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A B S T R A C T

Research on container loading problems has helped increase the occupation rate of containers in different
practical situations. We consider these problems within a context which might pressure the loading process,
leading to sub-optimal solutions. Some facilities like cross-docks have reduced storage space which might force
early loading activities. We propose a container loading problem which accounts for this limited storage by
explicitly considering the schedule of arrival for the boxes and the departure time of the trucks. Also, we design a
framework which handles the geometric and temporal characteristics of the problem separately, enabling the use
of methods found in the literature for solving the extended problem. Our framework can handle uncertainty in
the schedule and be used to quantify the impact of delays on capacity utilization and departure time of trucks.

1. Introduction

Container loading problems have the goal of improving the effec-
tiveness of logistic systems by increasing the capacity utilization of the
trucks/containers. Its most popular version is the output maximization,
which consists in selecting a subset of items (boxes) that maximize the
volume (or value) loaded into a limited number of containers. However,
the logistic environment can pressure the loading process to the use of
less effective solutions. That is the case with cross-docking. Cross-docks
are facilities with limited storage space which operate by synchronizing
the inbound and outbound flow of trucks to potentially improve rates of
consolidation, delivery and lead times and costs [8].

One of the most popular optimization problems in the cross-docking
literature is the scheduling of inbound and outbound trucks at its docks.
To provide insights on promising solution methodologies and behavior
of the system, some researchers have focused on cases with one inbound
and one outbound dock [2,10,12,17,28,32,44,48], but cases with
multiple inbound and outbound docks have been becoming more fre-
quent [4,7,19,31,45,47]. The scheduling problem is usually modeled
with the goal of minimizing total operation time
[6,7,11,17,19,23,28,32,39,44,47,48]. It is also possible to find ex-
amples of other metrics: Storage (volume or cost) or material handling
[31,34,37], travel distance [18] and earliness and/or tardiness alone
[4,10] or combined with others such as travel time [45] and probability
of breakdowns [2].

The combination of limited storage space and pressure for the early
dispatching of trucks in a cross-dock imposes additional challenges to
the resulting container loading problems. The container loading lit-
erature already contemplates a wide range of practical constraints re-
lated to the weight of the containers [15,20], axle weight distribution
[33,38], the position of individual boxes [13,26,40,43,46,50] and the
arrangement of the boxes [1,9,27,35,42]. Two popular variations are
the supported and unsupported cases. In the supported case, each box
must have its bottom (partially or fully) supported either by other boxes
or by the floor of the container. The unsupported case does not have
this requirement. Some solution methods (e.g. Gonçalves and Resende
[24] and Araya et al. [3]) can be adapted to handle both cases. For an
extensive review on practical constraints and solution methodologies
see [14,49], respectively. Also, Silva et al. [41] perform extensive
comparative experiments on models for container loading problem.
Although these practical constraints might be present in container
loading in cross-docking environments, we are not aware of any re-
search dealing with the specific needs of cross-docks: (i) considering the
loading time of trucks and (ii) time availability of the boxes, due to
limited storage.

In fact, the problems we could find which are related to ours the
most are the Temporal Knapsack Problem and the Temporal Bin
Packing Problem presented by Bartlett et al. [5], De Cauwer et al. [21],
respectively. For both studies (knapsack and bin packing) their authors
propose and an extension of a one dimensional bin knapsack and bin
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packing problems. Bartlett et al. [5] aims at maximizing the valued
loaded at each time period in a planning horizon De Cauwer et al. [21]
aims at minimizing the time each item remains in one of the bins. An
exact solution method for the Temporal Bin Packing is proposed by
Dell’Amico et al. [22]. In a sense, we propose an extension of these
temporal packing problems since we consider the three-dimensional
geometry of the problem and a schedule for the arrival of boxes.

We explore two specific challenges of the loading process at a cross-
dock door. How to select a subset of boxes to (i) maximize the loaded
volume (output maximization) and (ii) minimize the ready time of the
truck/container. Furthermore, we mind the schedule of arrival of boxes.
Since the availability of the boxes in time might be uncertain, we
propose a stochastic dynamic programming framework which can ac-
commodate this uncertainty and take advantage of the existing methods
to solve the geometric aspects of the problem. Finally, in the loading
process, we focus on the unsupported case with orthogonal packing and
the possibility of rotating boxes over three axes, although the frame-
work can be applied with any other practical geometric constraints by
selecting an appropriate algorithm (from the container loading litera-
ture) for the sub-problems.

2. Container loading problem with time availability constraints
(CLPTAC)

We propose an output maximization version of a container loading
problem with time availability constraints (CLPTAC-Om). The objective
is to position a subset of boxes inside a container maximizing the loaded
volume and minimizing the ready time of the container to be dis-
patched. The boxes must not overlap with each other, must be fully
inside the container and cannot be loaded before they are available.
Also, we assume boxes and containers’ faces must be parallel to each
other (orthogonal packing). We define deterministic and stochastic
versions of the problem with respect to the arrival time of the boxes.
Moreover, we assume that boxes leaving the dock go to the same des-
tination, which is a common situation in cross-docks with destination
exclusive dock holding patterns (Ladier and Alpan [30]).

More formally, assume a finite time horizon [0, T]. Let � be the set
of boxes, each box �∈i is defined by its length along each axis (li1, li2,
li3) and the time it becomes available for loading ti. Simulating the ar-
rival process of the boxes, we assume that, once a box becomes avail-
able, it remains available until it is shipped to its destination. We
consider a single container with dimensions (L1, L2, L3). Both objectives,
namely, maximizing the loaded volume and minimizing the ready time
of the container dispatched are combined into a single function by
weighting their relative importance. For the deterministic version, the
arrival time of boxes ti∈ [0, T], �∈i , is defined a priori. For the sto-
chastic version, only the probability distribution of ti is known. The
remainder of this paper focus on the stochastic version, although the
dynamic programming framework we propose (Section 3) can also be
applied to the deterministic version.

3. A dynamic programming framework for CLPTAC-Om

We propose a framework to solve the stochastic CLPTAC-Om which
decomposes the temporal and geometric aspects of the problem. The
temporal characteristics are handled by the evolution of the dynamic
programming algorithm while the geometric constraints are handled as
part of the sub-problems solved for each possible state. For this fra-
mework, we uniformly discretize the time horizon [0, T] into a set of
time periods � and define � ,t �∈t , to be the set of boxes available at
time period �∈t . An effective discretization might not be trivial for
general systems, but for cross-docks a simple uniform discretization is
justifiable due to usual high and stable demands.

The dynamic programming approach is formulated as an optimum
stopping problem [36]. We want to decide when to stop waiting for new
shipments and load the boxes into the truck. The trade-off is: the longer

we wait, the more boxes we have available for packing yielding a po-
tentially better volume occupation; on the other hand, the sooner we
stop waiting (and perform the loading) the smaller is the ready time for
the selected boxes.

Let the state of the system be the set of boxes �t available at period
�∈t and � � s( , )t t be the cost of decision st∈ {0, 1}, �∈t , in state �t .

The possible decisions are to perform the loading or to wait for more
boxes, henceforth coded as 0 (load) and 1 (wait). Also, let � �( )t be a
solution of a traditional output maximization container loading pro-
blem with boxes in � ,t namely, a solution that maximizes the volume
loaded with boxes represented by �t without any temporal constraints
and � �( )t be the volume of boxes that were not loaded. Finally, let μ be
a parameter indicating the cost of empty volume in the container.
Thereby, with � * being the set of all time periods but the last and �t
being the set of all shipments that might be available at time period

�∈t , the cost functions of the dynamic programming algorithm are
given by (1)–(3).
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Eq. (1) define the cost of the decision to stop the waiting process and
proceed with the loading with available boxes �t at time �∈t *. If the
decision is to wait for more boxes, the respective partial cost is given by
(2). The terminal cost, i.e., the cost of reaching the last period in the
planning horizon is defined by a bound on the volume of the trucks
needed to transport all remaining boxes (3) weighted by the size of the
truck. In a sense, it is the inventory holding costs, which should be high
to preserve the cross-docking philosophy of reduced inventory. We
want to optimize the objective (4), in which � denotes the expected
value due to the uncertainty in the arrival times of the boxes.
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In which we used =s 10 . Expression (4) is equivalent to minimizing the
sum of the ready times (in time periods) and the cost of the empty
volume that it is possible to achieve with the boxes available until we
decide to stop waiting, =s 0t . Note that, if the decision in a particular
period is to wait, =s 1,t we sum the cost (regarding ready time) of that
period,

�

1
| |
. Otherwise, =s 0,t we still sum the cost related to the ready

time (plus the cost of empty volume). In other words, we assume that
the loading process only ends at the end of a period. We use �| | and
L1L2L3 as normalizing factor for ready time and volume, respectively.

We can find an optimal solution for the stochastic case by using the
value functions (5) and (6).
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Eq. (5) denote the best option between loading boxes currently avail-
able, �c ( , 0),t t and waiting for more boxes, �c ( , 1)t t . Eq. (6) compute
the cost in the final time period. The cost of each decision in (5) is
computed as expressed in (8) and (7), respectively, for �∈t *.
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In which �ρ ( )t t is the probability of being in state �t in time period t.
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Eq. (7) compute the cost of performing the load, solving a container
loading problem with boxes currently available � �( )t . Eq. (8) compute
the expected cost for the future time periods given the current state �t.
Note the use of the future value +V (·),t 1 characteristic of the dynamic
programming framework.

Note that Eqs. (5) and (6) are independent of the probabilistic
model for the arrival of the boxes. Just to illustrate our approach, we
defined the following probabilistic model for the arrival times of boxes
in �t. We assume the arrival time of subset �t1 is independent of the
arrival time of � ,t2 t1≠ t2, and the probability of a subset �t arriving at
time �∈i is given by:

� = ⎧
⎨⎩

− ≥
<

−
π α α i t

i t
( ) (1 ) , if ,

0 if ,i t
it it

i t

(9)

in which αit∈ (0, 1), �∈i t, , is a probability index associated with
subset �t arriving at time �∈i , i≥ t. Within this framework, αit, can be
interpreted as a reliability profile for the company in charge of deli-
vering the subset (cargo) �t. If =α 1,it �∈i t, , by convention, we as-
sume that we have the deterministic case, in which we known the ar-
rival time of each box a priori. In other words, the boxes arrive on time.
For simplicity, we used =α α,it �∈i ,t �∈t , which can be viewed as a
reliability index for the corresponding logistic environment. Thereby,
given π, we can compute the probability of a set of shipments �t begin
available at time period �∈t .

The framework does not specify how to solve the container loading
problem associated with � �( )t . In fact, any solution method from the
literature could be used, which means practical constraints are natu-
rally incorporated into the framework. Here, we choose one of the best
performing models [41], proposed by Chen et al. [16], which allows for
rotation of boxes. Even though that are method capable of achieving
higher average occupation, here we are interested in the understanding
the effect of the temporal dimension on the problem.

3.1. The dynamic programming algorithm

The solution of Eqs. (5) and (6) can be obtained with the dynamic
programming approach outlined in Algorithm 1. The reader interested
in the theoretical background in dynamic programming can be referred
to the book by Kumar and Varaiya [29], for example. The goal of the
algorithm is to compute (or fill) the costs matrixMji, � � �∈ ∈j i, | |. The
cost matrix provides the best cost from the current period j and current
state i to the end of the planning horizon. Similarly, the best cost is
matched with the best decision that is stored in matrix

� � �∈ ∈D j i, ,ji | |. Thereby, after running the algorithm, we have the
optimal decision for each combination of i and j, � � �∈ ∈j i, | |. The
algorithm starts by setting initial values in matrices Mji and Dji. Then,
for each combination of time period (t) and possible state (� �∈t t), the
algorithm compares the expected cost of waiting with the loading cost
(according to (5)) and updates matrices Mji and Dji. Note that, on lines 2
and 6, we need to solve a container loading problem. We could pre-
compute all instances of the container loading problem and use the
results when needed. We solved these instances using the model pro-
posed by Chen et al. [16], allowing rotation of the boxes. Computa-
tional experiments on solving these sub-problems are reported in
Subsection 4.2. Then, in Subsection 4.3, we present results when using
the matrices Mji and Dji inside a simulation of the arrival of boxes.

Fig. 1 exemplifies a scenario with � = {1, 2, 3}. Each cell is a bit
array (� � �1 2 3) representing the current state, i.e., set of boxes that
have actually arrived at a point in time. The bit array =b 100,1 for
example, means that shipment 1 has arrived while shipments 2 and 3
have not. In each time period, for each bit array with non-zero prob-
ability of occurrence, we need to evaluate the decisions of waiting and
loading (Eq. (5)). The full blue lines represent the computation of the
sum in Eq. (5) for all � �= ≠ρ ( ) 0i 3 3 .

4. Computational experiments

We design computational experiments with two goals in mind: (i)
gain some insight in the difficulty of solving this new class of problems,
which can also indicate the effect of having better packing algorithms;
and (ii) understanding some effects of the uncertainty in the arrival
time of the shipments (set of boxes). For this, we generated two sets of
instances, the first based on instances proposed by Ivancic et al. [25]
and the second based on [9,20] (Subsection 4.1). Then, we report re-
sults in solving each state of the dynamic programming (Subsection 4.2)
and solving the case with uncertainty (Subsection 4.3). All the experi-
ments were run in an IntelⓇ Core-i7-2600 CPU at 3.40GHz. All instances
of the model were solved with Gurobi 8.0.1

4.1. Instance generation

The benchmark problems for the CLPTAC-Om were generated based
on instances for the traditional Container Loading Problem. We gen-
erated two sets. One, which we call IMM-TAC, is based on 47 instances
proposed by Ivancic et al. [25] and the other (BR-TAC) is based 50
instances from the benchmark proposed [9,20]. Originally, both sets
provided the three-dimensional geometry for the boxes and the con-
tainers. For each box, we randomly generated a time from which it
becomes available following a discrete uniform probability distribution
in � � =[1, | |], | | 10. Therefore, we are assuming a planning horizon with
ten time slots (equivalent to 40 minutes slots in an eight-hour working
day).

In Ivancic et al.’s benchmark, instances have from two to five types
of boxes, the number of boxes varies from 47 to 181 and we consider
only one container per instance – containers have different dimensions
across instances. In Bischoff and Ratcliff and Davies and Bischoff’s
benchmark, the number of types of boxes varies from three to 50 and
they are grouped by number of types of boxes (3, 5, 8, 10, 12, 15, 20,
30, 40 and 50). The dimensions of the container is constant across all
instances. We select five instances from each group, thus, we generated
50 instances based on [9,20]. All instances are provided as supple-
mentary material.

4.2. Solving the sub-problems of the dynamic programming

Solving the stochastic model for an instance of the CLPTAC-Om may
be computationally expensive. Each evaluation of function � (·)t needs
to solve a deterministic version of the container loading problem (via
�(·)), which for real-world cases can be impractical itself, using an
exact method. Therefore, to validate our framework, we solved each
container loading sub-problem, associated with � (and �), of the dy-
namic programming with the time limit to five seconds to find a solu-
tion for each of the sub-problems related to Vt, �∈t . Therefore, there
are � = − =−2 2 1 1023| | 1 10 sub-problems for each instance. Results for
each test set are presented in Tables 1 and 2, respectively.

Table 1 shows that, on average across all IMM-TAC instances, 77%
of the container could be filled. The lowest rate of occupation was
achieved in instance 18, however, this is close to the optimal solution
for the instance since all but one of the respective sub-problems were
solved to optimality. Also, the number of optimal solutions proven is
around 28%, on average. In the column Trivial solution, we report the
number of sub-problems for which the solver found only the trivial
solution of not loading any boxes. This happened very rarely for this set
of instances.

The average occupation for the BR-TAC instances was lower than
the ones from IMM-TAC (see Table 2). This could be associated with the
number of boxes in the instances. BR-TAC instances can fit a higher
number of boxes inside the container, on average, this leads to harder to

1 The source codes are available as supplementary material.
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solve instances of the models [41].
The number of proven optimal solutions is higher than 70% on

average. The pattern we could observe in the experiments is that these
proofs of optimality are more frequent in smaller (less boxes) sub-
problems, which is expected. Moreover, the number of trivial solutions
reported is higher than the results for IMM-TAC showed. In a sense,
IMM-TAC instances could be considered easier to solve when compared
to the ones derived from [9,20] (BR-TAC).

4.3. Results for the case with uncertainty

Having solved each of the sub-problems that could happen when the
shipments (set of boxes) do not follow their defined schedule, we can
use the dynamic programming approach to solve a stochastic version of
the problem. In this case, the uncertainty is related to set of boxes which

might not arrive on time as defined in Section 3. To evaluate this sto-
chastic version we used Algorithm 1. The algorithm produces a set of
decisions for all combinations of shipments � � � �…{ , , , }1 2 | | that might
be available at time period �∈t . We experimented with different
trade-off parameters for the cost of empty spaces μ∈ {1, 2, 4}. In the
following, we denote CLPTACμ instances in which the cost of empty
spaces is μ∈ {1, 2, 4}.

The goal of these experiments is to evaluate the effect of the cost of
empty volume (μ) and of the reliability index (α) on total ready time
and volume occupation. For this, with the optimal policy from Eq. (5),
we run the simulation of the arrival of boxes 5000 times for each

∈ …α {0.5, 0.6, ,0.9}. At each time period, we use the results (matrix Dji)
to decide if we wait for more boxes or perform the loading. Note that
the optimal decisions Dji is only computed once, at the beginning, and
then we use this information in the simulation. Also, regarding the
computational time, each run of the simulation takes less than a second.

The results for the IMM-TAC instances revealed that operation time
and volume occupation tend to improve as reliability index increases.
An improving trend can be observed in both ready time and volume
occupation (Fig. 2). Regarding operation time, this trend can be ex-
plained due to a higher risk of waiting in an environment with lower

reliability index. The same reasoning applies to the volume occupation,
the higher the risk of waiting the lower the occupation achieved. For
the decision maker, it suggests that the more reliable the logistic en-
vironment the better the expected vehicles occupation and the opera-
tion time, which is expected. Moreover, a linear trend specially for the
operation time in relation to the reliability index was revealed. It can
help managers in devising business plans to account for costs of op-
eration, delivery times and value of possible penalties for delayed de-
liveries in seasonal variations of the reliability index. This, besides al-
lowing a more efficient management of the facility, can potentially
increase the service level for final customers. For the BR-TAC instances,
a similar behavior can be observed for =μ 2 and =μ 4 (see Fig. 3).
However, the operation time for =μ 1 increased as the reliability index
increased. This can happen in cases for which the μ parameter favors
the operation time objective too much, in other words, the loading

Fig. 1. Example of a scenario with � = {1, 2, 3}. It is a graphical example of
Eq. (5). The dashed red lines show possible next states for �1. The full blue lines
show the states which need to be evaluated at state 010 at time =t 2. (For
interpretation of the references to color in this figure legend, the reader is re-
ferred to the web version of this article.)

Table 1
Summary of the statistics of solving each of the sub-problems for each of the instances based on [25] (IMM-TAC). For each instance, we report the fraction of the
container (in percentage) that was filled (on average), the fraction of proven optimal solutions found within the time limit and the number of trivial solution which
the solver could not improve.

Id Occupation Optimals (%) Trivial solutions Id Occupation Optimals (%) Trivial solutions

1 94.92 80.74 0 25 73.23 4.69 0
2 74.64 1.47 0 26 68.66 18.96 0
3 77.22 2.44 0 27 64.90 3.91 0
4 99.65 98.53 0 28 76.08 0.59 0
5 95.64 30.69 0 29 74.78 0.29 0
6 91.07 28.35 0 30 78.54 0.10 0
7 99.79 95.89 0 31 72.62 0.29 0
8 78.50 6.74 0 32 72.35 9.78 0
9 84.90 0.88 0 33 65.43 37.54 6
10 68.38 89.74 0 34 71.64 6.65 0
11 75.34 0.29 0 35 64.48 28.15 0
12 87.89 98.04 0 36 82.83 1.08 0
13 96.15 32.55 0 37 83.75 5.28 0
14 100.00 100.00 0 38 85.91 1.47 0
15 90.83 26.88 0 39 79.95 0.59 0
16 98.52 85.34 0 40 81.16 1.08 0
17 80.06 1.66 0 41 91.43 1.76 0
18 36.81 99.90 0 42 73.47 7.62 0
19 47.54 95.41 0 43 62.05 23.95 1
20 68.03 46.43 0 44 63.10 13.20 0
21 83.11 1.17 0 45 63.78 25.61 0
22 75.71 1.08 0 46 58.91 52.59 0
23 75.03 45.55 1 47 65.82 11.63 0
24 80.95 2.64 0

Avg. 77.35 28.28 0.17
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process finishes too early.

5. Conclusions and future research

High occupation rates of trucks/container are essential for effective
road distribution systems. However, achieving these rates can be
challenging due to the pressure for lower and lower delivery times. We
define an Output Maximization Container Loading Problem with Time
Availability Constraints which accommodates these two opposing goals:
high filling rates and low delivery times. Moreover, we propose a dy-
namic programming framework which is suited to handle the problem,
including uncertainty on the availability of boxes in time. This frame-
work separates the geometric and temporal aspects of the decisions,
enabling the use of all available solution methodologies for tackling
different practical constraints in the container loading process, in-
cluding some which we did not consider in this research (e.g. vertical
stability and weight distribution). Future work may extend the core
decision problem considered here in order to include additional deci-
sions in the context of cross-docking strategies. In particular, some
natural extensions would be the integration of scheduling decisions for
the arrival of shipments and the consideration of multiple docks. Other
avenue for research is the consideration of multiple destinations, with
the definition of shipping routes in the second layer of the distribution
network.
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Table 2
Summary of the statistics of solving each of the 1023 sub-problems for each of the instances based on [9,20] (BR-TAC). For each instance, we report the fraction of the
container that was filled (in percentage), the number of proven optimal solutions found within the time limit and the number of trivial solution which the solver
could not improve. The first number in the id column represents from which set of the original benchmarks the instance was generated. Higher number correspond to
more types of boxes.

Id Occupation Optimals (%) Trivial solutions Id Occupation Optimals (%) Trivial solutions

1.1 47.74 79.96 0 6.1 46.95 75.46 1
1.2 46.30 71.07 3 6.2 45.57 68.23 22
1.3 47.10 71.85 1 6.3 46.39 72.63 6
1.4 32.06 41.54 225 6.4 46.02 70.77 11
1.5 47.88 79.18 4 6.5 45.28 69.99 15
2.1 48.12 85.83 0 7.1 46.90 81.33 0
2.2 47.50 78.30 0 7.2 46.86 77.91 1
2.3 41.63 55.52 64 7.3 47.12 77.13 1
2.4 33.79 49.17 210 7.4 45.51 67.94 20
2.5 48.08 81.72 0 7.5 47.28 76.05 1
3.1 47.92 82.21 0 8.1 46.20 70.97 11
3.2 47.70 79.67 0 8.2 47.00 76.25 4
3.3 46.30 69.99 11 8.3 46.45 73.80 3
3.4 37.37 53.37 147 8.4 45.75 70.28 12
3.5 47.88 79.86 0 8.5 44.96 67.55 26
4.1 46.60 80.94 0 9.1 45.67 69.01 15
4.2 47.00 77.42 1 9.2 47.17 77.22 0
4.3 46.91 72.92 3 9.3 46.92 75.37 1
4.4 42.94 64.13 59 9.4 46.43 71.46 3
4.5 46.79 73.51 2 9.5 46.01 70.28 12
5.1 47.35 82.01 0 10.1 45.88 74.19 14
5.2 46.03 71.55 7 10.2 47.02 77.22 1
5.3 47.07 74.19 2 10.3 46.30 73.51 9
5.4 46.61 72.14 7 10.4 47.17 76.93 0
5.5 46.97 75.56 1 10.5 46.52 71.55 0

Avg. 46.70 75.66 18.80

Fig. 2. Profile of loaded volume (dashed line) and operation time (full line)
related to the reliability index (α) for μ∈ {1, 2, 4} for the IMM-TAC instances.
The values were averaged across all instances.

Fig. 3. Profile of loaded volume (dashed line) and operation time (full line)
related to the reliability index (α) for μ∈ {1, 2, 4} for the BR-TAC instances. The
values were averaged across all instances.
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