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A probabilistic methodology for brittle fracture based on two local failure models is
presented. Probabilistic fracture parameters are obtained using a weakest link and a
chain-of-bundles formulation. Both models define limiting distributions for the
fracture stress described by a two-parameter Weibull distribution. Numerical
procedures employing measured toughness data and finite element solutions are
also described to calibrate the Weibull parameters. An application of the methodology
then follows to predict geometry and stable crack growth effects on the distribution of
macroscopic fracture toughness (J.) for a high-strength steel. Measured fracture
toughness values for a high-constraint geometry that exhibit no prior ductile tearing
are effectively ‘transferred’ to a different geometry having much lower constraint and
in which tearing precedes cleavage. The inherent difficulty in predicting the scatter of
experimental fracture toughness, as well as constraint and ductile tearing effects,
within the scope of conventional procedures appears greatly reduced in the framework

presented in this work. © 1998 Elsevier Science Ltd. All rights reserved

1 INTRODUCTION

The fracture behavior of structural components subjected to
various loading and environmental conditions is of obvious
relevance in assessing structural integrity. The increasing
demand for ensuring acceptable levels of structural safety
has spurred a flurry of predictive methodologies aimed at
quantifying the impact of defects in load-bearing materials
such as, for example, cracks in critical weldments of high-
pressure vessels. Such methodologies play a key role in
repair decisions and life-extension programs for in-service
structures (e.g. aerospace, nuclear and offshore structures).
While mechanical failures in structural members and com-
ponents may result from a combination of several material
degradation processes, assessments of structural integrity
generally focus on cleavage fracture. This failure mode
potentially limit the load bearing capacity of the structure
as local crack-tip instability may trigger catastrophic failure
at low applied stresses with little plastic deformation.

It has become apparent over recent years that conven-
ttonal methods of fracture mechanics analysis have limited
ability to assess structural integrity in a realistic manner.
Most often, these methods are conservative (i.e. the failure
of a cracked component at a given load is overpredicted)
since they assume conditions rarely experienced by the
structure. Further, cleavage fracture is a highly localized
phenomenon which exhibits strong sensitivity to material
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characteristics at the microlevel. In particular, the random
inhomogeneity in local features of the material causes large
scatter in experimentally measured values of fracture tough-
ness (K, J, 6. or CTOD). Such features make assessments
of structural integrity using laboratory testing of standard
specimens and simplified crack configurations a complex
task: what is the ‘actual’ material toughness and how is
the scatter in measured values of fracture toughness incor-
porated in procedures for defect assessments?

There has recently been a surge of interest in analysing
and predicting material failure caused by transgranular clea-
vage based upon a probabilistic interpretation of the fracture
process. A primary impetus for bringing probabilistic frac-
ture mechanics concepts into play is the inherent random
nature of fracture. Attention has been primarily focused on
probabilistic models incorporating weakest link statistics.
Batdorf and Crose,' Evans® and Matsuo® first considered
models of this type to describe brittle fracture for arbitrary
loading. Here, a function representing the number of micro-
cracks per unit volume failing at each value of the local
tensile stress is used to arrive at the probability of fracture
for a cracked body. Later, Beremin,* Wallin ez al > 8 Lin et
al.,’ Briickner et al.,lO Godse and Gurland'' among others
provided a link between the size of carbides particles dis-
persed in the material and the inhomogeneous stress fields
ahead of a macroscopic crack. They sought to predict
the dependence of fracture toughness (K;.) on material
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properties and temperature. In particular, the work of
Beremim* and Mudry]2 introduces the Weibull stress (a,,)
as a suitable crack-tip parameter incorporating a local criter-
ion for fracture. More recent efforts in this area have focused
on developing transferability models for cleavage fracture
toughness based upon the Beremin’s Weibull stress. Bakker
and Koers,"> Minami er al.,'* Ruggieri et al.,'>1% assess
effects of specimen thickness and crack length on elastic—
plastic fracture toughness (/., 8.). Further studies by Ruggieri
and Dodds'"™'? generalize the Weibull stress for stationary
and growing cracks to include effects of loss of constraint and
ductile tearing on macroscopic fracture toughness.

The objectives in developing probabilistic models to
describe unstable crack propagation are essentially two
fold. First, for a structure containing cracks of different
sizes and subjected to complex loading histories, we seek
to determine limiting distributions for the (local) fracture
stress which couple remote loading (as measured by J or
CTOD) with the operative fracture mechanism at the micro-
level. In the context of probabilistic models, a fracture para-
meter associated with the limiting distribution then
describes macroscopic fracture behavior for a wide range
of loading conditions and crack configurations. As a second
objective, we seek to predict unstable crack propagation in
larger flawed structures on the basis of a probabilistic
fracture parameter. Experimentally measured values of frac-
ture toughness for one configuration (e.g. small laboratory
specimens) are rationally extended to predict unstable crack
propagation for other crack configurations, provided
similarities in both limiting distributions for such a fracture
parameter exist.

The plan of the paper is as follows. We first present a
probabilistic model to describe fracture in brittle materials
and introduce two probability distributions for the fracture
stress of cracked bodies. The first distribution derives from
the well-known weakest link model while the second one

Near-Tip Fracture
Process zone

builds upon a chain-of-bundles model. Next, we briefly
describe the procedure to calibrate the Weibull parameters
of the resulting asymptotic distributions for both failure
models. The paper then provides an illustrative application
of the methodology to predict geometry and stable crack
growth effects on the distribution of macroscopic fracture
toughness (J,) for a high-strength steel. A short discussion
on the results and its implications for brittle fracture assess-
ments of load-bearing materials concludes this study.

2 PROBABILISTIC MODEL FOR CLEAVAGE
FRACTURE

2.1 Failure probability for a cracked solid

We consider an arbitrarily stressed body where a macro
scopic crack lies in a material containing randomly distrib
uted flaws as illustrated in Fig. 1. The fracture process zon¢
ahead of the crack tip is defined as the highly stressed regio
where the local operative mechanism for cleavage take:
place; this region contains the potential sites for cleavag
cracking. For the purpose of developing a probabilisti
model for brittle fracture, we divide the fracture proces
zone ahead of crack tip in N unit volumes statistically inde
pendent, V,, i = 1,2,....N. Each unit volume contains ;
substantial number of statistically independent microflaw
uniformly distributed.

The statistical nature of brittle fracture underlies a sim
plified treatment for unstable crack propagation of the con
figuration represented in Fig. 1(a). We first limit attention t
the asymptotic distribution for failure of the unit volume an
consider V divided into small volumes uniformly stressed
statistically independent 8V, j = 1,2,...,n, as illustrated i
Fig. 1(b). Let p denote the probability of failure for the jt!
volume 6V;. The probability that & failures occur (whic!

Unit Volume

(b)

Microflaws

Fig. 1. (a) Fracture process zone ahead of a macroscopic crack containing randomly distributed flaws; (b) unit volume uniformly stresse
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correspond to the fracture of k small volumes elements §V)
is defined in terms of the Binomial distribution®'?2

T(Sn=k)=(Z>Pk(1—P)"_k, O0=k=n, (1)

where S, denotes the total number of failures that occurred
in n volumes. When k is large and p is small, by the Poison
limit theorem, the distribution of the number of failures
converges to a Poison distribution with parameter A in
the form

2

where A = kp is the expectation of the binomial distribu-
tion. In particular, we seek the probability that there is at
least one failure. Thus, the failure probability of the unit
volume has distribution

5P(Snzl)=1—T(S,,_—.‘O):l_e_kﬂ. (3)

To arrive at a limiting distribution for the fracture stress of
a cracked solid, an appropriate functional form for the
probability p is required. The following sections provide
the needed forms based upon two failure models.

2.2 The weakest link (WL) model

The most widely adopted probabilistic model to describe
fracture in brittle materials is based upon the weakest link
(WL) theory. A central feature emerging from the WL
model is the notion that catastrophic failure is driven by
unstable propagation of a single microflaw contained in
the unit volume V. As depicted in Fig. 2, a ‘chain’ analogy
is then readily established. In ferritic steels, extensive work
shows that cleavage microcracks propagate unstably upon
attaining a critical size, a. = K,2C/Y 0%, where Y represents a
geometry factor, o denotes a tensile (opening) stress acting
on the microcrack plane and K. is the material fracture
toughness. A number of probabilistic approaches employ
the statistics of microcracks to provide a connection
between the probabilistic treatment of fracture and existing
frameworks for continuum mechanics (see, for example,
Beremin,* Wallin et al.,>® Ruggieri and Dodds'”"%). In
the context of the present work, we avoid the micromecha-
nics formalism of the aforementioned derivations and
present a more simplified formulation for the WL model
which also makes contact with the chain-of-bundle model
presented next.

To arrive at a probability distribution for the fracture
stress, we adopt a convenient functional form for the failure

b Y i
2 |17 2 J n ’l
11 @ 1>
Load
Single Flaw

Fig. 2. Weakest link model.

probability of 6V as
p=(o/0y)", “4)

where o) is the principal stress acting on 8V, m and o, are
parameters of the function with m, g, > 0.

Now, substitution of eqn (4) into eqn (3) defines the fail-
ure probability P, for the unit volume V in the form

0—3 0“
5)

which is a Weibull distribution with parameters m and o,.

Using again weakest link arguments, we generalize the
previously derived limiting distribution to any multiaxially
stressed region, such as the fracture process zone ahead of a
macroscopic crack or notch (see Fig. 1(a)). Here, the statis-
tical problem of determining an asymptotic distribution for
the fracture strength of the entire solid is equivalent to deter-
mining the distribution of the weakest unit volume V. The
fundamental assumption is that the near-tip fracture process
zone consists of N arbitrary and statistically independent
unit volumes V. Consequently,

N
p=1—[1-2"=1-[] 1 -2 (6)
i=1
Substituting eqn (5) into the above expression, the prob-
ability distribution for the fracture of a cracked solid based
upon the WL model is given by

[ N m
P=1-—exp ——Z(%) }, (N
i=1 u

which for N — <o yields

P=1 ] 71} 40 (8)
P=1—exp| — — — ,
P L VO a oy
where (2 denotes the volume of the near-tip fracture process
zone and Vj is a reference volume.
Following the development presented previously, the

Beremin’s Weibull stress® is then given by integration of the
principal stress over the fracture process zone in the form

1 1/m
Oy — [—‘/—0— JQU] dg] N (9)

from which the limiting distribution (eqn (8)) now takes the
form

T(aw)zl—expl:—<(;—w)’]. (10)

Eqn (10) defines a two-parameter Weibull distribution® in
terms of the Weibull modulus = and the scale factor a,.
Previous work™!*!*"'7 has shown that m takes a value in the
range 10-22 for typical structural steels.

2.3 The chain-of-bundles (CB) model

An alternative model to the WL philosophy involves
relaxing the assumption that a critical microcrack triggers
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catastrophic failure of the entire cracked body. When
unstable propagation of a microflaw is arrested by the sur-
rounding material (which presumably has higher fracture
resistance), the distribution of local stresses accompanying
the failure of a small material element containing the
microflaw contributes to increase the macroscopic fracture
resistance. Under increasing loading, the fracture process
progresses by consecutive instability of the surviving mate-
rial elements until a critical load is attained—only after a
number of material elements have failed does the failure
occur in a macroscopic scale, ultimately via a weakest
link mechanism. In the present context, each unit volume
is viewed as a chain of # statistically independent bundles,
each bundle having r elements in parallel, as illustrated in
Fig. 3.

We consider again a limiting distribution for the failure
probability of 6V. For a fiber bundle model with equal load
sharing, Daniels®® presented the first derivation of an
asymptotic distribution describing the bundle strength. In
his model, a single bundle has independent elements in
parallel, each one with the same cross section; the load is
equally redistributed among the unfailed elements when a
single element fails. Let T),T,,...,T, denote the fracture
strength of each element and let these strengths be the
order statistics T; = T, = ... = T,. The failure of the
bundle under principal stress o, satisfies the condition

r—1 1
U,Zmax{T1,< , >T2,,<;>Tr} (11)

When r — <c, the bundle strength is asymptotically nor-
mally distributed with expectation p and standard deviation
v. Thus, the probability p is given by

p=2()= ~y, (12)

1 f
— e
V2md
where ®(z) is the standard normal distribution function with
expectation zero, standard deviation 1 and z = (o, — u)ly.
Now, substitution of eqn (12) into eqn (3) defines the fail-
ure probability for the unit volume V in the form

P():l—exp<——q— _me"z”dt). (13)

-————————
1 2

1

2
-
7 i Load

r

Single Flaw ‘J 6 1% L_

Fig. 3. Chain-of-bundles model.

Define the random variable 4 as

-~y (14

q r
A= ——

which, for g — o, has an asymptotic solution given by>>*

z=a,+b,In4, (15

where a, and b, are parameters. Solving this expression fo
A and replacing z by (g, — )/, the limiting distribution fo
the fracture strength of the unit volume yields

Tozl—exp{—exp<0];a)], (16

which is a Gumbel distribution for the smallest value witl
location parameter « and scale parameter 6.28
Using the parametrization

01=1nS1 (17
a=InS,
B=w""

allows eqn (16) to be written in the form

TO:I—exp[—<%) }, (1¢

which is a Weibull distribution with parameters w and S,
Now, following the same development presente

previously, the probability distribution for the fracture of

cracked solid based upon the CB model becomes

T:l—exp{—%jg(%) dQ] (1¢

where  denotes the volume of the near-tip fracture proce:
zone.
Again, a stress integral having the form
1 J‘ H/m
=|— | SydQ (2
y [Vo 0! ]

ag

is employed to recast eqn (19) as

o \"
P(oy)=1—exp| — 5 . v

3 PARAMETER CALIBRATION AND NUMERICA
PROCEDURES

There is general agreement that the parameters of the We
bull distributions given by eqns (10) and (21) are materi
properties. In applications of probabilistic fractu
mechanics, these parameters are generally calibrated fro
experimental toughness data. Beremin® and Minami et al.
presented the first formalized procedures to calibrate t
Weibull parameters (m, o).
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In related work, Ruggieri ez al.'® utilized their procedures
to calibrate parameters (w, S,) for a high-strength steel.
More recently, Ruggieri and Dodds'”~'® implemented simi-
lar methodology in a probabilistic framework for fracture
assessments of flawed structures using the research code
WSTRESS."”

The methodology builds upon an iterative procedure
incorporating a three-dimensional finite element description
of the crack-tip stress fields and measured values of fracture
toughness to calibrate the Weibull parameters appearing in
eqns (10) and (21). Development of the numerical proce-
dure then begins with evaluation of the stress integrals, o,
and o,. These values enable construction of the evolution of
g, (or equivalently o) as deformation (loading) progresses.

For the purpose of developing a procedure to calibrate the
Weibull parameters (m, ¢,) and (w, S,), it is helpful to
rewrite the probability distributions given by eqns (10)
and (21) in the form

?(E,c,b):l—exp[»—(%)}, (22)

where £ = o,, for the WL model and ¥ = g, for the CB
model, with (¢, ») denoting the corresponding Weibull
parameters.

Fig. 4 summarizes the procedure to calibrate the para-
meters (¢, b) similar to the one utilized by Ruggieri and
Dodds.'® The description that follows adopts J as the
measure of macroscopic loading; the algorithm remains

FE Analysis

:

Loop Over
Load Steps

Locate Near--Tip
Fracture Process Zone

0, Z Ao,

'

Store (Cauchy) Stresses
of Included Elements

%

Initialize Weibull Modulus
c =Cy

>

ﬁ

Generate Computed
Weibull Stress Function

0w = FW,C)

'

Determine Experimental
Data Set for o,

(Owlexp = FJe,0)

'

NO

Statistical AAnaIysis (ML)

¢;

YES

Crack

Ow

Fracture Mechanics Tests

K,,,J., CTOD (,)

ML Estimates
¢, b

Fig. 4. Algorithm for calibration of the Weibull modulus, ¢.
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applicable for other measures of load level, such as K or
CTOD.

3.1 FE-analysis and fracture mechanics testing

Toughness data for cleavage fracture are used to define
corresponding values of the Weibull stress at fracture;
these values form the basis upon which the Weibull
parameters for the material are estimated without making
recourse  to  detailed micromeasurements. Crack
configurations exhibiting high levels of crack tip stress
triaxiality (deep notch SE(B) or C(T) fracture specimens)
tested at appropriate temperatures provide cleavage fracture
toughness data employed in the present procedure. Non-
linear finite element analyses of the tested specimens
provide the necessary stress fields and define the size of
the fracture process zone for the specified load levels
(here expressed by J).

The process begins by finding the material dependent
value for the Weibull modulus, ¢, appearing in the
probability distribution expressed by eqn (22). Let P¢,(X)
denote the distribution of ¥ corresponding to the stress state
obtained through a finite element analysis. Also, let 2., (X)
denote the distribution of X corresponding to the measured
values of fracture toughness. Since P, (X) and P, (L) have
identical distributions, the calibration process becomes one
of determining a set of parameters {c, b} which satisfies this
condition.

3.2 Generation of the evolution of ¥ versus J

A starting value for ¢, denoted c, is required to generate the
first approximation for the relationship between J in the
finite element model and the stress integral, L, for the test
specimen, expressed as X, = F(J, m). This relationship is
determined by numerically integrating eqns (9) and (20) at
each specified load level. In isoparametric space, the current
(deformed) Cartesian coordinates x; of any point inside an
eight-node tri-linear element are related to the parametric
coordinates 7, using the shape functions corresponding to
the kth node.?” Let |J] denote the determinant of the standard
coordinate Jacobian between deformed Cartesian and para-
metric coordinates. Then, using standard procedures for
integration over element volumes, the Weibull stress has
the form

1 1/m
. o m
Oy = liVO% Jncal dﬂe}
tm
1 1 1 1 "
= {VZ Jﬁl J_l J_lal |J|dmdn2dn3} , (23)
0 ny

where #n. is the number of elements inside the fracture
process zone near the crack tip and €. is the volume of
the element. The process zone used here includes all mate-
rial inside the loci 0| = Ao with A =~ 2. For computational
simplicity, an element is included in the fracture process
zone if the o, computed at 5, = n, = 73 = 0 exceeds Aoy,

Similarly, the finite element form in parametric space for
the stress integral o, is given by

1 1w
— _ W

1 1 1 1 1w
— R Ul X
= {Vo% L L le |J|d’11dn2d773} e

where again the process zone includes all material inside
the loci o) = Ao, with A = 2,

3.3 Evaluation of T at fracture

The computed relationship between J and L then enable:
evaluation of the stress integral at fracture, denoted X,
corresponding to each experimental fracture toughnes:
value, J.. This is accomplished by evaluating L., = F(J,
m) using the functional form between J and ... In practice
L. are evaluated from a simple interpolation employin;
discrete values of L., versus J. The I.,, values then defin
a statistical sample with distribution Pe(X). A statistica
analysis based upon the maximum likelihood method fo
this distribution yieids the ‘new’ estimate of the Weibul
modulus, &;. Convergence is attained if 16,_, — &1 =<¢
otherwise the process starts anew with the distributios
Prem(X) computed for ¢ =¢;.

3.4 Numerical modeling of ductile tearing

A key feature of the present methodology is the inclusio
of ductile tearing effects in the probabilistic formulatio
using numerical modeling of stable crack growth that ofte
precedes cleavage fracture in ferritic steels. The computa
tional cell methodology proposed by Xia and Shih*>~*
provides a model for ductile crack extension that include
a realistic void growth mechanism, and a microstructur:
length-scale physically coupled to the size of the fractur
process zone. Void growth remains confined to a layer ¢
material symmetrically located about the crack plane, a
illustrated in Fig. 5(a), and having thickness D, where D i
associated with the mean spacing of the larger, void init:
ating inclusions. This layer consists of cubical cell ele
ments with dimension D on each side; each cell contair
a cavity of initial volume fraction fy (the initial voi
volume divided by cell volume). As a furthe
simplification, the void nucleates from an inclusion of rel:
tive size fy, immediately upon loading. Progressive voi
growth and subsequent macroscopic material softening i
each cell are described with the Gurson—Tvergaard (G
constitutive model for dilatant plasticity.>®>° When fin tt
cell incident on the current crack tip reaches a critic:
value, fg, the computational procedures remove the ce
thereby advancing the crack tip in discrete increments «
the cell size. Material outside the computational cells, t
‘background’ material, follows a conventional J, flo
theory of plasticity and remains undamaged by vo:
growth in the cells.
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Fig. 5. (a) Model for ductile crack growth using computational cells. (b) Computed crack growth resistance curve for the SE(B) specimen
with a/W = 0.1.

Material properties required for this methodology
include: for the background material Young’s modulus (E),
Poison’s ratio (»), yield stress (o) and hardening exponent (1)
or the actual measured stress—strain curve; and for the com-
putational cells: D and f;, (and of much less significance fz).
The background material and the matrix material of the cells
generally have identical flow properties. Using an experimen-
tal J — Aa curve obtained from a conventional SE(B) or C(T)
specimen, a series of finite element analyses of the specimen
are conducted to calibrate values for the cell parameters D and
fo which bring the predicted J/ — Aa curve into agreement with
experiment. The CTOD at initiation of ductile tearing pro-
vides a good starting value for D, with f; then varied to obtain
agreement with the experiment. Alternatively, metallurgical
surveys of inclusion volume fractions and sizes may be used
with various packing arrangements (e.g. nearest neighbor dis-
tance) to estimate D and/or fy. Experience with plane-strain
finite element analyses of SE(B) and C(T) specimens to esti-
mate D and f, for common structural and pressure vessel steels
suggests values of 50-200 pm for D, 0.001-0.005 for fy, with
S typically 0.15-0.20. Once determined in this manner using

a specific experimental R-curve, D and f; become ‘material’
parameters and remain fixed in analyses of all other specimen
geometries for the same material.

4 PREDICTION OF FRACTURE PROBABILITY

The probabilistic methodology outlined in the previous sec-
tions has been applied to predict effects of specimen geometry
on measured values of toughness values. Such an application
serves as a prototype for a wide class of engineering problems
involving the transferability of fracture toughness data from
laboratory specimens to structural components. Fracture
mechanics tests on conventional SE(B) specimens (plane-
sided) with varying crack length to width ratios, a/W, provide
the experimental cleavage fracture toughness data employed
in this study. Testing of these specimens was carried out at
—120°C for a deep crack (a/W = 0.5) and for a shallow crack
(/W = 0.1) configuration.’® The specimens have a loading
span, § = 120 mm, a width, W = 30 mm, and thickness B =
15 mm (see Fig. 6). The material is a high-strength, low-alloy

- +

- S/2 =60

A

le

Near Tip Model for
No Growth Analysis

Fig. 6. Finite element models for three-point SE(B) specimens: (a) a/W = 0.1; (b) a/W = 0.5 (all units in millimeters).
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(HSLA) steel (663 MPa yield stress) with relatively low
strain hardening (tensile strength/yield strength = 1.08).
Fig. 7(a) reveals the pronounced effect of @/W ratio and
ductile growth on experimental fracture toughness values
(J.). Most of the specimens with /W = 0.1 experienced
ductile crack extensions (Aa) of 0.5-0.75 mm prior to clea-
vage fracture. In contrast, specimens with a/W = 0.5 exhib-
ited completely brittle behavior with no measurable crack
extension prior to cleavage fracture. Fig. 7(b) displays the
Weibull distribution of the toughness data for the SE(B)
specimens. The Weibull shape parameter for both distribu-
tions is in agreement with the value of 2 given by Wallin;®
this value describes the (‘theoretical’) scatter of J, for clea-
vage fracture in ferritic steels.

Finite element analyses conducted on plane-strain models
for the deep and shallow notch specimens provide the
crack front stresses for evaluation of the stress integrals
given by eqns (23) and (24). Ruggieri and Dodds'’ present
details of the analyses and computational procedures. Fig.
6 shows the finite element models, dimensions and bound-
ary conditions. The models have one-layer of elements in
the thickness direction with plane strain conditions (x; =
0) imposed on all nodes and sufficient mesh refinement
near the tip to provide adequate solution of the stress
fields. Numerical computations were performed in a
finite strain setting by the WARP3D finite element
code.’' J-integral values are obtained using the domain
integral facility available in WARP3D. As noted
previously, stable crack growth prior to cleavage fracture
occurs in the shallow notched specimens. Consequently,
prediction of toughness results for these specimens
requires inclusion of crack growth modeling in the prob-
abilistic formulation. Here, the analyses consider a station-
ary crack (with crack tip mesh similar to the one employed
for the deep notch specimen) and a growing crack analysis
which accommodates ductile tearing with the computa-
tional cell scheme previously outlined. The constitutive
model adopted in the analyses follows a J, flow theory
with Mises yield criterion. The uniaxial true stress—
logarithmic strain response for the material is modeled
with a piecewise linear approximation to the mechanical
tensile behavior."’

Jo (J/m?)
2000
N I
L w
1500 [ » —
1000f 4., QT Steel (-120°C)
r A ag/W=01
500 i O a/W=05
“
0' A |‘.|44_L‘&
0 01 02 03 04 05 0686
a/W
(@

C. Ruggieri

The computational cell approach requires calibration of
the initial porosity, fo, and cell size, D, from a measured set
of R-curves. As noted by Ruggieri and Dodds,° calibration
of the cell parameter, f,, using the load versus load-line
displacement exhibit essentially no sensitivity on this para-
meter—crack growth resistance curves exhibit a much
stronger sensitivity to fy as required to define a robust cali-
bration procedure. Ideally, R-curves obtained using a/W =
0.5 specimens would be used for this procedure. However,
deep-crack specimen R-curves are not available from the
experimental investigation—at the test temperature, no duc-
tile tearing occurs. Alternatively, experimental R-curves for
other, low constraint geometries would be suitable to
perform the calibration. Here, only the shallow-crack data
is available and we use it to perform calibration of the
computational cell parameters (D, f;). Fig. 5(b) shows the
measured cleavage fracture data for the shallow-crack
specimens plotted in an R-curve format. The computed
resistance curve shown on this figure is obtained using the
values D = 200 um and f = 0.00025 in the finite elemen!
analysis for ductile crack growth. Despite the relative scattei
observed in the experimental (cleavage) values, the pre-
dicted R-curve captures the average evolution of crack
growth behavior.

The research code WSTRESS' is used to determine the
material dependent value for the shape parameter m and v
appearing in eqns (23) and (24). After convergence is
attained, a small sample correction is applied to the max-
imum likelihood estimate of m using appropriate unbiasing
factors given by Thoman et al.?® Using the calibration pro-
cedure outlined in previous section and employing the mea-
sured fracture toughness for the deep-notched SE (B
specimens (a/W = 0.5), m has the value of 15.6 with 90%
confidence intervals given by (9.0, 20.9) and w has the valuc
of 7.9 with 90% confidence intervals given by (4.5, 10.5).

With the Weibull modulus m and w calibrated, we predic
the combined effects of a/W ratio and ductile tearing for the
experimental cleavage fracture toughness data using :
toughness scaling procedure presented by Ruggieri anc
Dodds.'”'? Fig. 8(a) and (b) show the computed evolutior
of o,, and g, under increasing values of J, for the deep anc
shallow crack configurations. The stress integrals ar
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Fig. 7. (a) Experimental cleavage fracture toughness data (SE(B) test results) for QT steel at — 120°C. (b) Two-parameter Weibul
distribution of toughness data for SE(B) specimens.
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Fig. 8. Variation of the stress & with increasing load for the SE(B) specimens: (a) weakest link model (o,,); (b) chain-of-bundles model (o).

normalized by the yield stress, o, for the material under
consideration while the loading parameter, J, is normalized
by the remaining crack ligament of the specimen, b = W —
a, and 0. Although not explicitly addressed here, we note
that o, may display more sensitivity to mesh details and
mesh resolution (particularly near the crack tip) than o,, as
the integral given by eqn (24) involves a power of exp(a;)—
a finer mesh may be required to resolve more accurately the
near-tip stress fields. Since our primary interest lies in com-
paring the response of both failure models in predicting the
toughness distribution for the shallow crack specimen, the
mesh employed in the analyses appears satisfactory.

The stress integrals and ¢, increase monotonically for the
SE(B) specimens with a/W = 0.5 which reflect the increase
in the near-tip stress fields as loading progresses. By
contrast, o,, and g, for the stationary crack analysis of the
SE(B) specimen with a/W = 0.1 also increase monotoni-
cally at early stages of loading, but sharply decrease after a
‘saturation’ level is reached at J/(bo,) = 0.05. This behavior
is caused by severe loss of crack-tip constraint, with conse-
quent reduction in the stress levels ahead of the crack tip,
experienced by such crack configuration as loading pro-
gresses (see Dodds er al.®®> and Ruggieri and Dodds'’).
However, inclusion of ductile crack growth in the analysis
counteracts the effects of constraint loss and, thus, restores
o, and o, to high constraint levels, as observed in Fig. 8.
These trends are fully consistent with those obtained in

In(In(1/(1-F(J))))

previous numerical analyses®>** in that stable crack

growth elevates the near-tip stresses and increases the
volume of the cleavage fracture process zone, thereby
increasing the stress integrals o,, and o,.

The curves presented in Fig. 8 provide the distribution of
a continuous function of E-values at fracture for these speci-
mens. The generated, continuous function of ¥-values (¢, or
0,) at fracture for the SE(B) specimens with a/W = 0.5
(configuration A) is ‘transferred’ for constraint loss and
crack extension to predict the distribution of J.-values for
the shallow-crack specimens with a/W = 0.1 (configuration
B). The probability distribution of cleavage fracture tough-
ness for configuration B is then expressed in closed form as

B c
FB(JC ’C)) :|, (25)
b
where Fg(J, ¢) denotes the computed functional relation-
ship between J (or equivalently CTOD) in configuration B
(finite element model) and the stress integral L for the
calibrated value of c.

The Weibull probability plot in Fig. 9(a) and (b) shows
the predicted distributions and 90% confidence bounds of
cleavage fracture toughness for the SE(B) specimen with a/
W = 0.1 using both failure models. The solid symbols in the
plots indicate the experimental fracture toughness data for
those specimens. Values of cumulative probability, F, are
obtained by ordering the J .-values and using F = (i — 0.5)/

P(JE):l—exp[—(

In(In(1/(1-F(J¢))))
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Fig. 9. Prediction of the probability distribution for the cleavage fracture toughness data of SE(B) specimens with /W = 0.1. (a) Weakest

link model (o,). (b) Chain-of-bundles model (a,).
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N, where i denotes the rank number and N defines the total
number of experimental toughness values. The predicted
curves are generated from the point estimate and 90%
confidence limits for the parameters (¢, b) of the SE(B)
specimen with a/W = 0.5.

The good agreement between the predicted distributions
displayed in Fig. 9 and the experimental data (note that all
measured J-values lie within the 90% confidence bounds)
indicates the robustness of the present probabilistic metho-
dology. An interesting feature of the results displayed in
Fig. 9 is that the predicted distributions for the WL and
CB model are very similar. Such a behavior suggests that
use of the more refined chain-of-bundles model does not
provide any real improvement in the transferability proce-
dure. However, inclusion of ductile crack growth in the
computation of the stress X(c,, and ¢,) proves essential to
predict the fracture toughness values in the upper tail of the
curves (i.e. J-values > 1000—1200 kJ/m?). This is clearly
evidenced by examining the evolution of o,, and ¢, with
loading (J) in Fig. 8. The stationary crack (no-growth) ana-
lysis provides, at best, predicted J.-values for the lower tail
of the curves ( < 1000). '

5 CONCLUDING REMARKS

This study describes a probabilistic framework for brittle
fracture using two failure models: weakest link and chain-
of-bundles approaches. The weakest link philosophy is
defined such as fracture of a small element at the microlevel
of material ahead of a macroscopic crack triggers general
catastrophic failure. The chain-of-bundles approach allows
one or more failures at the microlevel of near-tip material
before catastrophic fracture occurs. The probability
distributions for both models are cast into a two-parameter
Weibull distribution of the fracture stress. A numerical
procedure to calibrate the Weibull parameters based upon
measured toughness values and finite element solutions is
then presented. Application of the proposed methodology to
analyze the fracture behavior of a high-strength, low-alloy
steel successfully transfer measured toughness values across
different structural geometries and crack configurations.
Moreover, the probabilistic fracture parameters o,, and o,
incorporate both the effects of stressed volume and the
potentially strong changes in the character of the near-tip
stress fields owing to constraint loss and ductile crack exten-
sion. Current work is in progress to extend the present
framework as a broader predictive methodology to assess
structural integrity.
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