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In this paper we consider nonlocal fractional problems in thin domains. Given open
bounded subsets U C R™ and V C R™, we show that the solution u. to

Aduc(z,y) + Auc(z,y) = f(we™'y)  inUxeV

with ue(z,y) =0 if ¢ € U and y € €V, verifies that @.(z,y) = ues(x,ey) — uo
strongly in the natural fractional Sobolev space associated to this problem. We
also identify the limit problem that is satisfied by up and estimate the rate of
convergence in the uniform norm. Here Aju and A;u are the fractional Laplacian
in the 1st variable z (with a Dirichlet condition, u(z) = 0 if x ¢ U) and in the
2nd variable y (with a Neumann condition, integrating only inside V), respectively,

that is,
A, y) = Mw duw
e T —w]

and

¢ _ [ w@y) —u(z,2)
Apu(z,y) = /V Wdz.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper our main goal is to show that there is a limit problem for fractional type elliptic problems

in thin domains, that is, when the thickness of the domain in one direction goes to zero.

Given two smooth open bounded domains U C R™ and V' C R™, n and m > 1, real numbers s,t € (0,1)
and f € L?(U x V), we consider the problem
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Asu(x,y) + Ayu(z,y) = f(z,y) inUxV (1.1)
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with a Dirichlet condition in (R"\U) x V, u(x,y) = 0 for (z,y) € (R*\U) x V. Here Aju and Alu are the
fractional Laplacian w.r.t. in the 1st variable z and the 2nd variable y, respectively, namely

Alu(:n,y) _ /n u(a:,y) — u(w,y) dw

‘ZL' _ w‘n—‘rQS

and

A;u(x,y) :/ u@,y) _;fJ(jt’ 2) dz.
v ly—2|
In order to simplify the notation we have dropped the usual normalization constant that is usually in front
of the integrals. Also, we note that we have a Neumann boundary condition on U x (R™ \ V) since we are
integrating only in V.

The purpose of this note is first to prove the existence and uniqueness of a weak solution to (1.1). Then
we want to perturb the problem by replacing V by €V, e > 0, and study the asymptotic behaviour of the
corresponding solution u. as € — 0.

We will work in the space HJ'(R™ x V) of the functions u € L2(R™ x V) such that u(z,y) = 0 if x ¢ U
and y € V, and such that

2
[ul? ;:/ u(@,y) = ulw,y)| dxdydw
R7xR™ XV

u(z,y) — u(z, 2)|”
+ e dadydz
R XV XV ly — 2|

| - ||, we have that HJ' := HJ'(R™ x V) is a Hilbert space.
Now we are ready to state the main result of this note:

is finite. Indeed, equipped with the norm

Theorem 1.1. For any f € L>(U x V), there exists a unique weak solution v € HS" to (1.1). This weak
solution is characterized as being the unique minimizer of the functional

S n 1
ve HY R x V) = {0l = (£.0),

where (-,-) denotes the duality pairing.
Moreover, if f € L*(U x V) with a > ”;m and v = min{s,t}, then there erists a constant K > 0
(depending only on n, m, r, and a) such that the solution u satisfies

lull Loomnxvy < K| fllLa@mnxvy-
For € > 0 denote by u. the solution to the thin domain problem
Asuc(2,y) + Abuc(z,y) = fe(z,y) inU x eV (1.3)
with uc(z,y) =0 if x € U and y € eV, where
fe(a,y) = fla,e™ty)
for some fived f € L?>(U x V). Then, the rescaled function
ie(x,y) = uc(z,ey) € Hy'(R" x V)

verifies
e — Ug, strongly in H'(R™ x V), (1.4)

Please cite this article as: M.C. Pereira, J.D. Rossi and N. Saintier, Fractional problems in thin domains, Nonlinear Analysis (2019),
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where ug(z,y) depends only on the first variable x, that is, uo(x,y) = ug(z) for all (z,y) € R™ x V.

Furthermore, ug s the solution to the limit problem
1 .
Aguola) = - [ fwdy v, (15)
ViJv

with ug =0 in R\ U.
In addition, if

sup ||f(z, )peqv) + sup [[ALf (@, .)||Laqv) < 00
reRM reRM

for some a > max{%;, 1}, then we have a uniform convergence result with an upper bound of order 2t, that

is,

@ (z,y) — uo(x)HLOO(UXV) < Ce. (1.6)

We end this introduction with a brief description of related references. It is not difficult to see that thin
structures occur naturally in many applications. For example, in oceanic models, one is dealing with fluid
regions which are thin compared to the horizontal length scales. Other examples can include lubrication,
nanotechnology, blood circulation, material engineering, meteorology, etc. In fact, many techniques and
methods have been developed in order to understand the effect of the geometry and thickness of the domain
on the solutions of such singular problems. From pioneering works to recent ones we mention [1-8] concerned
with elliptic and parabolic equations, as well as [9-15] where the authors considered Stokes and Navier—
Stokes equations from fluid mechanics. Concerning nonlocal equations in thin domains we mention the
recent paper [16] where equations with smooth and compactly supported kernels are considered. For general
references on fractional problems we refer to [17]. For other nonlocal models, see [18-22].

Finally, we want to mention that, when we look at the usual fractional Laplacian

ASU({L‘ y) :/ u(:v,y) _u(sz) dz dw
’ R XR™ |(l‘,y)—(z,w l ‘

and we localize it in €V (to deal with a thin domain) taking

Auey) = [ u@y) —ulEnw) g,
R™xeV |(£U,y) - (Z7w)|

our results cannot be extended to this model. In fact, when one changes variables and considers the resulting
kernel, one finds that it goes to zero as ¢ — 0 (this is due to the fact that we take V' bounded and therefore
the effect of the tails of the fractional Laplacian in y is suppressed when considering the previous operator).
We will comment more on this fact in the final section. Also remark that the usual local Laplacian Au(x,y)
has the property that

Au(z,y) = Azu(z,y) + Ayu(z,y)

even if we consider it in U x €V. In our problem (1.1) this property also holds, but it does not hold when
we deal with the usual fractional Laplacian that we previously described.

The paper is organized as follows: in Section 2 we prove existence and uniqueness of weak solutions to our
nonlocal problem; in Section 3 we deal with the problem in thin domains and compute the limit as ¢ — 0; in
Section 4 we show that when f is smooth we have a corrector and hence we can show uniform convergence
and obtain a bound for the rate of order 2¢; finally, in Section 5 we collect some possible extensions of our
results.

Please cite this article as: M.C. Pereira, J.D.Rossi and N. Saintier, Fractional problems in thin domains, Nonlinear Analysis (2019),
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2. Existence and uniqueness

Notice that a reasonable weak formulation of (1.1) is the following one: u € H " is a weak solution if for
every ¢ € Hy' it holds

/RHXV f(,y)d(x,y) dvdy
:/ qi)(x,y)(/ u(z,y) — n—(i-23 )dw)d;pdy

R™ XV no|r—w)

u(z,y) —u(x, z)
. / o(.9) (/V P dz)dady (2.1)
/ [u(z,y) — u(w,y)][¢(z,y) — ¢(w,y)] dzdwdy
R xR xV

‘37 - w‘n+2s

YR BT CUVETES P
R"xVxV

+ —
2 |y _ Z|m+2t

DN | =

In view of this expression, it is natural to introduce, as we did in the introduction, the space Hg*(R™ x V)
of the functions u € L?(R™ x V) such that u(z,y) =0 if x ¢ U and y € V, and such that

2
”uH2 :—/ [, y) = ulw, y)| dxdydw
R xR xV

‘x_w‘n—i—Qs
2
+/ U(Ty) ‘Z(fQ,tZ)I drdydz (2.2)
R XV xV y

:/V[ (e, y)]irs gy dy+/ [u(z, )5 vy dz < +o0.

Recall that, given any open subset 2 C RV, the expression

lw(§) )
[w] HS(Q) // N+25 T Nras d8dn

is the so-called Gagliardo semi-norm of w. Also, equipped with the norm || - ||, it is clear that the space
Hy'(R™ x V) sets a Hilbert space.

It follows as an immediate consequence of Lax—Milgram’s theorem that when f belongs to the dual space
of HY', Eq. (1.1) has a unique weak solution.

Proposition 2.1.  For any f € (HJ") there exists a unique weak solution u € HY' to (1.1). This weak
solution is the unique minimizer of the functional

v e Hy' R % V) = 1ol = (f,0).
We now verify that we can take for instance f € L2(U x V).
Proposition 2.2. Letting r = min{s, t}, there holds
Hy' — H" — H, (2.3)

where H{ is the subspace of the usual fractional space H" (R™ x V') composed of the functions w € H"(R" x V)
such that u(z,y) =0 fory € V and x ¢ U.

Please cite this article as: M.C. Pereira, J.D. Rossi and N. Saintier, Fractional problems in thin domains, Nonlinear Analysis (2019),
https://doi.org/10.1016/j.na.2019.02.024.
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Proof. Recall that H{ is equipped with the norm

lullry = llull3 + [ulf

2
= |lull3 + / / |u 7Y) u(u;fr)n|+2r dr dy dw dz.
roxv JrRexv [(z,y) — (w, 2)]

The first embedding follows from the two embeddings H® < H", H' < H" and the last line in (2.2).
Now, we prove the second embedding, H;" < H{;. To this end we first write

u(z,y) — u(w, 2)* = |u(z,y) — ul(z,2) + u(z, 2) — u(w,2)|
< 2Ju(z,y) — u(z, z)|2 + 2u(z, z) — u(w, z)|2

and then we obtain

2
[WFr = / / \u y) = (@i’f%tr% dx dy dw dz
Rexv JRexv |(2,y) — (w, 2)|

Iu z,y) — u(z, 2)|’
e dx dw dy dz
rrxv JRnxv (|Jz —wl 4y —2)) T

2
+2/ / [u(z, ) = ulw, Zr)l|+m+2r dx dy dw dz
v v (Jo —wl® + ly — 21

IA

=: 21 + 21,.

Letting a = |y — z|, we bound [; writing first that
lu(az, y) — u(az, 2)|* dy dz
Iy =/ / S ngmiar 40 dw | ————
VxV \JRexR™ [1 4+ |z —w|"]” 2 ly — 2|
= / </ lu(az,y) — u(azx, z)|2
VXV n
dw dy dz
X n+m-+2r dx T _m—n+2r-
</Rn [+ |z — w5 ) > ly — 2|

dw
<C
/ S
Thus changing variables in x we obtain

dy dz
n<c | ([ (e -t 2P )
vxv \Jrn ly — z|

=C . [u(z, ')]2H'r(v) dx.

The integral in w is bounded,

We tackle I5 in a similar way. [
We need a result like the following one.
Proposition 2.3. The embedding
HF(R™ x V) < L*(R" x V)

s continuous and compact.

Please cite this article as: M.C. Pereira, J.D.Rossi and N. Saintier, Fractional problems in thin domains, Nonlinear Analysis (2019),
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Proof. Since U and V are smooth bounded domains, the result follows from [17, Theorem 6.7 and Corollary
7.2, O

As a consequence of this result and Proposition 2.2 we get
Corollary 2.1. The embedding
HSYR™ x V) — L2(R™ x V)

18 continuous and compact.
We thus obtain from Proposition 2.1 the existence and uniqueness part of Theorem 1.1:

Proposition 2.4. For any f € L*>(U x V) there exists a unique weak solution u € Hy* to (1.1). This weak
solution is the unique minimizer of the functional

S n 1
v e Hy'(R" x V) = Z[[v]]* = (f,v).

Now let us introduce a condition on f in order to guarantee that the solutions to (1.1) belong to L>. We
will need this result in Section 4.

Proposition 2.5. Letu € H'(R" x V) be a weak solution of (1.1) for some f € L*(U x V) with a > otm
where r = min{s, t}.
Then u € L>®(R™ x V') with
[ullLoe vy < K| fllLa@wxv) (2.4)

where K > 0 depends only on n, m, r, and a.

Proof. Let Ay = {(z,y) € R" x V : w(z,y) > k} for k € N. According to Proposition 2.2, we have
HY'(Ag) < Hj(Ag) where 7 = min{s, t}. By Sobolev embeddings (see for instance [17, Theorem 6.7 and
Remark 6.8]), we deduce that

HS t(A ﬁQ(n-‘rin)
k) — Lntm=2r (Ay).

Then
[ (wes) = k) dody = [ (ulary) - b dody
A Ay
< om0 = R) ] zmem (2.5)

L n+m+2r (Ak) L n+m—2r (Ak)
1 T
< O A>T || (u — k)4 |-

Here ¢4 denote the positive and negative part of a function ¢ defined as ¢4 = max {¢,0} and ¢_ =
max {—¢,0}. Notice that ¢ = ¢, — ¢_.
To estimate ||(u — k)|, we take ¢ = (u — k)4 in the weak formulation (2.1). We obtain

/Rnxvf(wy u(x y) k) dr dy =
/ / )i—(U(w,y)—k)+(U(w,y)—k)dw dz dy

2 |x _ w|n+2$
— —k —k
_|_/ / I’,y + (u(m737ib)+2f )+(U(1’,Z> )dZ dr dy
R xV JV ly — 2"

Please cite this article as: M.C. Pereira, J.D. Rossi and N. Saintier, Fractional problems in thin domains, Nonlinear Analysis (2019),
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Notice that

u(@,y) — k)4 (u(w,y) — k
= (u(z, y) = k)¢ (u(w,y) = k) — (u(@,y) = k)4 (u(w,y) — k)
< (u(,y) = k)4 (u(w, y) — k),

We thus get
f(@,y)( (w y) k) dz dy
R xV i i
nxV JRr Ia: w\
—k —k
nxV Iy z| ,
1 k k
_ _/ (u(z,y) — k)¢ (n+(1212 oY) = k)4 dy
2 Jrnxv xRre |z — w] )
12 R XV xV Iy—zl
= Sl =K
Hence

lw=RlP <2 [ faa)uan) = k), dody.

We now take a,b € (1,00) such that
1 1 n+4+m-—2r
-t -t =1,
a b 2(n+m)

and apply Hélder inequality to get

1w = &) 1% < 20l fllze@nxv) I poca 1w = B)+ 1l 20 0m)
Ln¥m—2r (R xV)

< CLA ) £l Loy | (= k) 1 |-
We thus conclude that
b
[(u — k)| < CLAY 1L f ]| arn vy

Plugging this estimate in (2.5) yields
1,1, r
[ () =) dady < CLAEF T o
k

We now choose a,b € (1,400) in such a way that

1 1 r
-+ -+

> 1.
2 b n+m

(2.7)

Since a,b must verify (2.6), this is possible if we assume a > 2™ Tt then follows from (2.7) and [23, Chap.

2, Lemma 5.1] that u € L>®(R™ x V') with

1+5

[ll oo (mn x vy < [ull 21 @nxv)

where

1 1 r
— C a s ]. + — - + .
Y Il Lawxv) e=styt o Tm

(2.8)

Please cite this article as: M.C. Pereira, J.D.Rossi and N. Saintier, Fractional problems in thin domains, Nonlinear Analysis (2019),
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Moreover notice that since u is a weak solution of (1.1),

[Jul|* < 2(f 1 zaw xvylull ot g vy
< Cllfllze@wxvyllull-

In the last equality we used the embeddings
HOYR™ x V) < HE(R™ x V) < LY (U x V)

which hold since o’ < 2(ntm) Yy deduce that

n+m—2r
HUHLl(RnxV) < lull < CHf”La(vay

Combining with (2.8), we obtain
+ g
||UHL°°(R”><V) < CHfHLa(lJXv)v

where the constant C depends only on b, r, n and m. We deduce in particular that the linear operator
L: f — wis continuous from L*(U x V') into L>(R™ x V). This proves (2.4). O

Remark 2.1. Notice that Proposition 2.5 also gives us boundedness results to the solutions for the usual
fractional Laplacian operator: the Dirichlet problem

[ AR e = ), vev

u(z) =0 xzeR"\U,

and the regional fractional Laplacian (Neumann condltlons)

/ v z|m+2t — iy, yev

.A u(y) dy = 0.

Indeed, such solutions are unique and satisfy the nonlocal Eq. (1.1) in a trivial way.

3. Thin domains

We now perturb V' by replacing it by €V, € > 0. Given some f € L?(U x V), there exists, according to
the previous Proposition 2.4, a unique function u, € H(‘;’t(]R” x V') solution of

Asucle,y) + Auc(,y) = Flwy) U xeV (3.1)
with uc(z,y) =0if ¢ ¢ U and y € €V, and where
fo(z,y) = flz,eMy).

Let us study the asymptotic behaviour of u. as € — 0 proving the second part of Theorem 1.1. We first
rescale u. considering the function @, € Hj"*(R™ x V) defined as

Ue(z,y) = uc(x,ey). (3.2)

Note that the whole family @. belongs to the same space Hy"'(R™ x V) (that is independent of £ > 0).
Using this approach we obtain the limit problem for (3.1).

Please cite this article as: M.C. Pereira, J.D. Rossi and N. Saintier, Fractional problems in thin domains, Nonlinear Analysis (2019),
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M.C. Pereira, J.D. Rossi and N. Saintier / Nonlinear Analysis zex (zzez) zxx 9

Theorem 3.1. There holds
e — ug strongly in HY'(R™ x V), (3.3)

where ug depends only on variable x, belongs to the usual fractional Sobolev space H*(R™) and is the solution
to

s 1 .
A;Uo(.f) = W_| [/ f(l’,y)dy m U7

(3.4)
Proof. A change of variable in the weak formulation of (3.1) shows that @. defined in (3.2) satisfies
1 / ie(r.9) — G (@I 9) = 6] g, g,
2 Jrnxrnxv |z — wl
1 ~£—: 9 B ~5 ) ) _ ?
RRY PR LTS P 5
26 Jrnxvxv ly — 2|

- / F (@, y)élz, y) dedy
R xV

for any ¢ € HY'(R" x V). Thus 4. € HY'(R" x V) is the weak solution to
Adiic(x,y) + e H Abic(z,y) = flz,y)  nUxV.

It follows in particular that . is the unique minimum point of the convex functional

1

Jelw) = Zllull? = (£ )

defined for any u € Hy*(R™ x V) with

1
Jul = [ [l dut 7 [t i de
Note that || - || < | -||c for all € € (0,1).
Taking ¢ = 4. in (3.5), we obtain
112 < 2011l L2 g sevy 1l L2 vy -
Hence, using Corollary 2.1, we get that
|2 < Clltell 2 vy < Cltell.

It follows that for any e € (0, 1),
||| < [ae|- < C

for some C' > 0 independent of . As a consequence there exists @ € Hg’t(R” x V') such that, up to a
subsequence, @, — @ weakly in H; ’t(R2 x V) and also strongly in L?(R™ x V) in view of Proposition 2.3,
that is,

fle — U strongly in L*(R™ x V') and weakly in HJ'(R™ x V). (3.6)

We obtain in particular that
|lug|| < liminf ||a.]|. (3.7)
e—0

Let us check that ug does not depend on y. Notice that

HYNR™ x V) = LAR™, HY(V)) N L2(V, H5(R™)).

Please cite this article as: M.C. Pereira, J.D.Rossi and N. Saintier, Fractional problems in thin domains, Nonlinear Analysis (2019),
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In particular
(LAR", H'(V))) C (Hg"(R" x V))'.

Hence, it follows that

Ue — Ug weakly in L*(R"™, H'(V)). (3.8)
In the same way,

e — Uo weakly in L*(V, H3(R™)). (3.9)
So,

HUOHLZ(Rn,Ht(V)) < 1i1€n_>i(r)1f H@eHL?(Rn.Ht(V))-

Since . — ug in L?(R™ x V), we deduce that

e—0

/Rn [uo(z, -)]iﬁ(v) dzx < lim inf /R” [as(x,-)]iﬁ(v) dx.
On the other hand, it follows from ||a.||. < C, 0 < e < 1, that
. [ic (2, ) ey da < O™,
and then we get

[ ol My d =0,

Therefore, the limit function ug does not depend on y.
Now, we take a test function ¢(z) independent of y in (3.5). We get

1 [ﬂe(xv Z/) B as(w7 y)][¢($) B d)(w)]
/]R"XIR”XV

2 n+2s

dr dw dy
|z — w

(3.10)
[ f@wola) d dy
R?xV

Thus, passing to the limit in (3.10) as € — 0 using (3.9) and recalling that uy does not depend on y, we

4] [uo(z) — uo(w)][p(x) — P(w)]

n+2s

arrive at

dxr dw

2 Jrnxrn |z — w]

(3.11)
[t dedy
R xV

Hence ug € H§(R™) is a weak solution to

1 .
Azuo(x) = 7 /V faydy U,

with
ug =0 in R"\ U,
as we wanted to show.
Finally, let us prove the strong convergence in H ’t(]R” x V') of 1. to ug. Since we already have the weak

convergence, it suffices to prove the convergence of the norms. Notice that ||ug|* = |V|[uo]%s because ug
does not depend on y. In view of (3.7), we have

[V |[uol3s = |luo||* < liminf |4 ||* < limsup || ||* < limsup ||a.||%.
e—0 e—0 e—0

Please cite this article as: M.C. Pereira, J.D. Rossi and N. Saintier, Fractional problems in thin domains, Nonlinear Analysis (2019),
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Now let us take ¢ = 1. in the weak formulation (3.5) and we obtain

lim sup [|. |2 = lim2/ flz,y)i-(z,y) dz dy
e—0 =0 Jrnxy

=2 faau) dody

where we used the strong convergence of @, — ug in L?(R" x V). Eventually taking ¢ = ug in the weak
formulation (3.11) shows that the r.h.s. is equal to |V|[ug]%s. We thus deduce that

[VI[uolfzs = luol® < lim inf [lac||* < fimn sup e = [V [uo]Fys-
e—

We conclude that all the inequalities are in fact equalities. The claim follows. [

4. Correctors

In this section we need that fractional Laplacians in different variables commute, that is,
t s s t
A, (AZD)(z,y) = AL(A,D)(x, )
// z y ') — b, y) +b(a',y") da'dy.

I/|n+2s |y _ y/|m+2t

Note that here, to simplify the notation, we will neglect the integration domain.
Proposition 4.1. If Alb(x,y) = g(z,y) weakly, then AL(A3Db)(x,y) = ASg(x,y) weakly.

Proof. Using a density argument we can assume that all the involved functions are smooth. For any ¢
smooth, we have for any x that

[ (i) = S5 ))60) = 60D g,

’y _ y/’m+2t

i {/ ) W [y
/( // )~ YO0 o),

// (&, 9) = b, )(O) — 6 dy,> !
|z

|y y |m+2t - $,|n+25

= 2/ (/g(w,y)é(y) dy—/g(w’,y)sb(y) dy) #
~2 [ ol / = ,‘ﬁy) du’ dy

—2/¢> 29(z,y) dy.

Then, we get

1 [ (A3b(z,y) — Ab(z, ¥)(o(y) —0(¥) , ./ _ s ol
—// [ dydy —/<z5( )ALg(x,y) dy

for any point x and smooth function ¢, concluding the proof. [J
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We will also use a maximum principle.
Lemma 4.1. Letu € HY'(R* x V), u <0 in (R™\U) x V, be a weak solution to
A;u+AZu§O in R" x V.
Thenu <0 inR"x V.

Proof. The proof is the same as in [24, Lemma 4.6]. We include a brief sketch for completeness.
Since uy € Hy'(R™ x V), uy > 0, we can use it as a test-function:

02/ (ulay) = e ) e (29) e a0)) g g g,
R xR xV |x_$/|

+/ (u(ay) = ule o (e.9) = s @) g g g
VXV xR" ly — v/l

Both integrals are non-negative. Indeed, let us show that for the first term. Writing « = v, — u_ and using
that uy (x,y)u_(x,y) = 0 for any (x,y), the numerator of the integrand of the first integral verifies

(u(z,y) —u(@’,y))(ut(z,y) —uy(2',y))
= (ug(z,y) —usp(2',9))* + u_(z,y)us(2’,y) + u_(2', y)u(a’,y)
> (ug(z,y) —ugp (2, 9))>

We thus obtain

. / 2
R xXR" xV |l' —33/|

(U+($7y) _ U+(.fl),y/))2
+/V><V><R" ‘y_y/‘m+2t - dy dy, ="

It thus follows from the first integral that for any y € V, the function u, (-, y) is constant. Since u4 = 0 in
(R™\U) x V, we obtain that uy, =0. O

Now we are ready to prove the last part of Theorem 1.1. Recall that for each ¢ > 0 we consider the

problem
u=0 in (R*"\U) x V. '
If we change variables as we did in the previous section in (4.1) we get the following problem
s 1 t _ :
Amu($>y) + gAyU(ZC,y) - f(x7y) nUxV, (42)

u=0 in (R*"\U) x V.
For any x € U consider
1
0(x) = —/ fz,y) dy.
Vi Jy
Since f € L2(U x V), we have that § € L2(U) and so, there exists ug € Hg(R") solution to

Alug(z) =0(x) inU,
up =0 in R™\ U.

Moreover, we have the following result.
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Proposition 4.2. For any x € U, there exists a unique weak solution b(x,-) € H (V) to

7
77 [ blz,y) dy =0.
Vi Jy

Moreover, if f satisfies
Sup 1f (@, )Laqvy < o0 (4.3)

with a > max{g;,1}, then b € L>(U x V') with
[bll Lo (xvy < C

where C' > 0 depends only on V, r, t.
In addition, if

sup [|ALf(z,-)||pavy < o0 for some a > max {T, 1}, (4.4)
TrER™ v 2t

then A%b € L°(R™ x V).

Proof. Note that such a function b is well defined since we have
1
_/ [f(z,y) = 0(z)] dy = 0.
VIJv

Moreover the existence of b(z,-) follows by direct minimization of the associated functional using the
Poincaré inequality [u] gty > C|lull 12 which holds for any w € H*(V) such that [;, u = 0.
In view of Proposition 2.5 and Remark 2.1, we have for any x € U that

[6(x, )| Lo vy < K

with a > 57 and K > 0 depends only on V, a, t and f(z,-). Assumption (4.3) then shows that the r.h.s. is

bounded uniformly for z € U.
Now notice that A3b is the solution of

A, Ab(z,y) = AL f(2,y) — A30(x).

Here we are using that Az and A? commute (this fact can be easily obtained from a density argument since it
holds for smooth functions using Fubini’s theorem, see Proposition 4.1). We then have from Proposition 2.5
and Remark 2.1 that for any x € R, ASb(z,-) € L (V) with

1AZb(x, )| Loe(vy < C.

Notice that A30(z) = [,, A f(z,y) % so that [A0(x)| < C|| A5 f(x, )| Le(v)- The result follows. [

Assuming (4.3) and (4.4), we know from the previous result that there exist constants k, K > 0 such that
for any (z,y) €e R" x V,
byl <k and A3 < K. (45)

We also need h € H§(R™) the solution to

A
h

&2

h(z)=1 inU,
0 in R\ U.
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Notice that h € L*°(U) in view of Remark 2.1. We then consider the functions v and T defined in R* x V
by
(2, y) = uo(x) +* (b(x,y) + K h(x) + k),

and
v(z,y) = ug(x) + 2 (b(z,y) — K h(z) — k).

We claim that ¥ and v are super-solution and sub-solution respectively of (4.2). Let us see, for instance, that
U is a supersolution to (4.2). In fact, in R™ x V,

1
Ajo(x,y) + 5 AyP(w,y) = Ajuo(@) + ¥ (A2, y) + K) + Ajb(w,y)
= f(z,y) + " (A50(2,y) + K)
> f(z,1),

by the definition of K. Moreover in (R™\U) x V,
0(z,y) =" (b(z,y) + k) 2 0

by the definition of k£ (we used here that ug = h =0 in R™"\U).
It then follows from the weak maximum principle Lemma 4.1 that

) <t <O inR" xV

|

which implies exactly (1.6). This ends the proof of Theorem 1.1.

Remark 4.1. Note that we needed that A7b is bounded. This fact is obtained from smoothness assumptions
on f, in fact we assumed that A3 f € L*(R™ x V) with a > 2F™. This assumption is quite restrictive and is
not needed when one looks at this problem using a variational approach like we did in the previous section
using only that f € L2(U x V).

5. Possible extensions of our results

In this final section we comment briefly on possible extensions of our results. We can consider different
problems.

1. The Neumann problem I. We consider the equation
f=Auc+ e A,

given by,

f(m,y):/Uuﬁ(z’y)_fjgf’y)dw/v“6(‘”’1“”)_“;(@;@/)@. (5.1)

|2 — x| w —y|

In this case we are taking Neumann boundary conditions both in x and y variables and we need to impose

that
//ue(x,y) drdy = 0
uJv

in order to obtain uniqueness of a solution.
The computations that we made in the previous sections can be used to pass to the limit as ¢ — 0 in this
problem.

Please cite this article as: M.C. Pereira, J.D. Rossi and N. Saintier, Fractional problems in thin domains, Nonlinear Analysis (2019),
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2. The Neumann problem II. We can also deal with the following version of the previous Neumann

U2, Y) — Ue\ T, Ue\ Ty W) — Ue\ T, Y
flog) = [ tEDZplid g, gy [ 2B 0 g gy, (52)
uxv |z — x| uxv  €2tw —y

//ue(a:,y) dx dy = 0.
uJv

3. The regional fractional Laplacian. However, when we look at the fractional Laplacian

Atu(a,y) = / wey) ~ulaw) g g
R™ xR™ |($7y) - (Z,’LU)‘

problem

assuming again that

and we localize it in €V (to deal with a thin domain) taking

Au(z,y) = / ul@,y) = u(i,+11:3+28 dz dw
R™xeV |($,y) - (va)|

it seems that our results cannot be extended to this model.
In fact, if we assume that u(x,y) does not depend on y (this is the expected limit situation in which the
limit is independent of the y variable) we get

Au(z,y) = ASu(x) = /n(u(x) —u(z)) (/6‘/ )= (jfuw)wrm”s) dz.

Then, we have to look at the limit of the kernel

1
2 2 l(n+7n—0—2s) dw
eV (|lz — 2" +ly —wl|")2
Changing variables we obtain

1
Em/ 5 N dw.
v (Jz = 2" + 2y — w2 rrme)

Now if we use that V is bounded and we take polar coordinates we get that the last integral is bounded
above by

R rm—l
em
/0 (|l‘ — Z|2 + 527,2)%(n+m+23)

Now, we change variables again, taking ﬁr = s, and we arrive to

C fTo—2] sm—1
_nt2s Lin+me2s ds
|z — 2| 0 (1+ s2)2( )

that goes to zero as ¢ — 0. Consequently, if the function u does not depend on the y variable, we have
A%y —0ase— 0.
Therefore our ideas are not applicable to handle this situation.
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