this solution is shown in Fig. 21a. The 3D 
pipe-junction obtained for the laminar flow is used as initial 
guess design for the optimization with turbulent flow and Re 
= 5,000. The k-� turbulence model is employed considering 
its respective wall function. The final pipe-junction opti-
mized using the turbulent flow is shown in Fig. 21d. It can be 
seen in Fig. 21 that the optimizer reduces the dimensions of 
the cross sections connecting the inlets and slightly altered 
their inclination. This is done to remove the recirculation 
zones present in the initial guess design when the turbulent 
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Fig. 12   Breakdown computation times for the pipe-bend example 
optimized with the TOBS-GT method: a for all steps and b omitting 
the FEA solver times
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Fig. 13   Pipe-bend example optimized with the TOBS-GT method for minimum fluid energy dissipation starting with an initial guess design. 
Velocity field in m/s
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Fig. 14   Convergence history of the pipe-bend design by the TOBS-GT starting from the a full fluid design and b initial guess design
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flow is applied, as shown Fig. 22a. Figure 22b presents the 
streamlines of velocity field in the pipe-junction optimized 
for the turbulent flow.

Figure 23 presents the angled views including the finite 
element meshes of the pipe-junction optimized for turbulent 
flow from Fig. 21d. The advantages of decoupling the opti-
mization and analysis meshes are highlighted here. In a fixed 
grid approach, this pipe-junction analysis would be tied to 
the 100×100×100 optimization mesh, which means a turbu-
lent flow would be solved using at least 1,000,000 elements. 
Herein, by trimming out the design domain and meshing 
the remaining CAD geometry, the 3D pipe-junction from 

Fig. 23 is meshed with 69615 tetrahedral elements, a much 
lower amount if compared to the optimization mesh. This 
is especially advantageous for 3D as, besides employing a 
turbulence model with known accuracy, the computational 
time required is reduced. Herein, the FEA solver (forward 
and adjoint problems) took in average 2 minutes to run in 
each iteration of the 3D pipe-junction.

Figure 24 presents the streamlines of the fluid veloci-
ties flowing from both inlets, where the one flowing from 
inlet 1 is highlighted in blue color, and the one flowing from 
inlet 2 is highlighted with red color. Figure 24a shows the 
streamlines for the full design domain. It can be observed 

Fig. 15   Investigated U-bend 
configurations. Dimensions 
in m
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a large region of vortices and some mixing of the fluids 
coming from both inlets. Figure 24b presents the stream-
lines for the initial guess design. In this configuration, inlet 
1 flow’s inertia makes the fluid pass over the flow from inlet 
2 and exit through the top half of the outlet cross-section. 
Meanwhile, the inlet 2 fluid flows under the inlet 1 flow and 

exits through the outlet’s bottom half. The streamlines of 
the obtained optimized solution for Re = 5000 are shown 
in Fig. 24c. Similarly to the initial guess design case, the 
inlet 2 fluid flows under the inlet 1 flow, but no vortices are 
observed and the fluid flows much smoother than for the full 
design domain and the initial guess cases.

Fig. 16   U-bend designs for Re = 5000 using the proposed TOBS-GT method: velocity fields (in m/s) when using the a k-� and b k-� turbulence 
models and pressure fields (in Pa) when using the c k-� and d k-� turbulence models
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6 � Conclusions

This paper presented a novel fluid flow topology opti-
mization methodology based on the decoupling of the 
optimization variables and the finite element mesh. For 
that, the standard TOBS method (Sivapuram and Picelli 
2018; Picelli et al. 2020b; Souza et al. 2021) is combined 
with a geometry trimming procedure to remove the solid 
regions from the fluid analysis domain, creating the so 
called TOBS-GT method. A filtering for extracting smooth 

contours is employed. One advantage is the possibility of 
obtaining smooth and explicitly defined fluid flow walls, 
particularly beneficial for turbulent flow problems with the 
inclusion of turbulence wall functions. Besides, the binary 
approach produces convergent solutions with no influence 
of the classic inverse permeability parameter. Therefore, 
the proposed methodology tackles the main three chal-
lenges in fluid flow topology optimization, i.e., the lack 
of explicit fluid walls during optimization, convergence to 
binary designs and the sometimes-exhausting parameters 

Fig. 17   U-bend solutions (velocity plot in m/s) using the k-� turbulence model for different inlet/outlet configurations. Dimensions in m
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tuning. Numerical results show that the proposed TOBS-
GT method tends to produce designs that are similar to 
those obtained with high inverse permeability values by 
the standard approach. The proposed binary framework 
favors combining the optimization with commercial FEA 
packages and automatic differentiation. It was also shown 
that the method can consider different governing equa-
tions, herein the k-� and k-� turbulent flows. A cross-check 
analysis showed that the obtained designs are good opti-
mized solutions if compared to solutions with enforced 
symmetry and baseline designs. Computational time stud-
ies show that the FEA is still the bottleneck of the opti-
mization and that freely meshing only the fluid analysis 
domain can drastically reduce the amount of elements used 
in the simulation, especially for 3D problems.

The sensitivity analysis

The present study adopts the adjoint sensitivity analysis 
via automatic differentiation to compute the sensitivity 
values of the fluid energy dissipation function. To verify 
the accuracy of this computation, the sensitivities of the 
pipe-bend example from Fig. 9 are compared to the finite 
difference method. The parameters and properties used 
are the same as for the pipe-bend example, except that 
�max = 106 kg/(m3 s) and Re = 2000. Fig. 25a presents 
the 100×100 finite element mesh used. In the current 
computational set up, the density variables are defined at 
the nodes of the mesh. All densities are defined as � = 1 . 
Figure 25b presents the volume-averaged adjoint sensi-
tivity field computed via automatic differentiation, in  

Fig. 18   Velocity fields (in m/s) of the U-bend designs (larger outlet case) obtained with the proposed TOBS-GT method using the k-� turbulent 
flow for a Re = 5000, b Re = 10,000 and c Re = 20,000
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Fig. 19   Velocity fields, in m/s, and local energy dissipation 
(� + �

T
)(∇v + (∇v)T ) ⋅ (∇v + (∇v)T ) , in W/m, of the U-bend designs 

using the k-� turbulent flow for Re = 5000 a and d obtained with the 

proposed TOBS-GT method, b and e solution with enforced symme-
try and c and f baseline solution. The colorbar for local energy dissi-
pation is clipped at 1.5 for better visualization
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Fig. 20   The 3D pipe-junction design problem: a inlets and outlet geometries, b design domain and c initial guess design
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Fig. 21   3D pipe-junction optimized via the TOBS-GT method for a the laminar flow with Re = 0.001 and b iteration 4, c iteration 8 and d the 
final solution for the k-� turbulent flow with wall functions and Re = 5000

Fig. 22   Streamlines of the turbulent flow velocity field (in m/s) in the 3D pipe-junction optimized for a the laminar flow (Fig. 21a) and b the 
turbulent flow (Fig. 21d)

Fig. 23   Angled views including the finite element meshes of the 3D pipe-junction optimized via the TOBS-GT method for the k-� turbulent flow 
with Re = 5000 and wall functions
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1/m2 . Figure 25c presents the local fluid energy dissipation 
(� + �T )(∇v + (∇v)T ) ⋅ (∇v + (∇v)T ) , in W/m, clipped at 1 
for better visualization. Some points inside low and high 
dissipation regions are chosen to compare the sensitivities 
against finite differences. These points, the perturbation, 
the computed sensitivities via the adjoint (AD) and the 
finite difference (FD) method and the relative errors are 
presented in Table 1. The errors showed to be between 
0.5% and 8.5% . Eventually, some of the errors might be 
caused by some terms that are ignored in the computa-
tion of the Jacobian matrix for the adjoint problem, so-
called “nojac” terms by the automatic differentiation 
module used. Otherwise, the tolerance on the residual 
of the governing equations by the FEA solver can also 
increase the error. Anyway, in general, the sensitivities 
showed throughout this work to provide good directions 

Fig. 24   Streamlines of the velocity field obtained with the k-� tur-
bulent flow with wall functions and Re = 5000 for a the full design 
domain, b the initial guess design and c the optimized 3D pipe-junc-

tion by the TOBS-GT. The streamlines are plotted in blue for the fluid 
entering the inlet 1 and in red for the fluid entering the inlet 2. Both 
fluids have the same properties

Table 1   Comparison between the obtained adjoint sensitivities 
against finite differences

Coordi-
nates (x, y) 
in m

Perturbation AD sensitiv-
ity

FD sensitivity Error (%)

(0.7, 0.4) 1×10−4 − 618521.69 − 628516.04 1.5902
(0.8, 0.3) 1×10−4 − 618143.65 − 628866.34 1.7051
(0.6, 0.5) 1×10−4 − 624916.01 − 612625.54 2.0062
(0.1, 0.7) 1×10−4 − 217548.12 − 218794.15 0.5695
(0.5, 0.7) 1×10−4 − 282819.64 − 284408.03 0.4960
(0.0, 0.8) 1×10−4 − 583161.94 − 554313.66 5.2043
(0.1, 0.1) 1×10−5 15605.33 15212.69 2.581
(0.7, 0.2) 1×10−6 − 167300.62 − 173446.05 3.5431
(0.1, 1.0) 1×10−6 7138.61 7068.24 0.99559
(0.8, 0.0) 1×10−6 − 600988.69 − 596612.45 0.7335

Fig. 25   Sensitivity analysis of the pipe-bend example
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to minimize the objective function, verified by some cross-
check analyses.
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