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A probabilistic methodology for brittle fracture based on two local failure models is 
presented. Probabilistic fracture parameters are obtained using a weakest link and a 
chain-of-bundles formulation. Both models define limiting distributions for the 
fracture stress described by a two-parameter Weibull distribution. Numerical 
procedures employing measured toughness data and finite element solutions are 
also described to calibrate the Weibull parameters. An application of the methodology 
then follows to predict geometry and stable crack growth effects on the distribution of 
macroscopic fracture toughness (J¢) for a high-strength steel. Measured fracture 
toughness values for a high-constraint geometry that exhibit no prior ductile tearing 
are effectively 'transferred' to a different geometry having much lower constraint and 
in which tearing precedes cleavage. The inherent difficulty in predicting the scatter of 
experimental fracture toughness, as well as constraint and ductile tearing effects, 
within the scope of conventional procedures appears greatly reduced in the framework 
presented in this work. © 1998 Elsevier Science Ltd. All rights reserved 

I I N T R O D U C T I O N  

The fracture behavior of structural components subjected to 
various loading and environmental conditions is of obvious 
relevance in assessing structural integrity. The increasing 
demand for ensuring acceptable levels of structural safety 
has spurred a flurry of predictive methodologies aimed at 
quantifying the impact of defects in load-beating materials 
such as, for example, cracks in critical weldments of high- 
pressure vessels. Such methodologies play a key role in 
repair decisions and life-extension programs for in-service 
structures (e.g. aerospace, nuclear and offshore structures), 
While mechanical failures in structural members and com- 
ponents may result from a combination of several material 
degradation processes, assessments of structural integrity 
generally focus on cleavage fracture. This failure mode 
potentially limit the load bearing capacity of the structure 
as local crack-tip instability may trigger catastrophic failure 
at low applied stresses with little plastic deformation. 

It has become apparent over recent years that conven- 
tional methods of fracture mechanics analysis have limited 
ability to assess structural integrity in a realistic manner. 
Most often, these methods are conservative (i.e. the failure 
of a cracked component at a given load is overpredicted) 
since they assume conditions rarely experienced by the 
structure. Further, cleavage fracture is a highly localized 
phenomenon which exhibits strong sensitivity to material 
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characteristics at the microlevel. In particular, the random 
inhomogeneity in local features of the material causes large 
scatter in experimentally measured values of fracture tough- 
ness (Klc, Jc, 6c or CTOD). Such features make assessments 
of structural integrity using laboratory testing of standard 
specimens and simplified crack configurations a complex 
task: what is the 'actual' material toughness and how is 
the scatter in measured values of fracture toughness incor- 
porated in procedures for defect assessments? 

There has recently been a surge of interest in analysing 
and predicting material failure caused by transgranular clea- 
vage based upon a probabilistic interpretation of the fracture 
process. A primary impetus for bringing probabilistic frac- 
ture mechanics concepts into play is the inherent random 
nature of fracture. Attention has been primarily focused on 
probabilistic models incorporating weakest link statistics. 
Batdorf and Crose, I Evans 2 and Matsuo 3 first considered 
models of this type to describe brittle fracture for arbitrary 
loading. Here, a function representing the number of micro- 
cracks per unit volume failing at each value of the local 
tensile stress is used to arrive at the probability of fracture 
for a cracked body. Later, Beremin, 4 Wallin et al., 5-s Lin et 

al., 9 Briickner et al., ~° Godse and Gurland IJ among others 
provided a link between the size of carbides particles dis- 
persed in the material and the inhomogeneous stress fields 
ahead of a macroscopic crack. They sought to predict 
the dependence of fracture toughness (K~c) on material 
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properties and temperature. In particular, the work of 
Beremim 4 and Mudry ]2 introduces the Weibull stress (aw) 
as a suitable crack-tip parameter incorporating a local criter- 
ion for fracture. More recent efforts in this area have focused 
on developing transferability models for cleavage fracture 
toughness based upon the Beremin's Weibull stress. Bakker 
and Koers, 13 Minami et  al., 14 Ruggieri et  al., 15A6 assess 
effects of specimen thickness and crack length on elastic- 
plastic fracture toughness (Jo 8c). Further studies by Ruggieri 
and Dodds  17-]9 generalize the Weibull stress for stationary 
and growing cracks to include effects of loss of constraint and 
ductile tearing on macroscopic fracture toughness. 

The objectives in developing probabilistic models to 
describe unstable crack propagation are essentially two 
fold. First, for a structure containing cracks of different 
sizes and subjected to complex loading histories, we seek 
to determine limiting distributions for the (local) fracture 
stress which couple remote loading (as measured by J or 
CTOD) with the operative fracture mechanism at the micro- 
level. In the context of probabilistic models, a fracture para- 
meter associated with the limiting distribution then 
describes macroscopic fracture behavior for a wide range 
of loading conditions and crack configurations. As a second 
objective, we seek to predict unstable crack propagation in 
larger flawed structures on the basis of a probabilistic 
fracture parameter. Experimentally measured values of frac- 
ture toughness for one configuration (e.g. small laboratory 
specimens) are rationally extended to predict unstable crack 
propagation for other crack configurations, provided 
similarities in both limiting distributions for such a fracture 
parameter exist. 

The plan of the paper is as follows. We first present a 
probabilistic model to describe fracture in brittle materials 
and introduce two probability distributions for the fracture 
stress of cracked bodies. The first distribution derives from 
the well-known weakest link model while the second one 

builds upon a chain-of-bundles model. Next, we briefly 
describe the procedure to calibrate the Weibull parameters 
of the resulting asymptotic distributions for both failure 
models. The paper then provides an illustrative application 
of the methodology to predict geometry and stable crack 
growth effects on the distribution of macroscopic fracture 
toughness (J0  for a high-strength steel. A short discussion 
on the results and its implications for brittle fracture assess- 
ments of load-bearing materials concludes this study. 

2 PROBABILISTIC M O D E L  FOR CLEAVAGE 
FRACTURE 

2.1 Failure probability for a cracked solid 

We consider an arbitrarily stressed body where a macro 
scopic crack lies in a material containing randomly distrib 
uted flaws as illustrated in Fig. 1. The fracture process zon~ 
ahead of the crack tip is defined as the highly stressed regio] 
where the local operative mechanism for cleavage take.. 
place; this region contains the potential sites for cleavag~ 
cracking. For the purpose of developing a probabilistb 
model for brittle fracture, we divide the fracture proces; 
zone ahead of crack tip in N unit volumes statistically inde 
pendent, Vi, i = 1,2 ..... N. Each unit volume contains ', 
substantial number of statistically independent microflaw 
uniformly distributed. 

The statistical nature of brittle fracture underlies a sire 
plified treatment for unstable crack propagation of the con 
figuration represented in Fig. l(a). We first limit attention tq 
the asymptotic distribution for failure of the unit volume an~ 
consider V divided into small volumes uniformly stressed 
statistically independent 6Vj, j = 1,2 ..... n, as illustrated iJ 
Fig. l(b). Let p denote the probability of failure for the it! 
volume 6Vj. The probability that k failures occur (whic' 
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Near-Tip Fracture .. _ _ _  .. 
Process zone /¢  ~ 0 ~  -.\ ~ I ~ x , x x ~ / t ~ V  

o /  >Ox 

,,~ x2 
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\ 

\ ~ / (b) \ 

\ \  B \ 
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Fig. 1. (a) Fracture process zone ahead of a macroscopic crack containing randomly distributed flaws; (b) unit volume uniformly stresse 
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correspond to the fracture of k small volumes elements 6V) 
is defined in terms of the Binomial distribution 21"22 

2 ( S n = k ) =  p ( 1 - p ) n - k ,  O < k < _ n ,  (1) 
k 

where Sn denotes the total number of failures that occurred 
in n volumes. When k is large and p is small, by the Poison 
limit theorem, the distribution of the number of failures 
converges to a Poison distribution with parameter h in 
the form 

e -xXk 
P(S,, = k) - , (2) 

k~ 

where X = kp is the expectation of the binomial distribu- 
tion. In particular, we seek the probability that there is at 
least one failure. Thus, the failure probability of the unit 
volume has distribution 

P(S,, >- i ) = 1 - P(S ,  = O) = 1 - e - ~p (3) 

To arrive at a limiting distribution for the fracture stress of 
a cracked solid, an appropriate functional form for the 
probability p is required. The following sections provide 
the needed forms based upon two failure models. 

2.2 The weakes t  l ink (WL)  mode l  

The most widely adopted probabilistic model to describe 
fracture in brittle materials is based upon the weakest link 
(WL) theory. A central feature emerging from the WL 
model is the notion that catastrophic failure is driven by 
unstable propagation of a single microflaw contained in 
the unit volume V. As depicted in Fig. 2, a 'chain' analogy 
is then readily established. In ferritic steels, extensive work 
shows that cleavage microcracks propagate unstably upon 
attaining a critical size, ac = K~c/Ya 2, where Y represents a 
geometry factor, a denotes a tensile (opening) stress acting 
on the microcrack plane and Klc is the material fracture 
toughness. A number of probabilistic approaches employ 
the statistics of microcracks to provide a connection 
between the probabilistic treatment of fracture and existing 
frameworks for continuum mechanics (see, for example, 
Beremin, 4 Wallin et al., 5'6 Ruggieri and DoddsJ7-19). In 
the context of the present work, we avoid the micromecha- 
nics formalism of the aforementioned derivations and 
present a more simplified formulation for the WL model 
which also makes contact with the chain-of-bundle model 
presented next. 

To arrive at a probability distribution for the fracture 
stress, we adopt a convenient functional form for the failure 

2 j n ~ , / ~  I I 

\ Load 
Single Flaw 

Fig. 2. Weakest link model. 

probability of 6V as 

p = (ol/as) 'n, (4) 

where ol is the principal stress acting on 6V, m and o, are 
parameters of the function with m, o, > 0. 

Now, substitution of eqn (4) into eqn (3) defines the fail- 
ure probability 20 for the unit volume V in the form 

P° = l - exp [ - k ( °l"]m] = l - exp l - ( al "]m] a~ / j \ a , /  j 

(5) 

which is a Weibull distribution with parameters m and a,. 
Using again weakest link arguments, we generalize the 

previously derived limiting distribution to any multiaxially 
stressed region, such as the fracture process zone ahead of a 
macroscopic crack or notch (see Fig. l(a)). Here, the statis- 
tical problem of determining an asymptotic distribution for 
the fracture strength of the entire solid is equivalent to deter- 
mining the distribution of the weakest unit volume V. The 
fundamental assumption is that the near-tip fracture process 
zone consists of N arbitrary and statistically independent 
unit volumes V. Consequently, 

N 

' f ' =  1 - -  [1 - -~P0]  N = 1 - -  H (1 - -  xc°0). (6)  
i = 1  

Substituting eqn (5) into the above expression, the prob- 
ability distribution for the fracture of a cracked solid based 
upon the WL model is given by 

2 =  l - e x p [  ~ .  ( o , '~"]  - , (7) 
i : 1 \ ° . /  ] 

which for N ---, w yields 

1 d~ (8) 5P = 1 -- exp -- ~ a 

where ~2 denotes the volume of the near-tip fracture process 
zone and V0 is a reference volume. 

Following the development presented previously, the 
Beremin's Weibull stress 4 is then given by integration of the 
principal stress over the fracture process zone in the form ],m 

O W = aa~nd~ (9) 

from which the limiting distribution (eqn (8)) now takes the 
form 

2 ( a w ) = l - e x p  - aw . (10) 

Eqn (10) defines a two-parameter Weibull distribution 23 in 
terms of the Weibull modulus m and the scale factor a,. 
Previous w o r k  4"14'15'17 has shown that m takes a value in the 
range 10-22 for typical structural steels. 

2.3 The chain-of-bundles  (CB) mode l  

An alternative model to the WL philosophy involves 
relaxing the assumption that a critical microcrack triggers 
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catastrophic failure of the entire cracked body. When 
unstable propagation of a microflaw is arrested by the sur- 
rounding material (which presumably has higher fracture 
resistance), the distribution of local stresses accompanying 
the failure of a small material element containing the 
microflaw contributes to increase the macroscopic fracture 
resistance. Under increasing loading, the fracture process 
progresses by consecutive instability of the surviving mate- 
rial elements until a critical load is attained--only after a 
number of material elements have failed does the failure 
occur in a macroscopic scale, ultimately via a weakest 
link mechanism. In the present context, each unit volume 
is viewed as a chain of n statistically independent bundles, 
each bundle having r elements in parallel, as illustrated in 
Fig. 3. 

We consider again a limiting distribution for the failure 
probability of 6V. For a fiber bundle model with equal load 
sharing, Daniels 24 presented the first derivation of an 
asymptotic distribution describing the bundle strength. In 
his model, a single bundle has independent elements in 
parallel, each one with the same cross section; the load is 
equally redistributed among the unfailed elements when a 
single element fails. Let TI,T2 ..... Tr denote the fracture 
strength of each element and let these strengths be the 
order statistics T~ -< T2 < < T r. The failure of the 
bundle under principal stress al satisfies the condition 

r - I  
a, >- max{T1, ( T ) ~  . . . . .  ( ! )  T~}. (11) 

When r ---* o% the bundle strength is asymptotically nor- 
mally distributed with expectation # and standard deviation 
% Thus, the probability p is given by 

p = rb(z) = ~ e r/2dt, (12) 

where cb(z) is the standard normal distribution function with 
expectation zero, standard deviation l and z = (cr~ -/z)/-y. 
Now, substitution of eqn (12) into eqn (3) defines the fail- 
ure probability for the unit volume V in the form 

( 0 

41 2 
1 
2 

i 
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m 
/ 

l 
Load 

dV 
Fig. 3. Chain-of-bundles model. 
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Define the random variable ~q as 

q 
= ~ _ e r/2dt, (14 

which, for q ---* 0% has an asymptotic solution given by 25"2~ 

Z=aq q-bqlnN, (15 

where aq and bq are parameters. Solving this expression fo 
A and replacing z by (~rl -/z)/3,, the limiting distribution fo 
the fracture strength of the unit volume yields 

5°0 = 1 - exp [ -  exp ( - ° L ~ )  ],  (16 

which is a Gumbel distribution for the smallest value wit] 
location parameter c~ and scale parameter/3. 28 

Using the parametrization 

(71 = lnSl (17 

= InS, 

-1 /3=w 

allows eqn (16) to be written in the form 

2P0 = 1 - exp [ -  (S~l)w], (If 

which is a Weibull distribution with parameters w and S, 
Now, following the same development presente 

previously, the probability distribution for the fracture of 
cracked solid based upon the CB model becomes 

1 ( S l ~  dfl] (1~ 
2 ° = l - e x p - V 0 0  ak.S.J  J 

where ft denotes the volume of the near-tip fracture proce, 
zone. 

Again, a stress integral having the form 

% = [ ~ f J~da] '/m (21 

is employed to recast eqn (19) as 

- (2 

3 P A R A M E T E R  C A L I B R A T I O N  A N D  N U M E R I C A  
P R O C E D U R E S  

There is general agreement that the parameters of the We 
bull distributions given by eqns (10) and (21) are materi 
properties. In applications of probabilistic fractu 
mechanics, these parameters are generally calibrated fro 
experimental toughness data. Beremin 4 and Minami et al. 
presented the first formalized procedures to calibrate t 
Weibull parameters (m, ~r,). 
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In related work, Ruggieri et al. 16 utilized their procedures 
to calibrate parameters (w, S,) for a high-strength steel. 
More recently, Ruggieri and Dodds 17-19 implemented simi- 
lar methodology in a probabilistic framework for fracture 
assessments of flawed structures using the research code 
WSTRES S. 19 

The methodology builds upon an iterative procedure 
incorporating a three-dimensional finite element description 
of the crack-tip stress fields and measured values of fracture 
toughness to calibrate the Weibull parameters appearing in 
eqns (10) and (21). Development of the numerical proce- 
dure then begins with evaluation of the stress integrals, a., 
and %. These values enable construction of the evolution of 
ow (or equivalently a~,) as deformation (loading) progresses. 

For the purpose of developing a procedure to calibrate the 
Weibull parameters (m, ~.) and (w, S.), it is helpful to 
rewrite the probability distributions given by eqns (10) 
and (21) in the form 

T(~, c, b) = 1 - exp - , (22) 

where E = o,, for the WL model and 12 = o~, for the CB 
model, with (c, b) denoting the corresponding Weibull 
parameters. 

Fig. 4 summarizes the procedure to calibrate the para- 
meters (c, b) similar to the one utilized by Ruggieri and 
Dodds. 19 The description that follows adopts J as the 
measure of macroscopic loading; the algorithm remains 

FE Analysis 

Loop Over 
Load Steps 

I ^ C = C  i 

Locate Near-Tip 
Fracture Process Zone 

a i -> ,,l.o 0 

Store (Cauchy) Stresses 
of Included Elements 

I Initialize Weibull Modulus 
c = c  0 

i 
Generate Computed 
Weibull Stress Function 

((7W)fe m = F(J,c) 

Determine Experimental 
Data Set for Ow 

(aw)exp = F(dc,  e) 

Statistical Analysis (ML) 
c i 

0"1 ~'~ "~(~(I 

Crack 

m = m  i 
( l w ~  ~z'°'°~ 

J 

Fracture Mechanics Tests 

KI~, dc, CTOD (6,,) 

NO / ' ~ =  _ ~ " ~  YES~ I ML Estimates 
~ ~ ! ^ 

I c,b 

Fig. 4. Algorithm for calibration of the Weibull modulus, c. 
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applicable for other measures of load level, such as K or 
CTOD. 

3.1 FE-analysis and fracture mechanics testing 

Toughness data for cleavage fracture are used to define 
corresponding values of the Weibull stress at fracture; 
these values form the basis upon which the Weibull 
parameters for the material are estimated without making 
recourse to detailed micromeasurements. Crack 
configurations exhibiting high levels of crack tip stress 
triaxiality (deep notch SE(B) or C(T) fracture specimens) 
tested at appropriate temperatures provide cleavage fracture 
toughness data employed in the present procedure. Non- 
linear finite element analyses of the tested specimens 
provide the necessary stress fields and define the size of 
the fracture process zone for the specified load levels 
(here expressed by J). 

The process begins by finding the material dependent 
value for the Weibull modulus, c, appearing in the 
probability distribution expressed by eqn (22). Let 2Vr~m(I]) 
denote the distribution of E corresponding to the stress state 
obtained through a finite element analysis. Also, let 2°exp(~) 
denote the distribution of I~ corresponding to the measured 
values of fracture toughness. Since 2°f~m(~) and 2%xp(I2) have 
identical distributions, the calibration process becomes one 
of determining a set of parameters { c, b } which satisfies this 
condition. 

3.2 Generation of the evolution of ~ versus J 

A starting value for c, denoted Co, is required to generate the 
first approximation for the relationship between J in the 
finite element model and the stress integral, ~, for the test 
specimen, expressed as ~fem = F(J, m). This relationship is 
determined by numerically integrating eqns (9) and (20) at 
each specified load level. In isoparametric space, the current 
(deformed) Cartesian coordinates xi of any point inside an 
eight-node tri-linear element are related to the parametric 
coordinates ~ using the shape functions corresponding to 
the kth node. 27 Let IJI denote the determinant of the standard 
coordinate Jacobian between deformed Cartesian and para- 
metric coordinates. Then, using standard procedures for 
integration over element volumes, the Weibull stress has 
the form 

l/m 

O'w = ~0 

llm 

l o'~ IJId~71 d~?2d~73 , (23) 

where nc is the number of elements inside the fracture 
process zone near the crack tip and ~e is the volume of 
the element. The process zone used here includes all mate- 
rial inside the loci o~ --> Xao with ~, ~ 2. For computational 
simplicity, an element is included in the fracture process 
zone if the cr i computed at ~ t = ~ 2 = ~ 3 = 0 exceeds ~,ao. 

Similarly, the finite element form in parametric space foi 
the stress integral ag is given by 

i 11,w 
[1 i, , = V00~ - l  -1 -1S~'lJId~ldr/Ed~73 , (241 

where again the process zone includes all material insid~ 
the loci a l - ka0, with ~, ~ 2. 

3.3 Evaluation of E at fracture 

The computed relationship between J and I2 then enable: 
evaluation of the stress integral at fracture, denoted I]exr 
corresponding to each experimental fracture toughnes: 
value, Jc. This is accomplished by evaluating Eexp = F(Jc 
m) using the functional form between J and Efem. In practice 
Eexp are evaluated from a simple interpolation employin~ 
discrete values of ~]fem versus J. The Z~xp values then defin, 
a statistical sample with distribution Pexp(E). A statistica 
analysis based upon the maximum likelihood method fo 
this distribution yields the 'new' estimate of the Weibul 
modulus, ~1. Convergence is attained if IOi_ l -~ i l  <--~ 
otherwise the process starts anew with the distributio~ 
2Vf~m(E) computed for c = ~i. 

3.4 Numerical modeling of ductile tearing 

A key feature of the present methodology is the inclusio 
of ductile tearing effects in the probabilistic formulatio 
using numerical modeling of stable crack growth that ofte 
precedes cleavage fracture in ferritic steels. The comput~ 
tional cell methodology proposed by Xia and Shih 35-3 
provides a model for ductile crack extension that include 
a realistic void growth mechanism, and a microstructur~ 
length-scale physically coupled to the size of the fractur 
process zone. Void growth remains confined to a layer c 
material symmetrically located about the crack plane, a 
illustrated in Fig. 5(a), and having thickness D, where D i 
associated with the mean spacing of the larger, void init! 
ating inclusions. This layer consists of cubical cell eR 
ments with dimension D on each side; each cell contair 
a cavity of initial volume fraction fo (the initial voi 
volume divided by cell volume). As a furthe 
simplification, the void nucleates from an inclusion of reh 
tive size fo immediately upon loading. Progressive voi 
growth and subsequent macroscopic material softening i 
each cell are described with the Gurson-Tvergaard (Gq 
constitutive model for dilatant plasticity. 38"39 When f i n  tt 
cell incident on the current crack tip reaches a critic', 
value, fe, the computational procedures remove the ce 
thereby advancing the crack tip in discrete increments 
the cell size. Material outside the computational cells, tt 
'background' material, follows a conventional J2 t o  
theory of plasticity and remains undamaged by vo! 
growth in the cells. 
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Fig. 5. (a) Model for ductile crack growth using computational cells. (b) Computed crack growth resistance curve for the SE(B) specimen 
with a/W = 0.1. 

Material properties required for this methodology 
include: for the background material Young's modulus (E), 
Poison's ratio (v), yield stress (o0) and hardening exponent (n) 
or the actual measured stress-strain curve; and for the com- 
putational cells: D and f0 (and of much less significance fe).  
The background material and the matrix material of the cells 
generally have identical flow properties. Using an experimen- 
tal J - Aa curve obtained from a conventional SE(B) or C(T) 
specimen, a series of finite element analyses of the specimen 
are conducted to calibrate values for the cell parameters D and 
f0 which bring the predicted J - Aa curve into agreement with 
experiment. The CTOD at initiation of ductile tearing pro- 
vides a good starting value for D, with f0 then varied to obtain 
agreement with the experiment. Alternatively, metallurgical 
surveys of inclusion volume fractions and sizes may be used 
with various packing arrangements (e.g. nearest neighbor dis- 
tance) to estimate D and/or f0. Experience with plane-strain 
finite element analyses of SE(B) and C(T) specimens to esti- 
mate D and f0 for common structural and pressure vessel steels 
suggests values of 50-200/xm for D, 0.001-0.005 for f0, with 
fE typically 0.15-0.20. Once determined in this manner using 

A 
i ! 
i 

W=30 
] 

a specific experimental R-curve, D and f0 become 'material' 
parameters and remain fixed in analyses of all other specimen 
geometries for the same material. 

4 P R E D I C T I O N  OF FRACTURE PROBABILITY 

The probabilistic methodology outlined in the previous sec- 
tions has been applied to predict effects of specimen geometry 
on measured values of toughness values. Such an application 
serves as a prototype for a wide class of engineering problems 
involving the transferability of fracture toughness data from 
laboratory specimens to structural components. Fracture 
mechanics tests on conventional SE(B) specimens (plane- 
sided) with varying crack length to width ratios, a/W, provide 
the experimental cleavage fracture toughness data employed 
in this study. Testing of these specimens was carried out at 
-120°C for a deep crack (a/W = 0.5) and for a shallow crack 
(a/W = 0.1) configuration. 3° The specimens have a loading 
span, S = 120 mm, a width, W = 30 mm, and thickness B = 
15 mm (see Fig. 6). The material is a high-strength, low-alloy 

-' k i 
.., S / 2  = 60 ~- 

I 

x 2 
Cells for Growth Analysis 

~ " X l  

A 
[ 

a = 3  

x 1 
Near  Tip Model for 

a = 15 No Growth Analysis 

A 

Fig. 6. Finite element models for three-point SE(B) specimens: (a) a/W = 0.1; (b) a/W = 0.5 (all units in millimeters). 
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(HSLA) steel (663 MPa yield stress) with relatively low 
strain hardening (tensile strength/yield strength = 1.08). 
Fig. 7(a) reveals the pronounced effect of a /W ratio and 
ductile growth on experimental fracture toughness values 
(Jc). Most of the specimens with a /W = 0.1 experienced 
ductile crack extensions (Aa) of 0.5-0.75 mm prior to clea- 
vage fracture. In contrast, specimens with a /W = 0.5 exhib- 
ited completely brittle behavior with no measurable crack 
extension prior to cleavage fracture. Fig. 7(b) displays the 
Weibull distribution of the toughness data for the SE(B) 
specimens. The Weibull shape parameter for both distribu- 
tions is in agreement with the value of 2 given by Wallin; 6 
this value describes the ('theoretical') scatter of Jc for clea- 
vage fracture in ferritic steels. 

Finite element analyses conducted on plane-strain models 
for the deep and shallow notch specimens provide the 
crack front stresses for evaluation of the stress integrals 
given by eqns (23) and (24). Ruggieri and Dodds 17 present 
details of the analyses and computational procedures. Fig. 
6 shows the finite element models, dimensions and bound- 
ary conditions. The models have one-layer of elements in 
the thickness direction with plane strain conditions (x3 = 
0) imposed on all nodes and sufficient mesh refinement 
near the tip to provide adequate solution of the stress 
fields. Numerical computations were performed in a 
finite strain setting by the WARP3D finite element 
code. 31 J-integral values are obtained using the domain 
integral facility available in WARP3D. As noted 
previously, stable crack growth prior to cleavage fracture 
occurs in the shallow notched specimens. Consequently, 
prediction of toughness results for these specimens 
requires inclusion of crack growth modeling in the prob- 
abilistic formulation. Here, the analyses consider a station- 
ary crack (with crack tip mesh similar to the one employed 
for the deep notch specimen) and a growing crack analysis 
which accommodates ductile tearing with the computa- 
tional cell scheme previously outlined. The constitutive 
model adopted in the analyses follows a J2 flow theory 
with Mises yield criterion. The uniaxial true stress- 
logarithmic strain response for the material is modeled 
with a piecewise linear approximation to the mechanical 
tensile behavior. ,7 

The computational cell approach requires calibration of 
the initial porosity, f0, and cell size, D, from a measured set 
of R-curves. As noted by Ruggieri and Dodds, 2° calibration 
of the cell parameter, f0, using the load versus load-line 
displacement exhibit essentially no sensitivity on this para- 
me te r - c r ack  growth resistance curves exhibit a much 
stronger sensitivity to f0 as required to define a robust cali- 
bration procedure. Ideally, R-curves obtained using a/W -- 
0.5 specimens would be used for this procedure. However, 
deep-crack specimen R-curves are not available from the 
experimental investigation--at the test temperature, no duc- 
tile tearing occurs. Alternatively, experimental R-curves for 
other, low constraint geometries would be suitable to 
perform the calibration. Here, only the shallow-crack data 
is available and we use it to perform calibration of the 
computational cell parameters (D, f0). Fig. 5(b) shows the 
measured cleavage fracture data for the shallow-crack 
specimens plotted in an R-curve format. The computed 
resistance curve shown on this figure is obtained using the 
values D = 200 t~m and f0 = 0.00025 in the finite elemenl 
analysis for ductile crack growth. Despite the relative scatteJ 
observed in the experimental (cleavage) values, the pre- 
dicted R-curve captures the average evolution of crack 
growth behavior. 

The research code WSTRESS 19 is used to determine the 
material dependent value for the shape parameter m and 
appearing in eqns (23) and (24). After convergence i,, 
attained, a small sample correction is applied to the max- 
imum likelihood estimate of m using appropriate unbiasin~ 
factors given by Thoman e t  al .  29 Using the calibration pro- 
cedure outlined in previous section and employing the mea 
sured fracture toughness for the deep-notched SE (B 
specimens (a/W = 0.5), m has the value of 15.6 with 90~ 
confidence intervals given by (9.0, 20.9) and w has the valu~ 
of 7.9 with 90% confidence intervals given by (4.5, 10.5). 

With the Weibull modulus m and w calibrated, we predic 
the combined effects of a/W ratio and ductile tearing for th~ 
experimental cleavage fracture toughness data using 
toughness scaling procedure presented by Ruggieri an~ 
Dodds.17'19 Fig. 8(a) and (b) show the computed evolutior 
of Crw and ag, under increasing values of J, for the deep an( 
shallow crack configurations. The stress integrals arc 
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Fig. 7. (a) Experimental cleavage fracture toughness data (SE(B) test results) for QT steel at - 120°C. (b) Two-parameter Weibul 
distribution of toughness data for SE(B) specimens. 
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Fig. 8. Variation of the stress Z; with increasing load for the SE(B) 

normalized by the yield stress, a0, for the material under 
consideration while the loading parameter, J, is normalized 
by the remaining crack ligament of the specimen, b = W - 
a, and a0. Although not explicitly addressed here, we note 
that a~ may display more sensitivity to mesh details and 
mesh resolution (particularly near the crack tip) than aw as 
the integral given by eqn (24) involves a power of exp(a~)--  
a finer mesh may be required to resolve more accurately the 
near-tip stress fields. Since our primary interest lies in com- 
paring the response of both failure models in predicting the 
toughness distribution for the shallow crack specimen, the 
mesh employed in the analyses appears satisfactory. 

The stress integrals and ag increase monotonically for the 
SE(B) specimens with a/W = 0.5 which reflect the increase 
in the near-tip stress fields as loading progresses. By 
contrast, aw and ag for the stationary crack analysis of the 
SE(B) specimen with a/W = 0.1 also increase monotoni- 
cally at early stages of loading, but sharply decrease after a 
'saturation' level is reached at J/(bao) -~ 0.05. This behavior 
is caused by severe loss of crack-tip constraint, with conse- 
quent reduction in the stress levels ahead of the crack tip, 
experienced by such crack configuration as loading pro- 
gresses (see Dodds et al. 32 and Ruggieri and Doddsl7). 
However, inclusion of ductile crack growth in the analysis 
counteracts the effects of constraint loss and, thus, restores 
aw and og to high constraint levels, as observed in Fig. 8. 
These trends are fully consistent with those obtained in 

specimens: (a) weakest link model (aw); (b) chain-of-bundles model (a~). 

previous numerical analyses 33"34 in that stable crack 
growth elevates the near-tip stresses and increases the 
volume of the cleavage fracture process zone, thereby 
increasing the stress integrals aw and ag. 

The curves presented in Fig. 8 provide the distribution of 
a continuous function of ~-values at fracture for these speci- 
mens. The generated, continuous function of Y:-values (a,, or 
ag) at fracture for the SE(B) specimens with a/W = 0.5 
(configuration A) is 'transferred' for constraint loss and 
crack extension to predict the distribution of Jc-values for 
the shallow-crack specimens with a/W = 0.1 (configuration 
B). The probability distribution of cleavage fracture tough- 
ness for configuration B is then expressed in closed form as 

P(J,) = l - exp [ - ( FB(~B' c)) C 1 , (25) 

where FB(J, c) denotes the computed functional relation- 
ship between J (or equivalently CTOD) in configuration B 
(finite element model) and the stress integral E for the 
calibrated value of c. 

The Weibull probability plot in Fig. 9(a) and (b) shows 
the predicted distributions and 90% confidence bounds of 
cleavage fracture toughness for the SE(B) specimen with a~ 
W ----- 0.1 using both failure models. The solid symbols in the 
plots indicate the experimental fracture toughness data for 
those specimens. Values of cumulative probability, F, are 
obtained by ordering the Jc-values and using F = (i - 0.5)/ 
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Fig. 9. Prediction of the probability distribution for the cleavage fracture toughness data of SE(B) specimens with a/W = 0.1. (a) Weakest 
link model (aw). (b) Chain-of-bundles model (og). 
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N, where i denotes the rank number and N defines the total 
number of experimental toughness values. The predicted 
curves are generated from the point estimate and 90% 
confidence limits for the parameters (c, b) of the SE(B) 
specimen with a/W = 0.5. 

The good agreement between the predicted distributions 
displayed in Fig. 9 and the experimental data (note that all 
measured Jc-values lie within the 90% confidence bounds) 
indicates the robustness of the present probabilistic metho- 
dology. An interesting feature of the results displayed in 
Fig. 9 is that the predicted distributions for the WL and 
CB model are very similar. Such a behavior suggests that 
use of the more refined chain-of-bundles model does not 
provide any real improvement in the transferability proce- 
dure. However, inclusion of ductile crack growth in the 
computation of the stress r~(Ow and og) proves essential to 
predict the fracture toughness values in the upper tail of the 
curves (i.e. Jc-values > 1000-1200 kJ/m2). This is clearly 
evidenced by examining the evolution of aw and a s with 
loading (J) in Fig. 8. The stationary crack (no-growth) ana- 
lysis provides, at best, predicted Jc-values for the lower tail 
of the curves ( < 1000). 

5 CONCLUDING REMARKS 

This study describes a probabilistic framework for brittle 
fracture using two failure models: weakest link and chain- 
of-bundles approaches. The weakest link philosophy is 
defined such as fracture of a small element at the microlevel 
of material ahead of a macroscopic crack triggers general 
catastrophic failure. The chain-of-bundles approach allows 
one or more failures at the microlevel of near-tip material 
before catastrophic fracture occurs. The probability 
distributions for both models are cast into a two-parameter 
Weibull distribution of the fracture stress. A numerical 
procedure to calibrate the Weibull parameters based upon 
measured toughness values and finite element solutions is 
then presented. Application of the proposed methodology to 
analyze the fracture behavior of a high-strength, low-alloy 
steel successfully transfer measured toughness values across 
different structural geometries and crack configurations. 
Moreover, the probabilistic fracture parameters aw and ag 
incorporate both the effects of stressed volume and the 
potentially strong changes in the character of the near-tip 
stress fields owing to constraint loss and ductile crack exten- 
sion. Current work is in progress to extend the present 
framework as a broader predictive methodology to assess 
structural integrity. 
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