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1Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL University,
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Most experimental observations of solitons are limited to one-dimensional (1D) situations, where they
are naturally stable. For instance, in 1D cold Bose gases, they exist for any attractive interaction strength g
and particle number N. By contrast, in two dimensions, solitons appear only for discrete values of gN, the
so-called Townes soliton being the most celebrated example. Here, we use a two-component Bose gas to
prepare deterministically such a soliton: Starting from a uniform bath of atoms in a given internal state, we
imprint the soliton wave function using an optical transfer to another state. We explore various interaction
strengths, atom numbers, and sizes and confirm the existence of a solitonic behavior for a specific value of
gN and arbitrary sizes, a hallmark of scale invariance.
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Solitary waves are encountered in a broad range of fields,
including photonics, hydrodynamics, condensed matter,
and high-energy physics [1]. The solitonic behavior usually
originates from the balance between the tendency to
expansion of a wave packet in a dispersive medium and
a nonlinear contracting effect. For a real or complex field ϕ
in dimension D, a paradigm example is provided by the
energy functional

E½ϕ� ¼ 1

2

Z
dDr½j∇ϕðrÞj2 −GjϕðrÞj4�; ð1Þ

where G is a real positive parameter and ϕ is normalized to
unity (

R
dDrjϕj2 ¼ 1). This energy functional is relevant

for describing the propagation of an intense laser beam in a
nonlinear cubic medium, where diffraction and self-focus-
ing compete. It is also used to model the evolution of
coherent matter waves when the kinetic energy contribution
competes with attractive interactions.
Experimentally, most studies concentrate on effective

one-dimensional situations, as solitons in higher dimen-
sions are more prone to instabilities and then much more
challenging to investigate experimentally [2]. This can be
understood from a simple scaling analysis of E½ϕ�, assum-
ing a wave packet ϕ of size l,

EðlÞ ∼ 1

l2
−

G
lD : ð2Þ

For D ¼ 1, this leads to a stable minimum for l� ∼ 1=G,
whereas for D ¼ 3, the extremum obtained for l� ∼G is
dynamically unstable.

The case D ¼ 2 is of specific interest because the two
terms of the estimate of Eq. (2) scale as 1=l2. The
existence of a localized wave packet minimizing E½ϕ�
(or more generally making it stationary) can thus be
achieved only for discrete values of G. The Townes
soliton, introduced in Ref. [3], is a celebrated example
of such a stationary state. It is the real, nodeless, and
axially symmetric solution of the two-dimensional (2D)
Gross-Pitaevskii or nonlinear Schrödinger equation
(NLSE) obtained by imposing δE½ϕ� ¼ 0,

−
1

2
∇2ϕðrÞ −Gϕ3ðrÞ ¼ μϕðrÞ; ð3Þ

where the chemical potential μ can take any negative value.
These solutions, which have zero energy (E½ϕ� ¼ 0), exist
only for G ¼ GT ≈ 5.85. Scale invariance of the 2D NLSE
[4] provides a relation between them: ifϕðrÞ is a solution of
Eq. (3) for a given μ, then for any real λ, λϕðλrÞ is also a
normalized solution with a rescaled μ, still with zero
energy. For G < GT, there are no stationary localized
solutions of Eq. (3), while for G > GT, one can find
localized functions ϕwith an arbitrarily large and negative
energy E½ϕ�.
Townes solitons have been mostly investigated in non-

linear optics where the cubic term in Eq. (3) corresponds to
a Kerr nonlinearity that induces self-focusing for intense
enough beams [5–7]. The soliton solution then corresponds
to a specific optical power. Numerous strategies have been
developed to stabilize the Townes soliton and to observe
some features of solitonic propagation in various optical
settings [8–14]. Ultracold gases are another well-known
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platform to investigate soliton physics in 1D [15–19].
The 2D case has been recently explored in Ref. [20]
using a quench of the interaction strength to negative
values. The formation of multiple stationary wave packets
was observed, where the size of a wave packet was fixed by
the out-of-equilibrium dynamics.
In this Letter, we report the first deterministic realization

of a 2D matter-wave Townes soliton. We demonstrate, at a
given interaction strength, the existence of stationary states
for awell-defined atom number and for the specific “Townes
profile” of the density distribution. We also show that this
behavior is independent of the wave packet size, hence
confirming scale invariance. To produce this soliton, we use
a novel approach based on a two-component Bose gas for
which the equilibrium state of one minority component
immersed in a bath defined by the other component is well
described, in the weak depletion regime, by an effective
single-component NLSE with cubic nonlinearity.
We consider atoms of mass m in states j1i and j2i with

repulsive contact interactions. The intracomponent (g̃11,
g̃22) and the intercomponent (g̃12) interaction parameters
are thus all positive. Such a mixture is well described in the
zero-temperature limit by two coupled NLSEs. In the weak
depletion regime, one can assume that the dynamics of the
dense bath of atoms in state j1i with density n1 occurs on a
short timescale [∝ m=ðℏ2g̃11n1Þ] compared to the minority
component dynamics. The bath is then always at equilib-
rium on the timescale of the evolution of the minority
component. The equilibrium state ϕðrÞ for N particles in
state j2i then satisfies the single-component NLSE given in
Eq. (3) with

G ¼ −Ng̃e; g̃e ¼ g̃22 −
g̃212
g̃11

: ð4Þ

The effective interaction parameter g̃e corresponds to a
dressing of the interactions for component j2i by the bath
[21]. In this limit, the dynamics of the particles in state j2i
remains scale invariant since the characteristic length of the
bath, i.e., its healing length, does not play any role. We
discuss at the end of this Letter possible deviations from
this limit.
The experiments described in this Letter focus on the

case of 87Rb atoms in their electronic ground level, where
all interaction parameters g̃ij are close to each other within a
few percent. Here we use the j1i ¼ jF ¼ 1; mF ¼ 0i and
j2i ¼ jF ¼ 2; mF ¼ 0i states for which we have g̃e < 0.
The negative value of g̃e implies that the effective dynamics
of the minority component is akin to the one of a gas with
attractive interactions, as required for observing Townes
solitons. The condition for effective attractive interactions
is also equivalent to the immiscibility criterion for the two
components [22]. The atom number NT corresponding to
the Townes soliton for a cloud with interaction parameter g̃e
is then given by NT ¼ GT=jg̃ej.

Our experimental study of Townes solitons starts with
the preparation of a uniform two-dimensional Bose gas of
87Rb atoms in state j1i, as detailed in Refs. [23,24]. Atoms
are confined in a circularly shaped box potential in the
horizontal plane and they occupy the ground state of an
approximately harmonic potential along the vertical direc-
tion. The typical cloud temperature is < 20 nK and the
column density is set around 100 atoms=μm2. In this
regime, the gas is well described by a 2D cubic NLSE.
An external magnetic field of 0.7 G with tunable orientation
is applied.
At time t ¼ 0, we create a custom-shaped wave packet of

atoms in component j2i immersed in a bath of atoms in
component j1i, as shown in Fig. 1(a). This is achieved by
transferring, in a spatially resolved way, a controlled
fraction of atoms into j2i thanks to a two-photon Raman
transition, which keeps the total density constant. We use
two collinear laser beams so as not to impart any significant
momentum to the transferred atoms. The in plane intensity
profile of these beams is shaped by a spatial light
modulator, which allows us to design arbitrary intensity
patterns on the atomic cloud with about 1 μm spatial
resolution [25,27]. We show in Figs. 1(b) and 1(c) an
example realization of a Townes profile, i.e., a density
distribution nðrÞ proportional to jϕðrÞj2, where ϕ is
obtained by a numerical resolution of Eq. (3). It shows
an excellent control of the density distribution of

(a)

(b) (c)

FIG. 1. (a) Schematics of the experiment. We create a disk-
shaped planar Bose gas in the xy plane in state j1i. At time t ¼ 0
we pulse a pair of copropagating Raman beams that transfer in a
spatially resolved way a small fraction of the atoms from state j1i
to state j2i. An example of density distribution n2 ≡ n in state j2i
obtained when preparing a Townes profile is shown in (b); the
dashed line indicates the edge of the bath of atoms in state j1i. Its
radial profile is reported in (c) as blue dots, together with its fit to
a Townes density profile (solid line). Inset: displays the same data
in semilog scale highlighting the approximately exponential tails
of the Townes profile.
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component j2i over more than two decades in density. After
imprinting a Townes profile of given amplitude and width,
we let the system evolve and we measure the in situ density
distribution via absorption imaging. All the profiles studied
here are initially in the weak depletion regime, where the
density n does not exceed 20% of the bath density. We
restrict the time evolution to durations short enough to limit
the amount of losses in state j2i, essentially due to
hyperfine relaxation, to typically ≲10%.
The two states used in this Letter are characterized by

their s-wave scattering lengths a11 ¼ 100.9a0, a22 − a11 ¼
−6.0a0, and a12 − a11 ¼ −2.0a0 [28], where a0 is the Bohr
radius. Thanks to the existence of magnetic dipole-dipole
interactions in a mixture of the two components, the value
of a12 can be shifted, for a 2D cloud, by an amount varying
from −0.7a0 to þ1.4a0 by changing the angle of the
applied magnetic field with respect to the atomic plane
[29]. In all cases, we have a22 − a212=a11 < 0 and thus a
similar inequality for the interaction parameters defined as
g̃ij ¼

ffiffiffiffiffiffi
8π

p
aij=lz for i, j ¼ 1, 2, where lz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mωz

p
is

the harmonic oscillator length associated with the confine-
ment along the vertical direction of frequency ωz. Here, we
have g̃11 ¼ 0.16ð1Þ.
In Figs. 2(a)–2(c), we show, for three different atom

numbers, the measured time evolution of a Townes profile
with a root mean square (rms) size at time t ¼ 0 given by

σ0 ¼ 5.7 μm and the external magnetic field perpendicular
to the atomic plane (g̃e ≈ −7.6 × 10−3). We observe an
almost stationary time evolution for N ¼ 720ð20Þ, whereas
the central density of the cloud decreases for N ¼ 250ð40Þ
and increases for N ¼ 1200ð50Þ. More quantitatively, for
each time t we extract the rms size σðtÞ of the cloud (see
Supplemental Material [25] for details) and we study its
time evolution, as shown in Fig. 2(d).
We analyze these data using the variance identity (or

virial theorem), which provides the time evolution of the
rms size of the density profile for the 2D NLSE [4]

d2σ2

dt2
¼ 4E

m
; ð5Þ

where E is the total (kinetic + interaction) energy per
particle. We thus fit the time evolution of σ to the function
resulting from the integration of Eq. (5)

σ2ðtÞ ¼ σ20 þ
�

ℏ
mσ0

�
2

γt2; ð6Þ

where we assumed that the imprinted state is a real wave
function and thus dσ=dt ¼ 0 at t ¼ 0. For the Townes
profile, one can show that the explicit expressions of the
kinetic and interaction energy integrals lead to γ¼αð1−N=
NTÞ, where α ≈ 1.19 is determined numerically (note that
γ ¼ 1 for a noninteracting Gaussian wave packet).

(a) (b)

(d)

(c)

FIG. 2. (a)–(c) Radial profiles at different times for imprinted
Townes profiles with (a) N ¼ 250ð40Þ, (b) N ¼ 720ð20Þ, and
(c) N ¼ 1200ð50Þ atoms. Initial rms sizes are similar and the
magnetic field is perpendicular to the atomic plane. The solid
lines are fits to the data. (d) Time evolution of the fitted rms size
for the same three configurations. The solid lines are a fit to the
data with Eq. (6). Note that, for N notably different from NT , the
functional form of the density distribution nðrÞ changes signifi-
cantly during the evolution. Therefore, the product nð0Þσ2 is not a
constant of motion in spite of the atom number conservation (see
Supplemental Material [25] for details).

FIG. 3. Expansion coefficient as a function of the atom number
of the imprinted wave packet for a magnetic field perpendicular to
the atomic plane. All data for different initial sizes collapse onto a
single curve. The solid line is the theory prediction computed for
g̃e ¼ −7.6 × 10−3 without any adjustable parameter. The shaded
area around this line represents our estimated uncertainty on the
calibration of g̃e. Inset: variation of the experimentally deter-
mined stationary atom numberNexp

T for different values of g̃e. The
stationary atom number is determined from a linear fit of the
various γðNÞ curves [25]. The solid line is the prediction
NT ¼ GT=jg̃ej.
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We report in Fig. 3 the fitted expansion coefficient γ as a
function of the atom number N for different values of the
initial size σ0. All data collapse onto a single curve γðNÞ,
which experimentally confirms the scale invariance of the
system. The stationary state γ ¼ 0 is obtained for Nexp

T ¼
790ð40Þ (determined with a linear fit). We also show as a
solid line the prediction γ ¼ αð1 − N=NTÞ, where NT ¼
770ð50Þ is fixed by the independently estimated value of g̃e
[30]. It shows a very good agreement for lower values of N.
The small deviation at large N is likely due to the larger
density of the minority component wave packet, which
leads to increased losses and deviation from the low
depletion regime.
The relevant quantity to determine the behavior of the

imprinted wave packet is jg̃ejN that should be compared to
GT ¼ 5.85. We show in the inset of Fig. 3 the measured
variation of Nexp

T when varying the orientation of the
applied magnetic field with respect to the atomic plane
and hence the interspecies scattering length. We confirm
the prediction NT ¼ GT=jg̃ej, with g̃e varying from −3.9 ×
10−3 to −7.6 × 10−3 [25,29].
For an arbitrary density profile there always exists an

atom number such that the energy of Eq. (1) is zero and
hence, from Eq. (5), the rms size is stationary. Of course,
this is not sufficient to achieve a fully stationary profile. We
illustrate this point in Fig. 4 for the case of an initial
Gaussian profile, for which a zero energy is obtained for
NG ¼ 2π=jg̃ej [31]. We check in Fig. 4(a) that this number
leads to a stationary rms. However, the observed density
distribution is clearly not stationary, as shown in Fig. 4(b).
Our approach using a two-component gas raises new

specific questions. For instance, for a wave packet with
large enough G, the central density can diverge at a finite
time in the single-component case, whereas such a col-
lapsing behavior cannot occur in the two-component case
with repulsive interactions (all g̃ij > 0). Indeed, as the
minority component density becomes comparable to the
bath one, the bath brings a new length scale to the effective
one-component description, thus breaking scale invariance.

Let us briefly discuss this problem in the case of close
interaction parameters g̃ij, which is relevant for the two
states of 87Rb used here. In this limit, the coupled NLSEs
describing the binary system can be simplified into a single
one describing the equilibrium state of component j2i,
without requiring a weak depletion approximation [25].
Introducing the bath density n∞, we expand this single-
component equation at first order ϕ2=n∞ and obtain

−
1

2
∇2ϕ −Gϕ3 −

N
4

ð∇2ϕ2Þ
n∞

ϕ ¼ μϕ: ð7Þ

We recover Eq. (3) with the same effective interaction
parameter G ¼ −Ng̃e, but with an additional stabilizing
term that breaks scale invariance. The influence of this term
was investigated in a different context in Ref. [32].
Contrary to the case of the cubic equation, it leads for
any atom number N > NT to a localized ground-state
solution with a well-defined size σN . We checked that
for all data reported in Fig. 3 the shift of the stationary atom
number due to the additional stabilizing term of Eq. (7)
remains small (≲10%) (see Supplemental Material [25]).
Scale invariance is also broken in the one-component

case when one regularizes the contact potential that leads to
the interaction energy term −G

R jϕj4 in Eq. (1) [33–35].
Such a regularization is not required as long as one restricts
to the classical field approach of Eqs. (1) and (4), valid for
jg̃ej ≪ 1 [36], but it becomes compulsory for larger jg̃ej,
where a quantum treatment of atomic interactions is in
order. After regularization, the interaction strength g̃e
becomes a running coupling constant. Then, there exists a
stable solution of size σN and energyEN for any value of the
atom numberN with the geometric scaling σNþ1=σN ≂ 0.34
[33]. In practice, the predicted value for σN is physically
reasonable only for jN−NT j∼ few units. Moreover, for
jg̃ej ⋘ 1, as explored here, the typical evolution timescale
of a N-particle state with a Townes profile of size σ slightly
different from σN will be prohibitively long [25]. In the
case jg̃ej ∼ 1, a realistic droplet size would be achieved for
only a few atoms andone could observe the predicted scaling
of σN with N.
It is also interesting to put our work in perspective with

the physics of quantum droplets [37,38] or mixed bubbles
[39], which has recently attracted great interest. Such
droplets have been observed in 1D or 3D geometries
[40–45]. Their formation results from the competition
between a tunable mean-field attractive term and a
beyond-mean-field repulsive term. The scaling of the
two terms with density is different and leads to a stable
equilibrium with a droplet size that depends on the particle
number. In this Letter, the observed 2D solitons are purely
mean-field objects resulting from the balance between
effective attractive interactions and kinetic energy.
To summarize, we have presented a new platform to

explore the physics of solitons in two dimensions. Higher

(a) (b)

FIG. 4. Time evolution of a Gaussian profile with
N ∼ 800 ∼ NG. (a) The chosen atom number corresponds to a
zero energy state as shown by the almost stationary rms size.
However, the density profile shown in (b) evolves with time in
contrast to the Townes profile shown in Fig. 2(b).
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order solutions of the 2D NLSE, with nodes in the density
profile [46,47] or vortex solitons [48], can also be inves-
tigated with similar methods. Another natural extension
consists in printing solitons with a well-defined momentum
imparted by the two-photon Raman transfer. Propagation,
interaction, or fusion of solitons could then be explored
[49–52]. Additionally, whereas we focused here on the
equilibrium solution at zero temperature, it will be inter-
esting to study the elementary excitations of these solitons
[53], as well as the role of finite temperature on the
dynamical behavior of these objects [54].

This work is supported by ERC (Synergy UQUAM),
European Union’s Horizon 2020 Programme (QuantERA
NAQUAS project), and the ANR-18-CE30-0010 grant. We
thank D. Petrov for fruitful discussions and G. Chauveau
for his participation to the final stage of the project.

Note added.—Recently, a study about the scale invariance
of isolated 2D solitary waves emerging from a modula-
tional instability in an attractive atomic Bose gas was
reported in [55].
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1 - RAMAN BEAM SHAPING

We describe the procedure for preparing a two-
component gas with a specific spin pattern, as reported
in the main text. We start from a homogeneous sample of
atoms in state |1〉 filling a disk-shaped box potential of ra-
dius R = 20µm, with a 2D-density defined as n∞. Atoms
are transferred from state |1〉 to state |2〉 using a pair of
co-propagating Raman beams along the ẑ-direction, the
two beams having the same waist w ∼ 40µm. The fre-
quency difference between the two beams is resonant with
the hyperfine energy splitting of 6.8 GHz between the two
states. In addition, the wavelength of each beam is set to
λ ' 789.9 nm, in between the D1 and D2 lines of 87Rb.
This allows us to cancel the scalar light-shift induced by
the Raman beams which could, because of intensity gra-
dients, print a non-uniform phase on the atomic states
over the cloud size. The Raman pulse duration is short
enough (< 25µs for all data studied in the main text) so
that no dynamics occur during the transfer.

Before reaching the atomic plane, the Raman beams
reflect on a DMD (DLP7000 from Texas Instruments in-
terfaced by Vialux GmbH) which we use as an intensity
modulator to tune the intensity and hence the local Rabi
frequency of the Raman beams driving the atomic tran-
sition. Despite the fact that such a modulator displays
a binary image (“black or white”), we can create a grey-
level image on the atoms by averaging the contribution
of many pixels over a size of 1µm, which corresponds to
both our typical optical resolution and the effective pixel
size in the atomic plane of the camera used to image the
cloud. The protocol to create such spin patterns is based
on an iterative algorithm which minimizes the difference
between the measured spin distribution and the targeted
one and is discussed in more detail in Ref. [1].

2 - EFFECTIVE SINGLE-COMPONENT
DESCRIPTION

We present the derivation of an effective single-
component description of our two-component system,
focusing on the ground state wavefunction. The
atomic mixture is described by two coupled non-linear

Schrödinger equations (NLSEs)

µ̃1φ1 = −1

2
∇2φ1 + (g̃11n1 + g̃12n2)φ1, (1)

µ̃2φ2 = −1

2
∇2φ2 + (g̃12n1 + g̃22n2)φ2, (2)

where ni is the atomic density for the spin state i.
We also introduce the reduced chemical potentials µ̃i =
mµi/~2. We are interested in localized wavefunctions for
the component |2〉 immersed in a bath of atoms in state
|1〉 extending to infinity. Therefore, the chemical poten-
tial µ1 for the component |1〉 equals the mean field energy
shift g11n∞ at the asymptotic density n∞.

The effective single-component description relies on
the vicinity of the interaction coupling constants, i.e.

|g̃12 − g̃11|
g̃11

,
|g̃22 − g̃11|

g̃11
� 1, (3)

which allows one to simplify the NLSE at lowest or-
der in these small parameters. In this situation, we ex-
pect the low-energy dynamics to be dominated by spin
waves, such that the total density n1 + n2 = n∞ + δn
is weakly perturbed, with an excess density δn satisfying
|δn| � n∞. At low energy, the relevant spatial variations
occur on the scale of the spin healing length [2], which
largely exceeds the bath healing length ξ = 1/

√
g̃11n∞.

Therefore, the Laplacian operator can itself be considered
of order one in the small parameters defined in Eq. (3),
such that the term ∇2φ1 in Eq. (1) can be replaced, at or-
der one, by ∇2

√
n∞ − n2 (assuming a real-valued wave-

function). This approximation allows one to express the
excess density δn in terms of the second component only,
as

g̃11δn =
∇2
√
n∞ − n2

2
√
n∞ − n2

+ (g̃11 − g̃12)n2. (4)

Inserting this expression in Eq. (2), we obtain an effective
single-component equation for component |2〉. As we fo-
cus only on component |2〉 hereafter, we drop the index
2 (φ2, n2, µ̃2 → φ, n, µ̃) and write the effective equation

µ̃φ = g̃12n∞φ−
1

2
∇2φ+ g̃enφ+

∇2
√
n∞ − n

2
√
n∞ − n

φ, (5)



2

where we introduce the effective coupling constant

g̃e = g̃22 −
g̃212
g̃11

. (6)

The term g̃12n∞φ corresponds to the interaction energy
cost for adding a single particle of component |2〉 into
the bath. Such a global energy shift plays no role in the
following, and we absorb it in the chemical potential here-
after. Eq. (5) is a non-linear Schrödinger equation with
two non-linear terms. The term g̃enφ is a standard cu-
bic nonlinearity, corresponding to an effective system of
bosonic particles with contact interactions and coupling
constant g̃e [3]. The second term is more complex and
plays a significant role when the density n becomes com-
parable to the asymptotic bath density n∞. To be more
precise, one can expand, in the limit of large bath den-
sity, Eq. (5) in powers of the depletion n/n∞. At minimal
order we obtain the NLSE used in the main text

µ̃φ = −1

2
∇2φ+ g̃enφ, (7)

with the coupling constant g̃e.
In the case g̃e < 0 relevant for our experiments, this

equation has, for each negative value of the chemical
potential, a localized stationary solution – the so-called
Townes soliton – that can be written as

φ`(r) =
1

`
√
GT

R(r/`), (8)

where we introduce the length ` = 1/
√
|µ̃| and R is the

zero-node solution of the differential equation(
1

2
∇2 +R2 − 1

)
R = 0. (9)

This function is normalized to the value GT =∫
d2r R2(r) ' 5.850. The wave functions φ`(r) corre-

spond to zero-energy states that have the same atom
number, equal to

N = NT =
GT
|g̃e|

. (10)

The self-similar nature of this family of solutions reflects
the scale invariance of the NLSE in two dimensions given
in Eq. (7).

At next order in the perturbation, we obtain the equa-
tion

µ̃φ = −1

2
∇2φ+ g̃enφ−

∇2n

4n∞
φ. (11)

The additional term, which was considered in [4], can
be viewed as a weakly non-local interaction. Since it in-
volves an explicit length scale 1/

√
n∞, it breaks scale in-

variance, and we no longer expect self-similarity between
stationary states. In a linear perturbative treatment, the

stationary state is written as a weakly deformed Townes
soliton

φ(r) ∝ 1

`
R(r/`) +

1

2n∞`3
R2(r/`), (12)

where R is defined in Eq. (9) and R2 is the solution of(
1

2
∇2 + 3R2 − 1

)
R2 = −1

2
R∇2R2. (13)

The atom number contained in the perturbed state is
always larger than NT and is pertubatively given by

N ' NT
(

1 + 0.23
NT
n∞`2

)
. (14)

This prediction is in good agreement with the results of
numerical simulations described in the following Section.

3 - BEYOND THE WEAK DEPLETION LIMIT:
SIMULATIONS

We explore here the ground-state properties of our two-
component system beyond the weak depletion regime.
We compare the different approaches introduced in Sec-
tion 2 of these Supplemental materials:

– The two coupled NLSEs given by Eqs. (1)-(2).

– The single component effective equation given in
Eq.(5), valid for arbitrary depletion and close gij ’s.

– The low depletion limit of the previous equation
given by Eq. (11) including the first order correction
to the scale invariant attractive NLSE.

We show in Fig. 1(a) how the ground state atom num-
ber varies with respect to NT when increasing the deple-
tion for these three models. We also show the analytical
prediction of Eq. (14) that we rewrite as

N/NT = 1 + 0.27 ε. (15)

We have introduced the depletion parameter

ε =
NT /σ

2

n∞
, (16)

with σ the rms size of the corresponding state, which is
related to the length ` as σ ' 1.09 ` for the Townes pro-
file of Eq. (8). This quantity can be viewed as the ratio
between the typical peak density NT /σ

2 in the impu-
rity component |2〉 and the atom density n∞ in the bath
component |1〉. All models predict a similar shift of the
ground state atom number for values of ε . 0.25, which
is the maximum value of all data presented in the main
text. We also note that the single component effective
model gives a faithful description of the two-component
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FIG. 1. Numerical study of the ground state for different
models. (a) Deviation of the ground state atom number N
with respect to NT as a function of the depletion parame-
ter ε for different models: two-component NLSE (red) with
g̃11 = 0.16 and (g̃12, g̃22) = (0.98, 0.94) g̃11, effective one-
component NLSE (green), weak depletion expansion of the
effective one-component NLSE (blue), analytical prediction
of Eq. (15) (dashed black). (b) Radial profiles for ε = 1 and
n∞ = 100µm−2 for the three models with the same color
code.

system for both the ground state atom number and the
density profile showed in Fig. 1b.

It is interesting to note that our work at small and
intermediate depletions connects in the limit of full-
depletion of the bath (n→ n∞ at the center of the bub-
ble) to the physics of spin domains in an immiscible mix-
ture, a situation in which the single-component effective
equation introduced in this work may be of interest.

4 - EXPERIMENTAL DETERMINATION OF THE
RMS SIZE

The results presented in the main text exploit the mea-
sured rms size σ2 defined as

σ2 =
1

N

∫
d2r n(r) r2 − 〈r〉2, (17)

where n is the atomic density in state |2〉. Direct deter-
mination of the rms size is challenging experimentally.
Indeed, the contribution of the points at large r is impor-
tant for a 2D integral and our signal to noise ratio is poor
in this region. Consequently, we use a fit to the data to
determine the rms size. We detail below the choice of the
fitting function and the fitting procedure. We confirmed
the validity of this method by applying it to the results
of numerical simulations of the two-component NLSEs.

Determination of the fitting function. We use time-
dependent perturbation theory to extract a suitable fit-
ting function for the deformation of the density profile.
We consider the evolution of a wave function φ under the
time-dependent NLSE

i
∂φ

∂τ
= −1

2
∇2φ−G|φ|2φ, (18)

with τ = (m/~)t. From Section 2, we know that for
G = GT , the stationary solution of Eq. (18) with chemi-
cal potential µ̃ < 0 is given by

φ(r, τ) = φ`(r)e
−iµ̃τ , (19)

with ` = 1/
√
|µ̃|. We consider a wave function φ given

by a Townes profile φ`(r) at τ = 0, with an interaction
parameter G that is slightly different from GT . We define
the small parameter of the expansion η such that G =
(1 + η)GT . At short times, the deformation of the wave
function with respect to the Townes profile is expected
to be small, and we can expand the solution with respect
to η:

φ(r, τ) = [φ`(r) + ηε(r, τ) + . . .]e−iµ̃τ . (20)

We restrict here to the first-order correction in η, and
consider the first terms of the Taylor expansion of ε(r, τ)
with respect to τ :

ε(r, τ) = ε0(r) + ε1(r)τ + ε2(r)τ2 + . . . (21)

The initial condition gives directly ε0(r) = 0, and by
injecting the expansion given in Eq. (21) in Eq. (18), we
identify

ε1(r) = iφ3`(r)

ε2(r) =
GT
2

(
−µ̃− 1

2
∇2 −GTφ2`

)
φ3` .

(22)
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FIG. 2. Townes profile φ`(r)/φ`(0) (blue dashed line) and
χ(r)/χ(0) (green solid line) deduced from perturbation theory
and expressed in Eq. (24).

Interestingly, this last identity can be further simplified
using Eq. (9) and we obtain

ε2(r) = GT

(
GTφ

5
` + µ̃φ3` −

3

2
φ`φ
′
`
2
)
. (23)

Related approches were introduced in Refs. [5, 6]. More
precisely, the authors of Ref. [6] studied the elementary
excitations of the NLSE given in Eq. (18) and looked for
exact solutions that were at most polynomials on t, while
here we do not impose such a constraint but restrict to
a short time expansion.

When computing the density profile n(r, t) = |φ(r, t)|2,
only the real term ε2 contributes at first order in η (the
imaginary term ε1 contributes to the phase of the wave-
function). We deduce the expected deformation of the
density profile at first order and at short times

δn(r, t) = n(r, t)− n(r, 0)

' 2ηφ`(r)ε2(r)t2 ≡ ηχ(r)t2, (24)

where we have defined χ(r) = 2φ`(r)ε2(r). We checked
that the 2D integral of χ is zero, as the norm of φ should
be conserved by the evolution under Eq. (18). In Fig. 2
we show the profiles φ`(r) and χ(r).

Fitting procedure. The first step of the data analysis
consists in obtaining averaged 1D radial density profiles
n(r, t). The averaging is performed after recentering the
individual images. Indeed, we observe random drifts of
the wave packet from one shot to another, which we at-
tribute to thermal fluctuations.

In a second step, we fit the initial profile to a Townes
density profile with a free amplitude and size, which we
denote n0(r). For each time of the evolution we compute
the deformation of the density profile with respect to the

(a)
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r (µm)

δn
(µ
m

−
2
)

0.8ms
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(b)

0 5 10

0

5

10

r (µm)
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FIG. 3. Difference δn(r, t) as defined in equation (25), for
various times t of the experimental runs presented in Fig. 2a
(N = 250) (a) and Fig. 2c (N = 1200) (b) of the main text.
We also plot the best fit of χ(r) to the data.

fitted initial one

δn(r, t) = n(r, t)− βn0(r), (25)

where β is a correction factor to make the two terms
of the right-hand-side of Eq. (25) have the same atom
number.

The last step consists in fitting this profile with the
function χ(r) determined in Eq. (24) with a free ampli-
tude and size. This fit is performed on a radial region
that extends from 0 to 1.75 σ0, with σ0 the initial rms
size (obtained from the Townes fit). Examples of such fits
are reported in Fig. 3. We compute σ using this fitting
function over the full plane. Additionally, we estimate
the error on σ by performing a bootstrap analysis.

As mentioned in the article, the density distribution
does not evolve in a self-similar way when N 6= NT ,
which entails that the product n(0)σ2 is not a constant
of motion. For example in Fig. 2a of the main text, the
central density n(0) drops by a factor 3.5 between t = 0
and t = 40 ms, while σ2 increases only by 1.6, hence
a reduction of n(0)σ2 by a factor 2.2. This observa-
tion is compatible with the time evolution of a Townes-
shaped wave packet with a conserved atom number and
it is well captured by the numerical resolution of the
single-component Gross-Pitaevskii equation for param-
eters comparable to ours. We show in Fig. 4 the results
of this resolution for g̃ = −0.0076, N = 250 and an initial
rms size σ0 = 5.8µm. The central density and the rms
size (calculated here as the second moment of the density
distribution) vary in a way similar to the experimental
ones and the product n(0)σ2 drops by a factor 1.6 during
the time interval of 40 ms.
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FIG. 4. Time evolution under the NLSE of an attractive
Bose gas of 250 particles with an initial size σ0 = 5.8µm
and g̃ = −0.0076. The density distribution in linear (a) and
semilog (b) scale and the rms size (c) are shown. Here, n0

stands for the central density at time t = 0. In (d) we display
the time evolution of n(0)σ2, which shows that the evolution
of the density distribution is not self-similar.

5 - CONTROL OF THE CRITICAL ATOM
NUMBER

We studied in Ref. [7] the dependence of a12 with the
orientation of the quantization axis given by the mag-
netic field B. More precisely, if we denote Θ the angle
between B and the vertical (strongly confining-)axis ẑ,
we can model the 2D inter-component interactions with
a dimensionless parameter g̃12 =

√
8πa12/`z where the

effective scattering-length has to be corrected from the
bare (3D-)value a012 = 98.9 a0, such that

a12 = a012 + δa12 δa12 = add
(
3 cos2 Θ− 1

)
, (26)

where add = µ0µ
2
Bm/(12π~2) = 0.7 a0 is the dipole

length. Despite the smallness of this shift compared
to a012, it has a strong influence on the effective crit-
ical atom number NT = GT /|g̃e|, which varies from
NT (Θ = 0◦) ∼ 750 to NT (Θ = 90◦) ∼ 5000 with our
experimental parameters. In Fig. 5, we report our mea-
surements of the expansion coefficient γ(N) for different
orientations Θ of the magnetic field. We restrict our-
selves to N < 2200 to ensure the bath stays in the weak
depletion limit for the sizes σ . 9µm imposed by the
geometry of the experiment. From a linear fit of γ, with
γ(N = 0) = 1.19 fixed at the expected value, we deduce
the stationary atom number N exp

T (Θ) at which this ex-

pansion coefficient vanishes, which is shown in the inset
of Fig. 3 of the main text.

Anisotropic effects due to magnetic dipole-dipole inter-
actions are not expected to modify the properties of the
system as long as σ � `z, where `z is the vertical con-
finement length [7]. We checked that the modification of
NT should remain smaller than 5% for all data presented
here.

6 - UNIVERSAL PROPERTIES OF 2D
ATTRACTIVE BOSONS

In Ref. [8], the authors studied the ground state proper-
ties of weakly interacting bosons in two dimensions using
a classical field formalism with a regularized contact po-
tential. In the following, we recall their main results and
show that the expected corrections in our experimental
situation are not observable.

One considers bosons in two dimensions interacting
via an attractive contact potential (~2/m)g̃ δ(r), with a
dimensionless coupling constant g̃ < 0. The quantum
treatment of the collisions is mathematically ill-defined
for such a contact potential. For |g̃| � 1, a more accurate
description of the system can be obtained by substitut-
ing the bare parameter g̃ by a running coupling constant
defined by

1

g̃(k)
=

1

g̃
+

1

2π
ln

(
kc
k

)
, (27)

which depends on the relative momentum k of the two
particles involved in the collision. The introduction of a
cut-off in momentum space kc is a signature of an intrin-
sic length scale 1/kc of the physical system given by the
van der Waals length scale RvdW ≈ 5 nm for 87Rb. The
ground state properties of the system are derived using
a variational approach. Here, one considers trial wave
functions with a Townes profile of extension `. The en-
ergy per particle of the classical field with N atoms then
writes

EN (`) ∝ 1

`2
+ C

g̃(`−1)N

`2
, (28)

where C > 0 is a numerical factor and g̃(k) is evaluated
at the typical momentum `−1.

In contrast to Eq. (2) of the main text, EN has now a
non trivial dependence on ` because of the non-constant
parameter g̃(`−1). This term breaks scale invariance and
gives rise to an equilibrium size and a binding energy
(`N , EN ) that follow a geometrical law

`N+1 ∼ 0.34 `N EN+1 ∼
1

(0.34)2
EN . (29)

Note that `N and EN vary extremely rapidly with N .
For example, one can rewrite `N as

`N ∼ RvdW exp [−ζ(N −NT )] , (30)
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FIG. 5. Expansion coefficient γ as a function of the atom
number N for varied orientations Θ of the magnetic field.
The rms size of the imprinted cloud is set to σ = 8.6µm for
all data considered here, and the bath density is n∞ = 90
atom/µm2. For each set of points we also plot the linear fit
of γ(N) from which we deduce Nexp

T .

with ζ ≈ 1. For N = NT = GT /|g̃|, this size is ∼ RvdW,
which is 3 orders of magnitude smaller than the size of
our system. A small shift of only a few atoms, typically
from NT to N∗ ≡ NT − 6, gives a size of ≈ few microns,
compatible with the extension of our system. Experi-
mentally, we cannot resolve the difference between these
two atom numbers, as it would require single-particle res-
olution. Going further away from NT , the corresponding
sizes are either much too large or much too small to be
experimentally relevant. For this reason, we do not ex-
pect to observe a stable state for atom numbers differing
significantly from NT on our experiment.

Finally, we remark that the breakdown of scale-
invariance close to N∗ is too weak to be observed with

our experimental setup. Indeed, consider a system with
N = N∗ atoms. At equilibrium, Hammer & Son [8]
predict an energy per particle EN∗(`∗) ∼ −~2/(N∗m`2∗),
which is 1/N∗ smaller than the usual energy associated
with the length scale `∗ ≡ `N∗ . Therefore, if the system
is prepared in a Townes profile of size ` slightly differing
from `∗, the typical energy scale governing the dynamics
is

EN∗(`)− EN∗(`∗) ∼
1

NT

∆`

`∗

~2

m`2∗
, (31)

with ∆` = ` − `∗. This energy difference ∝ 1/NT =
|g̃|/GT is thus negligible for g̃ � 1 and the typical time
scale considered in this work.
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