


Minimal Hyperspheres in Rank Two Compact
Symmetric Spaces

Claudio Gorodski
Instituto de Matematica e Estatistica
Universidade de Sao Paulo
Sao Paulo, SP 01452-990
Brazil
e-mail: gorodski@ime.usp.br

February 22, 1994

Abstract

We describe a method to construct embedded, minimal hyper-
spheres in rank two compact symmetric spaces which are equivariant
under the isotropy action of the symmetric space, and we supply the
details of the construction for the exceptional Lie group Ga.

0 Introduction

The simply-connected spaces of constant curvature can be characterized by
the property of being reflectionally symmetric with respect to any given
direction (a reflectional symmetry is an involutive isometry which reverses
only one direction), i. e. the group of the isometries of the space which fix
any given point is the largest possible, namely, equal to O(n). They are the
Euclidean spaces, the spherical spaces and the hyperbolic spaces.

The family of symmetric spaces constitutes a natural generalization of
the spaces of constant curvature. A Riemannian manifold is called a sym-
metric space if it is centrally symmetric with respect to any point, that is, the
isotropy subgroup contains an involutive isometry which is the geodesic sym-
metry. Among them, the symmetric spaces of compact (resp., non-compact)
type are generalizations of the spherical (resp., hyperbolic) spaces.
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It is therefore natural to investigate to what extent fundamental re-
sults about the classical spaces of constant curvature remain true in the
larger family of symmetric spaces. In particular, among all hypersurfaces
of S”(1), the equator appears as the “simplest” global object, e.g. it is the
unique closed minimal hypersurface of $”(1) with least total volume. More-
over, from the differential topological viewpoint, spheres are the most basic
closed manifolds. Therefore, in [7) W. T. Hsiang, W. Y. Hsiang and P.
Tomter conjectured that every simply-connected, compact symmetric space
of dimension at least four must contain some embedded, minimal hyper-
spheres (i.e., hypersurfaces diffeomorphic to a sphere) and they proposed
that those minimal hyperspheres should be the candidates to generalized
equators in compact symmetric spaces. In the same paper, the method of
equivariant geometry was used to establish the existence of such objects in
the four compact symmetric spaces of A,-type. Furthermore, many more
examples in other compact symmetric spaces of rank one and two have been
constructed (see |7, 8, 4]). The purpose of this paper is to show how the
equivariant construction of those generalized equators can possibly be ex-

tended to the remaining compact symmetric spaces of rank two. We now
explain this in more detail.

Let G/K be an irreducible compact symmetric space. Under the isotropy
action of A on G/ K, the orbit space K\G/K can be identified isometrically
with the closed Cartan polyhedron, which is a flat triangle in the rank two
case. The PDE for minimal hypersurfaces in G/K reduces to an ODE in
that triangle. The interesting feature of the ODE is that the boundary of
the orbit space is comprised of singular points. We search for embedded,
minimal hyperspheres in G/K which are K-equivariant. Their generating
curves in the orbit space are embedded solutions of some geometric type of
the reduced ODE.

The technique that is utilized to find closed solutions to the reduced
ODE is based on a comparison lemma (see Section 4) adapted from the
one in [10]. It enables us to find suitable approximations to solutions of
the ODE. We then prove the existence of the desired closed solution by
continuity arguments. We have already used this approach in [3].

The complete details of the construction are presented for the excep-
tional Lie group ;. But the method also provides examples of at least one
embedded, minimal hypersphere in each one of the symmetric spaces:

Sp(4) SU(5) Sp(5)  SO(10)
Sp(2) x $p(2)’ S(U(2) x SU(3))’ Sp(2) x Sp(3)’ U(5) ’




Ee and Gir
U(1) xz, Spin(10) 50(4)°

In particular, the inverse images of those minimal hyperspheres supply new
examples of codimension one closed minimal submanifolds in Sp(4), SU(5),
Sp(5), SO(10), Es and G,. The examples in Es/(U(1) xg, Spin(10)), G,
and G2/S0(4) are believed to be the first examples of closed minimal hy-
persurfaces in those spaces.

This verifies the Hsiang-Hsiang-Tomter conjecture for all symmetric spaces
of rank at most two, except for the higher dimensional Grassmannians
SU(2 + m)/§(U(2) x SU(m)) and Sp(2 + m)/(Sp(2) x Sp(m)), m > 4.
Since this is a case-by-case verification, they have been left out. The conjec-
ture is certainly true for them, too; what remains to be done is purely some
more computational work.

1 Symmetric Spaces

Let M = G/K be a simply connected, compact, irreducible globally sym-
metric space of dimension n, where G is the connected group of isometries
of M and K is the isotropy subgroup of a chosen basepoint 0. Let g, t
be the Lie algebras of G, K, respectively. The symmetry at o induces an
involution of g; let g = ¥+ p be the corresponding decomposition into the
t1-eigenspaces. The action of A" on M is called the isotropy action of the
symmetric space. Let a be a maximal abelian subalgebra of g contained in
p. Then A = Exp(a) is a maximal flat, totally geodesic submanifold of M
which intersects every A'-orbit in A orthogonally. Let h = a+ (¢Nh) be a
Cartan subalgebra of g, A(g, a) the set of restricted roots, T = {a,,---,q,}
the simple roots, and § the highest root (with respect to some chosen or-
dering). Then it follows from E. Cartan’s work ([1, 2]) that the orbit space
M/K is isometric to A/W, where W is the Weyl group of M generated
by the reflections on the orthogonal hyperplanes of the restricted roots. In
turn, the quotient A/W is isometric to the Cartan polyhedron in b, defined
by the inequalities a, > 0,--- ,a, > 0,3 < 7.

2 Equivariant Differential Geometry

The reader may want to consult the references [9, 11, 12, 7] for information
about the results stated below. In what follows, M is a simply-connected,
compact symmetric space of rank 2. Then the orbit space X of the isotropy



action (K, M) can be identified isometrically with the Cartan polygon which
is a flat triangle in h = R2 Note that the interior points of X parametrize
principal orbits and the boundary points of X parametrize singular orbits.
We intend to construct an embedded minimal hypersphere (i.e., an hy-
persurface of the diffeomorphic type of an sphere) in M which is equivariant
with respect to the isotropy action of K. If N is an equivariant minimal
“hypersurface in M, it is generated by a curve 7 = N/K in X, parametrized
by arc-length, which is a solution of the ordinary differential equation

d
dn

where k is the geodesic curvature of v, n is its oriented normal, and v: X —
R+ is the volume functional which registers the (n—2)-dimensional volume of
the fibers. Since v vanishes on the singular strata of X, the ODE (1) becomes
singular there. Nevertheless, many interesting solutions providing examples
of closed submanifolds N originate and terminate at boundary points of X.
In fact, a non-self-intersecting solution curve connecting boundary points in
adjacent edges of X which meet at a corner which is a fixed point of the
K -action generates an embedded minimal hypersphere in M.

For a boundary point P which is not a corner, the singularity is of the
regular type studied in [7, pp. 587-589] (see also [13]), from where we know
that there is a unique continuous curve y(s) in X which defines an solution
of the reduced minimal equation with ¥(0) = P. Furthermore, v is analytic
in (P, s) as long as it does not intersect the singular boundary again, and it
is perpendicular to the boundary at P.

Any solution curve which hits the boundary can be continued back along
the same trajectory with a discontinuous jump in the angle at the boundary.
Such a boundary point is called a bouncing-back point. Close by solutions
will generically avoid the boundary, but we have the phenomenon of “sharp-
turning” close to the boundary (see {11, pp. 205-207]). By examining that
phenomenon, one can show that a compact segment of a solution of the
reduced minimal ODE depends continuously on the initial conditions of
the solution, also when the segment contains some bouncing-back points on
the singular interior edges, and a compact segment which do not contain
bouncing-back points depends in a C' way on the initial conditions of the
solution.

It is also known that there is a unique solution to the reduced minimal
equation emanating from a corner point and it is analytic.

(1) k(s) = 5-log v(7(s))



3 The Explicit Form of the Reduced Minimal Equa-
tion

The orbit space X is a flat triangle in R* = {(z,y): z,y € R} defined by
the following inequalities, a; > 0, a, > 0 and 3 < «w, where a,, a, are the
simple roots and f is the highest root.

The volume functional can be computed to be

v(z) = cp H sin™* a(z) (zxeX)

a€dt(g,a)
where c)s is a constant depending only on M and m, is the multiplicity of
a as a restricted root of M. Write a solution to the reduced minimal ODE
as y(s) = (z(s), y(s)), where s is the arc-length parameter, and let ¢ denote
the angle from 8/8z to the tangent direction dy/ds. Then equ. (1) can be
conveniently expressed as

I = coso
(2) Yy = sino
= }: Mg cot(anz + b,y) (b, coso — a, sina)
a€dt(p,a)

where the constants a,, b, are determined by
a(z,y) = a,z + b,y

for each a € A*(g,a).

The constants appearing in eqn. (2) (for some of the compact symmetric
spaces of rank two which have not been considered in (8]) are listed in
Tables 1 and 2. In each case, the highest root is indicated with an asterisk.
It follows that the orbit space X is as in Figs. 1, 2 and 3.

Observe that the vertex (0,0) of X is a fixed point for the A action.
We wish to develop a method to construct a non-self-intersecting solution
of eqn. (2) which starts at the boundary y = 0 of X and terminates at the
boundary y = ztanx/d. In the next sections we will describe an approxi-
mation technique suitable for findind the desired solution and then we will
apply it to the case of G,.

4 Comparison Lemma

We want to consider solutions to eqn. (2) with initial condition y(0) = 0.
Then, 0(0) = x/2. We define v = - coso and, as long as sino > 0, we may
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Figure 1: Orbit space in the case = ==
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Figure 2: Orbit space in the case o = o, except o7 =



(r/V3,7/3)
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r/6 ,'—
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Figure 3: Orbit space in the case 0 = o

J|aa ba, Ma,
SETA] SUTTEm] L5 S Y [ 10/0 1) B
Sp(2)xSp(2) | SIUV(2)xUim])) | Sp(2)xSp(m)* Uis) [U1) Spin[10)

1101 4 2(m - 2) 4(m - 2) 9 8
2| 1]-1 3 2 4 4 6
3(1 |1 3 2 4 4 6
41110 4 2(m — 2) 4(m ~2) 4 8
5/ 0|2 - 1 3 1|
62 |0 - 1* 3 1* 1"

Table 1: Restricted roots for the case o = o, d = 4
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j| @a, ba, Mg,
G, | G,/SO(4)
1] o 1 | 2 1
2| v3/2|-3/2] 2 1
3| V32 -1/2] 2 1
4 (V3] 172 | 2 1
5(v3/2] 3/2 | 2 1
6| V3 | o |2 1

Table 2: Restricted roots for the case o = o0,d =6

rewrite eqn. (2) in the following form in which y is an independent variable:

(3) Z= ot
dy  V1-0v?
dv
bR ¢ 4
where

6
W(z,y,v)= - Z Mg, cot(aq, T + by, y)(ba,v + an, V1 — v?).
=1

The comparison lemma below is taken from [10]. It guarantees that an
actual solution of eqn. (3) is sandwiched between two approximating curves
up to first order. The key ingredient in its proof is the fact that the function
z — W(z,y,v) is increasing for y fixed and for v € [0, cos 7 /d] fixed.

Lemma 1 Let y — (z(y), v(y)) be the solution of egn. (3) with initial con-
ditions z(yo) = zo. v(yo) = vo (v =0 if yo =0). Let z; = z;(y), j : 1,2,

satisfy z;(yo) = Zo, v;(%0) = vo where v;(y) = —:x:_',-(y)/,/l +zi(y)? 7: 1,2,
and suppose

z1(y) < z2(y) and cosw/d> vi(y) > vo(y) >0  for y € (yo, 1]

Define
wi(y) = W(za_;(y), ¥, v(y)), forj:1,2.



Assume further that

v',(y) > v'(y) > vi(y) Jor y — yo > Q small,

and
u(y) > wily), wiy)>v(y)  fory € (yo, 1)
Then

z1(y) < z(y) < z2(y) and v (y) > v(y) > valy)  fory € (yo, ).

Proof. Since vj(y) > v'(y) > vi(y) for small y — yo > 0 and v (yy) =
v2(%) = v(w) = vo, T1(%) = Z2() = z(y) = zo, we have v (y) >
v(y) > va(y) and z,(y) < z(y) < za(y) for y — yo > 0 small. Without loss
of generality, suppose by contradiction there is an y, € (yo,y] such that
7(y2) = 22(y2). Then there must be an y; € (yo, y2) such that v(ys) = 1.(y3).
Let § be the first § > 0 such that v(y) = vo(3). Then v'(§) < vi(y). We
may also assume that z(§) > z,(§). Now we have

() = W(z(y), 9, v(9)
> W(zi(9), 9, va(§))
= wy(¥)
Thus, v5(§) > wy(7), a contradiction. O

For the sake of future reference, we now state the comparison lemma
for solutions starting at the boundary y = ztanw/d. Let us change to the
coordinates (z,w) = (zcosw/d + ysinx/d,zsinr/d — ycosx/d) and put

T=—-0+r/d, u= —cosrt. Then eqn. (3) can be rewritten
dz —u

(4) o - 0
du
o - Y(2,w.u)

where
6

Y(z,w,u) = - z m,, cot[(a,, cosx/d + b, sinw/d)z
j=1

+(aq,sinw/d - b, cos 7 /d)w)
X[(~ba, cosx/d + a,, sin 7 /d)u
+(ba, sinw/d + a,, cos 7 /d)V1 — u?]



Lemma 2 Let w— (z(y),u(y)) be the solution of eqn. (4) with initial con-
ditions 2(wo) = zo. u(wg) = Up (Yo = 0 if wo=0). Let 2; = zj(w), 7 1,2,
satisfy z;(wo) = Zo. u;(Wo) = Yo where u;(y) = —z_’,-(y)/,/l +2(y)?% 51,2,
and suppose
z(y) < z2(y) and cost/d > uy(w) > uz(w) >0 for w € (wo, wy].
Dcfince
y;(w) = Y (z3-j(w), w, u;(w)), - forj:1,2.
Assume further that
W) (w) > u'(w) > uy(w) for w — wy > 0 small,
and
w(w) > pi(w).  ya(w) > vy(w) for w € (wo, wy)-
Then

(w) < z(w) < z22(w) and u(w) > v(w) > vo(w) forwe (wo, wy]-

5 Foliations by Solution Curves

We want to establish a corridor starting at the boundary y = 0 such that the
family of solutions of eqn. (3) with initial point in a certain subinterval of
that boundary will be guaranteed to comprise a foliation of the orbit space
X, up to a certain height. This will be achieved by linearizing eqn. (3) with
respect to g, where (z0,0) is the initial condition of a fixed solution curve
y — (2(y), o(y)) defined for y € [0, 1]

The linearization is

(5) = Ay
¥ = By)E+Cly)

where the initial conditions are #(0) = 1, 5(0) = 0 and

<

Aly) = —(1 =y,
6
B(y) = Z malan cscz(ao,z(y) + bo,y)(bajv + ao,\/l_:;i)s
j=2
6
v
Cly) = - ;Z_;ma, cot(aq,z(y) + ba,¥)(ba, - aa,ﬁ),

10



are functions defined along the solution curve y — (z(y).v(y)). Now eqn. (5)
is equivalent to the following

(6) [P(¥)Z'(y)] + q(¥)i(y) =
where
py) = ',
oy) = foAv)ply),
and
_Aly)
fly) = -Aly)B(y).

Let Z(y) be a solution of eqn. (6) satisfying the initial conditions #(0) =
1, (0) = 0. We know that if 2(y) > 0 for y € (0,y,] and z, € [a,b], then
(zo,y) € [a,b] X [0,y:] — (z(y), y) defines an analytlc foliation of its image.
So we need to estimate the zeros of the solution for the initial value problem

for Z(y), and in order to do that we apply the standart Sturm comparison
method to eqn. (6).

Lemma 3 (Sturm) Let ¢(y) be a solution of eqn. (6) defined for y € [0, %)
with $(0) = 1, ¥'(0) = 0. Let §(y) > q(y) for y € (0,y,] and suppose that
Y(y) ts the solution of

(M [P() ¥ (9)]' + d(¥)¥(y) = 0

with 1}(0) =1, tZ)’(O) = 0. If Y(y) never vanishes on [0, 1], then ¥(y) never
“vanishes on [0, y,].

In our case, the following application of Lemma 3 will suffice.

Lemma 4 Let y(y) be a solution of eqn. (6) defined for y € [0,y,] and
satisfying the initial conditions ¥(0) =1, v'(0) = 1. If

. —fz(y) _l
16(2{“1 L)+ vfaly) g )

then ¢(y) never vanishes on [0, y].

11



Proof. In [act. we may choose

- fa(y) Sk> 1

o Ay
ve®:] fi(y) + 9/2(¥) v

and define if(y) = 1+ ky. Then the above inequalities imply that y > 0 on
[0,3,] and ¥ satisfies eqn. (7) where

iy) = ‘1":';:!")

for y € (0,y,]. Now apply Lemma 3. ]

> q(y)

6 Polynomial Approximations

We know that the solution curves of eqn. (3) are analytic. Therefore, in order

to find the approximations z;, z; to a particular solution as described in

Section 4, it is reasonable to use the power series expansion of that solution.
We recall eqn. (3):

(8) e
dy =~ J1-1?
dv
_d_y = W(Iayvv)
where

6
Wi(z,y,v)= - Z Mg, cot(aq,T + ba,¥)(ba,v + as, V1 — v?).

i=1

It is easy to compute the Taylor expansion of a solution y — (z(y), v(y))
at y = 0, namely

x;

v(y) = Z < (2i + 1)'y2-+1 '

z(y) =

NgEk

Let m = m,, and

6
R(y) = = 5 ma, cot(aa,z(y) + ba, ¥)(ba, v(y) + aa,\/1 = v(¥)?).

i=2

12



Then eqn. (8) is

dr -v

dy v1-1v?

dv

o - R(y)— mvcoty

Here we specialize to the case o = 0. Then R is exactly the “non-singular”

part, and so the coefficients of the Taylor expansion can be inductively
computed as

R(0)
U = y

14+ m

2n + 1 = By(n-i) - 2
no= — m(2n)! i 92m=i) 4 REnQ)[ . n >
v antmel|™ n)§(2i+l)!(2(n—i))! RO 2

where B; is the ith Bernoulli number, and

Iy = —vy,

T, = -3v3-v,

z3 = -—45v; — 30v3v, - v,,

T4 = —1575v) — 157508y, — 210007 — 63vv, — vs,

s = —99225v) — 1323000y, — 37800v3v;, — 84007 — 5670viv,

—1512vyv,v, — 108v2v3 — vy, etc.

For solutions starting at the top boundary, the Taylor expansion at v = 0
of a solution w — (z(w), 2(w)) to eqn. (4) is

2 )
z2(w) = w?,
; (2¢)!
w(w) = i Ui e
(204 1)
Let m = m,,, a = a,, and
6
R(w) = - Z Mg, cot[(aqs, cosw/d + by, sin x/d)z(w)

=1
I3

+(a,, sinw/d — b,, cos 7 /d)w]
X[(—bq, cosx/d + a,, sin 7 /d)u(w)

+(b,, sin7/d + a,, cosxfd)\/1 — u(w)?].

13



Then eqn. (4) is

dz —u
dw ~ V1-u?
d
ﬁ = R(w) - maucot(aw)
and the coeflicients can be computed inductively as
R(0)
Yy = y
14+ m
2n + 1 Bs(n-i 2An-i) 2 :
= —— 2a)*"=) 4 R0 n>:
T mtmel .Z_;(z:+1'(2 i) o),
where B, is the ith Bernoulli number, and
25y = Uy,
2, = =3ud-u,
z3 = —45uy — 30ulu; — u,,
24 = —1575uf — 1575ufu; — 210upu? — 63ulu; — ug,
25 = —99225u5 — 132300u§u; — 37800udu, — 840y’ — 5670ulu,

—1512upu u; — 108ulu; — u,, etc.

7 An Example: the Case of G,

Now we show how the above ideas can be applied to construct a solution to
eqn. (2) starting at the bottom boundary y = 0 and terminating at the top
boundary y = z tann/d; in fact, a solution to eqn. (3). Since the theoretical
bases of such construction are the same for all cases involved, we shall work
out the details in the specific case of G,.

Denote by y — (X,,(y),V.,(y)) the solution of eqn. (3) with initial
condition (xo,0) at y = 0. Denote by w (Z,,(w),U,,(w)) the solution of
eqn. (4) with initial condition (z,,0) at w = 0.

First step: use the comparison lemma to find approzimations for.solutions
starting at the bottom boundary.

Let x4 € [1.46,1.47) and define
| 4 T
Xiso(y) = 3o+ ?'y"' + —’- * — (8.65 — 6z0)°,
Xozoly) = zo+ —y o y‘ — (8.76 — 6z0)y°

14



where z,, T, are coefficients of the Taylor expansion at y = 0 of the solution
X..(y) with X, (0) = z, (see Section 6). Then it is possible to verify
the hypothesis of Lemma 1 with y, = 0.41 and conclude that X, ., . X, .,
provide C' bounds for the actual solution X, which are valid on the interval
[0,0.41], that is, if

Vieol¥) = =X . (9)/\ 1+ X] . (y)?  forj:1.2,
then
Xizo(¥) < Xeo(y) < Xairo(y)y Vigo(y) > Voo(y) > Vayoly) for y € (0,0.41].

Second step: use the above C! bounds establish a corridor foliated by so-
lutions starting at the bollom boundary.

We check that

. —fa(y)
f —=7 5 272,
ye(lg?o.:m] Hly)+8f(y)
1
—m < =2.72,

for z, € [1.46,1.47] and apply Lemma 4. It follows from the argument of
Section 5 that the X, (y) for z, € [1.46,1.47] foliate a region of the orbit
space from y = 0 until y = 0.36.
Third step: use the comparison lemma to find approzimations for solutions
starting at the top boundary.

Use Lemma 2 to check that Z, ,,, Z, ., defined below (obtained by the
method of Section 6) provide C! bounds valid on w € (0. w,] for the solution

Z,,(w) of eqn. (4) with initial condition Z. (0) = z,.

: If 2o = 1.4202816622 (zo = 1.23), then

Zy.(w) = 1.4202816622 — 0.1881760127w” — 0.0831483267u"*
40.01540925912w°® — 0.0081128042w + 0.175u'°,
Zy.o(w) = 1.4202816622 — 0.1881760127w?® — 0.0834483267w*
+0.01540925912w° — 0.0081428042u"” + 1.5w'°
and y, = 0.58.

15



If zp = 1.4549226784 (zo = 1.26), then

Zy,(w) = 1.4549226784 — 0.2881043431w? - 0.1812941968w*
—0.09184112229w® — 0.05990390855w® — 5w'?,
Zy . (w) = 1.4549226784 — 0.2881043431w? - 0.1812941968w*
—0.09184112229w° — 0.05990390855w® — 0.219w"'°
and y, = 0.55.

Fourth step: study the intersections of solutions starting at the top bound-
ary with solutions starting at the bottom boundary.

Let X(y), Z(w) be solutions to eqns. (3) and (4), respectively, starting at
the bottom and top boundaries, respectively, and consider the corresponding .
C! approximations X(y), X2(y) and Z;(w), Z,(w), respectively. In order
to show that X(y) and Z(w) cross each other, we consider the following
function:

F: Y € [yav yb] = Z(T2(X(y)s y)) - Tl(‘X(y)’ y)1

where
T(2,9) = (Ti(2,9), Ta(z, 1)) = (5(=V3 + 1), 3z - 9V3))

is the change from the coordinates (z,w) to the coordinates (z,y). We want
to show that it has a zero. For that, it is enough to show that it assumes a
positive value and a negative value on [y,,1]. Let (22, w?) = T(X3(¥4),¥a),
(zaywa) = T(X(¥a),¥a). Since X(ya) < X(ya), we have z, < z2. Also
Z(w,) < Z(w,). Therefore,

22 < Zy(wg) = 2, < Z(w,) = Fy,) >0

Let (Z:iw:) = T( -x’l(yb), yb)v (Zh wb) = T(X(yb)7 yb) Since )"l(yb) < X(yb)’
we have 2z} < z,. Also Z(w,) < Z;(w,). Therefore,

Z;(w,) < Z.l = Z(w;) <2z = .F(yb) <0

Thus, the conditions for X(y) and Z(w) to cross each other on [y,,y] at

an angle (measured from the X-direction to the Z-direction; see Fig. 4) less
than x are

22 < Zi(w,) and Zy(w,) < z}.

Since X, X3, Z,, Z, are decreasing, those conditions are satisfied if

Ti(X2(¥a)s ¥a) < Zi(To X2(va),9a)) and  Zy(ToX1(), 1)) < Ti(Xi(%)s ).

16



Z(w

X(y)

Figure 4: Crossing at an angle < 7

Similarly, the conditions for X and Z to cross each other on [y, ] at an
angle (measured from the X-direction to the Z-direction; see Fig. 5) more
than 7 are

Zo(To(X1(¥a) ¥a)) < T1(X1(va),va) and Ty(Xaws) ) < Zi(To Xows), 1s))-

From the first step, we have the following C' approximations valid for
y € (0,0.41] for the solution X, (w) starting at the bottom boundary with
X,O(O) = Tg-
If 2o = 1.46, then
X1146(y) = 1.46 — 0.4558551314y + 0.1447836669y" — 0.11y°,
Xa2146(y) = 1.46 —0.4558551314y” + 0.1447836669y* — 0.y°.

If 2o = 1.47, then

X1.1.47(y) 1.47 — 0.4978218951y” + 0.1562579343y* — 0.17y°,
Xaia(y) = 1.47—0.4978218951y” + 0.1562579343y" — 0.06y°.

1!

Now it is easy to apply the method above to check that 7,4 (w)
crosses X, 46(y) for some y € [0.28,0.30] and that it crosses X, ¢7(y) for
some y € [0.20,0.23] (in that range, w < 0.56, so that the approximations
are still valid). Also, we check that Z; 5 (w) crosses X, 4;(y) for some
y € [0.28,0.31) and that it crosses X, 46(y) for some y € [0.20,0.25] (in that
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Z(w

X(y)

Figure 5: Crossing at an angle >

range, w < 0.55, so that the approximations are still valid). Next, con-
sider the foliated corridor (z,y) € [1.46,1.47] x [0,0.28] — X, (y). Then
Z,,(w) enters the foliated corridor at y = 0.28 for all zp € [1.42...,1.45...],
Z) 4. (w) enters the foliated corridor with an angle less than x and Z, 45 (w)
enters the foliated corridor with an angle more than x. By continuity there
must be an zo € (1.46,1.47) and a zp € (1.42...,1.45...) such that Z, (w)
enters the foliated corridor intersecting X, (y) with an angle equal to =,
that is, Z,,(w) and X, (y) are “the same” curve (see Fig. 6). Thus, we get
a solution connecting the top and bottom boundaries and we have proved

Theorem 1 There is an embedded minimal hypersphere in the ezceptional
Lie group G,.

A similar argument will prove the existence of an embedded minimal hy-
persphere in each one of Sp(4)/(Sp(2)x Sp(2)), G2/ S0(4), SU(5)/(S(U(2)x
SU(3)), Sp(5)/(Sp(2) x Sp(3)), $O(10)/U(5) and E¢/(U(1) X2, Spin(10)).
In the first two cases the generating solution curve of eqn. (2) connects the
boundary y = ztanx/d to the boundary y = 0, as in the case of G,. How-
ever, in the remainig four cases (d = 4), the vertex (x/2,x/2)ia also a fixed
point of the corresponding K-action and the generating solution curve of
eqn. (2) connects the boundary y = z to the boundary z = /2.

18



w < 0.48)

‘Xl 46 A’l 47

Figure 6: Auxiliary solutions entering the foliated corridor
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