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Abstract

The goal of this work is to describe an efficient algorithm for finding a binary segmentation of an image such that the indicated
object satisfies a novel high-level prior, called local band, LB, constraint; the returned segmentation is optimal, with respect
to an appropriate graph-cut measure, among all segmentations satisfying the given LB constraint. The new algorithm has
two stages: expanding the number of edges of a standard edge-weighted graph of an image; applying to this new weighted
graph an algorithm known as an oriented image foresting transform, OIFT. In our theoretical investigation, we prove that
OIFT algorithm belongs to a class of general fuzzy connectedness algorithms and so has several good theoretical properties,
like robustness for seed placement. The extension of the graph constructed in the first stage ensures, as we prove, that the
resulted object indeed satisfies the given LB constraint. We also notice that this graph construction is flexible enough to
allow combining it with other high-level constraints. Finally, we experimentally demonstrate that the LB constraint gives
competitive results as compared to geodesic star convexity, boundary band, and hedgehog shape prior, all implemented within
OIFT framework and applied to various scenarios involving natural and medical images.
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1 Introduction In many scenarios, the high-level, application domain-

specific knowledge of the user is often required in the
Image segmentation is one of the most fundamental and chal- ~ segmentation process because of the presence of heteroge-
lenging problems in image processing and computer vision.  neous backgrounds, objects with ill-defined borders, field

inhomogeneity, noise, artifacts, partial volume effects, and
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by modeling neighborhood relations of picture elements from
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methods, including the min-cut/max-flow algorithm, can
provide global optimal solutions according to a graph-cut
measure in graphs and can be described in a unified man-
ner according to a common framework, which we refer to as
generalized graph cut (GGC) [5]. (See also [6].)

Oriented image foresting transform (OIFT) [30] and ori-
ented relative fuzzy connectedness (ORFC) [2] are extensions
of some GGC methods for directed weighted graphs, which
have lower computational complexity compared to the min-
cut/max-flow algorithm [3]. Also, as we will show, OIFT
belongs to a class of general fuzzy connectedness algo-
rithms described in [9]. OIFT is a flexible method, which
has been extended to support the processing of global
object properties, such as connectedness [26,27], shape con-
straints [13,29], boundary polarity [2,28], and hierarchical
constraints [22]. These high-level priors are potentially use-
ful for object segmentation, allowing the customization of
the segmentation to a given target object. Shape constraints
can be used to eliminate undesirable intricate forms, improv-
ing the segmentation of objects with more regular contour.
Some shape constraints demand more sophisticated algo-
rithms, such as the boundary band constraint (BB) [13].
The OIFT with the BB constraint allows the segmentation to
follow a pre-established template of shapes, with variances
within a range of permitted deformations around an arbitrary
scale, while other approaches handle scale inefficiently based
on brute force, by computing the graph cut for each level of
a Gaussian pyramid [17].

In this work, we propose a novel shape constraint, named
local band constraint(LB), to be used for object segmentation
in the generalized GC framework which, in its limit case, is
strongly related to the boundary band constraint [13]. The LB
constraint demonstrates competitive results with higher accu-
racy when compared to BB, hedgehog [20,21], and geodesic
star convexity [19] in various scenarios. It can also be eas-
ily combined with other high-level priors already supported
by OIFT, considerably advancing the targeted segmenta-
tion [23]. For the sake of simplicity, we are only presenting its
results for binary segmentation. But the LB constraint can, in
theory, be incorporated into the layers of a hierarchical lay-
ered digraph [22] to perform also multi-object segmentation.

The next section gives the required background on image
graphs and GGC. In Sects. 3 and 4 we show, respectively, that
OIFT can be seen as belonging to the generalized graph cut
and the general fuzzy connectedness frameworks. This is the
new material that has not been presented in the conference
version of the paper [14]. The proposed local band constraint
is presented in Sect. 5. In Sect. 6, we experimentally evaluate
LB, comparing it to previous graph-based works on shape
constraints. Our conclusions are stated in Sect. 7.
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2 Background

An image can be interpreted as a directed graph (digraph)
G = (N, A) whose nodes/vertices are the image pixels in
its image domain A/ C Z" and whose arcs/edges, elements
of A, are the ordered pixel pairs (s, t) of vertices that are
adjacent, that is, spatially close (e.g., 4-neighborhood, or 8-
neighborhood, in the case of 2D images). We write t € A(s)
or (s, t) € Atoindicate that is adjacent to s. We will usually
assume also that our image graph G is edge-weighted, that
is, that each arc (s,#) € A has a fixed weight w(s,t) €
[—o0, oo] (often w (s, t) = ||Z(t) — Z(s)]| for an image with
values given by Z(¢)). An edge-weighted digraph will be
denoted as G = (N, A, w). A digraph G is symmetric if, for
all (s, t) € A, thepair (z, s) is also an arc of G. Note thatin the
symmetric graphs we can still have w (s, 1) # w(t, s). In this
work, all considered graphs are symmetric and connected.

A path (in G) of length £ > 0 is any sequence p, =
(vo, ..., vg) of vertices, with terminus v = vy, such that
(vj,vj41) € Aforany j < ¢;itis fromS C Ntov e N
when vy € S and vy = v; if (v, w) € A, then p,"w denotes
the path (v, ..., v¢, w). Let I[1g be the family of all paths in
G and consider a path-cost function ¢ : [Tz — [—00, 00].

Image segmentation can be formulated as a graph partition
problem subject to hard constraints. In the case of binary seg-
mentation (object/background), we consider two non-empty
disjoint seed sets S| and Sy containing pixels selected inside
the object O and in its exterior, respectively. Alabel, L(t) = 1
forall t € Sy and L(tr) = 0 for all ¢+ € Sy, is propagated
to all unlabeled pixels during the execution of seed-based
segmentation algorithms, see, e.g., [30]. For a label map
L: N — {0, 1} the object O identified with it is defined
as the set L=1(1), where L=1(i) :={t e N': L(r) = i}.

In what follows, the key tool for finding optimized label
maps L is OIFT Algorithm 1, which comes from [28,30].
The OIFT will be a part of our novel algorithm. The map L it
returns constitutes a global optimum solution that maximizes
the following graph-cut measure

emin(L) := min{w(s, t): (s,t) € A& L(s) > L(1)} (1

subject to the seed constraints [28,30]:

Proposition 1 (Mansilla and Miranda 2013) Let G = (N,
A, w) be a symmetric edge-weighted image digraph. Let L
be a segmentation returned by Algorithm 1 applied to G and
non-empty disjoint seed sets Sy and Sy. Then L satisfies the
seed constraints and maximizes the energy &min, given by (1),
among all segmentations satisfying these constraints.

Notice that in line 12 of OIFT Algorithm 1 the weight
w(t, s) of the reversed parallel arc (¢, s) is used (rather than
that of chosen (s, t) € A). That is why a symmetric digraph
is required.
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Algorithm 1 — SEGMENTATION ALGORITHM OIFT

INPUT: Symmetric edge-weighted image digraph (N, A, w)
and non-empty disjoint seed sets Sp and Sj.

OUTPUT: The label map L: N' — {0, 1}.

AUXILIARY:  Aninitially empty set Q, variable tmp, and an array of
status S: N — {0, 1}, where S(¢) = 1 for processed
nodes and S(¢) = 0 for unprocessed nodes. The value
V (t) represents a potential penalty that a change of L(¢)
would contribute to &min(L).

1. Foreach: € NV, do

2 Set S(t) <~ 0and V (t) < oo;

3 Ifr € Sy, then

4. L V() < —o0, L(t) < 0, and insert t in Q;
5. If t € S| then

6 L L V(@) < —oco, L(t) < 1, and insert t in Q.
7. While O # ¢ do

8. Remove s from Q such that V (s) is minimum.

9. Set S(s) < 1.

10. For each (s, t) € A such that S(t) = 0 do

11. If L(s) =1, thentmp < w(s,1).

12. Else tmp < w(t,s);

13. If tmp < V(¢), then

14. Set V(t) < tmp and L(t) < L(s).
15. L Ifr ¢ Q, theninsertt in Q.

16. Return L.

The OIFT algorithm is based on a label propagation from
the seeds, such that the growing object avoids traversing high-
weighted arcs. The node propagation priority is governed
by map V, such that the lower the value V (¢) the higher its
priority. Initially, seeds are initialized with maximum priority
V(t) = —oo on lines 1-6. During propagation (lines 7—-15),
nodes with S(¢) = 1 reach their final label assignment and
can no longer be modified. Figure 1a—g shows a step-by-step
illustration of the execution of Algorithm 1, and its resulting
optimal cut is shown in Fig. 1h.

Regarding the computational complexity of Algorithm 1,
the nodes in Q should be organized according to an appropri-
ate data structure of a priority queue in order to support the
efficient removal of its element with minimum value of V (¢)
from line 8. If a binary heap is used for Q, then Algorithm 1
can be implemented in O((m + n)logn), where n = |N]|,
m = |A|, and | - | denotes the set cardinality. Note that in
this case the position of a node ¢ in the binary heap must be
updated whenever we change its value of V (¢) in line 14. This
computational complexity can be improved to O (m+n x K),
when the weights are integers in a small interval of size K,
by using bucket sorting. Note also that the special configu-
ration of infinite-weight arcs is not a problem as they can be
assigned to a special bucket.

OIFT Algorithm 1 can also be adapted for multi-object
segmentation by computing a related variant in a hierarchical
layered digraph [22].

In the next two sections, we will show that OIFT belongs
to two general algorithmic frameworks: GGC and GFC.

o] 13
3 4

2!4 1!3 1!
i5 k 4

(s f(1 52

2
] 13
3 4
2!4 1!3 ] ,
i5 k 4 J2
e (@B
2 3
13 42 3
ml n3
4 ¢
4 1

J2
RN 2 R
3 2
1 2 32 4
n3 0.4
()
1 3

N
2
fin-
S E 6

(¢) 2nd iteration

(d) 3rd iteration

g2
sl 13
3 4 1
2!4 1!3 1!2 3!1
i5 J2 k 4
e—o—z-:@
2 3 2
1314233244
m n ©
—-@.—g.—
4 1 3

(e) 4th iteration

(g) 16th iteration

(h) The resulting cut

Fig. 1 An example of the step-by-step execution of Algorithm 1. a
An image digraph with 4-neighborhood and seeds Sop = {/} (in blue)
and S; = {f} (in yellow). b The label propagation after one iteration
of the main loop (lines 7-15), where the node colors blue and yellow
indicate the labels L(¢) = 0 and L(¢) = 1, respectively, a pink-colored
background indicates pixels in Q, while a green background indicates
processed nodes in {r € N': S(¢) = 1}. The values V (¢) are indicated
inside the nodes. c—g The results of the next iterations. h The arcs in
the resulting optimal cut {(s, ) € A: L(s) > L(t)} with epjn(L) =
(j, k) =3 (Color figure online)
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Algorithm 2 — OIFT* ALGORITHM

INPUT: Image graph (N, A), weight maps wo and wy, seed
sets Sp and Sj.
OUTPUT: The label map L: N — {0, 1} and an array [ ] such
that if S(r) = 1, then 7[¢] is a path from S to ¢.
AUXILIARY:  Aninitially empty set Q, variable zmp, the cost function
V: N — [—00, 0], and a status function S: N' —
{0, 1}, where S(¢) = 1 for processed nodes and S(r) =
0 for unprocessed nodes.
1. Foreachr € NV, do
2 Set S(t) < 0, V(1) < —o0, and w[t] < (t);
3 If t € Sy, then
4. L V(@) < oo, L(t) < 0, and insert t in Q;
5. If t € S| then
6. L L V@) < oo, L(t) < 1, and insert t in Q.
7. While Q # ¢ do
8. Remove s from Q with V(s) > V(t) forallt € Q;
9. Set S(s) < 1,
10. For each (s, t) € A such that S(t) = 0 do
11. tmp < wrs)(s,t);
12. If tmp > V(¢) then
13. | Set V(1) < tmp, w[t] < w[s]'t and
L(t) < L(s).
14. L L L Ifr¢ Qtheninserttin Q.

3 OIFT as a Generalized Graph-Cut Algorithm

The biggest difference between OIFT Algorithm 1 and the
algorithms in the GGC framework [5] is that in the for-
mer case we maximize the energy function, while in the
latter case we minimize its analog. To represent OIFT as a
minimization problem it is enough to reverse in it all inequal-
ities, exchange terms “c0” with “—00” and “minimum” with
“maximum,” and replace the weight function w(s, ) with
a function! @(s, 1) := ¢!, Specifically, we represent
OIFT as OIFT* Algorithm 2, for which we have the follow-
ing result.

Proposition 2 OIFT Algorithm 1 applied to (N, A, ) and
the seed sets Sy and Sy can return the label map L if, and only
if, L can be returned by OIFT* Algorithm 2 applied to the
same graph, seed sets, and the weight functions wy and w
(on A) defined as wy(s, t) = w(t, s) and wi(s, t) = (s, ).

An easy proof of Proposition 2 is left to the reader. (We
introduce in OIFT* the functions w; and an explicit path map

7[] to help in our analysis in the next section.)
Now, let

Xp:={(s,t) € A: L(s) > L(1)}

! In fact, we canuse h(w (s, 1)) in place of e~®SD when h is any strictly
decreasing function from R into [0, o).

@ Springer

be the (standard) graph cut associated with the partition
(L=1(1), L71(0)) and let us define the functional® Fy : A —
[0, 0o) by putting, for every(s, t) € A,

—o60 for (s, 1) € Xp,

0 otherwise.

e
Fr(s,t) =

Then, OIFT* Algorithm 2 minimizes the energy
[ Frlloo := max{FL(s,1): (s, 1) € A},

that is, the Lo, norm of the functional Fy. This puts OIFT*,
which is equivalent to OIFT, within the framework of GGC,
see, e.g., [5]. (Recall, that the usual graph-cut minimization,
associated with the max-flow/min-cut theorem, is defined
as L; norm of the functional Fj, defined as ||FL|1 =
Z(S,I)E.A Fr(s,1).)

A detailed example of OIFT* Algorithm 2, based on the
weights w (s, t) of Fig. 1a, is presented in Fig. 2.

4 OIFT Within General Fuzzy Connectedness
Framework

In the previous section, we have seen that OIFT Algorithm 1
belongs to the GGC framework. Here, we will argue that it
can be also viewed as belonging to a class of general fuzzy
connectedness, GFC, algorithms [9]. This will allow us to
deduce that OIFT has the properties that all algorithms in
GFC are known to have.

In what follows, for a fixed digraph (N, A), weight maps
wo and w1, and the seed sets Sp and Sy, define the path costs:

Ymin({Vo, . .., V) = 1?}2[ WL () (Vj—1,V))
Ylast ((V0, « .., V) = WL () (Ve—1, Ve)
for £ > 0 and

fy SoU Sy,
Ylast ((v0)) 1= Yrmin ((v0)) 1= o0 or vy € Sy |

—oo otherwise.

The map Ymin is the standard FC cost [8], while 11,4, explic-
itly defined in [28] (using symbols f; ., and f, ), is naturally
associated with OIFT.

To place OIFT in the GFC framework, we will first repre-
sent OIFT* of Algorithm 2 as MOFS* Algorithm 3, which is
a version of MOFS algorithm from [9]. The key result here is
the following theorem, which is considerably less clear than
Proposition 2, since the conditions in lines 8 and 12 of the
algorithms have different forms.

2 Shortly, 1 := - xx,, where xx, : A — {0, 1} is the characteristic
function of X .
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Fig. 2 Tllustration of OIFT* Algorithm 2. a, b The weight func-
tions wo(s, ) = o(t,s) and wi(s,t) = (s, t), using o(s,t) =
100 - e=@" truncated to integers for display purposes, where (s, 1)
are the weights from Fig. 1a. ¢ The OIFT™* result using the same seeds
So = {l} and S| = {f} from Fig. 1a, where the node colors blue and
yellow indicate the labels L(r) = 0 and L(r) = 1, respectively, and the
values V (¢) are indicated inside the nodes. The depicted arcs represent
the resulting optimal cut X; with || F7 [|eo = e~©Y%) ~ 0.04979. d The
computed paths 7 [¢] from Sy () to 7 represented in backward, where the
arrows indicate the predecessor of each node in the paths. For instance,
we have w[p] = (I, p), w[n] = (I, k,0,n), w[d] = (I, k, g, h,d),
wlcl = (f,e,a,b,c), w[jl = (f,Jj)and w[m] = (f,e, i, m) (Color
figure online)

Theorem 3 (OIFT* in GFC format) Any output of OIFT*
Algorithm 2 is identical to that of MOFS* Algorithm 3. In
particular, the algorithms MOFS* and OIFT are equivalent.

Algorithm 3 — MOFS* ALGORITHM

INPUT: Image graph (N, A), affinities wo and w, seed sets Sp
and S;.
OUTPUT: The label map L: N' — {0, 1} and an array =[] such
that if S(r) = 1, then 7[¢] is a path from Sy to ¢.
AUXILIARY:  Aninitially empty set Q, variable tmp, the cost function
V: N — [—00, 0], and a status function S: N' —
{0, 1}, where S(¢) = 1 for processed nodes and S(r) =
0 for unprocessed nodes.
1. Foreachr e N, do
2. Set S(t) < 0, V(1) < —oo, and w[t] < (t);
3. If t € Sy, then
4. L V(@) < oo, L(t) < 0, and insert t in Q;
5. If t € S| then
6. L V(@) < oo, L(t) < 1, and insert t in Q.
7. While Q # ¢ do
8. | Remove from Q an s in

M ={u € Q: Ymin(mw[u]) = max;eg Ymin (71}
such that V(s) > V(u) forallu € M;

9. Set S(s) < 1;
10. For each (s, t) € A such that S(t) = 0 do
11. tmp < wrs)(s,1);
12. If WYimin (7T [sTt) > Ymin (T [2]) OF
[Ymin (T [517) = Ymin (7w [£])
and tmp > V()] then
13. | | | Set V(1) < tmp, w[t] < n[s]'t and

L(t) < L(s),

14. L L L Ifr¢ Qtheninserttin Q.

We will postpone the proof of Theorem 3 to the end of
this section.

Notice that although OIFT* Algorithm 2 has a format of
the MOFS algorithm from the GFC framework, it is not pre-
cisely of this format. The first difference is that the main
GFC algorithm MOFS, when it removes a vertex s from Q,
does not have the secondary condition “V (s) > V(u) for
all u € M” as we have in line 8. But this just means that in
MOFS* we are just a bit more precise, when making such
choice.

The bigger difference is that MOFS allows some overlaps
of the object and background. Specifically, they overlap on
the tie zone set TZ defined as the set of all v € N for which
MOFS, whose output is unique, produces the paths of the
same strength from the object and the background. The issue
of how to deal with the set TZ is discussed in detail in [9].
In particular, if wo(s, t) # wi(u, v) for all edges (s, t) and
(u, v), then TZ is empty and the object returned by MOFS*
(or OIFT*) is identical to that of MOFS output. Other solu-
tions of the “overlapping problem” are also discussed in [9].
The reader should be warned, however, that a simple minded
removal of TZ from the MOSF object (with overlap) may
create a set with vertices that are not connected, within the
object, to the seeds.

4.1 Proof of Theorem 3

First notice that during the execution of OIFT* Algorithm 2,
for any u € Q either u is a seed or w[u] = w[w]'u for some
w € N with S(w) = 1.

To prove the theorem, it is enough to show that during
the execution of OIFT* Algorithm 2, the condition from line
8 holds, if and only if, the condition from line 8 of MOFS*
Algorithm 3 holds, and similarly, for the conditions from line
12.

To see this, we will prove that at any time of the execution
of OIFT* Algorithm 2 past line 6 of the code, the following
holds for every u, v € N:

@@ if Sw) = 1 and S(v) = O, then Yymin(wlu]) >
Vmin (T [v]);
i) if Sw) = Sw) = 0 and V(u) > V(v), then

Ymin (77 [4]) = Ymin (7T [V]).

@ Springer
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Clearly this holds directly after the execution of line 6.
Thus, it is enough to show that these properties are preserved
by any consecutive single execution of the while loop, that
is, of lines 8—14.

So, fix u, v € N for which we will be showing preserva-
tion of (i) and (ii). If u is a seed, then after the initialization
we have Ymin([u]) = V(u) = oo, so (i) and (ii) hold. So,
we will assume that u is not a seed. Next, assume that during
our execution of lines 8—14 we have taken s from Q.

To see that (ii) is preserved, assume that after the execu-
tion of lines 8—14, we have S(u) = S(v) = 0. During the
execution, the values of either V (v) or m[v] can change only
in line 13, when v = ¢ for ¢ chosen in line 10 and, during the
execution of line 12, we have w5 (s, v) = wr((s,t) =
tmp > V(t). Hence, the execution of line 13 results with
V(v) = V(t) becoming w5 (s, v) and 7 [v] = 7 [t] becom-
ing w[s]'v = m[s]'t so that

Ymin (77 [v]) = min{Ymin (7w [s]), wr ) (s, v)}.

The similar analysis holds when either of the values V (1) or
m[u] is changed during the execution of lines 8—14.
Now, consider 4 cases:

— If none of the values V (v), w[v], V(u), or m[u] change
during the execution of lines 8-14, then clearly (ii) is
preserved.

— If, during the execution, we applied the changes in line
13 to both u# and v, then V(«) > V(v) implies that
WL (s) (s,u) > u)L(S)(s, v) and so,

Ymin (77 [u]) = min{Ymin (T[s]), wi(s) (s, u))
> min{Ymin (7 [s]), wr(s) (s, v)}

= Wmin (m[v])

giving desired (ii).

— If, during the execution, we applied the changes in line
13 only to u, then Yrmin (7w [u]) = min{yrmin (T[s]), wr(s)
(s, )} > Ymin(@[s]) > Ymin(m[v]), where the last
inequality is implied by V(s) > V(v), ensured by the
choice of s from Q, and the recursive assumption (ii).
Thus, indeed (ii) is preserved.

— Finally, if, during the execution, we applied the changes
inline 13 only to v, then Vi 1q () = View (U) > View (V) =
w(s)(s, v). Also, since u is not a seed, we have 7 [u] =
7 [w]'u for some w € N with S(w) = 1. By (i), used just
before we have taken s from Q, we have Y¥rpin ([w]) >
Ymin (7t [s]). Therefore,

Ymin (77 [1]) = min{ymin (7 [w]), V (1)}
min{min (7[s]), wr () (s, v)}

Ymin (7T [V])

v
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finishing the proof of preservation of (ii).

Next, we will prove preservation of (i). So, assume that after
the execution of lines 8—14, we have S(u) = 1 and S(v) =
0. Then, by (i), used just before we have taken s from Q,
we have Ymin(w[u]) > Ymin(r[s]). Thus, it is enough to
show that right after the execution of lines 8—14, we have
Ymin(7T[s]) = Ymin(w[v]). This clearly holds if the values
V (v) or m[v] were not changed. So, assume that they have
been changed. Then, as before, we see that

Ymin (77 [s]) = min{Ymin (7 [s]), wL(5) (s, )} = Ymin (T [V])

finishing the proof of preservation of (i) and of the theorem.

5 The Local Band Constraint

Let C: N' — [0, 00) be a fixed vertex cost function asso-
ciated with an image digraph G = (N, A). Usually C(¢)
is defined as a minimum of all possible path-cost functions
for the paths from S to 7. The path cost can be its geodesic
length (i.e., Ysum ({vo, - .., vg)) := Zlgjge lvj—1—vjl),as
used in geodesic star convexity, but other path costs are also
useful. It can also be based on templates of shapes discussed
in [4], which will be considered for evaluation in Sect. 6.

The goal of this section is to construct an extension of
an edge-weighted digraph G = (N, A, w), discussed above
to the edge-weighted digraph G’ = (N, A', @'), so that
the application of OIFT (Algorithm 1) to G’ produces an
optimized object satisfying the local band constraint defined
below.

To relate local band constraint to boundary band constraint
introduced in [13], we first introduce the following notion of
local boundary band constraint, LBB. In this definition, the
symbol || - || denotes the standard Euclidean L, norm on
N C Z?. The boundary of an object O is defined as

bd(O) = {t € O: 3s € A(¢t) such that s ¢ O}.

Definition 1 (Local boundary band (LBB)) For A, R > 0
and a cost map C: N/ — [0, c0), a pixel 1 € O is LBBg
(satisfies local boundary band constraint with band size A and
parameter R) provided C(t) < C(s) + A for all s € bd(O)
such that ||s —¢|| < R. An object O'is LBBg provided every
t € O is LBBA.

Definition 2 (Boundary band constraint (BB)) For A > 0,
an object O is BB 4 (satisfies boundary band constraint with
band size A) provided it is LBBS, that is, when C(t) <
C(s)+ Aforallt € O and s € bd(O).

As a consequence of Definition 2, we have that bd(O)
is contained in the band {s € N: C(s) € (m — A, m]},
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(b)

Fig.3 Brain segmentation example in MRI examination. a, b Segmentation results by OIFT without and with the BB constraint, respectively. ¢, d
The BB fixed size band evolves from the seeds, adapting to the image contents. Note that the segmentation boundary achieved in b resides within

the band area in d

where m = max{C(¢): t € O}. In particular, we have
|[C(s) — C(t)] < Aforall s, t € bd(O). Consequently, this
regularizes the shape of bd(Q0), see [13]. Therefore, the idea
of BB is to establish a maximum possible variation of the
cost C between the boundary points bd(O) of the object
O to be segmented. This is expected to prevent the gener-
ated segmentation to be irregular in relation to the C-level
sets [13]. During the OIFT computation subject to BB, the
band changes its reference level set, allowing a better adapta-
tion to the image content, while its width is kept fixed (Fig. 3).
Note that this bears some resemblance to narrow band level
set [31] and to the regional context of a level line used in [32].

In BB, however, local changes in a part of the object can
generate constraint violations in any other part of its bound-
ary, usually resulting in greater sensitivity to the initialization
of the cost map C and to the positioning of internal seeds,
while in LBB its consistency checks are limited locally, lead-
ing to a more flexible solution. Clearly, every BB 4 object
is LBBg, but the converse is not true. Nevertheless, for
every C and A, there exists an R € (0, oo) such that the
property LBBﬁ implies BB 4. (This certainly holds for any
R > max{|s—t||: s,t € N'}.) Thus, BB 4 can be considered
as a limit, as R — oo, of LBBﬁ.

In order to facilitate the implementation, we consider an
approximate alternative definition, named the local band
constraint (LB), in order to avoid the continuous analysis of
the dynamic set of boundary pixels inside the disks of radius
R at runtime, but keeping the main idea of locally restricting
the band effects. This effort resulted in the following similar
definition.

Definition 3 (Local band constraint (LB)) For A, R > 0 and
acostmap C: N — [0, 00), apixel t € O is LB§ (satisfies
local band constraint with band size A and parameter R)
provided C(t) < C(s) + A for all s € N\O such that
Ils —¢]| < R. An object O is LBg provided every t € O is
LBX.

In other words, if O is LBZ, then for any pair of pixels
s and ¢ such that ||s — ¢]] < R and C(t) — C(s) > A,

HEEIBRAE 11[1ef9[8]716]5 [Mefo8I7Te]5
1p[9}8]7 615 199187 N 1019187615 %
716[5[4[3 716543 716543
8(7]6]5(4[3[2 8|7]6|5(4[3]2 6[5(4[3[2
6[5[4]3 6(5/4 6[5[4]3
716[5[4%3 8| 716[5[4%3 716]5[4%3
9 6[514]3 9 6 3 9 6514[3

(a) O (yellow) (b) bd(O) (yellow) (c) Disks R & R+ .

Fig. 4 Example of Proposition 4, where “t is LB§+’ ” and ‘1 is
LBB§+8” forR=2.5,r=10,A=1,and§ = 1.a O, b bd(0), and
c the disks of radii R and R + r

we have that r € O implies s € O. Note that neither of
the statements “O is LBX” and “O is LBBR” implies the
other. Nevertheless, they are closely related, as shown by the
following result.

Proposition4 Let r = max; nedlls — ¢l and § =
max  ;yes|C(t) — C(s)|. If A,R > 0 and O is LBR*"
then O is LBBR .

Proof Choose at € 0. Then C(t) < C(s) + A forall s €
N\O such that ||s — ¢]] < R + r. We need to show that
tis LBB§+8, that is, that C(t) < C(u) + A + & for all
u € bd(O) such that ||u — ¢|| < R. So, take such u. Then,
there is an s € A\ O with (u, s) € A. Notice that ||s — ¢|| <
Ils —ull + lu — t|| < r + R. Using this and the definition of
S,wegetC(t) <C(s)+A<Cu)+A+1|C(s)—Cu)| <
C(u) + A + 6, as needed. O

Figure 4 illustrates Proposition 4, showing a pixel ¢ that
is both LBX*" and LBBX _ ;.

Since usually numbers § and r are small, the difference
should be between the objects with properties LBX , LBA*",
LBBA 42OT LBBX and, forlarge R, each approximates BB 4.

The LB constraint can be implemented, as proposed in
Algorithm 4 for OIFT, by considering a modified graph G’
with the LB constraint embedded in its arcs. In general, the
worst cost should be oo for min-sum optimizers (i.e., min-
cut/max-flow algorithm) and —oo for max—min optimizers.
In order to maintain a symmetric graph, we also create anti-
parallel arcs with the best cutting cost (zero for min-sum and
oo for max—min optimizers) if they do not exist (line 5 in

@ Springer
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Algorithm 4). Note that in G’ the set of displacement vectors
D(s) = {t —s : t € A'(s)} varies for different positions of s,
leading therefore to a translation-variant adjacency relation.

Algorithm 4 — SEGMENTATION BY OIFT SUBJECT TO
THE LB CONSTRAINT

INPUT: Symmetric edge-weighted image digraph G =
(N, A, w), non-empty disjoint seed sets S; and Sy,
costmap C: N — [0, 00), and parameters R > 0 and
A > 0.

OUTPUT: The label map L: N — {0, 1}.

AUXILIARY:  Edge-weighted digraph G’ = (N, A, ') with A C

A

1. Set A < Aand v < w.
2. Foreach (s,t) € {(p,q) e N x N :
lp—qll < R&C(p) > C(q) + A} do

3. | (s, 1) ¢ A thenSer A’ < AU {(s,1)} and
define o' (s, t) := —oo.

4, Else Redefine ' (s, t) := —o0.

5. If (z,s) ¢ A’ then Ser A’ < A" U {{t,s)} and

define o' (t, 5) 1= oo.
6. Compute, by Algorithm I, L: N — {0, 1} for G’ and

seed sets S| and Sy.
7. Return L.

Theorem5 Let G = (N, A, w) be a symmetric edge-
weighted image digraph with w: A — R. Let L be a
segmentation returned by Algorithm 4 applied to G, non-
empty disjoint seed sets S and Sy, cost map C: N —
[0, 00), and parameters R > 0 and A > 0. Assume that
S and Sy are LB g-consistent, that is, that

(%) there exists a labeling satisfying seeds and LBg con-
straints.

Then L satisfies seeds and LBg constraints and maximizes
the energy emin, given by (1) w.rt. G, among all segmenta-
tions satisfying these constraints.

Proof 1In this proof sgin and sgi/n denote the energy emin with
respect to G and G’, respectively. Let £ := {(p, q) € N x
N:0<|lp—qll = R&C(p) = C(g) + A} and M :=
{(s,1): (s, 1) € L}\A.Itiseasy to see that after the execution

of lines 1-5 we have A’ = AU LU M and

for (s, 1) € L,
for (s, t) € M,
w(s,t) otherwise, that is for (s, ) € A\L.

—00

w'(s,1) = {00

Also, by Proposition 1, after the execution of line 6 the label-
ing L satisfies the seed constraints and maximizes the energy
Egi/n among all segmentations satisfying seed constraints. We
need to show that L satisfies also LBQ constraints and that
it maximizes ¥, among all segmentations satisfying these

min
constraints.

@ Springer

To see this, let L': N' — {0, 1} be an arbitrary labeling
satisfying seeds and LBg constraints. It exists by (x). Then,
by the definition of LBg constraints, the set T’ := {{(p, q) €
A’ L'(p) > L'(g)} is disjoint with £. In particular,
emin(L) = egin(L))

= min{w/(s,1): (s,t) € A & L'(s) > L' (1)}

> —0Q.
Hence

eGi (L) = min{o/(s,1): (s,1) € A' & L(s) > L(1))

> —00,

so that the set T := {(p,q) € A’": L(p) > L(q)} must be
also disjoint with £. This means that L satisfies LBQ con-
straints. To finish the proof we need to show that agin(L) >
sgm(L/ ). For this notice first that

ein(L) = el (L) &)
Indeed, T/ U T is disjoint with £, so (s,t) € A" and

L'(s) > L'(r) implies that (s, r) € (A\L) U M. Thus, since

o' = won A\L and ' = 00 on M,

emin(L)

=min{w/(s,t): (s,t) € A & L'(s) > L' (1)}

(a) Circle template

(d) Hedgehog 6 = 45°

(e) Local Band A = 2

Fig.5 Coinsegmentation by OIFT with a circle template in a 250 x 185
image
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(a) Square template

(d) Hedgehog 6 = 45° (e) Local Band A =2

Fig. 6 Wall tile segmentation by OIFT with a square template in a

576 x 881 image

=l (L),

min
as needed. Finally, using (2) for L and L', we obtain

G (L) = eGi (L) = €81 (L)) = G, (L),

min min min

finishing the proof.
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(b) wall tile

Fig. 7 The accuracy curves for different horizontal displacements of
the internal seeds

Table 1 The computational time of Algorithm 1 on G’, without and
with transitive reduction (TR), for the tile segmentation (Fig. 6), for
different LB parameters on an Intel Core i3-5005U CPU 2.00 GHz x4
and the percentage gain of using TR

Time (ms) Time (ms) Percent gain
without TR with TR

min ({&'(s, 1)z (s, 1) € A\L & L'(s) > L' (1)} U {00})
min ({w(s, 1): (s,1) € A& L'(s) > L' (1)} U {o0})

A=1,R=6 356.2 116.6 67.3%
A=1,R=38 581.8 175.7 69.8%
A=1,R=10 886.5 186.8 78.9%
A=1,R=12 1438.8 218.4 84.8%
A=2,R=6 329.0 248.6 24.4%
A=2,R= 521.2 295.7 43.3%
A=2,R=10 823.7 340.8 58.6%
A=2,R=12 1429.7 361.8 74.7%
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Table2 The number of arcs of G’, without and with Transitive Reduc-
tion (TR), for the tile segmentation (Fig. 6), for different LB parameters
and the percentage gain of using TR

|A’| without TR | A’| with TR Percent gain
A=1,R=6 51,342,944 12,189,774 76.3%
A=1,R=38 91,391,300 16,260,890 82.2%
A=1,R =10 149,234,880 20,349,830 86.4%
A=1,R =12 208,879,992 24,420,058 88.3%
A=2,R=6 43,204,080 26,245,554 39.3%
A=2,R=8 79,181,320 34,360,266 56.6%
A=2,R=10 132,935,960 42,510,658 68.0%
A=2 R=12 188,510,844 50,623,754 73.1%

6 Experimental Results

In this section, we compare LB with shape constraints com-
monly employed in graph-based segmentation: geodesic star
convexity [19], boundary band [13], and hedgehog shape
prior [20,21]. We opted to compare them using max—min
optimizers because BB is not yet supported by min-sum opti-
mizers [13].

From the IFT [15] perspective, when the cost map
C is the geodesic length (i.e., Vsum((vo,...,ve)) =
Pi<j<e lvj—1=v;l), from Sy in G = (N, A), the previous
constraints are based on different attributes of a previously
computed minimal forest in G rooted at S;: Geodesic star
convexity uses the predecessor map [29], BB and LB con-
straints exploit the cost map directly, and Hedgehog uses the
gradient of the cost map as vector field.

Figure 5 shows the segmentation results by OIFT using
different methods, w (s, t) = || Z(t) —Z(s)|| and a circle tem-
plate, as reference cost map, centered on the center of mass
of the internal seeds. The BB constraint fails to give good
results compared to local band, due to its greater sensitivity
to the template positioning.

Figure 6 shows some results of a tile segmentation using
a square template and w(s, t) = ||Z(¢t) — Z(s)||. In order to
measure the sensitivity of the most promising methods for
different seed positioning, in Fig. 7 we show the accuracy
curves using internal seeds in a circular brush of radius 5
pixels with horizontal displacements relative to the object’s
center and background seeds at the image frame. Note that

- .‘

—
c
R
L
=
[0]
Q
o
[0]
Q
[a]
0.75
256x192 512x384  768x576 1024x768 1280x960 1536x1152 1792x1344
Image size
No shape priors —+— Boundary Band A=30
Star Convexity —e—  Boundary Band A=60 —&—
Hedgehog 6=40° Boundary Band A=90 —+—
Hedgehog 6=45° Local Band —8—
Hedgehog 6=50°
(@
1
—
c
o
L
=
[]
Q
o
[0]
2
o
0.95
256x192 512x384  768x576 1024x768 1280x960 1536x1152 1792x1344
Image size
Hedgehog 6=40° Boundary Band A=30
Hedgehog 6=43° —+— Boundary Band A=60 —&—
Hedgehog 6=45° Boundary Band A=90 —+—
Hedgehog 6=47° —=— Local Band —8—

(b)

Fig. 9 a The mean accuracy values to segment the archaeological
fragments for different image resolutions. b Zoomed results (accuracy
> 95%)

for the coin segmentation, LB (R = 3.5 and A = 2) had
slightly more stable results compared to hedgehog, giving
almost perfect results for 68.2% of the maximum possible
horizontal shift in the coin (radius 44 pixels). BB constraint
with A = 10 had significantly lower robustness to seed dis-
placements (11.4% of the maximum shift). For higher delta
values, BB became unstable. It surprisingly had better results
for a left-shifted position to avoid false positives on its right
side. For the wall tile segmentation, LB (R = 3.5and A = 2)
had the most accurate results, giving good results for 10.3%

(a) Sobel gradient (b) No priors

Fig.8 Archeological fragment segmentation
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of the maximum possible horizontal shift in the wall tile
(radius 145 pixels). BB constraint with A = 10 had worse
robustness to seed displacements. For higher values of delta,
it was possible to increase its robustness, but at the price of
sacrificing its accuracy.

Regarding the computational time, for the tile segmen-
tation (Fig. 6), the max—min optimization on G’ with LB
(R =35and A = 2) took 147.6 ms running on an Intel
Core 13-5005U CPU 2.00 GHz x4. In relation to the number
of arcs, we have | A| ~ 4 x 10° for G and |A"| ~ 12 x 10° for
G’ in Algorithm 4. Tables 1 and 2 show the effect of increas-
ing the radius size on the computational time of the max—min
optimization on G’ and the resulting number of arcs of G’,
respectively. Note that the computational cost increases con-
siderably for larger radius values, since its computational
complexity is O (|.A'|+|N| x K), when the finite arc weights
are integers in a small interval of size K. The nodes N and
the set of arcs

{{ip,q) e A:llp—qll <R&C(p) > C(q) + A}

from line 2 of Algorithm 4 form a directed acyclic graph
(DAG). Several of these —oo-valued arcs in ' that represent
the LB constraint may actually be redundant, and we can
apply a transitive reduction [1] to eliminate them from this
DAG. A transitive reduction of a directed graph D is another
directed graph with the same vertices and as few arcs as pos-
sible, such that if there is a (directed) path from vertex v to
vertex w in D, then there is also such a path in the reduction.
The transitive reduction of a finite DAG is unique and is a
subgraph of the given graph [1].

The redundant arcs from the DAG can be eliminated from
A, as well as their opposite infinite weighted arcs from Line

Fig. 10 A thoracic CT image of
512 x 512 pixels. a Seed sets
obtained by eroding the ground
truth of the liver (in yellow) and
its background with twice the
radius size (in red). b, ¢ Liver
segmentation samples by OIFT
subject to different shape
constraints. d—f Segmentation
results by classical techniques
for the given image graph and
seeds (Color figure online)

(d) Watershed

5 of Algorithm 4. Whenever the cost map C is fixed (e.g.,
based on a prior template of shapes), the transitive reduction
can be computed offline in advance to save computational
time. The updated runtime on G’ and the cardinality of .4’
after removing all redundant arcs are shown in the second
columns of Tables 1 and 2 .

We also tested the robustness of the methods in relation to
different image resolutions by quantitative experiments, to
segment archaeological fragments in seven different resolu-
tions with the geodesic cost. In order to make the experiment
more challenging, the simple arc weight w(s, t) = G(s) +
G(t) was used, disregarding any prior color information,
where G(t) denotes the magnitude of Sobel gradient, such
that we have several false boundaries (Fig. 8). Figure 9 shows
the mean values of the Dice coefficient for segmenting ten
fragments for each image resolution, totalizing 70 executions
for each method. The overall best results were obtained by
LB using R = 3.5 and A = 2. Hedgehog for different 6 val-
ues and the same radius presented unstable results (Fig. 8d).

Finally, we conducted experiments with the geodesic cost
to segment the liver in medical images of 40 slices of thoracic
CT studies of size 512 x 512, using regular weights w (s, t) =
IZ(t)—Z(s)|l and seed sets progressively obtained by eroding
the ground truth and its background with twice the radius size
(Fig. 10). Although this scenario is apparently advantageous
for the BB constraint, in view of the well-distributed and
centralized seeds, LB (R = 3.5 and A = 2) demonstrated
good results with the highest accuracy for a large part of the
curve (Fig. 11a). We repeated the experiments, but now with
the internal seeds shifted by 5 pixels to the left (25% of the
maximum possible displacement in the central part of the
curves) whenever possible. In this new scenario, the results

(e) Graph Cuts (f) Random Walks
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Fig. 11 The mean accuracy curves to segment the liver for seed sets
obtained by erosion

clearly show that LB is more robust than BB in relation to
seed positioning (Fig. 11b). The performance of OIFT with
LB is also superior to that revealed by classical techniques
for the same image graph G and seeds (Fig. 10d, f).

7 Conclusion

We have proposed the local band shape constraint, which in
its limit case (i.e., R — 00) is strongly related to bound-
ary band constraint and is less sensitive to the seed/template
positioning for high-accuracy values. We also demonstrated
that OIFT lies in the intersection of the generalized graph
cut and the general fuzzy connectedness frameworks, inher-
iting their properties. To the best of our knowledge, we are
also the first to report OIFT with the hedgehog shape prior.

@ Springer

As future work, we intend to incorporate the LB constraint
into the layers of a hierarchical layered digraph [22] to per-
form multi-object segmentation and to test LB in 3D medical
applications.
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