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Abstract 

We describe a method to construct em~edded, minimal hyper­
spheres in rank two compact symmetric spaces which are equivariant 
under the isotropy action of the symmetric space, and we supply the 
details of the construction for the exceptional Lie group G 2 . 

0 Introduction 

The simply-connected spaces of constant curvature can be characterized by 

the property of being reflectionally symmetric with respect to any given 
direction (a reflectional symmetry is an involutive isometry which reverses 
only one direction), i. e. the group of the isometries of the space which fix 
any given point is the largest possible, namely, equal to 0( n ). They are the 
Euclidean spaces, the spherical spaces and the hyperbolic spaces. · 

The family of symmetric spaces constitutes a natural generalization of 
the spaces of constant curvature. A Riemannian manifold is ca.lied a sym­
metric space if it is centrally symmetric with respect to any point, that is, t),e 
isotropy subgroup contains an involutive isometry which is the geodesic sym­

metry. Among them, the symmetric spaces of compact (resp., non-compact) 

type are generalizations of the spherical (resp., hyperbolic) spaces. 

0 1991 Mathematic, Subjecl Clauificahon: primuy, 53C42; aecondary, 53C40, 57S25. 
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It is therefore natural to investigate to what extent fundamental re­
sults about the classical spaces of constant curvature remain true in the 
larger family of symmetric spaces. In particular, among all hypersurfaces 
of Sn(l ), the equator appears as the "simplest" global object, e.g. it is the 
unique closed minimal hypersurface of sn(l) with least total volume. More­
over, from the differential topological viewpoint, spheres are the most basic 
dosed manifolds. Therefore, in [7) W. T. Hsiang, W. Y. Hsiang and P. 
Tomter conjectured that every simply-connected, compact symmetric space 
of dimension at least four must contain some embedded, minimal hyper­
spheres (i.e., hypersurfaces diffeomorphic to a sphere) and they proposed 
that those minimal hyperspheres should he the candidates to generalized 
equators in compact symmetric spaces. In the sa.me paper, the method of 
equivariant geometry was used to establish the existence of such objects in 
the four compact symmetric spaces of Artype. Furthermore, many more 
examples in other compact symmetric spaces of rank one and two have been 
constructed (see (7, 8, 4)). The purpose of this paper is to show how the 
equivariant construction of those generalized equators can possibly be ex­
tended to the remaining compact symmetric spaces of rank two. We now 
explain this in more detail. 

Let G / K be an irreducib1e compact symmetric space. Under the ~sotropy 
action of K on G / K, the orbit space K\G / K can be identified isometrically 
with the dosed Cartan polyhedron, which is a flat triangle in the rank two 
case. The PDE for minimal hypersurfaces in G/ I{ reduces to an ODE in 
that triangle. The interesting feature of the ODE is that the boundary of 
the orbit space is comprised of singular points. We search for embedded, 
minimal hyperspheres in G / K which are /f-equivariant. Their generating 
curves in the orbit space are embedded solutions of some geometric type of 
the reduced ODE. 

The technique that is utilized to find closed solutions to the reduced 
ODE is based on a comparison lemma (see Section 4) adapted from the 
one in (10). It enables us to find suitable approximations to solutions of 
the ODE. We then prove the existence of the desired closed solution by 
continuity arguments. We have already used this approach in [3]. 

The complete details of the construction are presented for the excep­
tional Lie group G2• But the method also provides examples of at least one 
embedded, minimal hypersphere in each one of the symmetric spaces: 

Sp(4) SU(5) Sp(5) SO(10) 
Sp(2) x Sp(2)' S(U(2) x SU(3))' Sp(2) x Sp(3)' U(5) ' 
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£6 G2 
and 

U(l)x,.lSpin(lO) SO(4)° 

In particular, the inverse images of those minimal hyperspheres supply new 
examples of codimension one closed minimal submanifolds in Sp{4), Sll(5), 
Sp(5), SO(10), E6 and G2 • The examples in £ 6 /(U(l) x,.l Spin(lO)), G2 
and G2/ SO( 4) are believed to be the first examples of closed minimal hy­
persurfaces in those spaces. 

This ver.ifies the Hsiang-Hsiang-Tomter conjecture for all symmetric spaces 
of rank at most two, except for the higher dimensional Grassmannians 
SU(2 + m)/S(U(2) x SU(m)) and Sp(2 + m)/(Sp(2) x Sp(m)), m ~ 4. 
Since this is a case-by-case verification, th<'y have been left out. The conjec­
ture is certainly true for them, too; what remains to be done is purely some 
more computational work. 

1 Symmetric Spaces 

Let M = G/ K be a simply connected, compact, irreducible globally sym­
metric space of dimension n, where G is the connected group of isometries 
of M and K is the isotropy subgroup of a chosen basepoint o. Let g, t 
be the Lie algebras of G, K, respectively. The symmetry at o induces an 
involution of g; let g = t + p be the corresponding decomposition into the 
±1-eigenspaces. The action of K on M is called the isotropy action of the 
symmetric space. Let a be a maximal abelian subalgebra of g contained in 
p. Then A = Exp(a) is a maximal flat, totally geodesic submanifold of A/ 
which intersects every J<-orbit in M orthogonally. Let I) = a + ( t n I)) be a 
Cartan subalgebra of g, .6.(g, a) the set of restricted roots, E = { o 1, • • • , o1,} 

the simple roots, and /J the highest root (with respect to some chosen or­
dering). Then it follows from E. Cartan's work ([l, 2)) that the orbit space 
M/ K is isometric to A/W, where W is the Wey) group of M generated 
by the reflections on the orthogonal hyperplanes of the restricted roots. In 
turn, the quotient A/Wis isometric to the Cartan polyhedron in h. defined 
by the inequalities o 1 ~ 0, · · ·, o, ;?: 0, /j $ 11'. 

2 Equivariant Differential Geo1netry 

The reader may want to consult the references [9, 11, 12, 7) for information 
about the results stated below. In what follows, M is a simply-connected, 
compact symmetric space of rank 2. Then the orbit space X of the isotropy 

3 



action ( I{, M ) can be identified isometrically with the Cartan polygon which 
is a flat triangle in ~ ~ llt2• Note that the interior points of X parametrize 
principal orbits and the boundary points of X parametrize singular orbits. 

We intend to construct an embedded minimal hypersphere (i.e., an hy­
persurface of the diffeomorphic type of an sphere) in M which is equivariant 
with respect to the isotropy action of K. If N is an equiva.riant minimal 

· hypersurface in M, it is generated by a curve , = N / K in X, parametrized 
by arc-length. which is a solution of the ordinary differential equation 

( 1) 
d 

k(s) = dn log v(,(s)) 

whNr k is tht> geodesic curvature of;, n is its oriented normal, and v : X -+ 

P.+ is tht> volume functional which registers the (n-2)-dimensional volume of 
thr fi hC'rs. Since v vanishes on the singular strata of X, the ODE ( 1) becomes 
singular thNc. Nrvertheless, many interesting solutions providing examples 
of closed submanifolds N originate and terminate at boundary points of X. 
In fact, a non-self-intersecting solution curve connecting boundary points in 
adjacent edges of X which meet at a corner which is a fixed point of the 
/\ -action generates an embedded minimal hypersphere in M .~ 

For a boundary point P which is not a corner, the singularity is of the 
regular type studied in (7, pp. 587-589] (see also [13]), from where we know 
that there is a unique continuous curve 1(s) in X which defim!s an solution 
of the reduced minimal equation with ;(O) = P. Furthermore, 1 is analytic 
in (P, s) as long as it does not intersect the singular boundary again, and it 
is perpendicular to the boundary at P. 

Any solution curve which hits the boundary can be continued back along 
the same trajectory with a discontinuous jump in the angle at the boundary. 
Such a boundary point is called a bouncing-back point. Close by solutions 
will generically avoid the boundary, but we have the phenomenon of "sharp­
t urning" close to the boundary (see [11, pp. 205-207]). By examining that 
phenomenon, one can show that a compact segment of a solution of the 
reduced minimal ODE depends continuously on the initial conditions of 
the solution. also when the segment contains some bouncing-back_ points on 
the singular interior edges, and a compact segment which do -not contain 
bouncing-bark points depends in a C1 way on the initial conditions of the 
solution. 

It is also known that there is a unique solution to the reduced minimal 
equation emanating from a corner point and it is analytic. 
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3 The Explicit Fonn of the Reduced Minin1al Equa-
tion 

The orbit space X is a flat triangle in JR 2 = {( x, y) : x, y E Iii!} defined by 
the following inequalities, o 1 ~ 0, o 2 ~ 0 and /J ~ 1r, where o 1 , o 2 arc the 
simple roots and /3 is the highest rool. 

The volume functional can be computed to be 

v(x) = C!,f II sinm 0 o(x) 
aEA+(9,aJ 

(x EX) 

where cM is a constant depending only on !if and ma is the multiplicity of 
o as a restricted root of M. Write a solution to the reduced minimal ODE 
as -y(s) = (x(s), y(s)), wheres is the arc-length parameter, and let a denote 
the angle from o/ox to the tangent direction d-y /ds. Then equ. (I) can h{· 
conveniently expressed as 

x = cos u 

(2) iJ sin a 

(1 L macot(aox+bayHbaCOSO'-aasina) 
aEA+(a,aJ 

where the constants a 0 , ba are determined by 

o(x, y) = aax + bay 

for each a E 6,+(g, a). 
The constants appearing in eqn. (2) (for some of the compact symmetric 

spaces of rank two which have not been considered in [81) arc listed in 
Tables 1 and 2. In each case, the highest root is indicated with an asterisk . 
It follows that the orbit space X is as in Figs. 1, 2 and 3. 

Observe that the vertex (0, 0) of X is a fixed point for the A. action. 
We wish to develop a method to construct a non-self-intersecting solution 
of eqn. (2) which starts at the boundary y = 0 of X and terminates at the 
boundary y = x tan 1r /d. In the next sections we wiU describe an approxi­
mation technique suitable for findind the desired solution and then we will 
apply it to the case of G2 • 

4 Comparison Lemma 

We want to consider solutions to eqn. (2) with initial condition y(0) = 0. 
Then, o-(0) = 1r /2. We define v = - cos u and, as long as sin a > 0, we may 
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( 1r /2, rr /2) 

(0,0) (1r.O) 

I" 1 0 b' . ti Sp( 4l • 1~urC' : r 1t space in 1e ca!;e Sp(:l/xSpl 2J 

( rr /2, 1r /2) 

7r /2 

(0.0) ( rr /2, O) 

I " 2 0 b' . ti Sp(4 ) 
· 1J1;11rr : r 1t space m 1e case o = o, except Sp{2)xSr( 2l 
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(1r/../J,1r/J) 

(0,0) 

Figure 3: Orbit space in the case o = o 

J aa, ba, ma , 
.)J11'11 .)ll("l+m l .:,p\.<-,.n ll 2 ~ 1::, . 

S r( 21x S J1( 2 I S ! U (2 )XU(m l1 S 11( 2 1xS 11l m l ' m > {I ( 5, l' l l t S 11111{1 0 ) 

1 0 1 4 2(m -2) 4(m - 2) 4 8 
2 1 -1 3 2 4 4 6 
3 1 1 3• 2 4 4 . 6 

4 1 0 4 2{m - 2) 4(m - 2) 4 8 
5 0 2 - 1 3 I I 
6 2 0 - 1· 3· 1· 1. 

Table 1: Restricted roots for the case o = o, d = 4 
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J aa, ba, mo . 
G2 G 2 / S0(4) 

1 0 1 2 1 

2 ✓3/2 -3/2 2 1 
3 / 3/2 -1/2 2 1 
4 ✓3/2 1/2 2 1 

5 J 3/2 3/2 2 1 

6 ✓3 0 2· 1· 

Table 2: Restricted roots for the case o = o, d = 6 

r('write eqn. (2) in the following form in which y is an independent variable: 

(3) 

where 

dx -v 
dy JI-v2 
dv 

ll'(x,y,v) 
dy -

6 

U'(x, y, t•) = - L ma, cot(ao,X + bo,y)(bo,V + ao, ✓1 - v2 ). 

j:1 

The comparison lemma below is taken from [10]. It guarantees that an 
actual solution of eqn. (3) is sandwiched between two approximating cur\'es 
up to first order. The key ingredient in its proof is the fact that the function 
x ...... IV(.r,y,t•) is increasing for y fixed and for v E [O,cos,r/d] fixed. 

Lemma 1 Let y ...... (x(y), v(y)) be the solution of eqn. (3) with initial con­
ditions x(yo) = xo, v(yo) = Vo (vo = 0 if y0 = OJ. Let x; = x;(Y), j : 1, 2, 

satisfy x;(Yo) = xo, v;(Yo) = v0 where v;(Y) = -xi(y)/J1 + xj(y)2, j: 1,2, 
and suppose 

for Y E (Yo, yi]. 

Define 

for j: 1, 2. 
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Assume further that 

v;(y) > v'(y) > v~(y) 

and 

for Y - Yo > Q small, 

for YE (Yo, yi). 
Then 

for y E (y0 , yi]. 

Proof. Since v~(y) > v'(y) > v;(y) for small y - y0 > 0 and ti1ly0 ) = 
v2(Yo) = v(yo) = Vo, x1(Yo) = X2(Yo) = x(yo) = Xo, we have vi(y) > 
v(y) > v2(Y) and x1(Y) < x(y) < x:i(Y) for y - y0 > 0 small. Without loss 
of generality, suppose by contradiction there is an y2 E ( Yo, yt] such that 
.r(y2) = x2(Y2)- Then there must be an YJ E (Yo, y2 ) such that v(y3 ) = 11

2 ( y3 ). 

Let ii be the first ii > O such that v(ii) = v2(y). Then v'(y) $ v;(!,i. We 
may also assume that x{y) > x1(y). Now we have 

v'(ii) = W(x(y), ii, v(y)) 

> W(x1(ii), ii, v2(ii)l 

= W2(fi) 

Thus, v;(y) > w2(y), a contradiction. □ 
For the sake of future reference, we now state the comparison lemma 

for solutions starting at the boundary y = x tan ,r /d. Let us change to the 
coordinates (z,w) = (xcos1r/d+ ysin1r/d,xsin1r/d-ycos1r/d) and put 
T = -<1 + 1r/d, u = - cos r. Then eqn. (3) can be rewritten 

(4) 

where 

dz -u 
= 

✓1 - u2 dw 
du 

Y(z, w. u) = dw 

6 

l'(z,w,u) = -Em 0 ,cot[(a0 ,cos1r/d+b0 ,sin1r/d)z 
j:I 

+( a0 , sin 7r / d - b0 , cos 7r / d)w) 

x[(-60 , cos1r/d + a0 , sin 1r:/d)u 

+(ba, sin 7r /d + a01 cos 7r /d)v'f'="u'i] 
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Lemma 2 Let w....,.. (z(y), u(y)) be the solution of eqn. (4) with initial con­

ditions z(w0 ) = z0 • u(w0 ) = u 0 (u0 = 0 if w0 = OJ. Let z; = z;(w), j: 1,2, 

satisfy z; ( w0 ) = z0 , u;( w0 ) = u0 where u; (y) = -zi(y)/ Jt + z;(y)2
, j : 1, 2, 

and suppose 

for u, E ( Wo, w1], 

Define 
y,(w) = l'(z3_;(w), w, u;(w)), . for j: 1, 2. 

A.~sume further that 

for w - w0 > 0 small, 

and 

Then 

for w E (wo, wi). 

5 Foliations by Solution Curves 

We want to establish a corridor starting at the boundary y = 0 such that the 

family of solutions of eqn. (3) with initial point in a certain subinterval of 

that boundary will be guaranteed to comprise a foliation of the orbit space 

X, up to a certain height. This will be achieved by linearizing eqn. (3) with 

respect to x0 , where (x0 ,0} is the initial condition of a fixed solution curve 

y .-. ( x(y), v(y)) defined for y E [0, yi]. 

The linearization is 

(5) 
_, 
X A(y)v 

v' = B(y)i + C(y)v 

where the initial conditions are .f(O):::: 1, v(O):::: 0 and 

A(y) = -(1 - v(y)2t3/2, 
6 

B(y) = L mo,acr, csc2(a .. ,x(y) + b01 y)(b0 ,v + a01 ~
), 

j:2 

6 

C(y) = - ~ m 0 , cot{a0 ,x(y) + ba1
y)(b .. , - ao, n), 
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• are functions defined along the solution curve y i---. (x(y). v(y)). Now eqn. (5) • 

. 

is equivalent to the following 

(6) [p(y)i'(y)]' + q(y)i(y) = 0, 

where 

p(y) = er!, 
' 

q(y) = '2(y)p(y), 

and 

A'(y) 
f,(y) = - A(y) - C(y), 

f:z(y) = -A(y)B(y). 

Let i(y) be a solution of eqn. (6) satisfying the initial conditions .r(O) = 
1, i'(O) = 0. We know that if x(y) > 0 for y E (0, yi] and x 0 E (a,b), then 
( x0 , y) E [a, b) X [O, yi] .... ( x( y ), y) defines an analytic foliation of its image. 
So we need to estimate the zeros of the solution for the initial value problem 
for i(y), and in order to do that we apply the standart Sturm comparison 
method to eqn. (6). 

Lemma 3 (Sturm) let tt,(y) be a solution of eqn. (6) defined for y E {O, yi] 
with tJ,(0) = 1, tJ,'(0) = 0. let q(y) > q(y) for y E (0, yi] and su11pose that 
tJ,(y) is the solution of 

(7) (p(y)il,'(y)]' + q(y)i1(y) = 0 

with tP(O) = 1, tt,'(O) = 0. If '¢(y) never i·anishes on [O, y1), thrn t/•(y) never 
·· vanishes on (0, yi]. 

In our case, the following application of Lemma 3 will suffice. 

Lemma 4 Let ,t,(y) be a solution of eqn. (6) defined for y E [O, y1] and 
satisfying the initial conditions tJ,(O) = 1, "7'(0) = l. If 

the'} tt,(y) never vanishes on (0, yi] . 
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Proof. In [act. we may choose 

inf -/2(y) > k > _ _!_ 
11E(0,111) !1(11) + Yl2(Y) Y1 

and define ¢(y) = 1 + ky. Then the above inequalities imply that fl> 0 on 

_[O, yi) and J; satisfies eqn. (7) where 

-k '( ) 
q(y) = 1: k~ > q(y) 

for y E (0, yt]. Now apply Lemma 3. □ 

6 Polyuo111ial Approximations 

We know that the solution curves of eqn. (3) are analytic. Therefore, in order 

to find the approximations x 1 , x 2 to a particular solution as described in 

Section 4, it is reasonable to use the power series expansion of that solution. 

We recall eqn. (3): 

(8) 
dx -v 
- = dy vT=v2 
dv 

W(x,y,v) = dy 

where 

6 

W(x, y, u) = - L mo, cot(ao,.r + bo,YHbo,V + ao, ~). 
i=I 

It is easy to rompute the Taylor expansion of a solution y ...... (x(y), v(y)) 

at y = 0, namely 

Let m = m 01 and 

6 

x(y) 

v(y) 
00 

:: """' V; 2i+I 
t,-;; (2i + l)!y . 

R(y) = - L mo, cot(aa,x(y) + ba,Y)(b0 ,v(y) + a 0 , Ji - v(yF). 
j=2 
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Then eqn . (8) is 

dx 
dy 
dv 

dy 

= 
-v 

v'f=v2 
R( y) - m v cot y 

Here we specialize to the case o = o. Then R is exactly the "non-singular" 
part, and so the coefficients of the Taylor expansion can be inductively 
computed as 

R(O) 
1 +m' 

Vo 

2n + 1 [m(2n)! I: . v, B2(n-~l 22(n-i) + Rf2nl(Q)] . 
2n + m + I i=O (2, + 1)! (2(11 - i))! 

11 ~ 1 

where B, is the ith Bernoulli number, and 

Xt = -vo, 

X2 = -3V~ - V1, 

X3 = -45vg - 30v~v1 - v2 , 

X4 = -1575v~ - 1575viv1 - 210vovl - 63v5v2 - V3, 

Xr; = -99225v! - 132300v~v1 - 37800v~v1 - 840v~ - 5670v~1•2 
-1512v0v1v2 - 108viv3 - v4 , etc. 

For solutions starting at the top boundary, the Taylor expansion at w = 0 
of a solution w .,_. (z(w),u(w)) to eqn. (4) is 

z(w) 
oo Z; 2i 

= E (2·>,w • i=O I • 

u(w) = 

Let m = m02 , a = a02 and 

6 

00 

~ U; 2itl 
~ ( . )' w . 
i:O 2z + 1 . 

R(w) = - L m 01 cot((a0 , cos1r/d + b01 sin 1r/d)z(w) 
, ... ,,., 

+(a0 , sin 1r/d- b0 , cos1r/d)w] 

x[(-b0 , cos 7r /d + a01 sin 7r /d)u( w) 

+(b0 , sin 1r/d + a0 , cos1r/d)Jt - u(w)2J. 
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Then eqn. (-1) is 

dz -lJ 
= v'f=u2 dw 

du 
R(w)- maucot(aw) = dw 

and the coefficients can be computed inductively as 

R(O) 
Uo = --, 

1 +m 

u,, = 2n + 1 [m(2n)! I: _ u; B2(n-'.) (2a)2(n-i) + Rl2nJ(o)] , 
2n+m+l i=0 (21+1)!(2(n-i))! 

where B; is the ith Bernoulli number, and 

Z1 = -Uo, 

Z2 -3U~ - Ui, 

Z3 = -45u~ - 30u~u1 - u2, 

Z1 = -1575u~ - 1575u~u1 - 210u0 u~ - 63u~u2 - u3, 

Z5 -99225u~ - 132300uiu1 - 37800u~u1 - 840u~ - 5670u~u2 
-1512uou 1 u2 - 108u~u3 - u4 , etc. 

7 An Example: the Case of G2 

Now we show how the above ideas can be applied to construct a solution to 
eqn. (2) starting at the bottom boundary y = 0 and terminating at the top 
boundary y = x tan ,r /d; in fact, a solution to eqn. (3). Since the theoretical 
bases of such construction are the same for all cases involved, we shall work 
out the details in the specific case of G2 • 

Denote by y >-+ (X,..
0 (y), V,..0 (y)) the solution of eqn. (3) with initial 

condition (x0 ,0) at y = O. Denote by W 1-+ (Z,
0 (w),U,

0 (w)) the solution of 
eqn. (4) with initial condition (z0 ,0) at w = 0. 
First step: use the comparison lemma to find approximations /or:-solutions 
starting at the bottom boundary. 

Let Xo E IJ .46, 1.47] and define 
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where xi, x 2 are coefficients of the Taylor expansion at y = 0 of the solution 
Xro(Y) with Xs- 0 (0) = x0 (see Section 6). Then it is posi;ible to verify 
the hypothesis of Lemma 1 with y1 = 0.41 and conclude that X1.ro• X2,ro 

provide C1 bounds for the actual solution X.r, which are valid on the interval 
[0,0.41), that is, if 

li,ro(Y) = -x;,.,
0
(Y)/ J 1 + XJ,., 0 (Y)2 for j : l. 2, 

then 

Second step: use the above C1 bounds establish a corridor foliated by so­
lutions starting at the bottom boundary. 

We check that 

> -2.72, 

< 0.36 
-2.72, 

for x0 E 11.46.1.47] and apply Lemma 4. It follows from the argument of 
Section 5 that the Xr

0
(y) for x 0 E [1.46, 1.47] foliate a region oft.he orbit 

space from y = 0 until y = 0.36. 

Third step: use the comparison lemma to find approximation.~ for solution.<: 
starting at the top boundary. 

Use Lemma 2 to check that Z 1 ,,
0

, Z2.,
0 

defined below (obtained by the 
method of Section 6) provide C1 bounds valid on w E (0. wt] for thC' solution 
z.o(w) of eqn. (4) with initial condition z,o(0) = Zo, 

If z0 = 1.4202816622 (x 0 = 1.23), then 

z, .• o(w) = l.4202816622- 0.1881760127w' - 0.0834483267w'1 

+0.01540925912u•G - 0.00811280·1211•~ + 0.175u•10
, 

Z2., 0 ( w) 1.4202816622 - 0.1881 i60127w2 
- 0.083-1483267m4 

+0.01540925912u•,; - 0.0081 ,l28042u•~ + l.5w'° 

and Yi = 0.58. 
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If z0 = 1.4549226784 ( x0 = 1.26 ), then 

Z1,z
0
(w) = 1.454922fi784- 0.288104343lw2 

- 0.1812941968w4 

-0.09184112229w6 
- 0.05990390855wil - 5w10

, 

Z2 ,,
0
(w) l.4549226784 - 0.288104343lw2 

- 0.1812941968w4 

-0.09184112229w6 
- 0.05990390855w8 

- 0.219w 10 

and Yi = 0.55. 

Fourth step: study the intersections of solutions starting at the top bound­
ary with solutions starting at the bottom boundary. 

Let X(y), Z( w) be solutions to eqns. (3) and ( 4 ), respectively, starting at 
the bottom and top boundaries, respectively, and consider the corresponding .. 
C1 approximations X1(y), X2(y) and Z1(w), Z2(w), respectively. In order 
to show that X ( y) and Z( w) cross each other, we consider the following 
function: 

where 

I 1 
T(x,y) = (T1(x,y),T2(x,y)) = (2(xv'3+ y),ix -yv'3)) 

is the change from the coordinates (z, w) to the coordinates (x,_y). We want 
to show that it has a zero. For that, it is enough to show that ·it assumes a 
positive value and a negative value on (y0 ,y6). Let (z;,w;) = T(X2(ya),y0 ), 

(z0 , w.} = T(X(y.), y0 }. Since X(y11 ) < X 2(y0 ), we have z0 < z;. Also 
Z1(w.,) < Z(w.,). Therefore, 

z; < Z 1(w11 ) ⇒ z0 < Z(w0 ) => .F(y0 ) > 0 

Let (zl, wD = T( X1(Y&), Y•), (z., w,) = T(X(y.), Y•l• Since X1(y6) < X(y&), 
we have zl < z6 • Also Z(w6 ) < Z2(w6). Therefore, 

Z2(w.) :< zi ⇒ Z(w,) < z6 ⇒ .1"(y6) < 0 

Thus, the conditions for X ( y} and Z( w) to cross each other on (y,., y6] at 
an angle ( measured from the X-direction to the Z-direction; see Fig. 4) less 
than 1r are 

z; < Z1(w.} and Z2(w,) < zi. 
Since X 1, X 2, Z1, Z2 are decreasing, those conditions are satisfied if 
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X(y) 

Figure 4: Crossing at an angle < 1r 

Similarly, the conditions for X and Z to cross each other on [Ya, y,] at an 
angle (measured from the X-direction to the Z-direction; see Fig. 5) more 
than 1r are 

From the first step, we have the following C 1 approximations valid for 
y E (0, 0.41] for the solution Xz 0 ( w) starting at the bottom boundary with 
XzJO) = Xo-

If Xo = 1.46, then 

X1,l .46(y) = 1.--16 - 0.4558551314y2 + 0.1447836669y4 
- 0.lly6, 

X (y) = 1.46 - 0.4558551314y2 + 0.1447836669y4 
- 0.y6

• 2, 1.46 

If x 0 = 1.47, then 

X1,141(Y) = 1.47 - 0.497821895ly2 + 0.1562579343y4 
- 0.17y6, 

X (y) = 1.47 - 0.4978218951y2 + 0.1562579343y4 
- 0.06y6. 2,1 .47 

Now it is easy to apply the method above to check that Z1 42 . ( w) 
crosses X 146(:,,,) for some y E {0.28,0.30j and that it crosses X1 47(y) for 
some y E [0.20, 0.23] (in that range, w < 0.56, so that the approximations 
are still valid). Also, we check that Z1.4s .. (w) crosses X147(y) for some 
y E [0.28,0.31] and that it crosses X 1 46(y) for some y E [0.20,0.25] (in that 
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Figure 5: Crossing at an angle > 11' 

range, w < 0.55, so that the approximations are still valid). Next, con­
sider the foliated corridor (x0,y) E (1.46,1.47) x (0,0.28) 1-+ X.,0 (y). Then 
Zz0 (w) enters the foliated corridor at y = 0.28 for all z0 E (1.42 ..• , 1.45 ... ], 

Z1.42 ... ( w) enters the foliated corridor with an angle less than r and Z1 45 .. . ( w) 
enters the foliated corridor with an angle more than ,r. By continuity there 
must be an :z:0 E (1.46, 1.47) and a z0 E {1.42 ... , 1.45 ... ) such that Zz0 ( w) 
enters the foliated corridor intersecting X., 0 (y) with an angle equal to 1r, 

that is, Zz 0 (w) and X., 0 (y} are "the same" curve (see Fig. 6). Thus, we get 
a solution connecting the top and bottom boundaries and we have proved 

Theorem 1 There is an embedded minimal hypersphere in the exceptional 
Lie group G2. 

A similar argument will prove the existence of an embedded minimal hy­
persphere in each one of Sp( 4)/(Sp(2)xSp(2)), G2/ S0(4), SU(5)/(S( U(2)x 
SU(3)), Sp(5)/(Sp(2) x Sp(3)), SO(10)/U(S) and E6 /(U(l) x,

2 
Spin(l0)). 

In the first two cases the generating solution curve of eqn. (2) connects the 
boundary y = x tan r /d to the boundary y = 0, as in the case of G2 • How­
ever, in the remainig four cases ( d = 4 ), the vertex ( 7' /2, r /2) ia also a fixed 
point of the corresponding K-action and the generating solution curve of 
eqn. (2) connects the boundary y = x to the boundary x = r /2. 
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y = 0.28 w < 0.48) 

Figure 6: Auxiliary solutions entering the foliated corridor 
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