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Abstract. NA61/SHINE is a fixed target experiment designed to study hadron-proton, hadron-nucleus and
nucleus-nucleus interactions at the CERN Super-Proton-Synchrotron. In this paper we summarize the results
from pion-carbon collisions recorded at beam momenta of 158 and 350 GeV/c. Hadron production measurements
in these types of interactions is of fundamental importance for the understanding of the muon production in ex-
tensive air showers. In particular, production of (anti)baryons and ρ0 are mechanisms responsible for increasing
the number of muons which reach the ground. The underestimation of the (anti)baryons or ρ0 production rates in
current hadronic interaction models could be one of the sources of the excess of muons observed by cosmic ray
experiments. The results on the production spectra of π±, K±, p, p̄, Λ, Λ̄, K0

S, ρ0, ω and K∗0 are presented, as well
as their comparison to predictions of hadronic interaction models currently used in air shower simulations.

1 Introduction

Measurements of ultrahigh energy cosmic rays are only
possible through the detection of secondary particles pro-
duced in extensive air showers (EAS). The inference of
some of the properties of the primary cosmic ray par-
ticles like their nuclear mass, relies on the comparison
of measured EAS observables to predictions from simu-
lations [1]. These simulations are performed by Monte
Carlo codes that make use of hadronic interaction mod-
els to describe the nucleus-air and hadron-air collisions
along the shower development [2]. Although simulations
using recent hadronic models can provide a good overall
description of EAS, it has been observed by cosmic ray
experiments that the hadronic models fail on describing
the muon production in EAS. Measurements by HiRes-
MIA [3], Pierre Auger Observatory [4–7], Telescope Ar-
ray [8], KASCADE-Grande [9], IceTop/IceCube [10] and
Sugar [11] show that there is an inconsistency between data
and simulations for observables related to the muonic com-
ponent of air showers. In particular, the number of muons
(Nµ) obtained from simulations is observed to be signifi-
cantly smaller than the measured ones, which is known as
the “muon deficit problem”.

The majority of muons in EAS are produced by the
decay of charged mesons, which in turn, are produced in
meson-air and nucleon-air interactions. Depending on the
primary energy and detection distance, the relevant meson-
air and nucleon-air interaction energies are between 10 and
1000 GeV [12, 13]. Therefore, measurements of particle
production in this energy range are of great value for un-
derstanding muon production in EAS and consequently for
improving its modeling. Of particular interest are the pro-
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duction spectra of (anti-)baryons and ρ0 in meson-air and
nucleon-air. It is well known [14, 15] that the production
of (anti-)baryons and ρ0 mesons in hadronic interactions
is important to predict the muon content of air showers.
Therefore the production cross sections of these particles
needs to be known accurately for a precise modeling of air
showers

NA61/SHINE experiment [16] (see Sec. 2) has pro-
vided a number of particle production and cross section
measurements which are relevant for the modeling of
hadronic interaction in EAS (e.g. Refs [17, 18]). In this
paper, however, the focus will be on the results of the 2009
run with a negatively charged pion beam colliding against a
thin carbon target (π−+C data) at 158 and 350 GeV/c. Since
π-air is the most abundant hadronic interaction occurring in
an EAS, our π−+C data is of high relevance for the tuning
of hadronic interaction models dedicated to EAS simula-
tions. The results are presented in three parts: the spectra of
charged hadrons (π±, K±, p and p̄) are presented in Sec. 3,
the spectra of V0 mesons (Λ, Λ̄ and K0

S) in Sec. 4 and the
spectra of resonance mesons (ρ0, K∗0 and ω) in Sec. 5.

2 The NA61/SHINE experiment

NA61/SHINE (SHINE = SPS Heavy Ion and Neutrino Ex-
periment) is a fixed target experiment at the CERN SPS
designed to study hadron production in nucleus-nucleus
and hadron-nucleus collisions. Its physics goals comprise
a) the strong interaction program, which investigates the
properties of the onset of deconfinement and search for the
critical point of strongly interacting matter, b) the neutrino
program, to precisely measure the hadron production im-
portant to calculate the neutrino and antineutrino fluxes in
the T2K neutrino experiment [19], and c) the cosmic ray
program, focused on the measurements of the hadron and
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Figure 1: Schematic layout of the NA61/SHINE experiment [16].

meson production which are most relevant for the model-
ing of extensive air showers. The full description of the
NA61/SHINE experiment and its science program can be
found in Ref. [16]

The NA61/SHINE detector measures charged particles
produced by the collision of the beam particles with the tar-
get through a set of five Time Projection Chambers (TPC).
Since two of the TPCs are placed in the magnetic field
produced by superconducting dipole magnets, the charge
and the momenta of the particles can be measured and the
achieved resolution on p is of the order of σ(p)/p2 = 10−4

(GeV/c)−1. Additionally, the energy loss per unit of length
(dE/dx) in the TPCs is used in this work for particle iden-
tification. The experimental layout of the NA61/SHINE
detector is shown in Fig. 1.

A beam detector system composed of scintillation and
Cherenkov counters is placed upstream of the detector to
identify and measure the beam particles. The position of
the beam is measured by a set of three beam position de-
tectors, which are also placed upstream of the target.

3 Production of π±, K±, p and p̄

Charged particles are identified in NA61/SHINE by
the track-by-track measurement of the deposited energy,
dE/dx, performed by the TPCs. After splitting the data
into bins of total and transverse momentum (p and pT), a
dE/dx model is fitted to the measured dE/dx distributions
by accounting for contributions of 5 particle types (e, π,
K, p and deuterons). From the results of the fit, the par-
ticle yields of π±, K± and p(p̄) are determined. Examples
of measured dE/dx distributions and of the results of the
dE/dx fit are shown in Fig. 2. After performing the parti-
cle identification through the dE/dx fit, the detector effects
(e.g. acceptance, efficiency) are corrected by using a set
of Monte Carlo simulations and the spectra are derived. A
more detailed description of the analysis procedure can be
found in Ref. [20].

The single-differential spectra as a function of p (inte-
grated over pT) for π±, K± and p(p̄) are shown in Figs. 5
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Figure 2: Example of the dE/dx distributions for one phase space 
bin (〈p〉 = 2.19GeV/c and 〈pT〉 = 0.35GeV/c) of the 158 GeV/c 
data set. The black markers show the measured distributions and 
the colored distributions show the result of the dE/dx fit. Nega-
tively charged particles are shown on the top and positively ones 
on the bottom.

and 6, where the measurements are compared to the pre-
dictions of Epos 1.99 [14], Sibyll 2.1 [21], Sibyll 2.3 [22],
QGSJet II-04 [23] and EposLHC [24]. The double-
differential spectra as a function of p and pT can be found
in Ref. [25] for the π± spectra and in Ref. [20] for the K±

and p(p̄) spectra.

4 Production of Λ, Λ̄ and K0
S

Since Λ(Λ̄) and K0
S are neutral weakly decaying particles,

they can be measured by NA61/SHINE through the detec-
tion of the charged particles which are produced in their
decays. The invariant mass (minv) spectra for a given de-
cay channel can then be used to extract their signal. The
decay channels used here are Λ → p + π−, Λ̄ → p̄ + π+,
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Figure 2: Example of the dE/dx distributions for one phase space 
bin (〈p〉 = 2.19GeV/c and 〈pT〉 = 0.35GeV/c) of the 158 GeV/c 
data set. The black markers show the measured distributions and 
the colored distributions show the result of the dE/dx fit. Nega-
tively charged particles are shown on the top and positively ones 
on the bottom.

and 6, where the measurements are compared to the pre-
dictions of Epos 1.99 [14], Sibyll 2.1 [21], Sibyll 2.3 [22],
QGSJet II-04 [23] and EposLHC [24]. The double-
differential spectra as a function of p and pT can be found
in Ref. [25] for the π± spectra and in Ref. [20] for the K±

and p(p̄) spectra.
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Figure 3: Example of the minv distributions for one phase space bin (〈p〉and 〈pT〉 are indicated on the top of each plot) of the 158 GeV/c 
data set. The black markers show the measured distributions and the colored lines show the result of the signal extraction fit, where the 
signal is shown in blue and the background in red.

K0
S → π+ + π−. To extract the signal, the minv distributions

were fitted by considering a signal contribution, modeled
by using Monte Carlo templates, and the background, mod-
eled by a 2nd-degree polynomial function. Examples of the
fitted minv distributions are shown in Fig. 3.

This analysis was performed in 2-dimensional phase
space bins of p and pT. For each phase space bin, the de-
tector effects were corrected by using Monte Carlo simula-
tions. The full double-differential spectra as a function of
p and pT for Λ(Λ̄) and K0

S at 158 and 350 GeV/c can be
found in Ref. [26]. In Figs. 7 and 8 we show the measured
single-differential spectra as function of p (integrated over
pT) together with predictions of the hadronic models.

5 Production of ρ0, K∗0 and ω
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Figure 4: Example of the  minv(π+π−)  distribution  for  one  xF  bin
(0.3 < xF < 0.4) of the 158 GeV/c data set. The black mark-
ers show the measured distributions and the colored distributions
show the results of the template fit.

By using the NA61/SHINE apparatus, the yields of ρ0,
K∗0 and ω can be measured through the π+π− invariant
mass (minv(π+π−)) spectra. The signal extraction is per-
formed by fitting Monte Carlo templates to the measured
minv(π+π−) distribution. The Monte Carlo events were gen-
erated using Epos 1.99 as hadronic interaction model and
they were passed through the full NA61/SHINE detector
simulation and reconstruction chain. The estimation of the
combinatorial background were done by two methods: the
charge mixing method, in which the π+π+ and π−π− are
treated as the background, and the Monte Carlo method,
in which the background mass distribution is obtained di-
rectly from simulations. One example of the minv(π+π−)
distributions with the results of the template fit is shown
in Fig. 4. After the signal extraction, the particle yields
were corrected by the detector effects and the production
spectra were derived. The full description of the analysis
procedure and the results can be found in Ref. [27].

We show in Fig. 9 the obtained ρ0, K∗0 andω spectra to-
gether with predictions from simulations with the hadronic
models. The ρ0 spectra are shown for both beam energies,
158 and 350 GeV/c, and the ω and K∗0 spectra are limited
to the 158 GeV/c data set because of the large uncertainties
obtained at 350 GeV/c.

6 Summary and conclusions

The NA61/SHINE experiment, within its very rich pro-
gram, has provided a large number of measurements which
have been used for testing and tuning of hadronic interac-
tion models used by the cosmic ray community. In this pa-
per, we have summarized the results of the special cosmic
ray runs for π−+C interactions.

First, we have shown the identified spectra of charged
hadrons obtained by using the dE/dx measurements. Of
particular interest here is the production spectra of p(p̄),
which are relevant to study the (anti)baryon productions
in hadron-air interactions and its implications on the muon
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production in EAS. From the p̄ spectra shown in Figs. 5
and 6, one can see that the (anti)baryon production is not
underestimated in general by the models. In particular, the
Epos model shows to describe very well the p̄ production.
As a conclusion, the underproduction of (anti)baryons in π-
air interactions by the hadronic models is unlikely to be the
most relevant source of the lack of muons in simulations.

Secondly, we have shown the results of the V0 analysis,
aiming at the Λ(Λ̄) and K0

S spectra. Although these mea-
surements are surely relevant for model testing and tuning,
our main motivation here is to reduce the systematic un-
certainties on the π± and p(p̄) spectra due to the feed-down
contributions from weak decays. Since a significant frac-
tion of π± and p(p̄) detected are produced by the decay of
Λ, Λ̄ and K0

S, this effect has to be corrected. In the results
shown in Sec. 3 (and in Ref.[20]) this correction is done by
using Monte Carlo simulations and the model dependence
of this procedure is added to the systematic uncertainties.
By measuring the spectra of Λ, Λ̄ and K0

S, we are able to
avoid this model dependence and consequently reduce the
systematic uncertainties. Updated π± and p(p̄) spectra with
improved systematic uncertainties will be presented in the
future in another publication.

Finally, we have shown the final results of the meson
resonance analysis which have already been published in
Ref. [27]. From the ρ0 production spectra shown in Fig. 9,
one can see that none of the hadronic models can describe
well the measurements. The small excess of ρ0 observed
with relation to the predictions from simulations can be rel-
evant to explain the muon deficit in simulations.
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Figure 6: Spectra  of π±,  K±and p(¯p) as a function of  p (integrated over pT), for  the  350 GeV/c data set. The statistical uncertainties are 
shown as black bars and the systematic ones as gray bands.
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Figure 6: Spectra  of π±,  K±and p(¯p) as a function of  p (integrated over pT), for  the  350 GeV/c data set. The statistical uncertainties are 
shown as black bars and the systematic ones as gray bands.
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