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Abstract. The galaxy power spectrum is one of the central quantities in cosmology. It
contains information about the primordial inflationary process, the matter clustering, the
baryon-photon interaction, the effects of gravity, the galaxy-matter bias, the cosmic expan-
sion, the peculiar velocity field, etc. Most of this information is however difficult to extract
without assuming a specific cosmological model, for instance ΛCDM and standard gravity. In
this paper we explore instead how much information can be obtained that is independent of
the cosmological model, both at background and linear perturbation level. We determine the
full set of model-independent statistics that can be constructed by combining two redshift
bins and two distinct tracers. We focus in particular on the statistics r(k, z1, z2), defined
as the ratio of fσ8(z) at two redshift shells, and we show how to estimate it with a Fisher
matrix approach. Finally, we forecast the constraints on r that can be achieved by future
galaxy surveys, and compare it with the standard single-tracer result. We find that r can be
measured with a precision from 3 to 11%, depending on the survey. Using two tracers, we
find improvements in the constraints up to a factor of two.
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1 Introduction

The recent explosion of cosmological data has allowed to infer many crucial properties of our
Universe. For instance, we now know the age of the Universe, its spatial curvature, the epoch
at which acceleration begins, the level of clustering, etc., with a precision better than a few
percent. However, in most cases, this knowledge actually depends on assuming a specific
model, typically ΛCDM. If we change the underlying model, the statistical data analysis has
to be redone, and the results will in general change. The answer to fundamental issues, as
e.g. whether gravity is Einsteinian or not at large scales, will therefore depend on the specific
cosmological model. Indeed, it is well known that constraints may vary depending on the
assumed models — see, e.g., [1–3].

An alternative and complementary approach is to derive measurements of quantities
of cosmological interest without first assuming a particular model. There are two ways
in current literature in which this model-independent goal has been so far deployed. One
consists in replacing ΛCDM with mathematical parametrizations not tied to specific physical
models — see, e.g., [4–7]. The problem of this approach, however, is that one replaces
physically motivated quantities with phenomenological parameters or functions that have
less direct or not univocal physical interpretation. The second approach, that we follow here,
consists in measuring directly the physical quantities of interest by combining data in such a
way to cancel out, whenever possible and to some extent, the dependence on the underlying
cosmological model — see also, e.g., [8, 9]. In other words, the goal is to identify the maximal
set of statistics — i.e., the combinations of real data that do not depend on theory parameters
— that have a direct physical meaning.

In a previous paper [10] some of us discussed how to obtain such model-independent
constraints on the redshift distortion parameter

βg =
f

bg
, (1.1)

where f = d logG/d log a is the linear matter growth rate, G is the growth function (i.e. the
density contrast normalized to the present value of unity today), and bg is the galaxy-dark
matter bias. All these quantities are generally both time- and scale-dependent.
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This paper is devoted to another such combination, namely:

F (k, z) = f(k, z)σ8(k, z) , (1.2)

where σ8(k, z) = σ8G(k, z) is the mass variance at a radius of 8h−1 Mpc and σ8 is its value at
the present epoch. This combination contains valuable information about the growth history
of matter perturbations at the linear order and it has been receiving growing attention [11–
16]. Arguably, this quantity can break the degeneracy among modified gravity models which
predict the same expansion history. Therefore, the measurement of this quantity in a model-
independent fashion can play a key role in cosmological tests of gravity with the upcoming
data.

In the Kaiser (linear) approximation, the galaxy power spectrum in redshift space, Pg
can be written in terms of β and F as a polynomial in the direction cosine µ of the angle
between the line of sight and the Fourier wavevector ~k [17]:

Pg(k, z, µ) = b2g(1 + βgµ
2)2G2σ2

8P0(k)

= (b2gG
2σ2

8 + 2b2gβgG
2σ2

8µ
2 + F 2µ4)P0(k) , (1.3)

where P0(k) expresses the shape of the power spectrum at the present time, normalized to
σ8(z = 0). In the next section we will extend the power spectrum to mildly non-linear scales.

For every bin in (k, z), one can fit the data for various values of µ and measure directly
the three coefficients of the µ-polynomial in eq. (1.3), A(k, z) = b2gG

2σ2
8P0(k), B(k, z) =

b2gβgG
2σ2

8P0(k) and C(k, z) = F 2P0(k). The ratio of any two of the three coefficients gives
β, regardless of the cosmological model and of the spectrum shape. To obtain F in a similar
model-independent way, however, one needs to take the ratio of the third coefficient C(k, z)
at two different redshifts. One has then

r2(k, z1, z2) ≡ F 2(k, z1)

F 2(k, z2)
. (1.4)

This is yet another observable that can be measured from the linear galaxy power spectrum
without any assumption about cosmology, the bias, or the shape of the power spectrum.
Notice that F (k, z) per se cannot be measured directly, unless one specifies the value of
P0(k). The statistics r(k, z1, z2) is the subject of this paper.

We stress the fact that in this work we show how to combine different redshift shells
into a model-independent observable. This is in contrast to the usual approach of adding
information from different redshifts in the context of an assumed model (typically, ΛCDM),
in order to improve cosmological constraints as is often done when forecasting the outcomes
of cosmological surveys — see, e.g. [18, 19].

The aim of being as model-independent as possible would be incomplete if we could
not convert raw observables (angles and redshifts) into distances, and therefore into Fourier
wavevectors. This requires the knowledge of the Hubble-Lemâıtre function H(z) and of the
angular-diameter distance DA(z) in the relevant redshift range. This can be obtained in var-
ious ways, as it has been shown in [20]. In particular, we point out that, since these distances
are assumed to be already fixed, we do not include any additional information that could be
gathered through the Alcock-Paczynski effect [21]. This not only considerably simplifies the
treatment but also allows to distinguish the uncertainties due to the perturbations from those
due to the background. A generalized Fisher matrix that includes simultaneously background
and perturbation effects is of course also a possibility, but it would need to include the power

– 2 –



J
C
A
P
1
1
(
2
0
2
0
)
0
5
4

spectrum of peculiar velocities, as shown in [20]. Hence, here we assume for simplicity that
distances can be obtained in a model-independent way, and in this paper we focus exclusively
on r(k, z1, z2).

A second aim of this paper is to investigate the advantage of the multi-tracer technique
applied to our statistics. In any given survey, one might be able to identify two or more
tracers of the large scale structure, i.e. extragalactic sources of different types (galaxies,
quasars, Lyman-α systems, 21cm sources, X-ray sources, etc.). If those objects trace the
same underlying density field, but with different biases, then the constraints on the clustering
properties of the tracers with respect to the dark matter density can be significantly enhanced
by considering the tracers separately, as first noted in [22, 23], and as we have also shown
specifically for the model-independent measurement of β in [10]. As we will show in this paper,
we can also obtain improved, model-independent constraints on r(k, z1, z2) by comparing
tracers at different redshifts.

2 Model independent constraints on fσ8(z) in the quasi-linear regime

2.1 One tracer, two redshift bins

We shall employ two redshift bins in order to obtain model-independent constraints on F =
fσ8(z). Although the argument detailed above is exact in the linear regime, we know that
even on relatively large scales there are corrections due to the non-linearities inherent to
structure formation. We consider here the first such correction in redshift space, which
arises from the galaxy pairwise velocity dispersion (the Fingers-of-God effect). We also allow
implicitly for scale-dependent corrections to the matter growth rate, which may arise either
from non-linear corrections, or from other effects like free-streaming scales and growth in
modified gravity theories. Since we will confine our analysis to large scales, k ≤ 0.1h Mpc−1,
the non-linear velocity dispersion corrections will however play only a minor role.

In this regime, and using a simple model for the redshift distortion and the Fingers-of-
God (FoG) effect [17, 24], the matter power spectrum includes an extra factor with respect
to eq. (1.3), and can be written as:

Pg(k, z, µ) = [bg(k, z) + f(k, z)µ2]2σ2
8(k, z)G2

FoG(k, µ, z)P0(k) , (2.1)

where GFoG(k, µ, z) = exp [−µ2k2σ2
v(z)/2] is the small-scale smoothing due to peculiar ve-

locities [17, 25]. Here, σv(z) is the pairwise velocity dispersion of tracers inside a halo in
units of h−1 Mpc. The parameter σv(z) is an additional observable that we include in our
analysis. We therefore take the non-linear velocity dispersions in each redshift slice to be free
independent parameters, which is a quite conservative set up.

With the FoG effect, the ratio of the third coefficient of the expansion of Pg(k, z) as a
µ-polynomial at two different redshift slices now gives:

r2
k(k, µ, z1, z2) = r2(k, z1, z2)×

[
GFoG(k, µ, z1)

GFoG(k, µ, z2)

]2

(2.2)

i.e. eq. (1.4) times a FoG factor. This factor will play a minor role on the scales we consider
in this work.

We will now derive an expression for the uncertainty with which we can measure the
ratio r. Our starting point is the Fisher matrix for a single tracer. Given a survey with
a comoving volume V , we can estimate the (redshift-space) galaxy power spectrum over
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some Fourier-space bin ~k. Since redshift-space distortions preserve symmetry under rotations
around the Fourier-space azimuthal angle ∆φk, the Fourier-space volume of a bin is given by
Vk,µ = (1/2)2πk2∆k∆µ/(2π)3, where the factor of 1/2 comes from the reality condition for
the density field.

Given a galaxy sample with mean number density n̄g and a redshift-space spectrum

Pg(z,~k), it is convenient to introduce the adimensional quantity Pg(z;~k) = n̄Pg(z,~k). We
assume that the distribution of the raw data, i.e. the power spectrum in each z, k-bin, is well
approximated by a Gaussian. In terms of this variable the Fisher information matrix for the
galaxy power spectrum is given by [26–28]:

F [lnP] = Vµ
( P

1 + P

)2

(2.3)

where Vµ = V Vk,µ is the phase space volume, which accounts for both the survey volume V
and the Fourier space volume corresponding to the bin (k, µ). For convenience, we will also
denote the Fisher matrix per unit of phase space volume as F̄ = F/Vµ. In this section we
focus on the Fisher matrix F̄ , which is independent of the survey volume. In the next section
we will explore the implications of our results for some specific future surveys.

Let us now consider the case when we have a single type of galaxy observed in two
different redshift bins, so our set of variables are Y = {lnP(z1,~k), lnP(z2,~k)}. If we assume
that the redshift shells are independent, then the Fisher matrix for every choice of z1, z2, k
is simply:

F̄ [Y ] =

[ P1
1+P1

]2
0

0
[
P2

1+P2

]2

 , (2.4)

where P1,2 = n̄(z1,2)Pg(z1,2,~k). From now on, to make our notation more clear, we use barred
indices to refer to redshift slices, e.g., P1̄ refers to the slice z1. Unbarred indices will refer to
different tracers.

In order to derive constraints on the ratio r, as defined in eq. (1.4), we project the Fisher
matrix of eq. (2.4) onto the set of new variables:

X = {log r, logP1̄, log β1̄, log β2̄, log σv1̄, log σv2̄} , (2.5)

where P1̄ ≡ n̄1̄b
2
1̄
σ2

8(k, z1̄)P0(k) refers to the real-space spectrum in units of the number
density — i.e., without the µ-dependence. The set X is the complete set of independent
parameters that we can construct in the case of one tracer and two redshift bins — indeed,
we can write P2̄ in terms of the other parameters as:

P2̄ = q
P1̄β

2
1̄

r2β2
2̄

, (2.6)

where q ≡ n2̄/n1̄ is the ratio of the number densities at each slice.
We then can project the Fisher matrix (2.4) onto the set X as:

F̄µ[Xσ, Xλ] =

2∑
α,β=1

∂Yα
∂Xσ

F̄ [Yα, Yβ]
∂Yβ
∂Xλ

. (2.7)

where the subscript µ reminds us that the µ-integration has still to be performed. The re-
sulting Fisher matrix will have zero determinant by construction, since we started from two
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observables (P1̄ and P2̄), and made a variable change into a new set of five observables. How-
ever, we can obtain a non-singular Fisher matrix by adding the information (i.e., the Fisher
matrices) for all the values of µ. In the linear regime, this procedure is equivalent to obtaining
constraints using the information from the multipoles ` = 0, 2, 4 of the redshift-space power
spectra (if we include the FoG effect, formally the sum should be over all even multipoles.)

Therefore, the µ-average of F̄ is:

F̄ [X] =
1

2

∫ 1

−1
dµ F̄µ[X] , (2.8)

and its inverse is a well-defined covariance matrix.
The relative marginalized variances per phase-space unit are then:

σ2
r = (F̄−1)11 , σ2

β1̄
= (F̄−1)33 , σ2

β2̄
= (F̄−1)55 , (2.9)

for r, β1̄, β2̄, whereas
σ2
σv1̄

= (F̄−1)44 (2.10)

is the marginalized relative error for σv.

2.2 Two tracers, two redshift bins

In order to discuss the advantages, if any, of the multi-tracer technique, we should agree on
how to combine two tracers into a single survey. If two tracers belonging to the same survey
are combined to form one single survey (from now on denoted as combined survey), their
number densities are simply added as:

n = n1 + n2 (2.11)

= n̄1[1 + (b1 + fµ2)G
(1)
FoGP

1/2
m ] + n̄2[1 + (b2 + fµ2)G

(2)
FoGP

1/2
m ] .

where P
1/2
m = Gσ8P

1/2
0 (k), and an overbar denotes average quantities. We can now collect

the terms and write:
n = n̄[1 + (b+ fµ2)GFoGδm] , (2.12)

where n̄ = n̄1 + n̄2, and the bias of the combined tracer is:

b ≡ n̄1b1G
(1)
FoG + n̄2b2G

(2)
FoG

n̄1G
(1)
FoG + n̄2G

(2)
FoG

, (2.13)

whereas the FoG term for the combined tracer is:

GFoG ≡
n̄1G

(1)
FoG + n̄2G

(2)
FoG

n̄1 + n̄2
. (2.14)

With the latter definition we can also define a combined dispersion velocity as:

σ2
eff(zī) = − 2

k2µ2
ln

[
n̄1(zī)G

(1)
FoG + n̄2(zī)G

(2)
FoG

n̄1(zī) + n̄2(zī)

]
= − 2

k2µ2
ln

[
G

(1)
FoG + qīG

(2)
FoG

1 + qī

]
. (2.15)

where we defined qī ≡ n̄2(zī)/n̄1(zī). Therefore, the FoG correction of the combined tracer
will be:

GFoG = exp

[
−µ

2k2σ2
eff

2

]
. (2.16)
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The combined redshift space distortion parameter follows from (2.13):

β ≡ f

b
=

(1 + gq)β1β2

β2 + gqβ1
, (2.17)

where g ≡ exp [−µ2k2(σ2
2 − σ2

1)/2] and the subindex ī is everywhere implicit. In the following,
we will compare two tracers versus a single-tracer combined survey according to the above
formulae.

The multi-tracer Fisher matrix was first derived in [27, 29] — see also [10] for a
derivation and notations closer to the ones we use in this paper. For the two tracer case,
we start from the multi-tracer Fisher matrix per unit of phase-space volume for the set
Y 2t = {logP1̄1, logP1̄2, logP2̄1, logP2̄2}, where we remind the reader that barred indices run
over the redshifts, unbarred ones over the tracers. We have:

F̄ [Y 2t] =
1

2



P1̄1P1̄
(1+P1̄) +

P2
1̄1

(1−P1̄)

(1+P1̄)2
P1̄1P1̄2(1−P1̄)

(1+P1̄)2 0 0

P1̄1P1̄2(1−P1̄)
(1+P1̄)2

P1̄2P1̄
(1+P1̄) +

P2
1̄2

(1−P1̄)

(1+P1̄)2 0 0

0 0 P2̄1P2̄
(1+P2̄) +

P2
2̄1

(1−P2̄)

(1+P2̄)2
P2̄1P2̄2(1−P2̄)

(1+P2̄)2

0 0 P2̄1P2̄2(1−P2̄)
(1+P2̄)2

P2̄2P2̄
(1+P2̄) +

P2
2̄2

(1−P2̄)

(1+P2̄)2

 ,

(2.18)
where Pīα is the effective power of tracer α at the redshift bin ī, and Pī =

∑
α Pīα is the

total effective power of all tracers at the bin ī. As in the single tracer case, in contrast with
the redshift-space clustering strength Pīα, below we define the real-space clustering strength
as Pīα ≡ n̄īαb2īασ2

8̄i
P0(k).

The complete set of parameters we can construct in the case of two redshift bins and
two tracers is:

X2t = {log r, logP1̄, log β1̄1, log β1̄2, log β2̄1, log β2̄2, log σ1̄1, log σ1̄2, log σ2̄1, log σ2̄2} . (2.19)

This reduction is possible because of the following relations, which are extensions of the
relation obtained in the case of a single tracer and two redshift slices, eq. (2.6):

Pī1 =
Pī
Zī
, Pī2 =

PīYī
Zī

, (2.20)

where

Zī = (1 + qī)

1 + gqī
βī1
βī2

1 + gqī

2

, Yī = qī

(
βī1
βī2

)2

. (2.21)

The relations above, together with the relation between P2̄ and P1̄,

P2̄ = q1
Z2̄P1̄β

2
1̄1

Z1̄r
2β2

2̄1

, (2.22)

where q1 ≡ n2̄1/n1̄1, make it possible to reduce the system to the set X2t. Finally, we project
the Fisher matrix in eq. (2.18) onto the set X2t in eq. (2.19):

F̄µ[X2t
σ , X

2t
λ ] =

4∑
α,β=1

∂Y 2t
α

∂X2t
σ

F̄ [Y 2t
α , Y

2t
β ]

∂Y 2t
β

∂X2t
λ

. (2.23)
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The 8-parameter set X2t (for each z- and k-bin) represents the complete set of model-
independent clustering observables that can be obtained in the mildly non-linear regime
expressed by eq. (2.1). More observables can only be included by moving to higher-order
correlators, or by analysing other observables such as lensing.

Now that we possess all the tools in place to study any two redshift bins and two tracers,
we proceed to the evaluation of the Fisher matrices.

2.3 Results

In this section we present the results for the uncertainty in the ratio r, σr, using the informa-
tion drawn from one (combined) tracer, and from two tracers. These results are independent
of the survey, because the Fisher matrix per phase-space volume is independent of the phase
space volume V. We will focus on the scale k = 0.1h Mpc−1, but, since the dependence in k
is only in the velocity smoothing factors, the results for larger scales are almost unchanged:
e.g., for k = 0.01h Mpc−1 the uncertainty shifts by only ∼1 %. Unless otherwise stated, we
adopt the values βī1 = 0.5, βī2 = 1.0, σ1

īv
= 4h−1 Mpc, σ2

īv
= 2h−1 Mpc, r = 1 and q = q1̄ =

q2̄ = q1 = 1, where the superscripts in the dispersion velocities refer to the tracers. Now and
hereafter, in order to guarantee that the Fisher matrices are well conditioned, we use a prior of
50% for the pairwise dispersion velocities of each tracer, which means we sum a constant term
of 1/σ2

lnσv
to the diagonal of the Fisher matrix corresponding to the velocity dispersion, where

σlnσv = σσv/σv = 0.5. These realistic (and quite conservative) priors serve to produce Fisher
matrices which are better conditioned, however we should note that even without any priors
we would obtain Fisher matrices with well defined inverses. We assume the same values at
the two redshift slices for β and σv in order to better tell apart the gain of having two tracers
from the gain of having two redshift slices. These values are realistic but otherwise arbitrary,
and serve only the purpose of illustration. We make the numerical code publicly available,
so the interested reader can explore these constraints further for other sets of parameters.1

In all plots in this section, the solid lines refer to the case where we consider the two dis-
tinct tracers, while dot-dashed lines refer to the combined tracer with bias and FoG correction
given, respectively, by equations (2.13) and (2.14).

Figure 1 shows the comparison between the relative marginalized error σr = σ(r)/r in
the cases of one combined tracer and two tracers, as a function of P1̄, for βī1 = 0.25 (black)
and βī1 = 0.5 (orange). The error for the two tracers case always decreases as a function of
the signal-to-noise ratio (SNR), P1̄, whereas the error for one tracer reaches a plateau. This
is what we expect since the multi-tracer Fisher matrix is not limited by cosmic variance as
its single-tracer counterpart. Therefore, for arbitrarily large SNR, the two-tracers errors are
arbitrarily small.

Figure 2 shows the relative marginalized error σr as a function of βī1, while βī2 = 1.0
is fixed, for P1̄ = 1.0 (blue), 10.0 (red) and 100.0 (green). As expected, the single and two-
tracers constraints coincide at βī1 = 1.0, since in this case the clusterings of the two tracers
are in fact indistinguishable.

Finally, in figure 3 we display the relative difference ∆r ≡ σ1t
r /σ

2t
r between constraints

on r from one tracer and two tracers in the r-log10(P1̄) (left) and log10(β1̄1)-log10(P1̄) (right)
planes along with curves of constant P2̄. As is already clear by the previous plots, the advan-
tage of the two tracers approach increases with P1̄. This figure also shows the dependence of
∆r on the SNR at the second redshift slice, P2̄: in the r-log(P1̄) plane, the value of P2̄ drives

1Mathematica notebook at the link https://github.com/RenanBoschetti/Fisher constraints.
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Figure 1. Marginalized relative errors σr as a function of the real space clustering strength of the
first redshift slice, P1̄, for the scale k = 0.1h Mpc−1. Here, βī2 = 1.0 is fixed. Black lines correspond
to βī1 = 0.25, and orange lines to βī1 = 0.5. Solid lines refer to relative marginalized errors from the
multi-tracer Fisher matrix, while the dot-dashed lines refer to the relative marginalized errors from
the single-tracer Fisher matrix, for one combined tracer. As expected, the gain becomes noticeable
only for P � 1.

��� � � ��
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Figure 2. Marginalized relative errors σr as a function of β1̄1 for fixed βī2 = 1.0 and k = 0.1h Mpc−1.
Solid lines correspond to relative marginalized errors from the multi-tracer (two tracers) Fisher matrix
while the dot-dashed lines correspond to the relative marginalized errors from the single-tracer Fisher
matrix (combined tracer). The blue, red and green lines correspond respectively to P1̄ = 1, 10 and
100. As expected, the combined tracer and two tracers constraints coincide at β1̄1 = 1, where the
latter case reduces to the former.

the increase of ∆r. Indeed, it is clear that the dependence of ∆r is much weaker on r than
it is on β1̄1. Futhermore, it is irrelevant whether we define r or 1/r: by swapping the slices,
we achieve the same constraints.
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Figure 3. Left: relative difference ∆r = σ1t
r /σ

2t
r −1 between relative marginalized errors σr obtained

with one-tracer Fisher matrix (combined tracer) and two-tracers Fisher matrix, represented by con-
tours labelled by the percent gain (e.g, 10% means ∆r = 0.1), in the r − log10(P1̄) plane. Right: the
same relative difference in the log10(β1̄1)− log10(P1̄) plane. Since P2̄ is constrained by eqs. (2.22), in
both plots we denote the values P2̄ = 2.0, 10.0, 30.0 and 100.0, respectively, by the dashed, dot-dashed,
dotted and solid lines. Comparing the left and right plots it is clear that the dependence of ∆r on r is
much weaker than on β1̄1. The message here is that the value of r plays a minor role compared to β1̄1.

3 Constraining models

3.1 Fiducial model and surveys specifications

In this section we apply the formalism to three realistic future surveys, namely Euclid [30, 31],
J-PAS (Javalambre Physics of the Accelerating Universe Astrophysical Survey) [32] and DESI
(Dark Energy Spectroscopic Instrument) [33, 34]. The Euclid survey is a space telescope that
will map 15000 deg2 of the sky. The J-PAS survey is a ground telescope, which aims to map
8500 deg2 of the sky and will have the first light in 2020. The DESI survey is a ground
telescope which will map 14000 deg2 of the sky and should be fully operative already by
2021. At the same time, we show how to employ the general model-independent results of
the previous section to constrain specific parametrizations.

In order to derive the constraints in this section, we assume the flat ΛCDM as fiducial
model, with cosmological parameters Ωch

2 = 0.12, Ωbh
2 = 0.022, h = 0.6732 and σ8(z =

0) = 0.81, which correspond to Planck 2018 [35] parameters. It should be stressed that
despite assuming a model to derive these constraints, the method we propose remains model-
independent. Once we have real data, in fact, they will replace our fiducial cosmology.

In order to obtain constraints for the surveys, we need to calculate the Fisher matrix
F = VF̄ , where F̄ is the Fisher matrix per unit of phase-space volume we used to obtain the
previous results and V is the phase-space volume, which is of course highly dependent on the
survey. For each survey, we calculate the phase-space volume after integrating over µ as:

V ≡ V Vk = V × 1

2

4πk2∆k

(2π)3
=
V 2/3k2

2π
, (3.1)
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Figure 4. Constraints on r for J-PAS (top left), Euclid (top right) and DESI (bottom middle)
obtained using bins in the range k = 0.01 − 0.1[h Mpc−1] with the binning ∆k = 0.005h Mpc−1.
These results show how each survey is capable of distinguishing among models. The error bars in
blue were drawn from the single-tracer Fisher matrix using a combination of two tracers, while orange
error bars were drawn from the two-tracers Fisher matrix. For J-PAS, Euclid and DESI we use,
respectively, the tracers (ELG, LRG), (ELG, QSO) and (ELG, LRG). The numerical values of error
bars along with the fractional difference between one (combined) and two tracers are shown in table 2.

where ∆k = 2πV −1/3, V is the survey volume and k is the scale at which the constraints were
calculated. The volume for each survey is calculated assuming a redshift bin of ∆z = 0.2
with central redshifts depending on the survey (see table 1). Then the comoving volume of a
spherical shell around each central redshift zi is V = (4/3)π(χ3(zi+ 0.1)−χ3(zi−0.1)), with

χ(z) =
c

H0

∫ z

0

dz′

E(z′)
,

where c/H0 = 2997.92 Mpc h−1 and E(z) =
√

Ωm(1 + z)3 + (1− Ωm) is the ΛCDM Hubble-
Lemâıtre dimensionless parameter. In order to obtain the comoving volume for each survey
we multiply V by the corresponding observed fraction of the sky, which are fsky = 0.206,
0.363 and 0.339, respectively for J-PAS, Euclid and DESI.

We illustrate how to obtain constraints for the above surveys summing the contribution
of various bins of k, namely the range k = 0.01 − 0.1[hMpc−1] with the binning ∆k =
0.005hMpc−1, in the case of one tracer. We adopt kmin = 0.01h Mpc−1 as our reference scale
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because there is little gain in pushing k to even lower values — at least for the typical volumes
spanned by the surveys we consider in this paper. On the other hand, the constraints are
enhanced when we include higher values of k, since the phase-space volume grows with ∼ k2.
However, in that limit the amplitude of the power spectrum is also dropping quickly, which
tends to wash out the difference between employing one tracer or two tracers. Moreover, as
we push the scales to k & 0.1h Mpc−1, the Kaiser approximation starts to break down due
to non-linear effects, and even the parametrization of the FoG effect becomes less reliable.
Hence, for the reasons above, here we adopt kmax = 0.1h Mpc−1. Nevertheless, by doing the
exercise of adopting kmax = 0.15h Mpc−1 we find an overall strengthening of the constraints
of 30% ∼ 50% for the two-tracers approach and of 50% ∼ 60% for the one-tracer approach.
We also make this code publicly available (link on the footnote of page 6) so the interested
reader can test different configurations.

In order to calculate the observable r for different models, we use the well known
parameterization for the growth rate [36–39]:

f = Ωγ
m(z). (3.2)

where γ is the growth index, which is useful in order to parameterize deviations from General
Relativity (GR), even though it has no direct physical meaning. The value this parameter
assumes in the standard (GR based) model is γGR ' 0.5454. Therefore, we can parameterize
r(z1̄, z, γ) as

r(z1̄, z, γ) =
f(z1̄)σ8(z1̄)

f(z)σ8(z)
=

[
Ωm(z1̄)

Ωm(z)

]γ ∫ z

z1̄

Ωγ
m(z′)

1 + z′
dz′. (3.3)

where

Ωm(z) =
Ω

(0)
m (1 + z)3

E(z)
. (3.4)

In this exercise we fix one redshift slice at z1̄ = 0.3 for J-PAS and at z1̄ = 0.7 for Euclid
and DESI, while the second redshift slice varies in a different range depending on the survey.

Each survey will focus on a particular redshift range and hence will have different
targets. Here we use two tracers for each survey and choose the two tracers in order to
maximise the total signal. For instance, for DESI we could choose two tracers among ELGs,
LRGs and QSOs. We choose to use ELGs and LRGs since these tracers are more abundant
than QSOs in the redshift range we consider here for DESI. Similarly, for J-PAS and Euclid
we use, respectively, (ELGs, LRGs) and (ELGs, QSOs). The densities of these tracers for
each survey can be found in table 1. Since there are no estimates for Euclid in literature for
the density of quasars, in table 1 the densities of quasars are estimates for DESI. Therefore,
we are assuming that Euclid will detect a similar density of quasars as DESI.

As in the previous section, we compare a survey where the two tracers are treated
individually to the case where they are combined into a single one. For J-PAS and DESI we
used the same fiducial bias values as were used by ref. [40], namely:

b(z) =
b0
D(z)

, (3.5)

where b0 = 0.84 for ELGs and b = 1.7 for LRG. For Euclid we used bias of the form
b(z) =

√
1 + z for ELGs and b(z) = 0.53 + 0.289(1 + z)2 for QSOs [30].
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3.2 Constraints from future surveys

To obtain the constraints of this section, we start from the Fisher matrix per unit of phase-
space,

F̄ [Y ] = diag{F̄ (z1̄, k1, µ), . . . , F̄ (z1̄, kn, µ), F̄ (z2̄, k1, µ), . . . , F̄ (z2̄, kn, µ)} , (3.6)

where

F̄ (zī, kα, µ) =

[ Pg(zī, kα, µ)

1 + Pg(zī, kα, µ)

]2

(3.7)

is the Fisher matrix in each z-shell and k-bin. The parameters of this Fisher matrix are the
effective power in redshift-space, Pg(z, k, µ), in each z-shell and k-bin:

Y = {logP(z1̄, k1, µ), . . . , logP(z1̄, kn, µ), logP(z2̄, k1, µ), . . . , logP(z2̄, kn, µ)}. (3.8)

Therefore, when considering two redshift slices, the set Y has 2 × nk parameters, where nk
is the number of k-bins. In order to take into account the survey’s volume we multiply this
Fisher matrix by

V = diag{V(z1̄, k1), . . . ,V(z1̄, kn),V(z2̄, k1), . . . ,V(z2̄, kn)}. (3.9)

We project the Fisher matrix VF̄ [Y ] into the set

X = {log r, logP1̄(k1), . . . , logP1̄(kn), log β1̄(k1), . . . , log β1̄(kn), log β2̄(k1), . . . , log β2̄(kn),

log σ1̄v(k1), . . . , log σ1̄v(kn), log σ2̄v(k1), . . . , log σ2̄v(kn)}, (3.10)

as in equation (2.7). The combined quantities βī and σīv are scale-dependent according
to (2.16) and (2.17). Finally, the covariance is calculated averaging over µ as in equation (2.8)
and inverting the Fisher matrix for the set X. As pointed out in the previous section, we add
conservative priors of 50% on the dispersion velocities. For two tracers, the starting point is
a block diagonal matrix, where the block diagonals are the two-tracers Fisher matrices (2.18)
for each z-shell and k-bin, followed by the same procedure.

We report in figure 4 how J-PAS, Euclid, and DESI surveys are capable of distinguishing
among models of gravity, contrasting the one (combined) and two tracers cases. In this figure
we show predictions for r using generic modified gravity models with γ = 0.45, 0.5, 0.6 and
0.65, together with the prediction from the DGP (Dvali-Gabadadze-Porrati) model [41, 42]
using the γDGP parameterization of ref. [43]. Figure 4 shows error bars for the model-
independent quantity r, overimposed to the prediction from the generic parameterization of
eq. (3.2). It is important to remark that our constraints on r apply independently in any
redshift shell.

For J-PAS the difference between one combined tracer and two tracers is more sig-
nificant. For instance, the two-tracers constraints for J-PAS can distinguish γ = 0.65 and
γ = 0.45 from ΛCDM, but the combined tracers constraints can not for any z−shell. This
advantage appears due to the larger value of P2̄ at the second redshift slice in the J-PAS
case (see table 1). The larger signal arises because J-PAS is a photometric survey and hence
will detect a larger number of objects compared to Euclid and DESI, which are spectroscopic
surveys. Furthermore, since QSOs are sparse tracers of the LSS, they have much less signal
compared with ELGs or LRGs, hence the error bars for Euclid in the two cases (combined
and two tracers) are even more similar. As it is clear from previous results, the difference
between one and two tracers depends mainly on the SNR.
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J-PAS Euclid DESI

z n̄ELG n̄LRG V (×109Mpc3) P2̄ n̄ELG n̄QSO V (×109Mpc3) P2̄ n̄ELG n̄LRG V (×109Mpc3) P2̄

0.5 1181.1 156.3 6.63 253.43 — — — — — — — —

0.7 502.1 68.8 10.3 108.9 — — — — — — — —

0.9 138.0 12.0 13.5 26.54 206.6 2.6 23.8 31.16 81.9 19.1 22.3 19.59

1.1 41.2 0.9 16.2 6.64 161.5 2.555 28.5 22.76 47.7 1.18 26.6 6.99

1.3 — — — — 121.25 2.5 32.1 16.07 — — — —

1.5 — — — — 81.75 2.4 34.8 10.32 — — — —

1.7 — — — — 50.25 2.3 36.6 6.18 — — — —

Table 1. Left: galaxy Densities (ELG and LRG), volumes and SNR at the second redshift slice, P2̄,
for J-PAS at each redshift bin. Middle: galaxy densities (ELG and QSO), volumes and P2̄ for Euclid
at each redshift bin. Right: galaxy densities (ELG and LRG), volumes and P2̄ for DESI at each
redshift bin. Galaxy densities in units of 10−5 h3 Mpc−3. Here, P2̄ is evaluated at k = 0.01h Mpc−1.
The values of number densities was extracted from references [44] and [45]. The number densities for
quasars in the Euclid survey were extrapolated from the values for the DESI survey.

Figure 4 shows that the way in which the SNR is distributed among the species is also rel-
evant to determine the effectiveness of the two tracers approach. Moreover, the J-PAS survey
is more capable of distinguishing among models with different γs, although the error bars are
similar to those from Euclid and DESI. This is due to the fact that at low values of redshift,
fσ8, and as consequence r, is much more sensitive to γ than it is at high values of redshift.

In table 3 we show, for each survey, the relative marginalized errors on β2̄, σβ2̄
, in the

case where these errors are drawn directly from the single-tracer Fisher matrix and in the
case where we propagate the errors σβ2̄1

, σβ2̄2
and σβ2̄1β2̄2

from the two-tracers Fisher matrix
using the usual uncertainty propagating formula:

(σ2t
β2̄

)2 =
β2

2̄2
σ2
β2̄1

+ q2
2̄
β2

2̄1
σ2
β2̄2

+ 2q2̄β2̄1β2̄2σβ2̄1β2̄2

(β2̄2 + β2̄1q2̄)2 . (3.11)

To obtain the above formula we assume that the combined β2̄ is given by

β2̄ =
(1 + q2̄)β2̄1β2̄2

β2̄2 + q2̄β12̄

. (3.12)

Note that here we are assuming that the combined β2̄ is k-independent, following our as-
sumption in this section that P1̄ is the only k-dependent parameter of the single-tracer Fisher
matrix. Looking at equation (2.17), we can make the combined β a k-independent quantity
by setting σ1 = σ2.

The comparison between the relative marginalized error σ1t
β2̄

drawn directly from the

single-tracer Fisher matrix and the propagated σ2t
β2̄

(see table 3) shows that the relative
gain of two-tracers approach is always quite important for β. In table 3 we also show the
constraints on σv for the single-tracer approach.

The code used to obtain the results of this section is publicly available (the link on
the footnote is in section II.C), so the interested reader can explore these results for other
configurations (k-bins, volumes, etc.).
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J-PAS Euclid DESI

z σ1t
r σ2t

r ∆r σ1t
r σ2t

r ∆r σ1t
r σ2t

r ∆r

0.5 0.1 0.028 2.16 — — — — — —

0.7 0.094 0.03 1.37 — — — — — —

0.9 0.093 0.035 0.77 0.043 0.039 0.1 0.059 0.038 0.58

1.1 0.095 0.037 0.66 0.042 0.037 0.13 0.060 0.039 0.57

1.3 — — — 0.043 0.037 0.15 — — —

1.5 — — — 0.043 0.037 0.17 — — —

1.7 — — — 0.045 0.038 0.18 — — —

Table 2. Numerical relative marginalized errors for the one (combined) tracer and two tracers
approach, σ1t

r and σ2t
r , and the fractional gain of the two tracers errors, ∆r ≡ σ1t

r /σ
2t
r − 1, for each

survey. These are the numerical values of errors shown in figure 4.

J-PAS Euclid DESI

z σ1t
β2̄

σ2t
β2̄

∆β2̄
σ1t
σv σ1t

β2̄
σ2t
β2̄

∆β2̄
σ1t
σv σ1t

β2̄
σ2t
β2̄

∆β2̄
σ1t
σv

0.5 0.066 0.021 2.16 0.4 — — — — — — — —

0.7 0.058 0.024 1.37 0.4 — — — — — — — —

0.9 0.055 0.031 0.77 0.4 0.033 0.029 0.13 0.38 0.046 0.028 0.63 0.39

1.1 0.059 0.035 0.66 0.4 0.032 0.027 0.18 0.38 0.048 0.031 0.54 0.39

1.3 — — — — 0.032 0.026 0.23 0.38 — — — —

1.5 — — — — 0.033 0.026 0.27 0.38 — — — —

1.7 — — — — 0.035 0.027 0.27 0.38 — — — —

Table 3. Numerical relative errors for the one (combined) tracer and two tracers approach, σ1t
β2̄

and

σ2t
β2̄

, and the fractional gain of the two tracers errors, ∆β2̄
≡ σ1t

β2̄
/σ2t

β2̄
− 1, as well as the constraints

for the combined pairwise velocity dispersion, σ1t
v , for each survey. The two tracers constraints for β2̄

are obtained by propagating from σβ2̄1
, σβ2̄2

and σβ2̄1
to σβ2̄

through equation (3.11).

4 Discussion and conclusions

In this work we have derived model-independent constraints on fσ8(z) by combining two
redshift bins through the observable r ≡ fσ8(z1̄)/fσ8(z2̄). Here, model-independent means
that we do not need to assume any specific cosmological model, e.g. ΛCDM, in order to
derive the constraints: we leave the power spectrum, as well as any other quantities like the
redshift distortion β, as parameters free to vary in k and z.

We had two goals in mind. First, to determine what is the complete set of quantities
that can be estimated from the linear power spectrum (with the mild non-linear Fingers-of-
God corrections) without assuming a cosmological model. Secondly, to obtain constraints in
particular on the statistics r(k, z1, z2) for various future surveys and to assess the advantage
of two tracers with respect to the standard single tracer surveys.
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Concerning the first goal, we found that there are eight statistics (see eq. (2.19)) that
can be obtained combining two redshift bins and two tracers. This is the maximal model-
independent set in the clustering linear regime. Every other combination is either degenerate
with this set, or is not a model-independent quantity. Additional quantities can be introduced
using lensing and peculiar velocities, and will be studied elsewhere.

Concerning the second point, we contrasted two situations: (i) a survey with two distinct
tracers of large-scale structure, and (ii) the same survey but with a single-tracer which is a
combination of the two distinct tracers. The quantification of the difference between the two
cases is important in order to set observational strategies in near future surveys.

In section 2.3 we explore how the relative marginalised error σr depends on the SNR
(P1̄) and the redshift-space distortion parameter β1̄1 of the first redshift slice. As found in [10]
for the redshift-space parameter β, the difference between one and two-tracers constraints
strongly depends on the SNR (expressed in terms of the clustering strength at a given redshift
slice, Pz̄), as well as on the difference between β1̄1 and β1̄2. For SNR larger than 1, the two-
tracers approach is increasingly more advantageous.

In section 3 we show how the observational strategies of three near future surveys
perform for one and two-tracers. Both DESI and J-PAS, which will observe mostly ELGs
and LRGs, benefit greatly (gains & 50 %) from having at least two distinct types of tracers
over some redshift range. Euclid, which combines ELGs and quasars over the same redshift
range, presents a more modest gain in r, of 10% ∼ 20%. We find that r can be measured to
within 4-10% for one tracer, and to 3-6% with two tracers.

In this work we provide further evidence that the two-tracers approach is always more
advantageous, in particular when measuring physical observables in a model-independent
way. We have also shown that the gains accrued by distinguishing between the tracers
depend not only on the signal available, but also on how that signal is distributed between
the two tracers. The main conclusion is that, when two tracers have sufficiently distinct
biases (or, equivalently, distinct RSD parameters β), and their SNR are not both � 1, then
it is significantly advantageous to keep them as separated tracers for the sake of extracting
physical parameters. In other words, theoretically, there is no downside in splitting the sample
of tracers. In practice, of course, it may be difficult to measure the clustering of an extremely
sparse tracer, although this has been proved possible both in N -body simulations [46] as well
as in realistic surveys [47].
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