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There is not a consensus about the benefits of implementing Real-Time Optimization (RTO) technologies to increase the profit of process plants. A
lack of experimental and theoretical works which evaluate the scope and limitations of different RTO approaches makes it more difficult to have a
sensible opinion about this topic. Most works available in the open literature that study different RTO approaches use few (often one) operation
conditions to draw general conclusions about the virtues of a particular methodology. In the present work, we compare the performance of the
classical two-step method with more recently proposed derivative-based methods (modifier adaptation, Integrated System Optimization Parameter
Estimation (ISOPE), and an algorithm based on the Sufficient Conditions of Feasibility and Optimality (SCFO)) under different measurement noise,
model mismatch, and disturbance using a Monte Carlo methodology. The results show that the classical RTO method can be reasonably reliable if
provided with a model flexible enough to mimic the local process topology, a parameter estimation method suitable for handling measurement
noise characteristics, and a method to improve the sample information quality. Implementing a derivative-based RTO method, in cases of evident
model mismatch, should be considered only if the gap between the predicted and the real optimum is large enough and the level of measurement

noise is low.

Keywords: real-time optimization (RTO), parameter estimation, modifier adaptation, model parameter adaptation

INTRODUCTION

he overall control system of a production process is a
complex mechanism that should be segmented to obtain

simpler tasks to implement. These tasks can be regrouped in
a hierarchical structure, following a logical order, namely a
functional or temporal order. The functional form deals with
ensuring process safety, profitability, and product quality while
the temporal form is applied in cases where differences between
fast and slow variables are significant.")

The present contribution focuses on the functional hierarchical
decomposition control (Figure 1, adapted from Darby et al.?y,
especially in the optimization layer (represented by the real-time
optimization (RTO) layer in this chart). The RTO is inserted in the
functional hierarchical control structure with the objective of
providing ideal economic targets for the model predictive control
(MPC) layer, which is expected to maintain the process under
control at its maximum value of economic objective function.

The classical and more natural way to design the RTO layer is by
using a first principles steady-state model to describe the process
behaviour and to optimize an economical objective function
subject to this phenomenological model. This strategy gained
prominence in the late 1980s, when circumstances (namely
equation-oriented modelling environments, computer process
capability, and large-scale sparse matrix solvers) allowed the
application of this kind of RTO.

The basic idea of the “classical RTO method” (also called model
parameter adaptation, MPA) is to update some key parameters of
the steady-state model to reduce plant-model mismatch, using
plant measurements,®’ and then to optimize the plant using the
updated model. Despite using a high-fidelity plant model, this does
not guarantee the absence of structural plant-model mismatch.
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Furthermore, measurement noise and incomplete plant informa-
tion are important sources of uncertainty in the updated
parameters, increasing the plant-model mismatch, and conse-
quently leading to suboptimal operation points.

In 1985, Biegler and colleagues™! discussed the use of simplified
models to optimize complex models (which is the main idea
behind the classical RTO method). They found that the plant-
model mismatch derived from the simplified model may cause
problems, since the mathematical optimum of the simplified
model is likely to disagree with the plant optimum. Further, they
showed that, to be adequate, a model must have the same Karush-
Kuhn-Tucker (KKT) point as the real plant.

Forbes et al.®! introduced the concept of model adequacy for
the classical RTO method. They developed a procedure to
determine whether a model is sufficiently flexible to represent a
more complex model through a suitable choice of adjustable
parameters. Nonetheless, the uncertainty in the parameters due to
identifiability problems may mislead the classical RTO algorithm,
since this method relies on parameter estimation to reduce plant-
model mismatch.'®’ Therefore, the classical RTO method cannot
guarantee convergence to the true optimum under a large
structural plant-model mismatch and small excitation in the
operation conditions.”
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Figure 1. Process control hierarchy.

Other methods have been developed to supposedly make the
RTO algorithm able to converge to the true plant optimum
despite structural plant-model mismatch. The first, proposed by
Roberts,'® is a modification of the classical RTO method called
‘integrated system optimization and parameter estimation’
(ISOPE). In this methodology the parameter estimation and
optimization steps are integrated, resulting in a modified
economical objective function for the optimization step that is
able to handle the structural mismatch problem, in cases when
plant derivative can be calculated accurately.

The second method, the Modifier Adaptation method (MA),™
differs from classical RTO in the way that plant information is
used, since the measurements are employed to fulfill the necessary
first-order optimality conditions (NOC) of the plant (using the so-
called modifiers) without updating the parameters of the model.
The MA scheme is able to calculate the plant optimum in the
presence of plant-model mismatch provided that an accurate plant
gradient is available, which is presently the main limitation for
industrial applications.

Bunin et al.”’’ proposed a method to tackle the plant-model
mismatch problem called ‘sufficient conditions for feasibility and
optimality’ (SCFO). This method combines the concepts of descent
half-space and quadratic upper bound to derive sufficient
conditions to guarantee the improvement of the plant objective
function at each iteration, as well as the concepts of approximately
active constraints and Lipschitz continuity to ensure constraint
feasibility at each step. Although this method has a solid
mathematical background to achieve its goals,”'® some of its
assumptions are very difficult to meet in practice, such as
knowledge of global Lipschitz constants, global quadratic upper
bounds, and the exact value of the restrictions at the current
iteration.

Bunin et al.'% created an extension of the SCFO method for
practical implementation. They proposed the use of a feasible
region for the plant gradient to guarantee a descent region. The
algorithm works within a region where the worst case ensures a
decrease in the plant objective function without violating the
constraints. However, Bunin and colleagues'® state that it is
unclear if applying SCFO is beneficial, since the SCFO algorithm
may affect the convergence speed, especially when the RTO target
is accurate (provided by the MPA for instance).

Due to the uncertainties of each RTO approach, there is no
general consensus about the reliability of the different RTO
methods for increasing the profit of a process plant.'?! Therefore,
in this contribution, a Monte Carlo methodology is applied to
evaluate the performance of each strategy under the same process
uncertainties: parameter plant-model mismatch, measurement
noise, and disturbances in the unmeasured variables; using the
benchmark Williams-Otto reactor as a case study.
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MATERIALS AND METHODS

This section presents the main characteristics and information
flow for the different RTO methodologies compared in this paper.
A detailed description of these algorithms can be found in the
research articles cited in each section.

MPA Method

The structure of the classical RTO algorithm is presented in
Figure 2. The RTO cycle starts with the steady-state detection
module, responsible for analyzing the process measurements
and deciding, based on statistical criteria, whether the plant is
in steady state. Then, the stationary point goes through data
reconciliation and gross error detection stage. Next, the screened
information is used in the parameter estimation module to update
the model parameters. Finally, the updated model is employed to
find a new operation point that hopefully maximizes the plant’s
profit, which will be used as a set point by the process control
layer.

The basic statement of the optimization module can be
written as:

u =min  ¢(u,y)
u
such that y = Fp(u) 1)
g(uw,y) <0

where ¢ is the process (economic) performance index, y is the
plant output, F,(u) is the plant map, and g(u,y) are the process
constraints. In model-based RTO (MPA) the plant outputs are
estimated from a mathematical model F(u, 6), locally fitted by the
parameters 6 in the parameter estimation module.

min  ¢(n,y)
u
y =F(u,0)

g(u,y) <0

such that

()

The MPA method has common vulnerabilities, namely a lack of
process information, plant-model mismatch, and numerical
optimization issues.'!! However, it is the most used online
optimization method by the industry.?

ISOPE Method

One of the difficulties with the optimization problem stated in
Equation (2) is the mismatch between the model and the real
plant. The ISOPE method was developed to handle the structural
plant-model mismatch," complementing the measurements used
in the MPA method with plant derivative information to reduce the
offset created by the structural mismatch. ISOPE still retains the
parameter estimation and economic optimization steps used by

[Parameter Estimation| [Data Reconciliation &
l Gross error Detection

| Model Optimization |
Steady State
Detection
\ Process Control Fi
Y
Disturbances |

Real Process |
Figure 2. Classical RTO structure.
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the MPA. However, ISOPE optimizes a modified economic
function, adding a term coming from the parameter estimation
step that allows a first-order correction.

ISOPE derivation starts by reformulating the RTO problem
(Equation (2)), adding a penalty term (the so-called regularization
term) to the economic performance index:

min #(u,F(u,0)) + pllu — vll?

such that F(u,0) = Fp(u)

where p is the regularization parameter and v are additional
variables that allow Equation (3) to have essentially the same
solution as the problem stated in Equation (1). The Lagrange
function of the optimization problem given in Equation (3) is:

L(u,0,v,& 1, 1) = ¢(u,0) + pllu — vl + " (F(u,0) — Fy(u))
+1"g(v) + 2" (u - v) (4)

where &, 11, and 2 are Lagrange multipliers. The first-order optimality
conditions applied to the Lagrange function are as follows:

2p(u — V) + A + [VuF(1,0) — VuFy(u)) e =0 (5a)
Vop(v,6) — 2p(1 — V) — A + Vog() T =0 (5b)
Vop(v,6) + VeFp(u,0) 6 =0 (5¢)
u—v=0 (5d)
F(u,6) — Fp(u) = 0 (Se)
gw) <0, u>0, ugv) =0 (5f)

The multipliers £ and A can be calculated from Equations (5a,
5c, 5d) as follows:

£ = —[VoF(u,0)VoF (1, 0)"] "' VoF (1,0)Vog(v,0) (6)
A = [VuF(u,0) — VuFp ()" Vy(u, F(u,0)) (7)

Finally, the optimization problem solved in the ISOPE method is
the modified model-based optimization problem:

min (u, 0) — A(u, 0) v+ pllu — v||?
such that y =F(u, 0) (8)
8(v) <0

where A(u, 6) is the multiplier given in Equation (7). This new
optimization problem has the same optimality conditions as
Equation (3). A comprehensive description of this formulation is
given by Brdys and Tatjewski.!!! The basic ISOPE algorithm is
shown in Figure 3.

ISOPE was derived assuming that the model is able to
perfectly match plant outputs by updating model parameters
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Figure 3. ISOPE structure.

(point parametric condition®) and that an accurate plant
derivative is available. These crucial assumptions ensure that
the solution obtained by the modified model-based optimiza-
tion problem converges to the true plant optimum.''?! The main
challenge in this method is the requirement of plant derivatives
used to compute the modifiers’ values, since the estimation of
these quantities is considerably affected by measurement
noise. 3!

MA Method

The idea behind the modifier adaptation (MA) method is to use
measurements to correct the cost and constraint predictions
between successive RTO iterations in such a way that the KKT
point for the model coincides with the plant optimum.'®

Given the real process model F,(u) and the RTO model F(u), itis
possible to construct a corrected model F.(u) similar to the real
process model, Equation (9). The correction term, proposed in
Equation (10), comes from a first-order Taylor series expansion of
the discrepancy term around the current operation point
(Equation (10)). The final corrected model is presented in
Equation (11).

Fefu) = F@) + [y(a) ~ FG) ©
T
o) — Pl = Fya®) — Fu) + (G200 = 5 ) (u—w)

A

(10)
Fe(u) = F(u) +¢+ A" (u - u°) (11)

where ¢ and AT are the so-called modifiers, ¢ is the gap between
the plant and predicted function values, and AT is the diffe-
rence between the slopes, which is calculated as the difference
between model and plant derivatives (see Equation (10)). A very
useful graphical interpretation of these features is presented by
Marchetti et al.[”?

The objective function and the constraints of the RTO problem
are reformulated using this methodology. The problem is restated as
follows:

min ¢C(ll, 9) = d’m(uv '9) +)\,£(ll7 llk) (12)
such that  G.(1,0) = Gn(1,0) + e+ AL(u —w) <0
where the subscripts ¢ and m are the corrected and original RTO
models, respectively; ¢ is the economic objective function, and G is
the set of inequality constraints.
The fundamental difference between the MA and ISOPE
frameworks is how the modifiers are calculated and the parameter
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Figure 4. MA structure.

updating. In MA, the modifier is calculated from derivatives of the
economic objective function with respect to inputs (uz), while the
ISOPE method uses the derivatives of output (y) with respect to
inputs (u). In addition, parameters are updated during ISOPE
iterations while MA uses a fixed parameter set during optimiza-
tion; i.e. there is no parameter updating (see Figure 4).

SCFO Method

The SCFO method, initially proposed by Bunin et al.®) and
modified for practical implementation by Bunin et al.,""°! adapts
nonlinear optimization theory to RTO problems. The method is
designed to calculate the plant optimum without violating any
“hard” constraint while improving the plant profit at each RTO
iteration, executing a projection problem based on information of
plant derivatives and topology. In other words, given a target (a
possible future RTO point, predicted by any RTO algorithm; MPA
for instance) the SCFO method implements a correction in this
target, based on plant derivative information. The projection
problem, given by Equation (13), minimizes the distance between
the target (u; ;) and the feasible point (u), subject to a bounded
deviation (8g4;) from the active constraints (gj(uk) > —¢) and an
improvement in the objective function (8,). These two restric-
tions work to maintain the solution found in the projection
problem (i, ;) at the interior of the hard constraints region,
given by g;(ux) > —¢, and to grant a profit improvement:
Vo(ug) (1 — 1) < —8,. This behaviour is achieved within the
region where the problem nonlinearities are closely approximated
by the first-order local information (gradient information).

_ . 2
iy, = argmin(|lu — a4l
u

such that ng(uk)T(u —ui) < —8g;Vj:gj(uk) > —¢

Vo(w)" (1 — w) < 8, (13)
ul <u<ul

where the subscript k is the RTO iteration, the point u;_, is the
input target (calculated from the classical RTO approach in this
work), i1y, , is the target projected into a feasible descent space, Vo
and Vg; are, respectively, the plant derivative of the objective
function and constraints with respect to the input variables, and §
are the minimal changes required in the projected direction.
The need for accurate real process derivatives limits the
practical implementation of this algorithm. For this reason
the authors modified the projection problem to work within a
feasible region given by the derivative of the real process. This
region can be obtained assuming a certain local structure for the
function,'” or in a less rigorous approach, it may be calculated by
adding an uncertainty region around the estimated gradient. The
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modified projection problem, using the estimated gradient and the
uncertainty region, is given by Equation (14).

_ . 2
., = argmin(|lu — ug,, Iz
u,S.54

nu
such that Zsﬁ < =g

i=1

08 .

S, ok (= Wie) < i V() >
1

J8; )

8—11{ i (W — kz) < s Vjigj(un) > —¢ (14)
1

nu

ZSW‘ <=4,

i=1

1o1%

P e (Wi — ) < 5.

p

o e (Wi — ki) <8y

where s represents slack variables responsible for ensuring the

. . . 08 o8
choice of direction for the worst case; 5~ and a_§ are the lower and
: ;

upper bounds of the constraint derivatives; and gT% and g—f are the
lower and upper bounds for the objective function derivatives.
The main structure of the algorithm is presented in Figure 5, where
the target calculation corresponds to the MPA solution and the

projection problem is performed by solving Equation (14).

Plant Derivative Estimation

The plant derivative is estimated from process measurements
using Boryden’s approximation formula:

(ug — ug )M
(e — w1 )M (u — mey)")

(15)

By = By-1 + [()’k = Vi-1) — (Bi1 (g — llk—l)T)]-

where B is the matrix of estimated derivatives, u is the vector of
input variables, y is the vector of outputs, and M is a scaling
(diagonal) matrix.!**! The indices k and k — 1 indicate the current
and previous steady state points, respectively. In this work the
Broyden method is preferred to methods such as finite differences
(FD) or dynamic model identification (DMI) on the basis of
practical applicability, since FD and DMI require large numbers of
upsets or depend on the availability of dynamic plant information,
which is difficult and costly to achieve in a real process plant.!'?!

The dual approach, proposed by Rodger and Chachuat, is
implemented in MA and ISOPE algorithms to improve the plant
derivatives estimated by the Broyden method, enforcing minimal
perturbation in different directions (to get better information at

Plant Derivatives
Estimation
Data Reconciliation &
Gross error Detection
Steady State
Detection

| Target calculation |

Projection problem
evaluation

\ Process Control

Y
Disturbances |
2%, Real Process |

Figure 5. SCFO structure.
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each step), and maximum step length (to avoid the “peak
phenomenon,” as discussed by Rodger“‘”). This approach is
implemented by a set of constraints (Equations (16, 17)), which
determine two possible regions for the solution search.

—wi(u — ug) + VwTB'wy < 0
(u— uk)TF(u —um) <1

+U1k(ll —Ug) — wkTB‘lwk <0 (17)

(u—) T(u—uy) <1

(16)

where 1, and u are the actual and future RTO points, wy is the
unitary vector orthogonal to the last two RTO points, B is the
parameter matrix for the minimum upset, and I’ is the parameter
matrix of maximum step length. In this work the values of Band I
are diag([500.4]) and diag([400.15]) respectively.

In the dual approach, the economic optimization problem is
divided into two problems, one using Equation (16) and other with
Equation (17). Then, these problems are solved in parallel and the
best result is implemented. A graphical interpretation can be found
in Rodger.!'®!

CASE STUDY: THE WILLIAMS AND OTTO REACTOR

The Williams and Otto CSTR (continuous stirred tank reactor) is a
well-known case study used for the development and comparison
of RTO strategies by several authors.”"!®!) This process is
illustrated in Figure 6. The reactor is fed with Fa and Fb (pure
streams of components A and B, respectively). These components
react, producing an intermediate component C, which reacts with
another B molecule to produce the desired products P and E. There
is a side reaction between components C and P, producing
byproduct G which has zero commercial value and is waste. The
reactions and their kinetics are given in Equation (18).

A+B—C k1 = npl exp(—Eal/(Tg + 273.15))
B+C—P+E k2=np2 exp(—Ea2/(Tg + 273.15)) (18)
P+C—G k3 = np3 exp(—Ea3/(Tg + 273.15))

where Ea is the activation energy and 7p is the pre-exponential
factor. These values are given in Table 1.

The process is modelled at steady state by the mass balances,
using the reactor temperature (Tg) and flow rate of B (Fb) as
controlled variables, and keeping the flow rate of reactant A (Fa)
and the mass holdup (W) at 1.8275 kg/s and 2105 kg, respectively.
The economic objective is to maximize the profit given by

Fa kg/s Fb kg/s

Frkals

Figure 6. Williams and Otto reactor.
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Table 1. Plant parameters for experimental design
Parameters Region 1 Region 2 Region 3 Region 4
Ea 1 6666.7 6666.7 6666.7 6666.7
Ea 2 83333 8444.3 83333 8333.3
Ea3 11111 11101 11111 11111
Fa (kg/s) 1.8275 1.8275 1.8275 2.2000
npl 1.6599 x 10°
np2 7.2117 x 108
np3 2.6745 x 10'2

Equation (19).

¢ = 1143.38XpFr + 25.92XgFgr — 76.23F4 — 114.34Fp (19)

where Xp and Xg are the mass fractions of P and E in the reactor
outlet stream (Fg).

To analyze the performance of each RTO methodology under
structural plant-model mismatch, a simpler kinetic (approximated
model) is proposed to describe the original system.

A+2B
A+B+P—G

—P+E kl=nl exp(—v1/(Tg+ 273.15))

(20)
k2 = n2 exp(—v2/(Tr + 273.15))
where vis the activation energy and 7 is the pre-exponential factor.
Both of these values are estimated by the parameter estimation
module.

Parameter Estimation Module

In our analysis we consider a perfect and an approximate model:
Equations (18, 20), respectively. In both cases, all kinetic
parameters (pre-exponential factors and activation energies) are
estimated using the product compositions Xp, Xe, and the Fa flow
rate as measurements. This is because it is very unlikely that a real
plant has online measurements of all product compositions
(online composition measurements are very expensive). The
objective function is a simple least squares with a diagonal matrix
equal to 1. Furthermore, the last 3 historical points in the RTO path
are used in the parameter estimation module, as suggested and
implemented by Pfaff''®! to increase the amount of information.

EXPERIMENTAL DESIGN

The present section aims to design a comprehensive experiment to
evaluate the performance of the algorithms over a wide range of
different situations. For this reason, we consider 5 process
characteristics that can modify the evaluation of an RTO
algorithm. The first two problems, measurement noise and initial
parameter values, are related to the parameter estimation module.
Both may deteriorate the parameter estimation and change the
RTO path, resulting in different performances for the same RTO
algorithm. The influence of these random variables is assessed
through Monte Carlo simulations, where 500 RTO trials are carried
out using different initial parameter values and measurement
noise, sampled following uniform and normal distributions (see
Appendix A).

The third and fourth problems are disturbances presented in
measured and unmeasured variables. These process character-
istics are simulated in the plant by changing the parameter listed in
Table 1, which results in the 4 regions depicted by Figure 7. The
first and second disturbance steps correspond to changes in the
values of the kinetic constants (unmeasured disturbances), which
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Figure 7. Optimum profile with respect to disturbances.

may be associated, for example, with a decrease in catalyst
performance, while the last one is due to a sudden increase in the
feed flow rate Fa (measured disturbance).

The fifth problem affecting RTO performance is the structural
mismatch between plant and model. Two cases are considered in
the experimental design: the perfect model when both plant and
model are represented by Equation (18), and the approximate
model when the plant is given by Equation (18) and the model by
Equation (20). In both cases the plant is simulated according to the
parameters described in Table 1, while the model parameters are
estimated by the parameter estimation module.

In short, the Monte Carlo simulations were performed for each
RTO algorithm using measurement noise levels of 0 % and 0.5 %,
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with the perfect and approximated models (total=16 experi-
ments). In each MC experiment, 500 RTO trials were conducted
(with 100 iterations in each RTO) starting from the same nominal
point. Three disturbance scenarios are assumed at iterations 25,
50, and 75, creating 4 different regions (see Figure 7).

The performances of the RTO methodologies are compared
through three statistics computed from the profit error: root
mean square error, average profit loss (absolute value), and
frequency of obtaining profit loss <1% in the last 5 RTO
iterations of each region (%). In this work the profit error is
defined as the difference between the instantaneous profit using
the set points calculated by the RTO and the true optimum in
each region defined in Figure 7.

Appendix B shows the performance of each RTO method under
perfect conditions. These experiments are important to illustrate
that the algorithms work well under ideal conditions and their
implementation is correct.

RESULTS

Results for the Perfect Model

Figure 8 presents the results of the four RTO methods using noise-
free measurements and the perfect model. In this figure the
frequency distribution of the economic objective function is
denoted by the colour scale.

The behaviour shown in Figure 8 and the dispersion metric
presented in Table 2 indicate that the MPA method presents
the lowest scattering profile, since this method is not
influenced by the uncertainty in the derivative caused by the
Broyden approximation that affects all the derivative-based
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Figure 8. MC experiments using noise-free measurements and the perfect model: (a) MPA, (b) MA, (c) ISOPE, and (d) SCFO.
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Table 2. Root mean square error for MC experiments using noise-free
measurements and the perfect model

Method Region 1 Region 2 Region 3 Region 4
MPA 8.15 4.59 8.36 9.13
MA 8.44 7.35 10.61 11.58
ISOPE 8.15 6.31 10.89 12.24
SCFO 8.68 5.07 8.81 9.83

methods tested. In this category the SCFO exhibits the lowest
dispersion.

The frequency of obtaining the optimum profit (within 1 %) in
the last 5 RTO iterations is shown in Table 3. The MPA
methodology follows the optimum plant operation path along
the different plant upsets. In this case, the information quality as
well as the model structure allow the parameter estimation routine
to identify a topology converging to the “true” optimum in a few
RTO cycles (~15 cycles on average), even after plant disturbances.

Regarding profit loss during the RTO, the path followed by MPA
is the most cost-effective (on average 3.04 U.S. dollars (USD)/s),
since it presents lower profit loss than any derivative-based
method tested. SCFO shows the best result for the first region
(Table 4) because it has the largest first step among the methods;
however, its average profit loss is 4.64 USD/s.

The results for MC simulations with the perfect model and
measurement noise are shown in Figure 9. A comparison of the
statistics of the RTO performance using noisy measurements
(Tables 5-7) with previous noise-free measurements (Tables 2—4)
indicates a lower performance of the RTO methodologies due to
measurement noise.

Comparing the RTO methods with and without measurement
noise shows that noise always increases profit loss (Tables 4, 7).
As in the noise-free case, the MPA has the lowest profit loss on
average. This loss is even lower than for the derivative-based
methods using perfect measurements.

Results for the Approximated Model

These experiments assess the behaviour of the RTO methodologies
under structural plant-model mismatch. The results obtained in

Table 3. Frequency of achieving < 1% profit loss in the last 5 RTO
iterations of each region. MC experiments using noise-free
measurements and the perfect model

Method Region 1 Region 2 Region 3 Region 4
MPA 100 100 100 100

MA 72.16 43.36 60.48 84.80
ISOPE 55.00 39.24 56.16 79.24
SCFO 86.48 28.72 76.84 67.08

Table 4. Average profit loss for MC experiments using noise-free
measurements and the perfect model

Region 1 Region 2 Region 3 Region 4
Method (USD/s) (USD/s) (USD/s) (USD/s)
MPA 8.50 0.78 1.33 1.56
MA 8.90 5.44 6.30 5.57
ISOPE 9.33 4.23 6.88 7.88
SCFO 7.59 3.78 3.06 4.13

VOLUME 94, MARCH 2016 |

the Monte Carlo simulations using the approximate model and
noise-free measurements are depicted in Figure 10. The structural
mismatch does not allow the convergence of the MPA method to
the true optimum in all regions, which is confirmed by the low
frequency of obtaining profit losses <1 % (Table 9). In contrast,
the derivative-based methods are able to handle the structural
mismatch in all tested regions, as can be observed in Figure 10 and
Table 9.

The scattering presented by MPA and SCFO tends to be alike in
every region. This dispersion is lower than for the MA and ISOPE
under similar conditions (Table 8). However, the lower average
profit loss corresponds to the path followed by MA in the first
region, MPA in the second region, and SCFO in the third and fourth
regions (Table 10). On average SCFO presents the best economic
results.

Figure 11 shows the outcome of the MC simulations for the case
using the approximate model and measurement noise of 0.5 %. The
results indicate an increasing scattering of the RTO path compared
to the case with the same structural model mismatch and noise-free
measurements (Tables 8, 11). The derivative-based methods are
also more sensitive to noise than the MPA method. Indeed, the profit
loss increases by ~45 % for the MA method and 36 % for the ISOPE
and SCFO methods, in comparison with a decrease of ~18 % for
MPA under the same conditions (Tables 10, 13).

The MPA, as observed in the MC simulations using the
approximate model and noise-free measurements, presents offsets
between the predicted and actual optimum and in the first three
regions. This behaviour reduces the frequency of obtaining profit
losses <1 % in these regions using MPA when compared to the
derivative-based methods (Table 12). However, this method
outperforms the derivative-based approaches in region 4, where
the offset is not present.

A comparison of the approximate model with its noise-free
counterpart reveals a constant increase in the scattering in each
region, similar to that observed in the perfect model simulation
with and without noise.

DISCUSSION

The Monte Carlo simulations using a structural perfect model
show that MPA performs better than derivative-based methods in
the presence of disturbances and measurement noise. This result is
due in part to the experimental conditions fulfilling the
assumptions made for the parameter estimation method, since
the Least Squares estimator is able to handle noisy data with
characteristics such as measurements being independently and
normally distributed with zero mean.'>”! On the other hand, poor
performance of the Least Squares estimator, and poor overall
performance of the MPA method, should be expected in cases
where measurements are corrupted with gross errors or are non-
independently distributed. In this case redescending or appropri-
ate likelihood estimators should be used.!*!)

The approximate model used in the second analysis fulfills the
adequacy criterion of Forbes et al.®! since there is at least one set of
parameters that predicts the same optimal point as the plant (at
least for regions 1 and 3). However, Marchetti'® points out that for
this set of parameters, the model outputs differ from the plant
output, becoming unlikely to converge on the “ideal” set of
parameters through a parameter estimation and optimization
approach (MPA method).

The results obtained in the MC simulations using the approxi-
mate model and noise-free measurements suggest that MPA is
unable to converge to the true optimum. As a consequence, the
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Figure 9. MC experiments using noisy measurements (0.5 %) and the perfect model: (a) MPA, (b) MA, (c) ISOPE, and (d) SCFO.

derivative-based RTO methods (SCFO and MA) have better
economic performance. On the other hand, MPA shows better
economic performance than derivative-based methods in cases
where optimization runs under measurement noise and plant-
model mismatch. Also in this case, in the fourth region, MPA does
not present an offset because the model is able to simulate the
process topology.

The improvement observed in the MPA method is related to
the parameter estimation module, since the upsets introduced

Table 5. Root mean square error for MC experiments using noisy
measurements (0.5 %) and the perfect model

Method Region 1 Region 2 Region 3 Region 4
MPA 9.95 5.19 8.59 9.34
MA 9.40 8.61 10.81 12.54
ISOPE 8.95 9.11 11.14 13.33
SCFO 9.97 5.09 6.36 9.91

by the measurement noise are sufficient to increase the sample
distribution quality, obtaining better information. Similar results
could be achieved by introducing the dual methodology to the
MPA approach. Figure 12 shows a comparison between MPA
with and without the dual methodology. It is important to note
that the dual approach decreases the bias observed in the RTO
path followed by the MPA method, consequently decreasing the
profit loss ~28 % compared to MPA without the use of the dual
approach.

The derivative-based methods present better results than the
MPA method only in the case of model mismatch and noise-free
measurements. In particular, the SCFO method presents the best
economic performance among the derivative-based methods,
followed by the MA and then the ISOPE method. This fact indicates
that SCFO is better designed to handle the uncertainty introduced
by the Broyden estimation. The comparison between MA and
ISOPE shows slightly better performance for MA, indicating that
the parameter estimation module is not necessary for this
approach type.

Table 6. Frequency of achieving < 1% profit loss in the last 5 RTO Table 7. Average profit loss for MC experiments using noisy
iterations of each region. MC experiments using noisy measurements measurements (0.5 %) and the perfect model
(0.5 %) and the perfect model A - . -
Region 1 Region 2 Region 3 Region 4
Method Region 1 Region 2 Region 3 Region 4 Method (USD/s) (USD/s) (USD/s) (USD/s)
MPA 75.44 44.96 79.08 80.84 MPA 9.72 2.96 1.98 2.87
MA 28.08 11.20 23.36 32.12 MA 11.72 8.42 8.14 10.14
ISOPE 25.72 12.20 22.08 28.56 ISOPE 11.60 8.08 8.63 11.41
SCFO 25.32 18.60 28.96 17.96 SCFO 9.97 5.09 6.36 9.91
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Figure 10. MC experiments using noise-free measurements and approximate model: (a) MPA, (b) MA, (c) ISOPE, and (d) SCFO.

In general, the results show that derivative-based methods are
more sensitive to measurement noise than the classical MPA
method. In fact, the conditions used in the numerical experiments
are especially difficult for the derivative-based methods, since a
random sample of parameters (in the first iteration (Appendix A))
is likely to produce significant plant-model mismatch from the first
RTO iteration. Therefore, the approximation given by Broyden is
prone to produce a misleading search direction from the beginning

Table 8. Root mean square error for MC experiments using noise-free
measurements and the approximate model

Method Region 1 Region 2 Region 3 Region 4
MPA 8.00 4.58 8.22 9.22
MA 8.32 7.61 10.74 11.47
ISOPE 8.09 5.90 11.25 12.22
SCFO 8.45 5.51 8.99 9.66

of the RTO iterations. Another factor affecting the performance
of Broyden’s method is the set of “drastic” changes in process
topology induced by the sudden disturbances added to the
experiments during the RTO iterations. For instance, note that
the dispersions obtained for MA and ISOPE in regions 1 and 3 are
very different, although the plant parameters are the same in both
regions (Figures 8, 10). In the first region the algorithm starts from
a unique point where the derivatives are estimated by the model,
at a corner point where the derivative module is large and points
approximately to the optimum solution; region 3 starts from
several different points (end points of the second region).
Compared to region 1, the starting points of region 3 are placed
in a flatter area, which decreases the Broyden method’s derivative
prediction.

The influence of measurement noise on the gradient prediction
is analyzed by simply calculating a sequence of gradient
approximations under different levels of noise using Broyden’s
method. The quality of the gradient estimate is evaluated using the

Table 9. Frequency of achieving < 1% profit loss in the last 5 RTO Table 10. Average profit loss for MC experiments using noise-free
iterations of each region. MC experiments using noise-free measurements and the approximate model
measurements and the approximate model . - . "
Region 1 Region 2 Region 3 Region 4
Method Region 1 Region 2 Region 3 Region 4 Method (USD/s) (USD/s) (USD/s) (USD/s)
MPA 1.12 0.00 0.00 0.00 MPA 10.90 3.15 7.64 5.97
MA 73.40 42.28 62.72 81.44 MA 8.92 5.61 6.44 5.31
ISOPE 57.80 37.76 54.28 74.56 ISOPE 9.84 3.77 7.55 7.72
SCFO 73.52 13.04 64.28 65.24 SCFO 9.28 5.77 3.74 3.94
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Figure 11. MC experiments using noisy measurements (0.5 %) and approximate model: (a) MPA, (b) MA, (c) ISOPE, and (d) SCFO.

angle and the norm ratio between the predicted and true gradients.
Figure 13 shows the influence of measurement noise on these two
characteristics for a sequence of four RTO iterations, starting from
the same point and converging toward the optimum.

For the noise-free case, the maximum average angle between
the predicted plant gradient using Broyden’s method and the true
gradient is < 2°, meaning that the Broyden method approximation
is close to the true local direction of maximum function increase.

Table 11. Root mean square error for MC experiments using noisy
measurements (0.5 %) and the approximate model

Method Region 1 Region 2 Region 3 Region 4
MPA 8.10 4.63 8.53 9.45
MA 9.25 8.79 10.77 12.46
ISOPE 8.88 8.43 11.27 13.40
SCFO 9.36 6.60 9.88 11.18

Moreover, for this case the predicted derivative norms are similar
to the true one, indicated by a norm ratio close to 1 in Figure 13b.
Under these conditions (noise-free and good initial guess),
Broyden’s approximation shows a reasonable estimation of the
plant gradient.

The increment in the angle between the true and estimated
gradients confirms the high sensitivity of Broyden’s method to
measurement noise (Figures 13a, c, e, g). Additionally, the
increase of scattering at each RTO step indicates high sensitivity to
information degradation (i.e. measurement noise). This behav-
iour can be better appreciated in cases with 0.5 % and 1 % noise,
where the norm ratios of the derivatives are highly scattered,
affecting the length of steps taken toward the optimum by the
derivative-based RTO routine.

The high sensitivity to measurement noise of Broyden’s
gradient estimation (even for measurement noises as low as
0.5 %) is a serious issue for its implementation in real life
problems, and the reason why several alternative approaches have

Table 12. Frequency of achieving < 1% profit loss in the last 5 RTO Table 13. Average profit loss for MC experiments using noisy
iterations of each region. MC experiments using noisy measurements measurements (0.5 %) and the approximate model
(0.5 %) and the approximate model A - . -
Region 1 Region 2 Region 3 Region 4
Method Region 1 Region 2 Region 3 Region 4 Method (USD/s) (USD/s) (USD/s) (USD/s)
MPA 1.44 0.00 1.92 49.44 MPA 11.47 2.67 4.84 3.75
MA 27.48 13.72 23.60 31.28 MA 11.66 8.11 8.15 10.25
ISOPE 27.32 11.84 20.44 28.96 ISOPE 11.98 7.49 8.74 11.10
SCFO 25.20 15.96 26.56 25.16 SCFO 9.88 5.51 6.64 8.95
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been devised to improve plant gradient estimation.!?! An
interesting alternative is to take advantage of transient periods
to get more information from the plant.’??! Some techniques are
known to use this information in the identification of linear or
nonlinear dynamic models used to predict plant gradients.!'?!
These techniques can be implemented without affecting the basic
(derivative-based) steady-state RTO scheme, which will probably
improve the performance of these methods.

CONCLUSIONS

The performance of the classical RTO method (MPA) and three
derivative-based methods (MA, ISOPE, SCFO) were compared
under the influences of measurement noise, plant-model mis-
match, and process disturbances. The main findings in this
analysis are as follows.

The MPA method provides the best performance for the perfect
model case among all the methods compared. This method shows
the lowest profit loss in the scenarios studied. The key point in this
method is to provide a model flexible enough to generate the local
process topology, and a parameter estimation method capable of
minimizing the overfitting caused by a lack of practical identifi-
ability.®! On the other hand, for the approximate model
experiments, MPA presents better results than the derivative-
based methods when there is measurement noise or a specific
method (e.g. dual methodology) improving the quality of sample
information.

The plant derivative predicted by Broyden’s method is highly
sensitive to measurement noise and to initial estimates of the
derivatives. The SCFO method is more suitable for handling this
kind of uncertainty, presenting the best economic results.
Comparing MA and ISOPE shows that the parameter estimation
module is less important than the derivative quality for this kind of
approach.

This paper started with an inquiry on the reliability of the RTO
methods. The results show that a classical RTO method can be
reasonably reliable if provided with a model flexible enough to
mimic process topology, a parameter estimation method suitable
for handling process noise characteristics, gross errors, and
lack of model identifiability, and a method to generate process
upsets to improve the sample information quality (dual
methodology).

The implementation of a derivative-based RTO method in cases of
evident model mismatch should be considered only if the gap
between the predicted and the real optimum is large enough (which
isimpossible to know a priori) and the level of measurement noise is
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low. Furthermore, another aspect to be considered is the need to
implement better techniques for estimating the plant gradient using
transient information.

There are aspects such as optimization method and steady-state
detection that are not addressed in this contribution, which are
important for the overall performance of an RTO implementation
and should be the topic of new contributions. However, the
aspects addressed can be considered the distinctive marks of the
RTO methodologies, since-steady state detection and optimization
can be essentially the same for all these methodologies.

APPENDIX A

Upper and lower bounds for the initial parameter values used in
the first RTO iteration of each Monte Carlo simulation. The set of
parameters is uniformly raffled.

Table A1. Parameter bounds used in the parameter estimation

Parameter bounds used in perfect model simulations
Al Ea 1 A2 Ea 2 A3 a3
Upper 2.7554x10'2 13333 5.2000x 10" 16667 3.6099 x10'® 22216

Lower 1.2884 x 10> 3333 2.6853 x10* 4167 4.3589 x 10* 5554

Parameter bounds used in approximate model simulations
n1 v n2 v2
Upper 1.7183x10° 9289 1.3291x10'° 14304

Lower 6.6979 x 10° 6866 1.5076x10'" 10573

The measurement noise is simulated by function randn
MATLAB with standard deviation =0 and 0.5 % error:
z=m+ error .m .randn() (A1)
where z is the measurement contaminated with noise, m is the
measurement without noise, and error =0 or 0.005.

APPENDIX B

This section presents the behaviour of the optimization routines
implemented using the approximate model and the perfect model.
All RTOs start with the same parameter values, using noise-free
measurements and ideal derivatives.

According to Figure Bl all RTO methods achieve the true
optimum when accurate measurements are available, even in the
presence of model mismatch. The only exception is the MPA,

—MA

Opt. Profit
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Figure B1. Algorithm results for ideal conditions: (a) RTO path using approximated model, and (b) RTO path using perfect model.
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which presents offset in the case using the approximate model.
These results show the basic behaviour of the algorithms assessed
in this paper.
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