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Abstract
Understanding the relationship between the heterogeneous structure of complex networks and
cooperative phenomena occurring on them remains a key problem in network science. Mean-field
theories of spin models on networks constitute a fundamental tool to tackle this problem and a
cornerstone of statistical physics, with an impressive number of applications in condensed matter,
biology, and computer science. In this work we derive the mean-field equations for the equilibrium
behavior of vector spin models on high-connectivity random networks with an arbitrary degree
distribution and with randomly weighted links. We demonstrate that the high-connectivity limit of
spin models on networks is not universal in that it depends on the full degree distribution. Such
nonuniversal behavior is akin to a remarkable mechanism that leads to the breakdown of the
central limit theorem when applied to the distribution of effective local fields. Traditional
mean-field theories on fully-connected models, such as the Curie–Weiss, the Kuramoto, and the
Sherrington–Kirkpatrick model, are only valid if the network degree distribution is highly
concentrated around its mean degree. We obtain a series of results that highlight the importance of
degree fluctuations to the phase diagram of mean-field spin models by focusing on the Kuramoto
model of synchronization and on the Sherrington–Kirkpatrick model of spin-glasses. Numerical
simulations corroborate our theoretical findings and provide compelling evidence that the present
mean-field theory describes an intermediate regime of connectivity, in which the average degree c
scales as a power c ∝ Nb (b < 1) of the total number N � 1 of spins. Our findings put forward a
novel class of spin models that incorporate the effects of degree fluctuations and, at the same time,
are amenable to exact analytic solutions.

1. Introduction

Several man-made and natural complex systems are represented by networks of nodes joined by links [1]. The
study of the interplay between the structure of complex networks and dynamical processes on top of them
has grown into a major research field [2, 3], with many applications in physics, biology, information the-
ory, and technology. As opposing to the homogeneous structures typically studied in solid state physics, such
as Bravais and Bethe lattices [4], the striking feature of complex networks is the existence of strong local fluc-
tuations in their structure. This heterogeneous character is responsible for most of the nontrivial dynamical
properties of networked systems [2].

Spin models on networks describe systems formed by a large number of state variables, represented by
scalars or continuous vectors, which are coupled through the links of networks [3, 5, 6]. The study of such
models is of utmost importance for at least two main reasons. First, they are minimal models to address the
impact of heterogeneous structures on the cooperative behavior of a large number of interacting degrees of
freedom. Second, seemingly unrelated problems across disciplines can be cast in terms of the unifying frame-
work of spin models on random networks [7, 8]. Models of scalar spins on networks have a vast number of
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applications in a variety of research fields, such as opinion dynamics [9, 10], models of socio-economic phe-
nomena [11], artificial neural networks [12–14], agent-based models of the market behavior [15–17], dynam-
ics of biological neural networks [18–20], information theory and computer science [8], sparse random-matrix
theory [21, 22], and the stability of large dynamical systems [23, 24]. Models of vector spins on networks are
relevant for the study of synchronization phenomena [25–28], random lasers [29–31], vector spin-glasses
(SGs) [32–34], and the collective dynamics of swarms [35–38].

Mean-field theories stand out as one of the most celebrated tools in physics and the natural starting point
to address the collective behavior of many interacting spins. The heart of the mean-field approach is the
assumption that all spins are statistically equivalent, in the sense that each spin experiences an effective random
field drawn from the same distribution. By virtue of that, the original problem of many interacting elements
is replaced by a problem of a single spin coupled to an effective field. Paradigmatic examples of mean-field
theories are derived from spin models on fully-connected networks, such as the Curie–Weiss model of ferro-
magnetism [39], the Kuramoto model of synchronization [25, 27], and the Sherrington–Kirkpatrick model of
SGs [40, 41].

Fully-connected mean-field theories are expected to provide an universal description of spin models on
high-connectivity networks, for which the mean degree is infinitely large. In fact, it seems sensible to argue
that spin models on networks gradually flow to their fully-connected behavior as the mean degree increases,
since the detailed structure of a network should become irrelevant in the high-connectivity limit. Although
this intuitive argument has been confirmed for a few network models [42–44], understanding the impact of
degree fluctuations on the high-connectivity limit of spin models remains a key open question. In this work
we provide a comprehensive solution to this problem. Surprisingly, we find that the high-connectivity limit
of spin models on networks is not universal, since it depends on the full degree distribution. It follows that
traditional, fully-connected mean-field theories do not generally predict the macroscopic behavior of spin
models on high-connectivity networks.

Such nonuniversal character is intimately related to the breakdown of the central limit theorem as applied to
the distribution of effective local fields. To illustrate this point, let us consider the equilibrium behavior of Ising
spins on random networks at inverse temperature β [7, 44, 45]. The local magnetization mi = tanh(βhi,eff ) at
node i is determined by the effective field

hi,eff =
∑
j∈∂i

Jijm
(i)
j , (1)

where ∂i is the set of neighbors of i, Jij is the random coupling strength between spins at nodes i and j, and

m(i)
j is the local magnetization at node j in the absence of i. The network degrees are random variables with

average c. Figure 1 depicts simulation results for two different degree distributions. For random graphs with a
Poisson degree distribution, the central limit theorem holds and the distribution of effective fields converges
to a Gaussian distribution when c →∞, which corresponds to the fully-connected mean-field behavior [41].
For networks with an exponential degree distribution, the central limit theorem fails and the effective fields
are no longer Gaussian in the high-connectivity limit. The breakdown of the central limit theorem is caused by
the strong fluctuations of the random number of summands in equation (1), which is nothing more than the
degree of node i. This compelling mechanism for the failure of the central limit theorem has been studied for
more than seventy years in probability theory [46–48], but its evident importance for spin models on networks
has so far eluded a careful analysis. In this paper we fill this gap and derive a novel family of mean-field theories
that emerge from such breakdown of the central limit theorem.

1.1. Main results
The central result of this work is a set of equations for the equilibrium behavior of spin models on high-
connectivity networks with an arbitrary degree distribution. The spins are Ising variables or continuous vectors
with finite dimension, while the random pairwise interactions between spins follow an arbitrary distribution.
The high-connectivity limit of the model is cast in terms of an effective problem of a single spin, whose con-
figurations follow the Boltzmann distribution with an effective energy given by equation (43). The analytic
expression for the distribution of the effective energy, equation (44), is one of the main outcomes of this work.

The remarkable consequence of equation (44) is that, even in the high-connectivity limit, the behavior of
spin models on graphs is not universal, but strongly dependent on the degree distribution. Networks for which
the high-connectivity limit depends on the degree distribution are called heterogeneous networks. In contrast,
the behavior of spin models on the so-called homogeneous networks is universal, i.e., independent of the degree
distribution and consistent with the behavior of fully-connected models.

The analytic results of section 4 are very general and they can be applied to a variety of specific models.
We illustrate the effects of degree fluctuations on the mean-field behavior of spin models by focusing on two
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Figure 1. Distribution of effective local fields hi,eff (equation (1)) for Ising spins in equilibrium at temperature T = 1. The spins
are coupled through networks with (a) an exponential and (b) a Poisson degree distribution pk. The symbols are obtained from
numerical simulations of networks with N = 105 nodes and different values of the average degree c. The coupling strengths follow
a Gaussian distribution with mean 1.3/c and standard deviation 1/

√
c. The solid lines are the analytic expressions for N →∞

and c →∞ derived in this work (see equations (72) and (80)).

examples: the Kuramoto model of synchronization and the Ising model of SGs. We obtain the complete phase
diagrams of both models (see figures 4 and 6).

Degree fluctuations dramatically affect the distribution of effective fields and the magnetization inside the
ferromagnetic phase. We show that the distribution of effective local fields of Ising spin models exhibits a
long tail for large fields and a divergence at zero field (see equation (85)), in contrast to the Gaussian [41]
or the Dirac-δ [39] distributions of effective fields in fully-connected models. In the case of the Kuramoto
model, the magnetization or phase coherence displays a singular point that separates two distinct regions
in the ferromagnetic phase (see figure 3), each one identified by a different behavior of the magnetization
for strong couplings. In addition, we show that degree fluctuations have an ambiguous effect in the ordered
phase. Although the ferromagnetic phase of the Kuramoto model expands over the entire phase diagram
when the variance of the degree distribution diverges, the magnetization becomes arbitrarily small. This result
sheds light on a key paradigm of network science, namely the idea that collective behavior is improved as the
critical point vanishes with the increase of degree fluctuations [2, 49]. Our results provide compelling evidence
that in the thermodynamic limit of networks with diverging degree variance the only possible emerging phase
is ultimately the paramagnetic (asynchronous) one. Last but not least, we find that the shape of the phase dis-
tribution of the Kuramoto model on heterogeneous networks fluctuates from site to site (see figure 5), which
exposes a lack of correspondence between local and global ensemble averages, in sharp contrast to the behavior
on fully-connected networks.

The results of section 4.2 generalize the replica-symmetric (RS) mean-field theory and the phase diagram of
Ising SGs [40, 41] to the case of heterogeneous networks. We explain how to derive the Almeida–Thouless (AT)
line [50], which bounds the region of the phase diagram where the RS theory is unstable and our results are
no longer exact. When the variance of the degree distribution diverges, the SG phase as well as the RS breaking
region are confined to an arbitrarily small sector of the phase diagram. Interestingly, the low-temperature
portion of the AT line exhibits a non-monotonic behavior as a function of the degree fluctuations.

Throughout the paper, we present simulation results for spin models on random networks with a finite
number N of nodes. Besides confirming our theoretical findings, the simulations reveal that the heteroge-
neous mean-field theory derived in this work is valid in the limit N →∞ when the mean degree scales as
c ∝ Nb (0 < b < 1). This intermediate regime of connectivity lies between the sparse (b = 0) and the fully-
connected (b = 1) regimes. Our work uncovers the non-universal behavior of spin models on heterogeneous
networks in such intermediate scaling of c.

The paper is organized as follows. In the next section we define the Hamiltonian of the vector spin model
on an ensemble of random networks with an arbitrary degree distribution. Section 3 presents the cavity or
message-passing equations for the equilibrium behavior of spin models on networks with finite mean degree, as
derived in previous works [51, 52]. This section also features the distributional version of the cavity equations.
Section 4 is the core of the paper. Initially, we thoroughly explain how to calculate the high-connectivity limit
of the distributional cavity equations, from which the heterogeneous mean-field theory emerges. The explicit
results for the effect of degree fluctuations are presented in two subsections. Subsection 4.1 is focused on the
Kuramoto model with ferromagnetic couplings, while subsection 4.2 presents results for Ising spin models
with random pairwise interactions. We further discuss our findings and main conclusions in section 5. The
paper contains two appendices. Appendix A explains in detail how to derive the AT line for Ising spin models
on heterogeneous networks, while appendix B presents some details of the numerical simulations.
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2. The model set-up

We consider D-dimensional spins σ1, . . . ,σN, with σi = (σi,1 σi,2 . . . σi,D)T, placed on the nodes of a sim-
ple random graph [53]. Each spin σi is a continuous vector that identifies a point on the surface of the
D-dimensional hypersphere RD with unit radius. The probability to observe a global spin configuration
{σ} = (σ1, . . . ,σN) in thermal equilibrium follows the Boltzmann distribution

pB({σ}) =
1

Z e−βH({σ}), (2)

where β = 1/T is the inverse temperature, H(σ) is the Hamiltonian, and Z is the partition function

Z =

∫
RD

(
N∏

i=1

dσi

)
e−βH({σ}). (3)

The shorthand notation
∫
RD

dσi denotes an integral over all possible configurations of σi such that σ2
i = 1.

We study a generic family of spin models invariant under orthogonal transformations and defined by the
Hamiltonian [54]

H({σ}) = −1

2

N∑
ij=1

cijJijσ
T
i σj, (4)

where {cij}N
i,j=1 are the elements of the graph adjacency matrix C, and {Jij}N

i,j=1 are the coupling strengths
between the spins. The set-up specified by equation (4) comprises a broad class of traditional models of spins
randomly coupled through the links of a network. The Ising model, the XY or Kuramoto model with identical
oscillators, and the classical Heisenberg model on a random network are obtained by setting, respectively,
D = 1, D = 2, and D = 3.

The binary matrix elements cij ∈ {0, 1}, with cii = 0 ∀ i, specify the network topology: if cij = cji = 1, there
is an undirected edge between nodes i and j, whereas cij = 0 otherwise. The coordination number or degree
ki =

∑N
j=1 cij gives the number of nodes connected to i. The adjacency random matrix C is generated according

to the configuration model of networks [55–57], in which a graph instance is uniformly drawn from the set of
all possible simple graphs with a prescribed degree distribution [55–57]

pk = lim
N→∞

1

N

N∑
i=1

δk,
∑N

j=1 cij
. (5)

The average degree c is defined as

c =
∞∑

k=0

kpk. (6)

The configuration model of networks, in which pk is specified at the outset, is the ideal setting to explore
how pk impacts the macroscopic behavior of the spin model of equation (4) in the high-connectivity limit
c →∞. We assume that pk is an arbitrary degree distribution with finite moments as long as c < ∞.

Although the main results presented below are valid for any pk, we will be particularly interested on random
graphs with a negative binomial degree distribution [58]

p(b)
k =

Γ(α+ k)

k! Γ(α)

( c

α

)k
(

α

α+ c

)α+k

, (7)

parametrized by c and α > 0. The parameter α is related to the variance σ2
b of p(b)

k as follows

σ2
b = c +

c2

α
. (8)

The distribution p(b)
k becomes identical to the exponential distribution for α = 1, and it converges to the Pois-

son distribution when α→∞. In the limit c →∞, the relative variance σ2
b/c2 is solely governed by α and, as

we will show below, the mean-field theory depends on the degree distribution only through α, which enables
to study the role of the degree fluctuations in a clear-cut way. In the context of complex networks, the negative
binomial distribution finds applications in models of weighted random graphs [59], in studies of the spread
of infectious diseases on networks [60, 61], and as the empirical degree distribution of real-world contact
networks [62].

The variable Jij ∈ R in equation (4) denotes the strength of the mutual interaction between σi and σj. The
coupling strengths {Jij}N

i,j=1 are independently and identically distributed random variables drawn from an
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arbitrary distribution pJ with mean K0/c and standard deviation K1/
√

c. Note that the ensemble of random
graphs is fully specified by pk and pJ.

3. The distributional version of the message-passing equations

In this section we obtain a set of distributional equations for the single-site marginals of the spins when c is
finite. These distributional equations, originally derived in references [51, 52] and further studied in [42, 43],
build on the message-passing or cavity equations for network models with a local tree-like structure, such as
the configuration model [63]. The mean-field equations for heterogeneous networks follow from the limit
c →∞ of the distributional equations.

3.1. The cavity equations for single-site marginals
The probability density to observe a configuration σi at an arbitrary node i follows from the Boltzmann
distribution

pi(σi) =

⎛
⎝ N∏

j=1(
=i)

∫
RD

dσj

⎞
⎠ pB

(
{σ}
)

, i = 1, . . . , N. (9)

Thanks to the approximate local tree-like structure of the graph when N � 1 [56, 63], the local marginals
{pi(σi)}i=1,...,N on a single graph instance fulfill [51]

pi(σi) =
1

Zi

∏
l∈∂i

∫
RD

dσl eβJilσ
T
i σl p(i)

l (σl), (10)

where ∂i is the set of nodes adjacent to node i, Zi is the normalization factor of pi(σi), and p(i)
l (σl) is the

distribution of σl on the so-called cavity graph G(i), obtained from the original graph G by deleting node i and
all its edges. The distributions p(i)

j (σj) solve the following self-consistency equations

p(i)
j (σj) =

1

Z (i)
j

∏
l∈∂j\i

∫
RD

dσl eβJjlσ
T
j σl p(j)

l (σl), (11)

in which ∂j\i is the set of nodes adjacent to j except for i ∈ ∂j, and Z (i)
j is the normalization factor of p(i)

j (σj).
After solving the message-passing equation (11), the marginals on the original graph are reconstructed from
equation (10).

3.2. The distributional equations for an ensemble of networks
Equations (10) and (11) yield an approximation for the local marginals of an ensemble of spin models defined
on a single graph instance with N � 1 nodes. These equations become asymptotically exact for K1 = 0 when
N →∞ [44, 45], due to the existence of a vanishing fraction of short cycles in the graph. Nevertheless, if the
coupling strengths are random (K1 > 0), equations (10) and (11) exhibit a large number of solutions at low
temperatures [44, 45], which reflects the existence of many local minima in the free-energy [7, 64]. In this
regime of parameters, equations (10) and (11) only provide an approximate description of the system.

Inasmuch as pi(σi) and p(i)
j (σj) are (positive) random functions whose shape fluctuates along the nodes

of a network, it is instrumental to adopt an ensemble viewpoint and work with the functional probability
densities of pi(σi) and p(i)

j (σj), defined respectively as

W[p] = lim
N→∞

1

N

N∑
i=1

δF

[
p(σ) − pi(σ)

]
, (12)

and

R[p] = lim
N→∞

∑N
j=1

∑
i∈∂j

δF

[
p(σ) − p(i)

j (σ)
]

∑N
j=1Kj

, (13)

with δF[f(σ)] representing the functional Dirac-δ defined over the space of all possible functions f(σ).
Let us obtain the distributional equations for the functionals W[p] and R[p]. Equations (10) and (11) can

be intuitively rewritten as

5
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pi(σi) =
eβHi(σi)∫

RD
dσ′ eβHi(σ′) , (14)

p(j)
i (σi) =

eβH
(j)
i (σi)∫

RD
dσ′ eβH

(j)
i (σ′)

, (15)

where

Hi(σi) =
1

β

∑
l∈∂i

ln

(∫
RD

dσl eβJilσ
T
i σl p(i)

l (σl)

)
, (16)

and

H(j)
i (σi) =

1

β

∑
l∈∂i\ j

ln

(∫
RD

dσl eβJilσ
T
i σl p(i)

l (σl)

)
. (17)

Clearly, the functional distribution of Hi(σi) (H(j)
i (σi)) determines the distribution W[p] (R[p]) of pi(σi)

(p(j)
i (σi)). Since the left and right hand sides of equations (14) and (15) are equal in the distributional sense,

W[p] and R[p] fulfill

W[p] =

∫
DhF0[h] δF

[
p(σ) − eβh(σ)∫

RD
dσ′ eβh(σ′)

]
, (18)

R[p] =

∫
DhF1[h] δF

[
p(σ) − eβh(σ)∫

RD
dσ′ eβh(σ′)

]
, (19)

where Dh is a functional integration measure, while

Fn[h] =
∞∑

k=0

knpk

cn

∫ (k−n∏
r=1

dJrDqrpJ(Jr)R[qr]

)

× δF

[
h(σ) − 1

β

k−n∑
r=1

ln

(∫
RD

dσ′ eβJrσ
Tσ′

qr(σ
′)

)]
, (20)

yields the functional distribution of Hi(σi) or H(j)
i (σi) by setting n = 0 or n = 1, respectively. Equations (18)

and (19) form a closed system of equations for W[p] and R[p]. The central quantity Fn[h] is determined, in
the limit N →∞, by the degree distribution pk, the distribution of coupling strengths pJ, and the functional
distribution R[p]. As we will show below, Fn[h] simplifies in the high-connectivity limit c →∞.

3.3. Local and global ensemble averages
The distributions W[p] and R[p] are key quantities in the study of the macroscopic behavior of spin models
on networks as they allow to compute ensemble averages of the spins and derive equations for the order-
parameters [51, 52]. Due to the fluctuations in the local structure of a random network, it is important to
clearly distinguish between local and global ensemble averages. Let O(σi) be an observable defined in terms
of σi. The local ensemble average of O(σi) on the original graph is defined as

〈O (σ)〉pi =

∫
RD

dσ pi(σ)O(σ), (21)

while the local average on the cavity graph reads

〈O (σ)〉
p

(j)
i
=

∫
RD

dσ p(j)
i (σ)O(σ). (22)

Local averages only depend on the random functions pi(σ) and p(j)
i (σ) defined at node i. By taking the averages

of equations (21) and (22) with respect to the functional distributions of pi(σ) and p(j)
i (σ), we obtain the global

ensemble averages

〈〈O (σ) 〉p〉W =

∫
Dp W[p]〈O (σ) 〉p, (23)

〈〈O (σ) 〉p〉Q =

∫
Dp R[p]〈O (σ) 〉p. (24)

6
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For instance, the choice O(σ) = σ yields the global magnetization m on the original graph,

m ≡ 〈〈σ〉p〉W =

∫
Dp W[p]〈σ〉p, (25)

and the global magnetization M on the cavity graph,

M ≡ 〈〈σ〉p〉Q =

∫
Dp R[p]〈σ〉p. (26)

Notably, the present formalism also gives access to the fluctuations of the random function pi(σ) along the
different nodes. Instead of working directly with the functional distribution W[p], whose domain is infinite
dimensional, it is sensible to study the moments of pi(σ) for fixed σ

〈
[
p(σ)
]r〉W =

∫
Dp W[p]

[
p(σ)
]r

, r � 0. (27)

In particular, the variance

σ2
W = 〈

[
p(σ)
]2〉W − 〈p(σ)〉W (28)

quantifies the spread of the functional shape of the local marginals pi(σ) around their average 〈p(σ)〉W.

4. The heterogeneous mean-field theory

The heterogeneous mean-field theory describes spin models on high-connectivity random graphs charac-
terized by strong degree fluctuations, in contrast to the standard, homogeneous mean-field theory, whose
predictions are limited to random graphs with vanishing degree fluctuations.

The heterogeneous mean-field equations are derived by taking the c →∞ limit of equations (18) and (19)
for arbitrary pk. The core of the calculation lies in the high-connectivity limit of the distribution Fn[h]. Before
performing this calculation in full generality, let us consider the behavior of the random variable Hi(σi) for
large c in the particular case of Ising spins, in order to gain insight into the physical meaning of Hi(σi) and
its distribution F0[h]. Thanks to the scaling of the moments of Jil with c, the coupling strengths become very
small for c � 1 and it suffices to expand equation (16) in powers of Jil up to O(J2

il), leading to the following
expression

Hi(σi) = σi

∑
l∈∂i

Jil〈σ〉p(i)
l
+

β

2

∑
l∈∂i

J2
il

(
1 − 〈σ〉2

p(i)
l

)
, (29)

with 〈σ〉
p(i)

l
the local magnetization at node l in the absence of i ∈ ∂l. Equation (29) reveals that Hi(σi) can be

regarded as the interaction energy of the spin σi with an effective random field, specified by the local magne-
tizations of the neighboring spins in the absence of σi. The physical meaning of the random variable H(j)

i (σi)
is completely analogous.

Equation (29) involves two sums over a large number of independent random variables. Hence it is tempt-
ing to invoke the central limit theorem and argue that Hi(σi) follows a Gaussian distribution, which is in fact
correct for Erdős–Rényi and regular random graphs [42, 43]. However, the total number of terms in the sums
of equation (29) is itself a random variable, whose fluctuations are controlled by the degree distribution pk. As
we will show below, the central limit theorem breaks down when pk is not sufficiently concentrated around its
mean value c [48], which leads to a family of heterogeneous mean-field equations that explicitly depend on pk.

With the purpose of calculating the c →∞ limit of Fn[h] for arbitrary pk, it is convenient to introduce the
characteristic functional

Gn[t] =

∫
Dh e−i

∫
RD

dσ t(σ)h(σ)Fn[h], (30)

from which Fn[h] is determined via the inverse Fourier transform

Fn[h] =

∫ Dt

(2π)SD
ei

∫
RD

dσ t(σ)h(σ)Gn[t], (31)

where SD is the total number of single-spin states

SD =

∫
RD

dσ =
2π

D
2

Γ
(

D
2

) . (32)

7



J.Phys.Complex. 3 (2022) 015008 (24pp) F L Metz and T Peron

By inserting equation (20) in Gn[t],

Gn[t] =
∞∑

k=0

knpk

cn

∫ (k−n∏
r=1

dJrDqrpJ (Jr)R[qr]

)

× exp

[
− i

β

∫
RD

dσt(σ)
k−n∑
r=1

ln

(∫
RD

dσ′ eβJrσ
Tσ′

qr(σ
′)

)]
,

and noting that the above expression factorizes in terms of a product over the neighborhood of a single node,
it is straightforward to show that Gn[t] assumes the compact form

Gn[t] =

∫ ∞

0
dg gn ν(g)(η[t])g , (33)

in the limit c →∞. The functional η[t] is given by

η[t] = lim
c→∞

exp

{
c ln

[∫
dJDq pJ (J)R[q] exp

(
− i

β

∫
RD

dσt(σ) ln

[∫
RD

dσ′eβJσTσ′
q(σ′)

])]}
, (34)

and ν(g) is the high-connectivity limit of the distribution of rescaled degrees k1/c, . . . , kN/c

ν(g) = lim
c→∞

∞∑
k=0

pkδ

(
g − k

c

)
. (35)

The assumption that the distribution of rescaled degrees attains a well-defined limit ν(g) for c →∞ underlies
the validity of equation (33).

The next step is to calculate η[t] from equation (34). Since the coupling strengths become very weak for
c � 1, we expand equation (34) in powers of Jr and in turn compute the limit c →∞, finding

η[t] = exp

[
−i

∫
RD

dσ t(σ)

(
K0σ

TM +
1

2
βK2

1σ
Tχσ

)]

× exp

(
−K2

1

2

∫
RD

dσ dσ′t(σ)t(σ′)σTCσ′
)

, (36)

in which we have introduced the D-dimensional magnetization M

Mα =

∫
Dp R[p]〈σα〉p, (37)

the D × D connected correlation matrix χ between the components of a spin

χαβ =

∫
Dp R[p]

(
〈σασβ〉p − 〈σα〉p〈σβ〉p

)
, (38)

and the D × D correlation matrix C between the components of the local magnetization

Cαβ =

∫
Dp R[p]〈σα〉p〈σβ〉p. (39)

The order-parameters of equations (37)–(39) are defined in terms of the distribution R[p] of the single-site
marginals on the cavity graph.

The final step is to perform the inverse Fourier transform in equation (31). Nonetheless, the exponential in
Gn[t] has a quadratic term in t(σ), as can be noticed by inserting equation (36) in equation (33). This quadratic
term, given by

Ω[t] = exp

(
−K2

1 g

2

∫
RD

dσ dσ′ t(σ)t(σ′)σTCσ′
)

, (40)

is linearized by a multivariate Gaussian integral over z = (z1 z2 . . . zD)T

Ω[t] =

∫ ∞

−∞
Dz exp

[
−iK1

√
gzT

∫
RD

dσ t(σ)σ

]
,

with the Gaussian measure

Dz =
dz√

(2π)D detC exp

(
−1

2
zTC−1z

)
, (41)

8
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and dz =
∏D

α=1dzα. By carrying out the above linearization, we arrive at the appealing expression for

Gn[h] =

∫ ∞

0
dg gnν(g)

∫ ∞

−∞
Dz exp

[
−i

∫
RD

dσ t(σ)Heff

(
σ|g, z

)]
, (42)

where Heff

(
σ|g, z

)
is the effective Hamiltonian of a single spin

Heff

(
σ|g, z

)
= gK0σ

TM + K1
√

gσTz +
1

2
gβK2

1σ
Tχσ. (43)

Inserting equation (42) in equation (31), the functional integral over t(σ) is immediately performed, leading
to

Fn[h] =

∫ ∞

0
dggnν(g)

∫ ∞

−∞
Dz δF

[
h(σ) −Heff

(
σ|g, z

)]
. (44)

Equations (43) and (44) constitute the central result of this paper, as they provide the analytic expression for the
high-connectivity limit of the distribution of the coupling energy between a single spin and the effective field
coming from its neighborhood. These equations are valid for the generic spin model defined by equation (4).
Remarkably, the distribution ofHeff is generally not Gaussian, but it explicitly depends on the distribution ν(g)
of rescaled degrees, which means the model retains information about the graph structure even when c →∞.
The non-Gaussian nature of Heff is a direct consequence of the breakdown of the central limit theorem, as
discussed in the beginning of this section. For random graph models in which ν(g) = δ(g − 1), such as regular
and Erdős–Rényi graphs [1], the central limit theorem holds and Heff follows a Gaussian distribution. The
strength of the degree fluctuations for c →∞ is quantified by the variance of ν(g)

Δ2
ν =

∫ ∞

0
dg g2 ν(g) − 1. (45)

In the present context, we say that a network model is homogeneous if Δ2
ν = 0, whereas an heterogeneous

network is characterized by Δ2
ν > 0.

Plugging equation (44) back into equations (18) and (19), we find

W[p] =

∫ ∞

0
dg ν(g)

∫ ∞

−∞
DzδF

[
p(σ) − eβHeff(σ|g,z)∫

RD
dσ′eβHeff(σ′ |g,z)

]
, (46)

R[p] =

∫ ∞

0
dg g ν(g)

∫ ∞

−∞
DzδF

[
p(σ) − eβHeff(σ|g,z)∫

RD
dσ′eβHeff(σ′ |g,z)

]
, (47)

from which a closed set of equations for the order-parameters is derived from equations (37)–(39).
Equation (46) summarizes the gist of the mean-field approach: the macroscopic behavior of an infinitely large
system is reduced to an effective problem of a single spin, in which the single-site states are sampled from a
Boltzmann distribution with effective energy Heff

(
σ|g, z

)
. Equations (46) and (47), together with the order-

parameter equations (37)–(39), define what we call the heterogeneous mean-field theory. It is unfeasible to solve
the generic order-parameter equations that follow from equations (46) and (47). Thus, in the sequel we explore
the role of degree fluctuations in specific models.

4.1. Ferromagnetic couplings
In this section we address the impact of heterogeneous degrees on the behavior of ferromagnetic spin models.
For K1 = 0, the coupling energy is given by

Heff

(
σ|g
)
= gK0σ

TM, (48)

and the distribution of the effective field gK0M on a spin σ follows from ν(g). Due to the orthogonal invari-
ance of the Hamiltonian, equation (4), the magnetization m is determined by its absolute value |m|. For
heterogeneous networks we get

|m| =
∫ ∞

0
dg ν(g)

I D
2

(
βgK0|M|

)
I D

2 −1

(
βgK0|M|

) , (49)

where Ia(x) is the modified Bessel function of the first kind. The order-parameter M is the magnetization on
the ensemble of cavity graphs, and its absolute value solves the self-consistency equation

|M| =
∫ ∞

0
dg g ν(g)

I D
2

(
βgK0|M|

)
I D

2 −1

(
βgK0|M|

) . (50)

9
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Equations (49) and (50) generalize the fully-connected mean-field equations for ferromagnetic models with
D-dimensional spins [32] to the case of heterogeneous networks. In particular, for Ising spins (D = 1) we have
I 1

2
(x)/I− 1

2
(x) = tanh(x), and the scalar magnetization m is determined from

m =

∫ ∞

0
dg ν(g) tanh

(
βK0gM

)
, (51)

M =

∫ ∞

0
dg g ν(g) tanh

(
βK0gM

)
, (52)

which generalizes the Curie–Weiss mean-field equations [39] to heterogeneous random graphs.
Both parameters, |M| and |m|, quantify the coherence of vector spins, but in slightly different ways: |m|

is the centroid of the spin configuration {σ} on the surface of the D-dimensional hypersphere, while |M| is
the average of the spins weighted by the rescaled degree g. For homogeneous random graphs, identified by
ν(g) = δ(g − 1), equations (49) and (50) reduce to a single equation for |m|, normally derived from fully-
connected graphs. For heterogeneous networks, however, these parameters do not coincide, since highly con-
nected nodes (hubs) contribute more to the integral in equation (50). Theoretical approaches for the Kuramoto
model (D = 2) on heterogeneous networks have often characterized the synchronization phase transition
solely in terms of |M| [27] (the order parameter |M| is also analogous to the weighted spin average defined in
the context of the annealed network approximation for ferromagnetic systems [65–68]). While this is appro-
priate for homogeneous networks, it leads to discrepancies between theory and simulations for the behavior
of |m| when the network has strongly fluctuating degrees, such as in scale-free networks [69]. Here we do not
face this problem of choosing suitable observables beforehand, since both quantities, |m| and |M|, and the rela-
tionship between them emerge naturally from the high-connectivity limit of local tree-like networks, without
any additional assumption on the network topology.

The solutions of equations (49) and (50) allow to study the effect of degree fluctuations on the phase
diagram of the ferromagnetic spin model. In the limit T →∞, we find the solution M = m = 0 and the system
lies in the paramagnetic phase. By expanding equation (50) up to O(|M|), we conclude that |M| has a nontrivial
solution provided

βK0 =
D

1 +Δ2
ν

, (53)

where Δ2
ν is the heterogeneity parameter, given by equation (45). The above expression defines a line in the

parameter space at which the model undergoes a continuous phase transition between the paramagnetic and
the ferromagnetic phase. Equation (53) shows that the size of the ferromagnetic phase increases as a function
of the heterogeneity parameter. Indeed, the critical value of βK0 vanishes as Δ2

ν →∞ for any finite D, which
is in line with previous results for the critical temperature of the Ising model on scale-free networks [49, 70].
Furthermore, by expanding equations (49) and (50) around the critical coupling in equation (53), one shows
that the critical exponent of |m| and |M| is 1/2, independently of the degree fluctuations and/or the dimension
of the vectorial spins.

In the rest of this section, we present explicit results for random networks with the negative binomial degree
distribution. Substituting equation (7) in equation (35), we calculate the corresponding distribution of rescaled
degrees

νnb(g) =
αα

Γ(α)
gα−1e−αg , (54)

where α > 0 is related to Δ2
ν as follows

Δ2
ν =

1

α
. (55)

Equation (54) allows us to interpolate continuously between homogeneous networks (α→∞) and strongly
heterogeneous networks (α→ 0) by varying a single parameter α that controls the degree fluctuations in the
high-connectivity limit.

Figure 2 illustrates the effect of α on the behavior of |m| as a function of the coupling strength K0 for
the Ising (D = 1) and the Kuramoto model (D = 2). The ferromagnetic or synchronized phase, identified by
|m| > 0, appears through a continuous phase transition at the critical coupling strength predicted by
equation (53). Moreover, figure 2 compares the theoretical results, derived from the numerical solutions of
equations (49) and (50), with data from numerical simulations of the dynamics of each model. The agreement
between theory and simulations is excellent in both cases, confirming the exactness of equations (49) and (50).

Even though the critical value ofβK0 vanishes forα → 0, which could suggest the absence of a paramagnetic
phase in the strongly heterogeneous regime, we note that |m| becomes gradually smaller inside the ordered
phase as α is reduced. To better understand how the heterogeneity parameter α impacts the ordered phase of
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Figure 2. The magnetization |m| as a function of the coupling strength K0 for the Ising (panel (a)) and the Kuramoto model
(panel (b)) on heterogeneous networks with an infinitely large average degree and temperature T = 1. The heterogeneity
parameter α controls the variance of the negative binomial degree distribution (equations (54) and (55)). The solid lines are
obtained by solving equations (49) and (50), while the symbols are results from numerical simulations. The simulated networks
have N = 104 nodes and average degree c = 100, and they were generated according to the configuration model with the negative
binomial distribution (equation (7)). See appendix B for further details on the simulations.

Figure 3. (a) The magnetization |m| as a function of the heterogeneity parameter α for the Kuramoto model on heterogeneous
networks with an infinitely large average degree, temperature T = 1, and several values of the coupling strength βK0. The results
follow from the numerical solutions of equations (49) and (50). (b) The same results of panel (a), but rescaled by the factor
(βK0)δ(α), where δ(α) = α if 0 < α � 1, and δ(α) = 1 otherwise. The collapse of the data for βK0 � 1 onto a single curve
corroborates equation (56) for |m|. The red dashed curve is the analytic expression for f (α) = (1 − |m|)(βK0)δ(α) (βK0 � 1) in
the regime α > 1 (see the main text).

spin models, we present in figure 3 the behavior of |m| as a function of α for the Kuramoto model. The main
outcome is that, for βK0 � 1, deeply in the synchronized phase, |m| has the functional form

|m| = 1 − f (α)

(βK0)δ(α)
(βK0 � 1). (56)

In the sector α > 1, we are able to show analytically that δ(α) = 1 and f (α) = α
2(α−1) , by expanding

equations (49) and (50) for βK0 � 1. In the range 0 < α � 1, there are strong degree fluctuations and the
perturbative expansion fails, leading to a divergence in |m|. In spite of that, figure 3 shows that the results for
different βK0 collapse onto a single curve by choosing δ(α) = α in the sector 0 < α � 1, confirming the func-
tional form put forward in equation (56). This numerical procedure does not give the explicit form of f(α),
but it clearly shows that limα→0 f(α) = 1.

On the whole, equation (56) leads to two interesting conclusions. First, the magnetization |m| vanishes
inside the ordered phase as α→ 0 (Δν →∞). This is a surprising finding given that highly heterogeneous
networks have been regarded as optimal structures for the emergence of synchronization. Indeed, the vanish-
ing of the critical coupling for the Kuramoto model on heterogeneous networks has been reported in previous
studies [27, 71–75], but it has remained unclear how |m| behaves when the variance of the degree distribu-
tion diverges. Our results confirm that, in the limit c →∞, the critical coupling does vanish as Δν →∞,
but they also reveal that |m| goes to zero, suggesting that highly heterogeneous networks do not sustain any
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Figure 4. Phase diagram of the Kuramoto model (D = 2) on heterogeneous networks with an infinitely large average degree. The
heterogeneity parameter α measures the variance of the negative binomial degree distribution (see equation (54)), β = 1/T is the
inverse temperature, and K0 > 0 is the coupling strength between the spins. The solid line identifies the continuous transition
between the ferromagnetic (synchronous) and the paramagnetic (asynchronous) phases (see equation (53)). The vertical dashed
line at α = 1 separates two distinct asymptotic regimes of the magnetization |m| for βK0 � 1, each one displayed on the figure.
The horizontal dashed line at βK0 = 2 is the critical coupling strength of the Kuramoto model on fully-connected networks.

level of synchronous oscillation in such limit. The second interesting conclusion is that the point α = 1 sep-
arates two different regions inside the synchronous phase, each one marked by a particular behavior of the
magnetization |m| for βK0 � 1. For 0 < α � 1, degree fluctuations have a significant impact in the ordered
phase and the magnetization is given by 1 − |m| ∼ (βK0)−α. For α > 1, degree fluctuations are immaterial
and the magnetization behaves as 1 − |m| ∼ (βK0)−1, regardless of the heterogeneity parameter α. Interest-
ingly, the function f(α) displays a cusp at α = 1, reflecting the non-analytic behavior of |m| as a function of
α. Although equation (56) and figure 3 are results for the Kuramoto model (D = 2), we expect that the above
two conclusions hold for arbitrary D < ∞.

The main results discussed up to now are summarized in figure 4, in which we present the phase diagram
of the Kuramoto model on heterogeneous networks. Notice that for α→∞ the transition line approaches
βK0 = 2, which is the critical point of fully connected networks with identical stochastic oscillators [76, 77].

We end this section by discussing another consequence of heterogeneous degrees, namely the lack of
correspondence between local and global ensemble averages. We present results for the Kuramoto model
(D = 2), but the main conclusions should be once more valid for any D < ∞. The state of a spin σi in D = 2
is fully specified by the phase φi ∈ (−π,π], distributed according to the local marginal Pi(φi). Combining
equations (27), (46) and (48), it is straightforward to write the analytic expression for the moments of the
random function Pi(φi)

〈[P(φ)]r〉W =

∫ ∞

0
dg ν(g)

erβgK0 |M| cos φ[
2πI0(βgK0|M|)

]r , (57)

where we have set M = (|M|0)T without loosing any generality. The above equation yields all moments of the
functional distribution W[P] of the single-site marginals Pi(φi) over the entire network. In particular, we are
interested in the mean μP(φ) and the variance σ2

P(φ)

μP(φ) = 〈P(φ)〉W ,

σ2
P(φ) = 〈[P(φ)]2〉W − 〈P(φ)〉2

W . (58)

Figure 5 illustrates the effect of the heterogeneity parameter α on the mean μP(φ) inside the synchronized
phase of the Kuramoto model. The different panels are for the same value of the magnetization |m|. More
importantly, the shaded area in figure 5 represents the dispersion [μP(φ) − σP(φ), μP(φ) + σP(φ)] around
the mean μP(φ), quantifying the fluctuations of the random function Pi(φi) from site to site. Each set of gray
points in figure 5 is the histogram of a single-site phase, which weights the amount of time that a randomly
chosen spinσi has a certain orientationφi. Each one of these single-site histograms is constructed from a single
run of the numerical simulation by storing the values of a given φi over a long time interval after the system
has reached equilibrium.

For homogeneous networks (α→∞), the variance σ2
P(φ) is zero and the distribution W[P] is peaked at

the mean value μP(φ). Accordingly, each single-site histogram coincides with μP(φ), confirming that all spins
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Figure 5. The mean value μP(φ) of the single-site marginal Pi(φi) over all nodes i = 1, . . . , N of the stochastic Kuramoto model
on heterogeneous networks with a negative binomial degree distribution (see appendix B). The panels show μP(φ) for
temperature T = 1 and different values of the heterogeneity parameter α (see equation (55)). In all panels, the coupling strength
K0 is adjusted such that |m| � 0.45. Solid lines are calculated from equation (57) while the shaded area highlights the dispersion
[μP(φ) − σP(φ), μP(φ) + σP(φ)] around μP(φ), with σP(φ) denoting the standard deviation of Pi(φi), also computed from
equation (57). The symbols are histograms obtained from numerical simulations of the dynamics of the model. Each individual
histogram (gray circles) is constructed by monitoring the time evolution of a single phase φi(t) selected at random, while the
green squares represent the average over all individual histograms. All numerical simulations were performed with N = 104 and
c = 100.

are identical, in the sense that the fluctuations of the individual phases are described by the same distribu-
tion 〈P(φ)〉W. Thus, local and global ensemble averages become equivalent in the high-connectivity limit of
ferromagnetic spin models on homogeneous networks, such as regular and Erdős–Rényi random graphs. In
contrast, we observe that in the case of heterogeneous networks (α < ∞), the size of the shaded area in figure 5
becomes gradually larger as α decreases, confirming that the functional form of Pi(φi) fluctuates from site to
site, and the statistical properties of the spins remain different from each other, even in the high-connectivity
limit.

Although the stochastic Kuramoto model on heterogeneous networks has been extensively studied in previ-
ous works (see, e.g. [27, 77, 78]), little attention has been paid to the characterization of site to site fluctuations.
It is thus noteworthy that the theory presented in section 4 allows us to study not only global observables of
the system, but also fluctuations at the level of individual nodes.

4.2. Random couplings
In this subsection we discuss the effect of heterogeneous degrees in mean-field spin models with random
coupling strengths. We restrict ourselves to the simplest case of Ising spins (D = 1), with σi ∈ {−1, 1},
in which the weights pi(σ) of a single-site marginal are encoded in the two-dimensional vector
�pi = (pi(1) pi(−1))T.

The mean-field equations for the high-connectivity limit of Ising spins coupled through the random links
of heterogeneous networks follow from equations (43), (46) and (47). The distributions of single-site marginals
read

W(�p) =

∫ ∞

−∞
dhω0(h)

∏
σ∈{1,−1}

δ

[
p(σ) − eβσh

2 cosh (βh)

]
, (59)

R(�p) =

∫ ∞

−∞
dhω1(h)

∏
σ∈{1,−1}

δ

[
p(σ) − eβσh

2 cosh (βh)

]
, (60)

where the distributions ω0(h) and ω1(h) follow from

ωn(h) =

∫ ∞

0
dg gn ν(g)

∫ ∞

−∞
d zPg(z)δ

(
h − gK0M − K1

√
gQz
)

, (61)

by setting n = 0, 1. The function Pg(z) is the normal probability density

Pg(z) =
1√
2π

e−
z2
2 . (62)

The order-parameters M and Q, appearing in equation (61), are defined as

M =

∫
d�p R(�p)〈σ〉�p, (63)

Q =

∫
d�p R(�p)〈σ〉2

�p, (64)

with d�p = dp(1)dp(−1). The local magnetization 〈σ〉�p is computed by replacing the integral in equation (22)
by a discrete sum over σ ∈ {1,−1}. The quantities M and Q are, respectively, the global magnetization and
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the Edwards–Anderson order-parameter [40] on the ensemble of cavity graphs. Inserting equation (60) in the
above definitions and integrating over�p, we arrive at the self-consistency equations

M =

∫ ∞

−∞
dhω1(h) tanh (βh) , (65)

Q =

∫ ∞

−∞
dhω1(h)tanh2 (βh) . (66)

The global magnetization

m =

∫
d�p W(�p)〈σ〉�p, (67)

and the Edwards–Anderson order-parameter

qEA =

∫
d�p W(�p)〈σ〉2

�p, (68)

follow from the distribution W(�p) of marginals on the original graph. Substituting equation (59) in the above
definitions and integrating over�p, we get

m =

∫ ∞

−∞
dhω0(h) tanh (βh) , (69)

qEA =

∫ ∞

−∞
dhω0(h)tanh2 (βh) . (70)

Equations (65), (66), (69) and (70) generalize the RS mean-field equations of Ising SG models with ran-
dom interactions to the case of heterogeneous networks. For homogeneous networks, characterized by
ν(g) = δ(g − 1), we obtain ω0(h) = ω1(h) and the above equations reduce to the RS equations of the Sher-
rington–Kirkpatrick model [40, 41]. The solutions of the self-consistency equations (65) and (66) allow us to
address the impact of heterogeneous degrees on the phase diagram of the system.

According to equation (59), the local marginal pi(σ) at node i is a Boltzmann factor parametrized by the
scalar effective field hi,eff [64], given in terms of the local magnetization 〈σ〉�pi

as follows

hi,eff =
1

β
tanh−1〈σ〉�pi

, (71)

where �pi is drawn from W(�p). Combining equations (29) and (14), one can show that hi,eff is also given by
equation (1). The object ω0(h) is nothing more than the empirical distribution of effective fields

ω0(h) ≡ Peff(h) = lim
N→∞

1

N

N∑
i=1

δ
(
h − hi,eff

)
, (72)

which also gives information about the fluctuations of the weights �pi throughout the network. The random
variable hi,eff is defined for a single realization of the random graph and its distribution Peff(h) is determined
by the fluctuations in the graph structure.

According to equation (61), ωn(h) is determined only by the probability densities Pg(z) and ν(g), which
enables to derive the general formula

ωn(h) =
1

K1
√

Q

∫ ∞

0
dg gn− 1

2 ν(g)Pg

(
h − gK0M

K1
√

Qg

)
, (73)

for arbitrary n. Note that equation (73) is valid for an arbitrary distribution ν(g) of rescaled degrees. If the net-
work is homogeneous (ν(g) = δ(g − 1)), then ω0(h) is a Gaussian distribution with mean K0m and standard
deviation K1

√
qEA [40, 41]. If the network is heterogeneous, then ω0(h) is not Gaussian, which stems from

the breakdown of the central limit theorem due to the large variance of the random number of summands in
equation (1). The average 〈p(σ)〉W in the present formalism corresponds with the RS ansatz employed in the
study of spin models on random graphs [64].

Before discussing the phase diagram for K1 > 0, we point out that the heterogeneous mean-field theory is
not exact in the whole phase diagram. In the context of the replica method [7], we say that equations (65), (66),
(69) and (70) are the replica symmetric (RS) solution of the model. In the case of the Sherrington–Kirkpatrick
model [40, 41], obtained for the choice ν(g) = δ(g − 1), the RS solution becomes unstable at low temperatures
owing to the existence of an exponentially large number of metastable states [7]. The sector of the phase dia-
gram where the RS theory fails is bounded by the so-called AT line [50], which is determined by the eigenvalues
of the Hessian of the free energy.
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It is thus important to establish the limit of validity of the heterogeneous mean-field theory and ask how
degree fluctuations impact the location of the AT line. Instead of tackling this problem by analyzing the Hessian
of the free-energy, here we follow an alternative strategy [79–81], based on the number of solutions of the cavity
equation (11). By defining {p(i)

j,1(σj)} and {p(i)
j,2(σj)} as two fixed-point solutions of equation (11) for the same

realization of the random network, we introduce the correlation ρ between the local magnetizations of each
solution on an ensemble of graphs

ρ =

∫
d�p1 d�p2 R12

(
�p1,�p2

)
〈σ〉�p1

〈σ〉�p2
, (74)

where the joint distribution R12

(
�p1,�p2

)
of weights is defined as follows

R12

(
�p1,�p2

)
= lim

N→∞

∑N
j=1

∑
i∈∂j

δ
(
�p1 −�p(i)

j,1

)
δ
(
�p2 −�p(i)

j,2

)
∑N

j=1Kj
. (75)

When the RS theory is stable, equation (11) exhibits a single solution, the distribution R12

(
�p1,�p2

)
becomes

diagonal
R12

(
�p1,�p2

)
= δ
(
�p1 −�p2

)
R
(
�p1

)
, (76)

and we simply have ρ = Q, with Q given by equation (66). When the RS theory is unstable, the cavity
equation (11) has a large number of fixed-point solutions resulting from the existence of a large number of
extrema in the free-energy. To calculate the AT line, it suffices to consider the stability of the RS theory under
a perturbation of ρ. By plugging ρ = Q + δρ in equation (74) and expanding its right-hand side up to O(δρ),
we conclude that the RS theory is unstable provided

β2K2
1

∫ ∞

−∞
dhω2(h)sech4 (βh) > 1, (77)

where ω2(h) is defined through equation (73). Equation (77) is the condition for the breakdown of the RS
theory, generalizing the AT line of Ising spin models with random couplings to heterogeneous networks. For
homogeneous networks with ν(g) = δ(g − 1), we recover the AT line for the Sherrington–Kirkpatrick model
[50]. The details involved in the derivation of equation (77) are explained in appendix A. We remark that,
although we have limited ourselves to Ising spins, the current approach to obtain the AT line can be also
applied to D-dimensional spins.

Let us discuss our results for the phase diagram of the Ising model on heterogeneous networks with
K1 > 0. Equations (65) and (66) exhibit the paramagnetic solution M = Q = 0 at sufficiently high temper-
atures. The model undergoes a second-order phase transition from the paramagnetic to the ferromagnetic
phase, characterized by M 
= 0 and Q 
= 0, at the critical temperature

T = K0

(
1 +Δ2

ν

)
, (78)

derived from an expansion of equations (65) and (66) for |M| � 1 and Q � 1. As long as K1 > 0, the model
has a SG phase, in which M = 0 and Q 
= 0. By setting M = 0 and expanding equation (66) for Q � 1, we
find the critical temperature

T = K1

√
1 +Δ2

ν , (79)

that marks the second-order transition between the paramagnetic and the SG phase.
Equations (78) and (79) yield the continuous phase transitions for an arbitrary degree distribution ν(g).

The AT line as well as the continuous transition between the ferromagnetic and the SG phase are calculated by
numerically solving the order-parameter equations (65) and (66). As before, we present results for networks
with a negative binomial degree distribution, in which ν(g) is given by equation (54). The function ωn(h)
(n = 0, 1, 2) is the key quantity that determines the order-parameters and the AT line. Inserting equation (54)
in equation (73) and integrating over g [82], we get the analytic expression

ωn(h) =
1

Nn (M, Q)
|h|n+α− 1

2 exp

(
K0Mh

K2
1 Q

)
Kn+α− 1

2

(
|h|
√

K2
0 M2 + 2αK2

1 Q

K2
1 Q

)
, (80)

where

Nn (M, Q) =
Γ(α)

√
2πK2

1 Q

2αα

(√
K2

0 M2 + 2αK2
1 Q

)n+α− 1
2

, (81)

and Ka(x) is the modified Bessel function of the second kind with order a [82]. In the limit α→∞, ωn(h)
converges to a Gaussian distribution with mean K0M and variance K2

1 Q, independently of the index n = 0, 1, 2.
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Figure 6. Phase diagram of the Ising model on heterogeneous networks with random couplings and an infinitely large average
degree c. The degrees follow a binomial degree distribution with heterogeneity parameter α (see equations (7) and (54)). The
coupling strengths are drawn from a distribution with mean K0/c and standard deviation K1/

√
c. The model exhibits a

paramagnetic (P), a ferromagnetic (F), and a SG phase (see the main text). The AT line bounds the low temperature region within
which the RS theory is unstable. The inset shows the critical value of K0/K1 at the AT transition for T/K1 = 10−3 as a function of
α. The order-parameters M and Q (see equations (63) and (64)) change continuously across each one of the transitions in the
phase diagram.

Figure 6 depicts the phase diagram of the Ising SG model on networks with a negative binomial degree
distribution for different values of the heterogeneity parameter α. The phase diagram of the Sherring-
ton–Kirkpatrick model is recovered for α→∞ [40, 41]. The different critical lines in figure 6 meet at the
point (

K0

K1
,

T

K1

)
=

(√
α

1 + α
,

√
1 + α

α

)
, (82)

which serves as a useful guide to understand the effect of α on the phase diagram. From equation (82) we note
that, in the limit α→ 0, the ferromagnetic phase essentially expands over the entire phase diagram, while the
SG phase is confined to an arbitrary small region around K0/K1 � 0. The critical temperature between the
paramagnetic and the SG phase diverges as 1/

√
α for α→ 0.

According to figure 6, the location of the AT line shows that the RS theory is unstable throughout the SG
phase and in the low-temperature sector of the ferromagnetic phase, for any value of α. Although decreasing
values of α seem to gradually stabilize the RS ferromagnetic phase for lower temperatures, the impact of the
network heterogeneity on the AT line is fundamentally different in the regime T → 0. In fact, the inset in
figure 6 demonstrates that the critical value of K0 marking the AT transition for T → 0 is a non-monotonic
function of α, with a maximum around α � 0.5. Moreover, the inset suggests that, for strong heterogeneous
networks with α→ 0, the RS theory may become stable in the low-temperature sector of the ferromagnetic
phase.

We end this section by studying how the network heterogeneity impacts the distribution Peff(h) of effec-
tive fields. The full analytic expression for Peff(h) is obtained directly from the distribution ω0(h) (see
equation (72)), defined by means of equation (61). We point out that Peff(h) is always given by Peff(h) = δ(h)
in the paramagnetic phase.

Let us first consider Peff(h) for networks with ferromagnetic couplings (K0 > 0 and K1 = 0). The dis-
tribution of effective fields for homogeneous networks has the typical form Peff(h) = δ(h − K0m) of the
Curie–Weiss model, while we obtain

Peff(h) =
1

K0M
ν

(
h

K0M

)
Θ (h) , (83)

for heterogeneous networks with arbitrary degree distribution. The above equation holds for the choice M > 0,
and the symbol Θ(h) represents the Heaviside step function. For a negative binomial degree distribution, the
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Figure 7. Numerical simulation results for the global magnetization m and for the Edwards–Anderson order-parameter qEA of
the Ising model on heterogeneous networks with random couplings and average degree c =

√
N, where N is the total number of

spins. The degrees follow a negative binomial distribution with heterogeneity parameter α (see equation (7)), and the coupling
strengths are drawn from a Gaussian distribution with mean 1.2/c and standard deviation 1/

√
c. The symbols denote the mean

values of m and qEA over 30 independent samples, while the vertical bars are the standard deviations around the mean. The
horizontal lines are the theoretical results for N →∞ obtained from the heterogeneous mean-field theory and from the
fully-connected Sherrington–Kirkpatrick model [40]. The temperature was set to β = 1 in all experiments and analytical
calculations.

above expression becomes

Peff(h) =
αα

Γ(α)(K0M)α
hα−1 exp

(
− αh

K0M

)
Θ (h) . (84)

We see that strong degree fluctuations lead to striking modifications in Peff(h) when compared to homo-
geneous networks. The first interesting aspect concerns the behavior of Peff(h) for large fields. For
α < 1, Peff(h) exhibits a power-law regime Peff(h) ∼ hα−1 (h � 1) up to the point h = O(K0M/α), above
which it decays exponentially fast. Therefore, the power-law decay of Peff(h) persists over an arbitrarily large
range of h as α→ 0. The second interesting effect of the network heterogeneity occurs in the behavior of
Peff(h) around h = 0. In the limit h → 0, Peff(h) converges to a constant if α � 1, whereas it diverges as
Peff(h) ∼ hα−1 if α < 1. Thus, strong degree fluctuations induce the appearance of a substantial fraction of
vanishing effective fields, which has a detrimental effect on the ordered phase.

In the sequel, we discuss how the randomness in the coupling strengths impacts Peff(h). For homogeneous
networks with K1 > 0, the central limit theorem can be applied to equation (1) and Peff(h) is a Gaussian
distribution with mean K0m and variance K2

1 qEA [40]. The analytic expression of Peff(h) for networks with
negative binomial degrees and K1 > 0 is derived by setting n = 0 in equation (80). Similarly to the above
results for K1 = 0, Peff(h) features a crossover between a power-law and an exponential decay for sufficiently
large |h|. The main difference with respect to K1 = 0 appears around h = 0. In the regime |h| → 0, Peff(h)
converges to a constant if α > 1/2, whereas it displays the following asymptotic forms if α � 1/2

Peff =

{− ln |h| for α = 1/2,

|h|1−2α for 0 < α < 1/2.
(85)

Thus, the interplay between random coupling strengths and heterogeneous degrees leads to a logarithmic
divergence in Peff(h), a feature that appears as well in the spectral density of heterogeneous networks [83].
We further note that fluctuations in the coupling strengths mitigate the divergence around h = 0, in the sense
that the power-law exponent in equation (85) is smaller when compared to the case K1 = 0. The compari-
son between numerical simulations for the effective fields and the analytic expressions for Peff(h) in the cases
α→∞ and α = 1 are shown in figure 1. The agreement between the theory and simulations is excellent,
confirming the exactness of our theoretical findings for sufficiently high temperatures.

The heterogeneous mean-field theory is derived by taking the high-connectivity limit c →∞ after the limit
N →∞. As such, one expects that our theory is valid for high-connectivity networks in which the density
of edges c/N goes to zero for N →∞. In fact, figure 7 presents numerical simulation results for the global
magnetization and the Edwards–Anderson order-parameter of spin models on heterogeneous networks with
average degree c =

√
N and with the negative binomial degree distribution of equation (7). For homoge-

neous networks (α→∞), such as regular and Erdős–Rényi random graphs, the order-parameters flow as
N →∞ to their fully-connected values, obtained from the solution of the Sherrington–Kirkpatrick model.
For heterogeneous networks, in which α is finite, the order-parameters converge, in the limit N →∞, to the

17



J.Phys.Complex. 3 (2022) 015008 (24pp) F L Metz and T Peron

results of the heterogeneous mean-field theory derived in the present paper. Figure 7 confirms that the
mean-field theory presented in this work describes spin models on heterogeneous networks where c scales as
c ∝ Nb, with 0 < b < 1. This regime of connectivity lies between sparse networks (b = 0) and diluted networks
(b = 1) [84–87].

5. Discussion and conclusions

Mean-field theories are formidable tools to study the macroscopic properties of spin models on networks.
The most well-studied family of mean-field theories are realized on fully-connected architectures, in which a
given spin interacts with all others. As a network becomes more densely connected, it is natural to expect that
local fluctuations in the network structure are gradually washed out, and the macroscopic properties of the
underlying spin model converge to those of a fully-connected system. In this work we have shown that this is
generally not the case. We have derived a novel class of exact mean-field equations that explicitly depend on the
degree distribution and that apply to the high-connectivity limit of heterogeneous networks. Fully-connected
mean-field theories, in contrast, are limited to homogeneous networks, for which the degree distribution is
peaked at its mean value.

Put differently, we have proven that the high-connectivity limit of spin models on networks is nonuniversal,
as it depends on the full degree distribution. On the other hand, the universality with respect to the randomness
in the coupling strengths is robust to degree fluctuations. In fact, the heterogeneous mean-field equations
only depend on the first two moments of the distribution of couplings. The nonuniversal behavior of the
heterogeneous mean-field theory is accompanied by the failure of the central limit theorem for the effective
fields, caused by large fluctuations in the number of summands in equation (1). Apart from a few exceptions
[83, 88, 89], the consequences of this interesting mechanism for the breakdown of the central limit theorem
to statistical physics remain largely unexplored. We have illustrated its crucial role for the equilibrium of spin
models, but one can envisage the far-reaching importance of this mechanism for a variety of problems on
networks, such as the nonequilibrium dynamics of spin models [90, 91], the storage capacity of neural networks
[14], and the stability of large dynamical systems [23].

We have presented several results that highlight the importance of degree fluctuations to the high-
connectivity limit of spin models, with particular emphasis on the mean-field theory of synchronization
and of Ising SGs. Although the heterogeneous mean-field equations are valid for any degree distribution,
most of the explicit results have been derived for a negative binomial degree distribution, which allows to
smoothly interpolate between homogeneous and heterogeneous networks by changing the variance of the
degree distribution.

Degree fluctuations have a conspicuous effect on the ferromagnetic phase. As the variance of the degree
distribution increases, the ferromagnetic phase gradually covers the whole phase diagram of the Kuramoto
model, suggesting that the oscillators synchronize at any coupling strength, as argued in several previous works
[27, 71–75]. However, we have shown that not only the critical coupling becomes arbitrarily small as the
network heterogeneity diverges, but also the magnetization in the synchronous phase. Therefore, our results of
section 4.1 show that instead of facilitating synchronization, degree fluctuations actually hamper the formation
of an ordered synchronous component, and ultimately inhibit the emergence of any coherent behavior when
the variance of the degrees is infinitely large.

Moreover, the magnetization of the Kuramoto model displays a cusp that separates the ferromagnetic phase
in two qualitatively distinct regions, each one characterized by a different impact of degree fluctuations on
the magnetization. Such non-analytic behavior is not exclusive of the magnetization, but it seems to be a
generic feature of the macroscopic behavior. Indeed, the effective field distribution of Ising SG models on
heterogeneous networks exhibits either a power-law or a logarithmic divergence at zero field, which contrasts
with the Gaussian effective fields of fully-connected models. This divergence reflects the substantial fraction
of spins with a vanishing local magnetization inside the ferromagnetic phase.

As another genuine feature of strong degree fluctuations in the ferromagnetic phase, we have found that the
shape of the single-site phase distribution of the Kuramoto model fluctuates from site to site, in sharp contrast
to fully-connected models, for which the functional form of the local phase distribution is fixed. These results
follow from the mean and the variance of the single-site phase distribution. In fact, the path-integral formalism
developed in this paper gives access to all moments of the marginal distribution of single-site configurations.
This is particularly relevant in the case of vector spins, for which the functional distribution of local marginals is
not parametrized in terms of a finite number of fields. Thus, when compared to other mean-field techniques for
coupled oscillators [27], the path-integral formalism has the technical advantage of allowing the calculation of
dynamical properties of vector spin models at the level of individual nodes. It would be interesting to investigate
the individual phase fluctuations for three-dimensional spins [38], a problem that can give insights into the
synchronous dynamics of swarms and flocks in three dimensions.
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Table 1. Universal properties of spin models in the three different regimes of
connectivity (see the main text) with respect to the degree distribution pk and to the
distribution pJ of coupling strengths. The third row classifies the distribution of effective
fields, equation (1), in each regime.

Sparse Extremely diluted Diluted

pk Nonuniversal Nonuniversal Universal
pJ Nonuniversal Universal Universal
Effective fields Non-Gaussian Non-Gaussian Gaussian

We have studied the interplay between random coupling strengths and degree fluctuations in Ising spin
models. Figure 6 generalizes the RS phase diagram of the fully-connected Sherrington–Kirkpatrick model
[41] to heterogeneous networks. In this case, the heterogeneous mean-field theory is not exact on the entire
phase diagram, but it becomes unstable at temperatures below the AT line [50]. In spite of that, the results
of figure 6 allow to conclude that degree fluctuations promote the ferromagnetic phase in detriment of the
SG phase. In addition, the low-temperature sector of the AT line exhibits a non-monotonic behavior as the
degree fluctuations increase. In view of this distinctive behavior and given that the RS breaking theory on
sparse networks is a notoriously difficult problem [44, 45, 92], it would be very interesting to employ the RS
breaking machinery [93, 94] and derive the exact version of the heterogeneous mean-field theory. This would
give an alternative, simpler route to exploit how the complex picture describing the SG phase [7] is modified
by the presence of network heterogeneities.

The heterogeneous mean-field theory has been derived by taking the high-connectivity limit c →∞ after
the thermodynamic limit N →∞, where c is the average degree and N is the total number of spins. An
implicit assumption in this procedure is that the local tree-like structure of the network is preserved and
hence the distributional cavity equations remain valid. This can be only achieved if the density of links c/N
approaches zero for c →∞, which suggests that the heterogeneous mean-field theory should apply when
c ∝ Nb (0 < b < 1). We have confirmed this conjecture by means of numerical simulations. The connectivity
regime c ∝ Nb (0 < b < 1) lies between sparse (c = O(1)) and diluted (c = O(N)) networks [84–87]. Even
though this intermediate connectivity range, called the extremely diluted regime, has been known for a long
time in the field of neural networks [95, 96], it has been studied only in the case of homogeneous networks,
for which degree fluctuations are unimportant. Here we have examined the extremely diluted regime of het-
erogeneous networks and unveiled its nonuniversal features. In the diluted regime, degree fluctuations are of
O(N0) and the macroscopic behavior of spin models is captured by the fully-connected mean-field equations.
The universality properties of spin models in the three different regimes of connectivity are summarized in
table 1.

On the whole, our findings demonstrate that network heterogeneities, here expressed by degree fluctua-
tions, play a surprisingly important role in the high-connectivity limit of spin models. Other types of topolog-
ical features, such as modular structure and the presence of loops [97–99], should as well play a fundamental
role in the high-connectivity behavior. While spin models on sparse networks pose many technical challenges
[44, 45, 92], the mean-field theory of fully-connected models has a simpler formal structure [7], at the cost
of completely neglecting the network structure. Our work puts forward a novel family of mean-field theories
that explicitly takes into consideration the network structure and, at the same time, are simple enough that
they can be thoroughly analyzed. This framework opens the door to the development of similar mean-field
theories for other complex systems.
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Appendix A. Stability of the RS theory

In this appendix we explain in more detail how to derive equation (77), which bounds the region in the phase
diagram where the RS mean-field equations are unstable. Although we limit ourselves to Ising spin models
(D = 1), the approach discussed here can be generalized to spins with arbitrary dimension D.

The key quantity, defined by equation (75), is the joint distribution R12(�p1,�p2) of two solutions {p(i)
j,1(σj)}

and {p(i)
j,2(σj)} of equation (11). Since both solutions refer to the same realization of the random network, each

solution describes the local marginals on a copy of the original system. The RS theory is stable if equation (11)
admits a single solution, which implies that R12(�p1,�p2) must be given by equation (76).

The first task is to compute R12(�p1,�p2) in the high-connectivity limit. The steps to perform this calculation
are completely analogous to those discussed in section 4, with the main difference that the two copies of the
system become correlated after taking the ensemble average. The resulting expression for R12(�p1,�p2) reads

R12(�p1,�p2) =

∫ ∞

0
dg g ν(g)

∫ ∞

−∞
D�u

∏
σ∈{−1,1}

δ

{
p1(σ) − eβσ(gK0M1+K1

√
gu1)

2 cosh
[
β
(
gK0M1 + K1

√
gu1

)]
}

× δ

{
p2(σ) − eβσ(gK0M2+K1

√
gu2)

2 cosh
[
β
(
gK0M2 + K1

√
gu2

)]
}

, (A.1)

where D�u is the Gaussian bivariate measure of �u = (u1 u2)T

D�u =
d u1 d u2

2π
√

detA
exp

(
−1

2
�u TA−1�u

)
, (A.2)

with A denoting the 2 × 2 matrix

A =

(
Q1 ρ

ρ Q2

)
. (A.3)

The order-parameters M1, M2, Q1, Q2, and ρ are determined from R12(�p1,�p2) as follows

M1 =

∫
d�p1 d�p2 R12(�p1,�p2)〈σ〉�p1

, (A.4)

M2 =

∫
d�p1 d�p2 R12(�p1,�p2)〈σ〉�p2

, (A.5)

Q1 =

∫
d�p1 d�p2R12(�p1,�p2)〈σ〉2

�p1
, (A.6)

Q2 =

∫
d�p1 d�p2 R12(�p1,�p2)〈σ〉2

�p2
, (A.7)

ρ =

∫
d�p1 d�p2 R12(�p1,�p2)〈σ〉�p1

〈σ〉�p2
, (A.8)

with the local average 〈σ〉�p defined by equation (22). The order-parameters M and Q are duplicated for the
simple reason that we are dealing with two replicas of the original system. The quantity ρ measures the correla-
tion between the local magnetizations of each replica. If the RS solution is stable, then R12(�p1,�p2) simplifies to
the diagonal form of equation (76) and the order-parameters fulfill M1 = M2 = M, Q1 = Q2 = Q, and ρ = Q,
where M and Q follow from the solutions of equations (65) and (66).

The correlation order-parameter ρ fulfills the self-consistent equation

ρ =

∫ ∞

0
d g g ν(g)

∫ ∞

−∞
D�u tanh

[
β
(
gK0M1 + K1

√
gu1

)]
× tanh

[
β
(
gK0M2 + K1

√
gu2

)]
, (A.9)

derived by substituting equation (A.1) in equation (A.8). In order to analyze the stability of equation (A.9)
around the RS solution, it is convenient to make an orthogonal change of integration variables. Let T be the
2 × 2 orthogonal matrix that diagonalizes A

T
−1AT =

(
λ+ 0
0 λ−

)
. (A.10)
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The matrix T and the eigenvalues of A have, respectively, the explicit forms

T =

(
t11 t12

t21 t22

)
=

⎛
⎜⎝

2ρ

a+

2ρ

a−
Q2 − Q1 +Δ

a+

Q2 − Q1 −Δ

a−

⎞
⎟⎠ , (A.11)

and

λ± =
1

2
(Q1 + Q2 ±Δ) , (A.12)

where we have defined

a± =

√
4ρ2 + (Q2 − Q1 ±Δ)2,

Δ =

√
4ρ2 + (Q1 − Q2)2. (A.13)

The dependency of some quantities with respect to the order-parameters has been omitted in order to simplify
the notation. By making the orthogonal change of integration variables �u = T�z, with �z = (z1 z2)T, we can
rewrite equation (A.9) as

ρ =

∫ ∞

0
d g g ν(g)

∫ ∞

−∞
dz1 dz2 Pg(z1) Pg(z2) tanh

{
β
[

gK0M1 + K1
√

g
(

t11

√
λ+z1 + t12

√
λ−z2

)]}

× tanh
{
β
[

gK0M2 + K1
√

g
(

t21

√
λ+z1 + t22

√
λ−z2

)]}
, (A.14)

after rescaling the components of�z as z1 →
√
λ+z1 and z2 →

√
λ−z2. The normal probability density Pg(z) is

defined by equation (62).
Equation (A.14) is the proper starting point to analyze the stability of the RS theory. The fixed-point solu-

tions describing the macroscopic states of the system composed of two replicas are given in terms of five
order-parameters: M1, M2, Q1, Q2, and ρ. In order to probe the stability of the RS solution, it suffices to con-
sider fluctuations solely in the direction of ρ. Thus, by setting M1 = M2 = M, Q1 = Q2 = Q, and ρ = Q + δρ

in equation (A.14), and then expanding its right-hand side up to O(δρ), we obtain the following equation for
the perturbation δρ

δρ = δρ

{
β2K2

1

∫ ∞

0
dg ν(g) g2

∫ ∞

−∞
dz Pg(z)sech4

[
β
(

gK0M + K1

√
gQz
)]}

. (A.15)

If the coefficient of δρ in the above equation is larger than one, then the RS fixed-point solution is unstable,
since the iteration of the above linear equation leads to the growth of the perturbation δρ. After a simple change
of integration variables, this condition becomes identical to equation (77).

Appendix B. Simulation details

In this appendix we describe the details behind the numerical simulations of Ising spin models (D = 1) and of
the Kuramoto model (D = 2). The networks employed in the simulations are constructed following the stan-
dard configuration model: from a negative binomial degree distribution p(b)

k with a given α (see equation (7)),
we draw the degrees k1, . . . , kN independently, and we assign ki stubs of edges to each node i. We then choose
two stubs uniformly at random and join them to form an edge. This process is repeated until all remaining stub
pairs are joined. Multiple-edges and self-loops are erased after the network is formed. The impact of the latter
step on the mean-field calculations is negligible, since the density of such edges, as well as minor discrepancies
from the original sequence k1, . . . , kN, tends to zero as N →∞ [1].

The pairwise coupling strengths {Jij}i,j=1,...,N between spins fulfill the symmetry condition Jij = Jji∀ i, j. For
ferromagnetic spin models, we set the coupling strengths to the constant value Jij = K0/c. For Ising SG models,
the coupling strengths are independently and identically distributed random variables drawn from a Gaussian
distribution with mean K0/c and standard deviation K1/

√
c.

B.1. Ising spin models
The global configuration of Ising spin models at time t is defined by σ1(t), . . . ,σN(t), where σi(t) ∈ {−1, 1}.
After generating a network from the configuration model, the spins are initialized in the ordered state
σi(t = 0) = 1 ∀ i. The subsequent states are updated with probability [100]

Prob[σi(t + 1)] =
1

2
{1 + σi(t + 1) tanh [βhi(t)]} , (B.1)
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where β = 1/T is the inverse temperature, and

hi(t) =
∑
j∈∂i

Jijσj(t), (B.2)

is the local field at node i at time t. The symbol ∂i represents the set of nodes adjacent to node i. The global
spin configuration σ1(t), . . . ,σN(t) evolves in time according to the probability given by equation (B.1). After
the stationary state is reached, the observables are averaged over a sufficiently long time span.

B.2. Kuramoto model
For D = 2, the spins are two-dimensional vectors with unit norm that rotate on a plane. As such, we can
simulate the spin system as a set of stochastic Kuramoto oscillators [26, 28], in which the state of a node i at
time t is fully specified by the phase φi(t) ∈ (−π,π]. The stochastic dynamics of the model is dictated by the
following set of equations [27]

dφi

dt
= ξi(t) +

N∑
j∈∂i

Jij sin[φj(t) − φi(t)] (i = 1, . . . , N), (B.3)

where ξi(t) is a Gaussian white noise that satisfies

〈ξi(t)〉 = 0, (B.4)〈
ξi(t)ξj(t′)

〉
= 2Tδijδ(t − t′), (B.5)

with T being the temperature. For all numerical results shown in this paper, we numerically integrate the
stochastic equation (B.3) with the Heun’s method with time step dt = 0.01. The complex magnetization mc(t)
is calculated as the average of the phasors that rotate in the complex unit circle, that is

mc(t) = R(t)eiψ(t) =
1

N

N∑
j=1

eiφj(t), (B.6)

where 0 � R(t) � 1 measures the level of phase-coherence in the system, and ψ(t) is the average phase.
In this context, the absolute value |m(t)| of the vector magnetization m(t) in section 4.1 is obtained as
|m(t)| = R(t). In particular, the long-time behavior of the magnetization |m(t)| in figure 2(b) is obtained by
averaging equation (B.6) over the interval t ∈ [1000, 2000].
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