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Abstract

One of the current challenges for topology optimization methods is the consideration of high Reynolds fluid flow analy-
sis, especially including turbulence models. The issues in current pseudo-density-based methods are threefold. The fluid
boundaries are unknown during optimization, the convergence to {0, 1} designs might be highly dependent on the tuning of
the optimization parameters and it is difficult to specify the maximum value of the inverse permeability to avoid the presence
of fluid flowing inside the modeled solid medium. This paper proposes a methodology to tackle these three problems. The
Topology Optimization of Binary Structures (TOBS) method and a geometry trimming procedure are employed to create
the TOBS-GT method. This method uses a binary {0, 1} design variable, which naturally creates explicit fluid boundaries
during optimization and avoids the need for tuning the material model interpolation parameters. The geometry trimming
procedure removes the solid regions and create a CAD model with only the fluid analysis domain and smooth walls. Since
there is no solid region inside the analysis mesh, the problem of having fluid flowing through a solid region is avoided. The
k-¢ and k-w turbulence models are chosen to illustrate that the method may be applied to any turbulence model. The equi-
librium equations are solved using the finite element method. The total fluid energy dissipation is minimized considering
a fluid volume constraint. Numerical results show that the TOBS-GT method is well-fitted for topology optimization of
turbulent fluid flow problems.

Keywords Fluid flow topology optimization - Turbulent flow - Turbulence - TOBS - Integer linear programming - Finite
Element Method

1 Introduction

Topology optimization (TO) is a computational engineer-
ing tool used to provide optimized geometries, with highly
attractive applications in the areas of structural and fluid
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flow path designs. The main goal of TO is to solve a material
distribution problem within the design domain considering
an objective function and a set of possible constraints. In
the case of fluids, the design variables {1} and {0} usually
indicate regions of the domain where the fluid is free to flow
(“fluid”) and restricted to flow (“solid”), respectively. How-
ever, current TO methods usually relax the binary variable
{0, 1}, which occasionally leads to grayscale regions, with
intermediate properties between fluid and solid. That is not
an issue for some problems; however, it is an essential aspect
of fluid dynamics since the contour in a fluid mesh must be
modelled with caution, especially in high Reynolds flows.
The use of the TO method for fluid problems began
with the seminal work of Borrvall and Petersson (2003).
The authors proposed to minimize the fluid energy dis-
sipation in 2D channels, subject to a volume constraint
using the incompressible Stokes flow equations and add-
ing the Brinkman penalization on the design variables.
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Gersborg-Hansen et al. (2006) extended the work in Bor-
rvall and Petersson (2003) by optimizing the flow for a
wider range of Reynolds numbers considering inertial fluid
effects and nonlinearities, i.e., using the incompressible
Navier-Stokes (N-S) equations. After these advances,
interesting applications were achieved, e.g., the design
of fluid devices in valves (Song et al. 2009), mixers
(Andreasen et al. 2009), rectifiers (Jensen et al. 2012) and
flow machine rotors (Romero and Silva 2014). Sa et al.
(2018) performs the complete development cycle of a
small-scale pump designed using the TO method. The 2D
swirl flow model is applied in TO to reduce the computa-
tional cost for designing 2D swirl flow devices in relation
to using a complete 3D model (Alonso et al. 2018). Pin-
gen and Maute (2010) and Hyun et al. (2014) considered
non-Newtonian fluid effects in the systematic design of
fluidic systems dealing with blood. All these works show
the outstanding capabilities of TO when designing inno-
vative fluid devices at low-speed flow. On the other hand,
when it comes to higher levels of complexity of fluid flow,
such as larger and higher speed fluid flow systems, TO’s
current methodologies are still not sufficiently developed.
In practice, these are the targets of many engineering
applications, such as in the aerospace, automotive, and
oil and gas industries, to cite a few. For these problems, the
works mentioned above cannot incorporate well or cannot
incorporate fluid model’s complexity at all.

One of the current most challenging applications of TO
methods for fluid flow design includes the consideration of
turbulence (Alexandersen and Andreasen 2020). Othmer
(2008) pointed up the first research direction for turbulent
flow TO by exploring sensitivity maps via the continuous
adjoint approach. However, the “frozen turbulence” assump-
tion was adopted, in which the variation in the turbulent vis-
cosity with respect to the design variables is neglected. Later
on, Kontoleontos et al. (2013) presented an exact continuous
adjoint formulation for TO, that takes into consideration the
differentiation of the low-Reynolds number Spalart-Allmaras
model. The challenges rapidly showed to be the modelling
of the turbulence and the computations of its sensitivities.
Papoutsis-Kiachagias and Giannakoglou (2016) and Yoon
(2016) developed the complete TO frameworks for turbulent
flows using the Spalart-Allmaras model by considering the
sensitivity related to the wall distance computation. Dilgen
et al. (2018a) used the Spalart-Allmaras and k-® models
for performing TO for turbulent flows, also exploring the
benefits of automatic differentiation. The same research
group applied the method to heat sink design with turbulent
forced convection (Dilgen et al. 2018b). More recently, Yoon
(2020) modified the k-€ turbulence model to carry out TO
and Sa et al. (2021) introduced a rotation correction for the
turbulence evaluation when rotating frames are considered
using the Spalart-Allmaras model. Lee et al. (2020) explored
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the use of simplified sensitivities by neglecting the exact
adjoint analysis, for an aero-thermal system.

All of these previous works are based on the continuous
pseudo-density distribution within the fluid design domain
and attempt to improve the turbulence modelling and sen-
sitivity calculation in the TO framework. A material inter-
polation model (e.g. SIMP, RAMP or the model proposed
by Borrvall and Petersson (2003)) is required to allow for
continuous pseudo-density changes. An inverse permeability
term is employed in the attempt of restricting the fluid not
to flow inside the modeled solid regions. In this context,
one can point out three issues. First, intermediate pseudo-
densities create a large amount of grayscale, leading the fluid
domain walls not to be explicitly defined due to the con-
tinuous transition between the fluid and solid regions. This
is numerically not recommended in some fluid dynamics
problems and represents a considerable obstacle when deal-
ing with fluid flows that require mesh refinement or specific
boundary conditions at walls — e.g. turbulence wall func-
tions. Second, the material interpolation model leads the
numerical analysis to be highly dependent on a penalization
factor. Frequently, the tuning of the penalization parameters
during optimization is non-intuitive and should be changed
dynamically in order to push intermediate pseudo-density
values to the {0, 1} bounds. Third, the value of the inverse
permeability may be difficult to be determined and may be
case-dependent. These three issues preclude the pseudo-
density-based TO method to account for more rigorous
numerical analysis, including turbulence models with wall
functions. Even when the design successfully converges to
{0, 1} topologies, the fluid velocity is dropped towards zero
when going from 1 (fluid) to the interfaces, by decreasing
the solid material permeability, but no actual wall function
or boundary condition is applied. These issues motivate the
development of TO methods that do not rely on interme-
diate pseudo-densities, such as the level-set (Feppon et al.
2019) and binary approaches (Souza et al. 2021). Recently,
Kubo et al. (2021) developed a level set framework for tur-
bulent flow TO with wall functions, but assuming frozen
turbulence.

This work’s main objective is to propose a TO meth-
odology that tackles the three aforementioned problems
while considering its application to turbulent flow TO.
The Topology Optimization of Binary Structures (TOBS)
method is a fair candidate for such a case (Sivapuram and
Picelli 2018). The method employs binary {0, 1} design
variables. This feature produces explicitly defined fluid
boundaries during optimization, which allows the direct
application of turbulent wall functions and other relevant
conditions. Also, the effects of penalizing intermediate
pseudo-density values are naturally avoided since no inter-
mediate pseudo-densities are present. The TOBS method
generalizes the binary TO problem by using sequential
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integer linear approximation and move limits. The method
differs from other binary approaches by the use of Integer
Linear Programming (ILP) (Paul 2009). Herein, the Finite
Element Analysis (FEA) is used to solve the Reynolds-
Averaged Navier-Stokes (RANS) equations. The total fluid
energy dissipation (considering the viscous and turbulent
effects) is minimized subject to a volume constraint. The
governing equations and adjoint sensitivities are solved
Via COMSOL Multiphysics®” fluid dynamics and auto-
matic differentiation modules. Souza et al. (2021) first
applied the TOBS method to fluid flow optimization using
the standard inverse permeability approach. Herein, the
use of a geometry trimming procedure is proposed in order
to remove the modeled solid regions from the analysis,
consequently eliminating the inverse permeability term.
The inverse permeability is still used to aid the sensitiv-
ity analysis but with no actual effect in the final topology
solution due to the absence of a modeled solid region. Fur-
thermore, the permeability term is modeled with a linear
interpolation scheme. The geometry trimming approach
has been idealized for fluid-structure interaction problems
by (Picelli et al. 2020a) but herein formalized. First, a set
of optimization grid points is defined as design domain
by a regular structured mesh. The countours of the {0, 1}
designs produced by TOBS are extracted and smoothed.
A CAD (computer-aided design) model is produced by
trimming the solid regions (where the variable is {0}) out
of the initial full geometry. The remaining geometry is left
to be automatically meshed by the finite element software
based on the physics to be solved. A brief illustration of
the method is given in Fig. 1. Herein, the TOBS method
added with the geometry trimming step is so called TOBS-
GT. The trimming process automatically generates walls
for the fluid flow that can be directly treated according to
the fluid flow requirements. Herein, the k- or k- turbu-
lence wall functions are employed. Besides, freely gen-
erated meshing can also offer benefits when refining the
mesh in appropriate regions, e.g., near walls and geometric

features. In fact, the TOBS-GT method aims to allow the
digital {0, 1} framework to accommodate convenient tools
from CAD modelling and Computational Fluid Dynam-
ics simulation via its surface-capturing approach. To the
authors’ best knowledge, this is the first work to solve
turbulent fluid flow TO imposing explicit turbulence wall
functions without the frozen turbulence assumption. Other
contributions include the use of an ILP solver and the solu-
tion for three-dimensional problems. The main novelties
of this work are the following:

— A new surface-capturing method (TOBS-GT) is created
for topology optimization by combining binary design
variables, smooth contour extraction and geometry trim-
ming;

— The proposed method may be independent of the penali-
zation for the pure fluid optimization problem;

— The proposed TOBS-GT designs tend to look like solu-
tions of standard fluid flow topology optimization but
with no need to select the inverse permeability values
nor penalization parameters.

— Topology optimization of turbulent fluid flow problems
is carried out imposing turbulence wall functions;

The remainder of the paper is organized as follows. In
Sect. 2, the governing equations for the turbulent fluid flow
modelling are presented. In Sect. 3, the formulation of the
topology optimization method is presented alongside the
TOBS algorithm. In Sect. 4, the geometry trimming pro-
cedure is detailed and the TOBS-GT method is formalized.
In Sect. 5, two-dimensional (2D) and three-dimensional
(3D) numerical examples are presented. In Sect. 6, some
conclusions are inferred.
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Fig. 1 Illustration of the FEA set up produced by the TOBS-GT method

the FEA software.

studied physics.
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2 Governing equations
2.1 RANS equations

The turbulent motion of a fluid particle inside a fluid flow
domain € (see Fig. 2) can be described by the RANS equa-
tions (Wilcox 1998; Larsson 1998) and can be solved by the
Finite Element Method. Assuming a steady-state, homoge-
neous, isothermal, incompressible and Newtonian fluid flow
without body forces, the RANS equations can be written as

pi(v - Vv) = V- [=pI + 7] + k(a)y in Q;, 1)

V.vy=0 in Q, )

where p; is the fluid density, v is the statistical time-averaged
velocity, p is the statistical time-averaged pressure, x(a) is
the inverse permeability (used in topology optimization,
being described in Sect. 2.2), I is the identity matrix, and
T; is the shear stress tensor that includes the viscous and
turbulent effects over the fluid, which is given by

T =2(pu+ up)e®),

ew) = %(Vv + (Vv)T), )
where y is the fluid dynamic viscosity and y; is the isotropic
eddy viscosity calculated with a turbulence model. The fric-
tion force term k(a)v is added in Eq. (1) in a similar fashion
as in standard pseudo-density-based methods. However,
when using the geometry trimming procedure, this term

Iy
UV = Vi
L'y
| I Q;
(>
. ?Fom ?

D = Pout

Fig. 2 Illustration of the turbulent fluid flow problem. The fluid flows
from an inlet boundary I';; through a domain Q; bounded by the walls

I',, and exiting at an outlet boundary I,

@ Springer

only influences the sensitivity, with no effects in the analysis
(simulation), because the pseudo-density is binary, with the
solid material being trimmed out of the analysis mesh. This
is further explained in Sect. 2.2.equations can be written as

In contrast to laminar flow, the isotropic eddy viscosity
Uy is present in order to account for the normal and shear
stresses caused by turbulent eddies on the fluid. The calcula-
tion of y; depends on the engineering application. Several
approximation theories have been developed depending on
the physical interpretation of the eddy viscosity models,
each one presenting specific numerical limitations. These
theories can also be referred as turbulence models. The k-£
and k-w models are common choices for a wide range of tur-
bulence problems, and are used in this paper to illustrate that
the proposed optimization procedure should work regardless
the adopted model.

2.1.1 k-& turbulence model

The inclusion of the turbulent effects via the standard k-
model is based on the transport of two additional turbulent
quantities, namely the turbulent kinetic energy k and its
dissipation rate € (Wilcox 1998). In steady-state, these two
additional balance equations can be written as

piv-Vk=V_. <<u+ %)Vk) + P, — pre + k()k,  (4)
k

Hr I3
-Ve =V - +—|)Ve)+C, =P
pey - VE ((M C€> 8> el k

) 5)
&

- Cezpf? + k(a)e,
where p and p account for the molecular and turbulent
effects of the viscosity, respectively, and the latter is defined
in terms of the two additional turbulent fields

k2
k=i, ©)

The material model terms x(a)k and x(a)e are added to Eqs.
(4) and (5), respectively, in order to obtain the derivatives
with respect to the k-e turbulence variables. This approach
is based on the work performed by Yoon (2020). The source
terms in Eqs. (4) and (5) are written as a function of P,
defined as

Po=pur (Vv (Vv +(V0)')). (7

The k-e model has five constants: C, = 0.09, C,, = 1.44,C,,
=192,C,=1.0,and C, = 1.3.

The wall functions are such that the computational
domain is assumed to be located a distance 6,, from the wall
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(COMSOL 2019). The distance §,, is automatically com-
puted so that

pev.0,,

57 =" = 11.06, (8)

w

U

where v, = C}/ *\/k s the friction velocity. The correspond-
ing wall boundary conditions for the velocity are: a no-pene-
tration condition v - n = 0 and a shear stress condition given
as

y
rf-n—(n-rf-n)n=—pfvr‘;, 9)
where
v, = max IL,C}/“ﬁ : (10)
—Inst +B
Ky

being k', the von Karman constant and B a constant equal to
5.2 (COMSOL 2019).

2.1.2 k-® turbulence model

The revised k-w model (Wilcox 2008) calculates the turbu-
lent eddy viscosity p; as

k
Hr = Prs an

where w is the specific dissipation rate in this model. Simi-
larly to the k-€ model, two additional equations are solved to
obtain the k- quantities (Wilcox 1998). They are:

pv - Vk =P, — pfko+V - (4 + 0" puy) V) + k()k,

12)
pv - Vo = aT%Pk — ppfr@* +V - ((;4 + O'yT)Vco) + k(a)w,
13)
n Py p 14+70X, Q04
wher = , =— " SR Lt
© Pr=he h=Tson, YT wp
B* = Byf:, where
1 A, <0
=] 1+680X;
Tp Sy 0 (14)
1 + 400X,
. 1 . V. ov;
with X, = E(Vk- Vo), being Q;; = %(% - ()_xj> the mean

: 1oy, | o, .
rotation-rate tensor and oy; = 3 <a—:‘ + i) the strain-rate
i k

tensor. The closure constants are a; = 0.52, f, = 0.104,
ﬂ; =0.09,0 = 0.5, and o* = 0.5. The material model terms
k(a)k and x(a)w are added to Egs. (12) and (13), respec-
tively, in order to obtain the derivatives with respect to the

k- turbulence variables. This approach is based on the work
of Dilgen et al. (2018a). Wall boundaries are treated with the
same type of boundary conditions as for the k-¢ model with
C, replaced by f;. It can be pointed out that because of the
geometry trimming, the material models for all equations
can be identical.

2.1.3 Boundary conditions

In order to solve the RANS equations, the following boundary
conditions are applied:

V= vO(nyp Vin,ave) on Ijin’ (15)
nT[_pI+Tf]n = _ﬁ() on l—‘out’ (16)
ﬁO < Pout- (17)

Eq. (15) represents the velocity profile given at the inlet
boundary I';,, which depends on the coordinates I, and the

average inlet velocity vy, ...

The inlet velocity profile that is used (vo(l"xyz, vin’ave)) is
given differently depending on each numerical example. In the
case of considering a fully developed flow condition, the fully
developed flow condition from COMSOL Multiphysics® is
imposed, which determines the inlet velocity profile by solving
for the fluid flow in an extension of the inlet boundary (“inlet
channel”, with length ten times the inlet edge length in 2D,
and length ten times the square root of the inlet area in 3D)
while imposing zero tangential velocity (v — (v - n)n = 0) on
I';,,- The constrained pressure value at the outlet boundary I",
is given by Eq. (16). The laminar sublayers at the fluid walls
are not resolved when wall functions are imposed. Thus, fluid
velocity at walls is non zero when a turbulent fluid flow is
solved.

The turbulent flow settings for the inlet I';, are the turbulent
intensity I} and turbulence length scale L, which are related
to the turbulence variables via the following equations (COM-
SOL 2019):

3 2 k3/?
k= 5(|v|1T) and &= cf/“L—T, onTy,
18)
when solving for the k-€ model, and
k
k= %(WT)2 and  w= 4/4 onTy,
(ﬂo) Ly
19

when solving for the k- model. The values 7;; = 0.05 and
L; =0.01 m are prescribed. For the outlet I' ,, the bound-
ary conditions for the turbulence quantities are n - Vk = 0,
n-Ve=0andn- - Vo =0.

@ Springer
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On the walls T',,, the turbulent kinetic energy is subject
to a homogeneous Neumann boundary conditionn - Vk = 0
(COMSOL 2019). When solving the k- equations, the
boundary condition for € is given by

Cz/4k3/2

+
Ky 6t

€ onl (20)

we

When solving for the k- model the boundary condition for
o at the walls is given by

pik

=— r,.
opm @D

2.2 Material model

The Brinkman equations (Brinkman 1947) inspire adding
friction forces by considering that low permeability regions
represent solid domains and high permeability regions rep-
resent the domains where the fluid is free to flow. The sup-
plementary forces are added to enforce zero or near-zero
velocities in the solid domains in standard fluid flow topol-
ogy optimization. These forces’ magnitude is controlled
by the maximum inverse permeability value present in the
material model function. The standard topology optimiza-
tion methods become then quite dependent on the choice of
this value, often leading to poorly-performing local minima
(Pizzolato 2018). Sometimes, this issue is only solved by an
endless and frustrating parameter tuning. Herein, by using
the trimming geometry procedure, the effects of adding the
material model are low. This is explained by looking into
the linear interpolation scheme used in this work, given as

k(o) = Ko (1 — ), (22)

where k,,,, is the maximum inverse permeability value. In
practice, for the proposed geometry trimming method, it is
employed k,,, = 1 kg/(m*s), i.e. k,,, is not actually used;
however, the term is included in Eq. (22) for the comparison
against the standard permeability approach analysis carried
out in Sect. 5.1. In summary, when a = 1, the interpolation
scheme leads to x(a) = 0, and Eq. (1) becomes the origi-
nal RANS equations without the interpolation term. In the
geometry trimming procedure, the regions where @ = 0 are
trimmed out of the FE analysis domain, creating a CAD
geometry that only models the regions where @ = 1. There-
fore, the addition of the interpolation term in the RANS
and turbulence equations is not active in the point of view
of the fluid flow analysis that is performed in the trimmed
geometry. The interpolation scheme is employed only to aid
the sensitivity analysis. The same would be valid if the tra-

ditional term by Borrvall and Petersson (2003) was used.

@ Springer

This work is the first attempt to carry out turbulent fluid
flow topology optimization using binary design variables.
The k-¢ and k- turbulence models are chosen to illustrate
that the proposed method might work regardless of the tur-
bulence model. The authors advocate that, when it comes
to binary {0, 1} topology designs, the choice of the phys-
ics modelling is a matter of the application, as there is no
interference of material interpolation, as described above.
Therefore, the methodology proposed in this work may be
directly extended to other fluid flow physics or conditions.

3 Topology optimization framework
3.1 Optimization problem

In this work, the total fluid energy dissipation (considering
the viscous and turbulent effects) is minimized subject to a
volume constraint. The total fluid energy dissipation is given
by (Borrvall and Petersson 2003; Yoon 2016)

du,a) =

/ (i + pp)(VY + (V)1 - (Vv + (V) 1dQ,
o (23)

+/ K(a)v - vdQ;,
Qf

where u is being used to represent the state vector, which
includes the velocity (v), pressure (p) and turbulence vari-
ables (k and €, or k and w, depending on the turbulence
model).

The topology optimization formulation can then be
expressed as

Minimize ®(u(a), a)
o

Subjectto V, < V 24
« € {0,1)

where u(a) is the state vector computed for a given design
variable distribution a, V, = fQ adQ is the fluid vol-
ume computed for a given design variable distribution «,
% =fo dQ is the constrained fluid volume, and fis the
maximum allowed fluid volume fraction.

3.2 Sensitivity analysis

The TOBS method is a gradient-based algorithm, meaning
that the derivatives (sensitivities) of the objective function
and constraints are required. A general way of computing
the sensitivity of the objective function @ is via the adjoint
method (Haftka and Giirdal 1992). The adjoint equation is
then expressed as
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oR )T od\"
=) 1= _(_> , 25
( Ju du 25)
where A is the adjoint variable, @ is the objective function
and R is the residual (given from the weak formulation of
the fluid flow problem). Therefore, the sensitivity % can be
computed as

dd _ o® , ,rdR

daoa Tt o (26)

The sensitivity of the volume constraint depends on V,,. The
discrete form of V, = [, «dQ is given as

Ny
Vo= oV, @7

J=1

where Vj is the volume of the element j, a; is the value of the
design variable in the element j, and N, is the total number
of elements. Then, the sensitivity of this term is given in the
discrete form as:

v, _,
da;, 7

7

(28)

3.3 TOBS method

The TOBS (Topology Optimization of Binary Structures)
method is based on sequential approximations to integer
linear optimization subproblems and on their solutions. By
representing the design variable (a) in its discrete form (),
and by considering a Taylor’s series expansion and truncat-
ing its first term (linear part), the objective function and
volume constraint can be expressed as follows, for the opti-
mization iteration n:

D(a) ~ B(a™) + dtlji(a L. aa+ 0|0 D,
av (@ (29)
(") 2
V(@) ~ V,(a") + P Aa" + O(||aa™||5).

where the truncation error is given as O(||Aa”| |§), and Aa™
is the vector that represents the changes in the design vari-
able. The changes in the design variable should be restricted
in order to keep the design variable with integer (i.e., binary)
values. For example, by considering an element that contains
a fluid material («; = 1), the changes in the design variable
can be restricted as Aaj € {—1,0}, meaning that this ele-
ment may either turn into a solid material (aj = 0) or keep
its value (a; = 1) in the optimization iteration. The same
procedure is analogous for an element that contains a solid
material (o; = 0). The bound constraints for Aa; can then be
expressed as,

OSAaI’.’Sl if(xj”=0,
~1< A <O if (0)
or, in a unified form,

Aa;‘ € {—a;, 1- a;’}, 31

where Aa;‘ € {—1,0,1}. In order to maintain the linear
approximation from Eq. (29) valid, the truncation error
O(||Aa”| |§) should be sufficiently small. The value of the
truncation error is controlled by including an additional con-
straint to the optimization subproblem, which restricts the
number of “flips” of a” from 1 to 0 and vice-versa. The
truncation error constraint can be expressed as

[|aa"|], < BN,. (32)

In topology optimization, the truncation error constraint
given by Eq. (32) means that the number of elements that
may turn from fluid to solid and vice-versa is restrained to a
fraction (f) of the total number of elements (N,;). By using
small values of the fraction f, the number of flips is ensured
to be kept low at each iteration n, meaning that the trunca-
tion error is also kept small.

By considering the sequential linear approximations
from Eq. (29), the integer variable constraint from Eq.
(31), and the truncation error constraint from Eq. (32), the
approximate integer linear subproblem is given as

do(a”)

Minimize Aa”,
Aak

. dVa(an) n 1 n\ . k
Subject to i ‘A" <V =V, (a") 1= AVE, 33)

o
18]}, < N,
Aa;‘ (S {—ajf’,l - aj’?}, JjE I, N,

Eq. (33) shows the sequential optimization subproblems
in the standard TOBS formulation, where the truncation
error constraint (Eq. (32)) restrains the topology from
undergoing great changes. However, when the constraint is
bounded with AV" =V — V, ("), the constraint may pos-
sibly become infeasible in the current optimization iteration
n. This undesirable effect may be avoided by modifying the
bound of the constraint (AV") such that the optimization
subproblems yield feasible solutions. This approach also
helps in generating feasible subproblems when the initial
guess of the design variable is distant from feasibility — for
instance, when the initial guess consists of a “fully-fluid”
design domain whilst having a small allowed fluid volume
fraction (f). Therefore, the constraint bounds are modified
by considering
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—eV, (") 1 V<(l-eV,(a"),
AVI =3V -V, (a") :Vell-eV,(a"),d+eV,(a")],
eVa(a") V> +e)Va(a”),

(34)

where € is the relaxation parameter corresponding to the
constraint given by V,. Although the TOBS formulation is
being described for a single constraint, more constraints can
be considered (Picelli et al. 2020b; Sivapuram et al. 2018),
and any other differentiable function can be used as a con-
straint (Picelli et al. 2020b; Sivapuram et al. 2018).

The integer optimization subproblems generated by using
sequential linearizations (Eq. (33)) can be solved through
Integer Linear Programming (ILP). An ILP problem is
essentially the same as a Linear Programming (LP) prob-
lem, but imposing additional constraints to ensure that the
design variables can only achieve integer values. Therefore,
ILP-based solutions become suboptimal with respect to
the LP-based solutions. Nevertheless, since fluid topology
optimization aims to achieve a binary ({0, 1}) solution, the
use of integer programming should be naturally understand-
able. In this work, the ILP problem is solved by using the
branch-and-bound algorithm from the CPLEX® optimization
library, which is developed by IBM®. The branch-and-bound
method consists of an algorithm based on a tree data struc-
ture, in which the ILP problem is first solved without any
integer constraints (by using a linear optimization technique
such as the Simplex method); then, branches of LPs are cre-
ated with additional inequality constraints being imposed on
the design variables in order for the solution to be yielded as
integer (Land and Doig 1960; Vanderbei 2014). Sivapuram
and Picelli (2020) present a study that indicated that the
computational time required by the ILP solver and by the
FEA increases, linearly and exponentially with the mesh
size, respectively, for the traditional fixed grid approach;
hence, the bottleneck of the optimization is still the FEA.

4 Numerical implementation
4.1 Details of FEA software setup

The RANS equations (Egs. (1) and (2)) including the k-¢
(Egs. (4) and (5)) and k-w (Eqgs. (12) and (13)) turbulence
models with wall functions are solved via the commercial
FEA software COMSOL Multiphysics®. For convection-
dominated transport problems, the FEA may lead to numeri-
cal instabilities, namely, oscillations in the solution. In order
to prevent this phenomenon, the Streamline and Crosswind
Diffusion stabilizations are applied.

The interpolation function from Eq. (22) is employed via
COMSOL’s Topology Optimization module. The penaliza-
tion terms related to k() are implemented as body forces
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on the fluid flow domain for the RANS and turbulence
equations.

4.2 The TOBS-GT method

The proposed methodology is based on the decoupling of
the optimization grid and the FEA mesh. The process is
illustrated in Fig. 3. The fluid flow and sensitivity analyses
are carried out using COMSOL Multiphysics®. First, a CAD
model is created with the analysis domain. The geometry is
then freely meshed by using the option physics con-
trolled in COMSOL Multiphysics®. The option takes
into account some built-in physics requirements when mesh-
ing. This choice can be of some benefit when dealing with
complex fluid flow, which is a problem that requires cer-
tain levels of mesh refinement at the walls, or even different
types of elements for the boundary layers. The forward and
adjoint problems are solved, computing velocities, pressures
and sensitivities. These three entities are computed using
nodal variables at the finite element software. The sensi-
tivities are obtained via automatic differentiation. After
that, optimization grid is created and the sensitivities are
interpolated at the TOBS-GT optimization points. The finite
element shape functions can be used to interpolate the sen-
sitivities at such points. Standard spatial filtering (Picelli
et al. 2020b) is applied at the sensitivities defined at the
optimization (structured) grid. The ILP solver is then used
to find a new set of binary design variable values. The new
topology is then used at the next iteration. Besides the analy-
sis domain, the contours of the holes defined by the binary
variables are first identified and stored in points coordinates,
creating a staircase contour. Then, the contour coordinates
are filtered to create a smooth representation. In 2D, the
smoothing is carried out by using the Savitzky—Golay fil-
ter (Savitzky and Golay 1964), and in 3D, by the Shrink
Wrap tool from ANSYS. The smooth contours are saved
(as .dxf for 2D and . st1 for 3D problems) and provided
to the FEA package. A new CAD model can be created by
trimming out the holes from the analysis domain. This is
carried in the geometry building section from COMSOL
Multiphysics® with the command difference. In this way,
the modeled solid regions, usually modeled with the inverse
permeability term in traditional methods, are not considered
in the simulation. This procedure eliminates the influence
of the maximum inverse permeability value. Another ben-
efit of decoupling the optimization variables and the FEA is
that the optimization grid can be relatively coarse and still
produce crisp topologies with smooth walls while the FEA
mesh can be also maintained in a certain size with a rela-
tively low computational cost. The authors advocate that the
TOBS-GT should be a general idea. Other new or standard
tools can be incorporated in the methodology according to
convenience, e.g., in the FEA solution, the type of sensitivity
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Fig. 3 Illustration of the
TOBS with geometry trim-
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ming procedure (TOBS-GT)
applied to fluid flow design. The
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analysis, different physics applications or techniques for wall
smoothing.

4.3 Sensitivity computation

The forward problem is computed with a stationary study
solver added by the sensitivity module in COMSOL Mul-
tiphysics® for computing the sensitivities from automatic
differentiation.

The fluid energy dissipation function can be written
directly in the software and coupled to an integration
operator defined over the analysis domain. The sensitivi-
ties concerning the material model can be extracted via
fsens (dtopol.theta_c)/dvol. In COMSOL Mul-
tiphysics®, the variable theta_c is used to represent the
vector of design variables (“a”). The sensitivities com-
putation is done considering the averaging of the element
volumes for mesh independence purposes. A set of grid
points coincident with the optimization grid can be cre-
ated to extract the sensitivities at those points and then
carry out the communication between the FEA and the

optimization, as illustrated in Fig. 3. Sensitivities for
points in the (trimmed out) solid regions are zero as no
physical analysis is carried out for those regions. Regard-
less, in this flow channel problem, they should also be zero
for the standard inverse permeability approach as the fluid
velocities should tend to zero in those regions. Herein, the
sensitivities in the FEA software are output as NaN and
substituted by zero before passing them to the optimizer.
Back to the optimization module, the spatial filtering is
used in the sensitivity field, populating the solid regions
outside the FEA domain with sensitivities.

4.4 Algorithm

In summary, the algorithm of the proposed TOBS-GT
method is the following:

1. Define the optimization parameters.

2. Create the optimization grid and assign an initial {0, 1}
topology.
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3. Extract and smooth the topology contours and save
holes’ contour information (if any) as .dxf (for 2D)
or .stl (for 3D).

4. Define the fluid flow problem in CAD and create initial
geometry.

5. Trim the CAD geometry with holes contours informa-
tion (if any) and create the fluid flow analysis domain.

6. Mesh the trimmed geometry.

7. Solve the RANS equations (including turbulence wall
functions).

8. Extract sensitivities in a grid coincident with the opti-
mization grid.

9. Apply spatial filtering on the sensitivity field consider-
ing the optimization grid position.

10. Solve the linearized optimization subproblem from Eq.
(24) with the branch-and-bound algorithm.

11. Update design variables to build a new {0, 1} topology.

12. If converged, stop. If not, iterate from step 3.

In this work, the steps from 4 to 8 are carried out in COMSOL
Multiphysics®, while the others are done in MATLAB® using
the TOBS implementation available at www.github.com/renat
opicelli/tobs.

5 Numerical results

This section presents numerical results and discussions on
the application of the proposed TOBS-GT method. First, a
comparison against the standard fluid flow optimization with
inverse permeability is carried out for low Reynolds regime,
as it does not require wall functions. Then, 2D and 3D turbu-
lence examples with geometry trimming are explored.

5.1 Investigation of the geometry trimming
approach

The U-bend design problem illustrated in Fig. 4 is chosen for
optimization. A similar example was investigated by Dilgen
et al. (2018a). Herein, the U-bend is first used to verify the
proposed geometry trimming approach against the standard
inverse permeability methodology for low Reynolds flow
regime. The fluid enters the inlet boundary I';, with a fully
developed flow condition and average velocity computed as
function of the Reynolds number Re as

_Re-p

Vinave = m’ 35)

where H is the characteristic length of the flow. The fluid
should make a U-turn around the “always solid” stem in
the center and exit through the outlet I, which is set for
Pout = 0. The fluid is considered to have dynamic viscosity
u =5-107Pas and density p; = 1 kg/m>. In the standard
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Fig.4 U-bend example. Regions in black color are modeled with the
inverse permeability term and fixed as solid material. Dimensions in
m

Fig. 5 Baseline solution for the U-bend example used as initial guess
design

fluid flow topology optimization (Borrvall and Petersson
2003), the solid regions are modeled with the inverse perme-
ability term introduced in Eq. (22). In the present TOBS-GT
method, these regions are trimmed out and only the analysis
domain has the inverse permeability for sensitivity calcula-
tion purposes.

To understand the effect of trimming the solid regions
out of the analysis, the U-bend is optimized with the stand-
ard TOBS approach with inverse permeability and initial
guess from Fig. 5 for different values of x,,,,. For better
comparison, the Reynolds number used is 300, i.e., the
fluid flow is assumed to be in the low Reynolds regime
(7 = 0). The characteristic length used is H = 0.2 m, the
same size as the inlet. The TOBS parameters are € = 0.01
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and g = 0.05 and the maximum allowed fluid volume frac-
tion is set as f = 0.30. The optimized topologies obtained
by using the inverse permeability approach are presented
in Figs. 6a—c for different values of k.. For the case with
trimmed geometry, given in Fig. 6d, k., = 1 kg/(m?-s).
By comparing the inverse permeability results with the
trimmed geometry solution, it is possible to observe that
the geometry trimming solution tends to be equivalent to
running the optimization with a high inverse permeability.
Hence, the advantage of the TOBS-GT method is that the
topology optimization analysis does not require selecting
and testing for various «,,,, values. Besides, a large area
of solid region is not unnecessarily solved in the FEA.
Figure 7 presents the CAD geometry and the velocity and
pressure fields for the solution obtained with the geometry
trimming procedure.

The solutions for the U-bend topology optimization
from both the standard TOBS with inverse permeability
and the TOBS-GT method are asymmetric according to
Fig. 6. The topologies present an asymmetry about the
horizontal axis cutting the pipe halfway. To verify that
this asymmetry is indeed optimal, the optimization is also
run by enforcing symmetry and the result is presented in
Fig. 8b. By checking the objective function values for the
asymmetric (® = 3.88- 107 W/m) and the symmetric
solution (® = 4.44 - 107> W/m), it is possible to see that
the asymmetric solution presents less energy dissipation
and the asymmetry is not induced by the optimization
algorithm.

W)

(b) Emaz = 102 kg/(m3~s).

(a’) Kmaz = 1 kg/(mS-s).

Fig.6 Effect of k

max

5.2 Two-dimensional turbulence problems

The previous example explored the fluid flow optimization
in the low Reynolds regime as the standard inverse perme-
ability approach only emulates the fluid boundaries and it is
currently unable to include wall functions. In this subsection,
topology optimization is carried out for turbulent fluid flow
using the proposed TOBS-GT method, which is suitable for
the inclusion of turbulence wall functions.

5.2.1 Pipe-bend

The pipe-bend example illustrated in Fig. 9 is chosen as a
benchmark for the geometry trimming procedure. The fluid
Q; flows through the inlet I';,, with a fully developed flow
condition and exits via the outlet I, with p_, = 0. The
fluid is considered to have dynamic viscosity u = 4 - 107>
Pa s and density p; = 1kg/m?. The k—¢ turbulence model is
employed. The design domain is considered to be the 1 m
X 1 m domain.

The TOBS-GT method is applied with optimization
parameters € = 0.01 and f = 0.02 and maximum allowed
fluid volume fraction is set as f = 0.2513, the same area of
a quarter torus of inner radius 0.7 m and outer radius 0.9 m
that fits to the inlet and outlet of the pipe-bend. The TOBS-
GT optimization grid is chosen to be 200x200. For Re =
5000 and characteristic length H = 0.2 m, Fig. 10 presents
the snapshots of the pipe-bend optimization, including the
velocity field plots. The proposed TOBS-GT method decou-
ples the optimization grid from the finite element mesh. Fig-
ure 11a presents the zoomed details of the optimization grid.

(d) Geometry trimming, Kmaz

(€) wmaa = 10" kg/(m®s). 7Y qpa'y

on the U-bend optimization problem: a—c using the standard TOBS with inverse permeability and d using the proposed

TOBS-GT method for Re = 300, showing topology solutions and velocity field streamlines
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(a) Fluid velocity field (in m/s).
x107

(b) Fluid pressure field (in Pa).

Fig.7 U-bend topology optimization obtained by the TOBS-GT
method for Re = 300

A CAD model (shown in Fig. 11b) is created after extracting
the smoothed contours of the {0, 1} design defined in the
optimization grid. Finally, a convenient finite element mesh
is generated for the fluid dynamics calculations. This repre-
sents a new surface-capturing method for topology optimiza-
tion. Although some of its features are similar to body-fitted
level set methods, the TOBS-GT is still in the digital {0, 1}
optimization framework.

The pipe-bend example from Fig. 10 was optimized via
the TOBS-GT method in a total time of 3.33 hours using
an Intel Xeon Silver 4114 - 2x CPU 2.20 GHz - 128 GB
RAM. Figure 12a shows the breakdown times for all steps
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(a) ® = 3.88- 105 W/m.

(b) ® = 4.44-10~° W/m.

Fig.8 U-bend topology optimization obtained by the TOBS-GT
method for Re = 300: a regular solution and b solution obtained
when enforcing symmetry

in the TOBS-GT method. It can be seen that the FEA solver
(forward and adjoint problems) requires the largest com-
putation time, similarly as for other standard methods. The
times required by the FEA solver varies along the iterations,
which might be explained by looking at the fluid walls and
flow complexities. As seen in Fig. 10a—d, the intermediate
topologies present more holes due to fluid flow recirculation
zones, behaviour that goes until around iteration 70 in the
optimization, point where the FEA solver started to require
less computational time. The same is observed for the gener-
ated finite element mesh, as it can be seen in Fig. 12b. Until
iteration 60, the times for the finite element mesh generation
were in average about 3 seconds due to the complexity of
the CAD model. Another novel and important point of the
present method is the use of an ILP solver. This step required
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Fig. 9 Pipe bend example. Dimensions in m

less than a second per iteration to solve for 40,000 binary
variables. Therefore, ILP is feasible for topology optimiza-
tion in the present TOBS-GT method.

In our numerical experience, the TOBS-GT method
shows the tendency of reaching similar minima. To illus-
trate that, Fig. 13 presents the optimization of the pipe-bend

N &

(a) It.: 0 (b) It.: 10

(d) It.: 40 (e) It.: 80

[T

example starting with an initial guess design of a fluid flow
around a square solid. It can be seen that the optimizer starts
with the removal of the bottom left passage, while later on
it shapes the flow path and converges to the same solution
as in Fig. 10, but with 90 iterations. Figure 14 presents
the convergence history of both pipe-bend optimizations.
Larger variations can be observed in the case starting with
the initial full fluid, possibly explained by the changes in the
smooth boundaries locations. For the case with an initiall
guess design, the convergence was relatively smooth.

Although the pipe-bend is a simple benchmark example,
only Yoon (2016) previously presented solutions for this
problem, surprisingly. In general, it seems that the designs in
Yoon (2016) tend to connect the inlet and outlet in a straight
pipe but with some curved shapes. Fairly, when an outlet
tube is used, a curved pipe design is obtained, more similarly
to these present solutions.

5.2.2 U-bend

The U-bend design problem from Sec. 5.1 is explored here,
however now solely with the geometry trimming procedure
and turbulence models. Three different types of inlet/outlet
configurations are explored for the U-bend example, namely,
a case with a smaller outlet tube, a case with neither inlet
nor outlet tubes and a case with a larger outlet tube. These
cases are illustrated in Fig. 15. In all U-bend’s, the fluid
Q; flows through the inlet I';, with a fully developed flow

1.4

1.2
(c) It.: 20
0.8
0.6
0.4
0.2

(f) It.: 129

Fig. 10 Pipe-bend example optimized with the TOBS-GT method for minimum fluid energy dissipation. Velocity field in m/s
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(a) {0, 1} design in the optimization grid

N\

(b) CAD model.

(c) Finite element mesh.

Fig. 11 Zoomed details of the a {0, 1} design optimized in a 200 x 200 fixed grid, b CAD model created via the smoothed topology contours
and (c) freely generated finite element mesh (26257 triangular, 4111 quadrilateral, 992 edge and 646 vertex elements)

condition and exits via the outletI',, with p,, = 0. The fluid
is considered to have dynamic viscosity 4 = 4 - 107> Pa's and
density p; = 1kg/m?. The TOBS-GT method is applied with
optimization parameters € = 0.01 and f = 0.05 and maxi-
mum allowed fluid volume fraction f = 0.27, the same area
of the baseline design showed in Fig. 5. The optimization
grid is chosen to be 200 X 200. The problem is solved with
both turbulence models k-¢ and k-w. The Reynolds number
is first set to Re = 5000, when computing it with charac-
teristic length H = 0.2 m. Fig. 16 presents the velocity (in
m/s) and pressure (in Pa) fields for the optimized U-bend
optimized topologies using the case with smaller outlet tube
and for both k-€ and k-w turbulence models. This is similar
to the case investigated by Dilgen et al. (2018a).

Although the topology solutions presented in Fig. 16a
and b are somehow similar between each other, noticeable
differences appear in the fluid wall locations and the fluid
flow responses due to the chosen governing equations. In
contrast to k-¢, the solution obtained using the k- turbu-
lence model shows the tendency of disconnecting the flow
from the upper side of the stem wall, obtaining a wider turn
around the stem. This also observed for the other solutions
obtained in this work using k-w. It can be pointed out that,
in this example, a small layer of optimization pixels were
kept fixed in the connection zone between the inlet/outlet
tubes and the design domain. This, in combination with the
smoothing wall filter, ensured a smooth connection between
those regions, differently from the design showed in 8. The
solutions in Fig. 16 were obtained defining and computing
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the objective function only within the 1x1 m design domain.
Figure 17a presents the topology obtained when including
the inlet and outlet tubes in the objective function evaluation.
Both solutions are basically similar, with almost unnotice-
able differences in the bottom shapes of the U-bend that
cause less recirculation in the outlet when including that
region in the objective function computation. Figure 17b
and c present the U-bend designs using the k-£ turbulence
model for the cases with no tubes and the larger outlet tube,
respectively. In the design without inlet/outlet tubes, the flow
exits the domain with some inclination. The U-bend solution
for the case with the larger outlet tube is more similar to the
one with the smaller tube, however, presenting even less
recirculation in the beginning of the outlet region, exiting
the domain with a fully developed flow profile.

The geometry trimming procedure favors the selection
of different fluid flow physics and the combination of the
optimization with off-the-shelf finite element packages. This
procedure can be particularly advantageous for turbulence
problems, as it provides explicitly defined fluid walls and
turbulence wall functions can be directly employed. Fig-
ure 18 shows the U-bend optimized designs for Re = 5000,
Re = 10,000 and 20,000, when using the k- turbulence
model. As optimization and analysis are decoupled in the
TOBS-GT method, increasing the flow velocities do not
imply in further challenges for the optimization method
itself, but to the convergence of the analysis. In this case,
the technical challenges are related only to the CFD side of
the problem.
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Fig. 12 Breakdown computation times for the pipe-bend example
optimized with the TOBS-GT method: a for all steps and b omitting
the FEA solver times

In order to further check the designs, a cross-check
analysis is carried out comparing the U-bend obtained by
the TOBS-GT method against the solution with enforced
symmetry and the baseline solution for the case with nei-
ther inlet/outlet tubes. This symmetric design tends to look
more similar to the U-bend designs obtained by Dilgen et al.
(2018a) and the baseline solution is chosen as a simpler
design connecting the inlet and outlet. The k-w turbulent

flow is used and the Reynolds number is set to be Re =
5000. Fig. 19 presents the described cross-check analysis,
including the velocity fields, in m/s, and the local energy dis-
sipation (¢ + p7)(Vv + (V»)T) - (Vv + (V»)T), in W/m. It is
possible to observe that the solution obtained by the TOBS-
GT method presents lower energy dissipation. This might be
explained by the presence of smaller regions of flow recir-
culation in the obtained solution and larger regions of local
energy dissipation in the symmetric and baseline solutions.

5.3 Three-dimensional turbulence problem

The 3D pipe-junction example presented in Fig. 20 is con-
sidered for optimization. The example considers two inlets
and one outlet with different cross sections as depicted in
Fig. 20a. The pipe-junction should be designed inside a
cubic domain of 1 m X 1 m X 1 m. The positions of the cen-
troids of the inlet 1, the inlet 2 and the outlet faces touching
the cubic design domain are, respectively, (0.35, 0.35, 0.00),
(0.25, 1.00, 0.25) and (1.00, 0.50, 0.50), with units in m.
The lengths of both inlets and the outlet are 0.2 m. An initial
guess design full of fluid as indicated in Fig. 20c is chosen to
start the optimization. To produce this initial guess design,
the regions that satisfy the following conditions should be
trimmed out of the full design domain: (z > 0.70), (x > 0.50
and z < 0.30), (x > 0.50 and y < 0.30), (x > 0.50 and y >
0.70), (x > 0.50 and y > 0.70) and (y > 0.70 and z > 0.50),
in a Cartesian plane (x, y, z) with units in m.

The TOBS-GT method is applied with optimization
parameters € = 0.05 and f = 0.10 and maximum allowed
fluid volume fraction f = 0.20. A grid of 100 x 100 x 100
optimization points is considered. The fluid is considered to
have dynamic viscosity 4 = 5+ 107> Pa s and density p; = 1
kg/m>. The fluid enters the two inlets with constant veloc-
ity profile. First, the fluid flow is optimized in the laminar
regime with Re = 0,001, when using the characteristic length
of H= 0.2 m, and this solution is shown in Fig. 21a. The 3D
pipe-junction obtained for the laminar flow is used as initial
guess design for the optimization with turbulent flow and Re
= 5,000. The k-¢ turbulence model is employed considering
its respective wall function. The final pipe-junction opti-
mized using the turbulent flow is shown in Fig. 21d. It can be
seen in Fig. 21 that the optimizer reduces the dimensions of
the cross sections connecting the inlets and slightly altered
their inclination. This is done to remove the recirculation
zones present in the initial guess design when the turbulent
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Fig. 13 Pipe-bend example optimized with the TOBS-GT method for minimum fluid energy dissipation starting with an initial guess design.
Velocity field in m/s
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Fig. 14 Convergence history of the pipe-bend design by the TOBS-GT starting from the a full fluid design and b initial guess design
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flow is applied, as shown Fig. 22a. Figure 22b presents the
streamlines of velocity field in the pipe-junction optimized
for the turbulent flow.

Figure 23 presents the angled views including the finite
element meshes of the pipe-junction optimized for turbulent
flow from Fig. 21d. The advantages of decoupling the opti-
mization and analysis meshes are highlighted here. In a fixed
grid approach, this pipe-junction analysis would be tied to
the 100x100x100 optimization mesh, which means a turbu-
lent flow would be solved using at least 1,000,000 elements.
Herein, by trimming out the design domain and meshing
the remaining CAD geometry, the 3D pipe-junction from

Fig. 23 is meshed with 69615 tetrahedral elements, a much
lower amount if compared to the optimization mesh. This
is especially advantageous for 3D as, besides employing a
turbulence model with known accuracy, the computational
time required is reduced. Herein, the FEA solver (forward
and adjoint problems) took in average 2 minutes to run in
each iteration of the 3D pipe-junction.

Figure 24 presents the streamlines of the fluid veloci-
ties flowing from both inlets, where the one flowing from
inlet 1 is highlighted in blue color, and the one flowing from
inlet 2 is highlighted with red color. Figure 24a shows the
streamlines for the full design domain. It can be observed
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(a) k-g; velocity (in m/s).

(c) k-g; pressure (in Pa).
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(b) k-w; velocity (in m/s).
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(d) k-w; pressure (in Pa).

Fig. 16 U-bend designs for Re = 5000 using the proposed TOBS-GT method: velocity fields (in m/s) when using the a k- and b k-w turbulence
models and pressure fields (in Pa) when using the ¢ k-¢ and d k-w turbulence models

a large region of vortices and some mixing of the fluids
coming from both inlets. Figure 24b presents the stream-
lines for the initial guess design. In this configuration, inlet
1 flow’s inertia makes the fluid pass over the flow from inlet
2 and exit through the top half of the outlet cross-section.
Meanwhile, the inlet 2 fluid flows under the inlet 1 flow and

@ Springer

exits through the outlet’s bottom half. The streamlines of
the obtained optimized solution for Re = 5000 are shown
in Fig. 24c. Similarly to the initial guess design case, the
inlet 2 fluid flows under the inlet 1 flow, but no vortices are
observed and the fluid flows much smoother than for the full
design domain and the initial guess cases.
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=)

(a) Case with a smaller outlet tube and evaluation of the
objective function including the inlet and outlet tubes.

)

(b) Case with neither inlet nor outlet tubes.

2.5

N

[y

—

(c) Case with larger outlet tube.

Fig. 17 U-bend solutions (velocity plot in m/s) using the k-e turbulence model for different inlet/outlet configurations. Dimensions in m

6 Conclusions

This paper presented a novel fluid flow topology opti-
mization methodology based on the decoupling of the
optimization variables and the finite element mesh. For
that, the standard TOBS method (Sivapuram and Picelli
2018; Picelli et al. 2020b; Souza et al. 2021) is combined
with a geometry trimming procedure to remove the solid
regions from the fluid analysis domain, creating the so
called TOBS-GT method. A filtering for extracting smooth

contours is employed. One advantage is the possibility of
obtaining smooth and explicitly defined fluid flow walls,
particularly beneficial for turbulent flow problems with the
inclusion of turbulence wall functions. Besides, the binary
approach produces convergent solutions with no influence
of the classic inverse permeability parameter. Therefore,
the proposed methodology tackles the main three chal-
lenges in fluid flow topology optimization, i.e., the lack
of explicit fluid walls during optimization, convergence to
binary designs and the sometimes-exhausting parameters
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(a) k-w and Re = 5,000.

(b) k-w and Re = 10,000.
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(¢) k-w and Re = 20,000.

Fig. 18 Velocity fields (in m/s) of the U-bend designs (larger outlet case) obtained with the proposed TOBS-GT method using the k- turbulent

flow for a Re = 5000, b Re = 10,000 and ¢ Re = 20,000

tuning. Numerical results show that the proposed TOBS-
GT method tends to produce designs that are similar to
those obtained with high inverse permeability values by
the standard approach. The proposed binary framework
favors combining the optimization with commercial FEA
packages and automatic differentiation. It was also shown
that the method can consider different governing equa-
tions, herein the k- and k-w turbulent flows. A cross-check
analysis showed that the obtained designs are good opti-
mized solutions if compared to solutions with enforced
symmetry and baseline designs. Computational time stud-
ies show that the FEA is still the bottleneck of the opti-
mization and that freely meshing only the fluid analysis
domain can drastically reduce the amount of elements used
in the simulation, especially for 3D problems.
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The sensitivity analysis

The present study adopts the adjoint sensitivity analysis
via automatic differentiation to compute the sensitivity
values of the fluid energy dissipation function. To verify
the accuracy of this computation, the sensitivities of the
pipe-bend example from Fig. 9 are compared to the finite
difference method. The parameters and properties used
are the same as for the pipe-bend example, except that
K = 10 kg/(m? s) and Re = 2000. Fig. 25a presents
the 100x100 finite element mesh used. In the current
computational set up, the density variables are defined at
the nodes of the mesh. All densities are defined as @ = 1.
Figure 25b presents the volume-averaged adjoint sensi-
tivity field computed via automatic differentiation, in
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2.5

1.5

0.5

(a) TOBS-GT solution. Velocity field (b) TOBS-GT solution enforcing sym- (c¢) Baseline solution. Velocity field
(m/s). metry. Velocity field (m/s). (m/s).

=

0.8

0.6

0.4

0.2

(d) Local energy dissipation; (e) Local energy dissipation; (f) Local energy dissipation;
® =6.47 x 1072 W/m. ® =846 x 1072 W/m. ® =9.25 x 1072 W/m.

Fig.19 Velocity fields, in m/s, and local energy dissipation proposed TOBS-GT method, b and e solution with enforced symme-
(4 + pup)(Vy + (V)T - (Vv + (Vp)T), in W/m, of the U-bend designs try and ¢ and f baseline solution. The colorbar for local energy dissi-
using the k-w turbulent flow for Re = 5000 a and d obtained with the pation is clipped at 1.5 for better visualization

Inlet 1 Ou‘ﬂet
0.20 m |
0.20 m [
/
Inlet 2 //
0.20 m v

F% % Inlet 1

(a) Inlets and outlets. (b) Design domainof Tm x 1m x 1m. (€) Initial guess design.

Fig.20 The 3D pipe-junction design problem: a inlets and outlet geometries, b design domain and c initial guess design
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(a) Solution for Re = 0,001. (b) Re = 5,000, it. 4. (c) Re = 5,000, it. 8. (d) Re = 5,000, it. 12.

Fig.21 3D pipe-junction optimized via the TOBS-GT method for a the laminar flow with Re = 0.001 and b iteration 4, ¢ iteration 8 and d the
final solution for the k- turbulent flow with wall functions and Re = 5000

2.5 2.5
2 2
1.5 1.5
1 1
0.5 0.5
0 0

(a) Turbulent flow (Re = 5,000) in the design opti- (b) Turbulent flow (Re = 5,000) in the design opti-
mized for laminar flow, from Fig. 21a. mized for turbulent flow, from Fig. 21d

Fig.22 Streamlines of the turbulent flow velocity field (in m/s) in the 3D pipe-junction optimized for a the laminar flow (Fig. 21a) and b the
turbulent flow (Fig. 21d)

(b) (©)

Fig.23 Angled views including the finite element meshes of the 3D pipe-junction optimized via the TOBS-GT method for the k- turbulent flow
with Re = 5000 and wall functions
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B Fluid from inlet 1

o

(a) Full design domain.

Fig. 24 Streamlines of the velocity field obtained with the k- tur-
bulent flow with wall functions and Re = 5000 for a the full design
domain, b the initial guess design and ¢ the optimized 3D pipe-junc-

Table 1 Comparison between the obtained adjoint sensitivities
against finite differences

(b) Initial guess design.

M Fluid from inlet 2

K27 o

e
Py~

ALK

(¢) Turbulent solution;
Re = 5,000.

tion by the TOBS-GT. The streamlines are plotted in blue for the fluid
entering the inlet 1 and in red for the fluid entering the inlet 2. Both
fluids have the same properties

1/m?. Figure 25¢ presents the local fluid energy dissipation
(1 + up)(Vy + (V)T - (Vv + (V»)T), in W/m, clipped at 1
for better visualization. Some points inside low and high

Coordi- Perturbation AD sensitiv-  FD sensitivity Error (%)
nates (x, y) ity dissipation regions are chosen to compare the sensitivities
inm against finite differences. These points, the perturbation,
07.04)  1x10- 61852169 — 62851604 1.5902 the. con.lputed sensitivities via the adjoint gAD) and the
08.03)  1x10-4 618143.65 — 62886634 17051 finite dlffeTence (FD) method and the relative errors are
06,05  1x10- _624916.01 — 612625.54 2.0062 presented in Table 1. The errors showed to be b§tween
0107  Ix10-4 _217548.12 — 21879415 0.5695 0.5% and 8.5%. Eventually, some of the errors might be
caused by some terms that are ignored in the computa-
(0.5,0.7) Ix107* —282819.64 —284408.03 0.4960 . . . ..
tion of the Jacobian matrix for the adjoint problem, so-

00,08 1x10™* — 8316194 = 554313.66 5.2043 called “nojac” terms by the automatic differentiation
(0.1,0.1) Ix1073 15605.33 15212.69 2.581 module used. Otherwise, the tolerance on the residual
0.7.02)  1x107 - 16730062 —173446.05 35431 of the governing equations by the FEA solver can also
0.1,1.0)  1x107° 7138.61 7068.24  0.99559 increase the error. Anyway, in general, the sensitivities
0.8,00)  1x107° —600988.69  —596612.45 0.7335 showed throughout this work to provide good directions

x10° 1

0.5 0.9

o 0.8
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. 0.6
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3 0.3

-3.5 0.2
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(a) Points and finite element mesh. (b) Adjoint sensitivities (1/m?). E% /nl:)ocal Huid. -enesgy dissipation

Fig. 25 Sensitivity analysis of the pipe-bend example
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to minimize the objective function, verified by some cross-
check analyses.
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