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Abstract 
For many multigene or multifactorial diseases, the one-drug therapy for inhibiting a defined 
molecular target is often less effective than combined treatments. Typically, drug 
combination therapies are multitargeted, so the mechanisms or even interactions are often 
complementary. These drug-drug interactions may promote alteration of pharmacokinetic 
or pharmacodynamic activities of one drug by another drug. Other interactions may change 
the expected effect of medications through polymorphisms that alter the expression or 
activity of the drug-mediated enzyme and the cell signaling cascade, such as drug-gene 
interactions and drug-drug-gene interactions. The number of possible existing interactions 
requires appropriate methods of study. In this review, we summarized combination 
therapies for cancer, as well as for viral, cardiovascular, and neurological diseases. Here, we 
also highlight known methodologies, such as in vitro methods based on Loewe’s and Bliss’s 
pioneer models and in silico methods based on online available data. With more elaborate 
methods and reliable results, multitarget therapies through drug combinations may 
increasingly benefit patients suffering from complex diseases. 
 

Keywords: drug combinations; multitarget therapy; combination therapy; drug-drug 
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Introduction 

Throughout history drug development research has been focused on 
identifying new agents directed against individual molecular targets, 
in an attempt to avoid any unspecific effects caused by mistargeting to 
other biological structures [1, 2]. However, biological organisms have 
many systems operating interconnectedly to protect the organism 
from malfunctioning [3]. Therefore one-drug to inhibit a defined 
molecular target is often less effective than combined treatments [3, 
4]. Moreover, the complexity of some pathologies has challenged this 
paradigm, and the study of molecules hitting more than one target is 
now rising [5].  

Multiple targeting strategies are used in clinical studies through a 
combination of various drugs that act distinctly on different targets of 
a sickness [6]. Multitarget therapies are repeatedly considered more 
efficacious, less toxic, and less vulnerable to resistance development, 
as a lower concentration of drugs is administered to the patient to 
reach similar or greater effect [2, 4]. This strategy is now standard in 
cancer, hypertension and viral infections, and is also of great promise 
for diseases such as Alzheimer’s and tuberculosis [7–16]. 

Combination treatments are often multitargeted, but the two 
denominations are not synonyms. While a multitargeted agent may be 
a unique molecule with a suitable combination of activities, 
combination therapies combine two or more drugs that can act 
through the same molecular targets, and have complementary 
mechanisms or even unknown interactions [4]. 

Combining drugs raises many challenges, as each drug has different 
properties, such as bioavailability and metabolism, which leads to an 
exponential interest in the development of medicines based on a single 
molecule that acts on more than one specific target of disease [6]. The 
search for combined drugs targeting complementary mechanisms 
requires a large-scale search of a vast world of possible target 
combinations, but can also reveal potential synergies or unexpected 
interactions between disease-relevant pathways, leading to a greater 
understanding of disease biology [4]. 

According to Zimmerman et al., there are three categories of 
multitarget drugs that can be described by their relationship with the 
target [4]. In the first type, the therapeutic effect is given by separate 
targets that trigger individual signaling pathways in the cell; in the 
second type, the effect on one target favors the action on a specific 
second target; and in the third type, the coordinated action on a single 
target or a cell complex produces the therapeutic effect.  

Therefore, when the interaction between two drugs reaches an 
effect larger than the sum of the independent effects, it is synergistic; 
if equal, it is addictive, and if it is smaller than the sum, it is 
antagonistic. However, defining the sum of two independent effects is 
actually more challenging than it seems: it is not feasible to simply 
consider the algebraic sum, for instance, when cytotoxic effects are 
expressed as fractions or percentages. The definition of additivity is 
then crucial for establishing mathematical and empirical models to 
study drug-drug interactions. Despite the existing mathematical 
approaches to predict interactions between drugs, the increase in drug 
combination treatments for known diseases has spurred the 
development of new computational methods to foresee efficient 
combinations [17]. 
 
Currently used drug combination therapies 

Cancer 
Most cancer treatment strategies include methods such as surgery and 
radiotherapy-for locoregional tumors-and systemic therapies for 
advanced and aggressive tumors that include chemotherapy, targeted 
therapies, endocrine therapy, and/or adjuvant therapy. Most clinically 
relevant chemotherapy drugs used to fight lung, breast, ovarian, and 
pancreatic cancers primarily target DNA molecules, such as 
platinum-based drugs (i.e., cisplatin, oxaliplatin, and carboplatin). 
These drugs cause a plethora of DNA lesions that, if not promptly 
repaired, induce tumor cell death. In other words, the main 

cytotoxicity mechanism of antitumor agents occurs through DNA 
damage. 

Although some malignant tumors respond well to only one 
treatment strategy, other tumors require combined treatment with 
synergistic or additive effects for antitumor efficacy, since cytotoxic 
effects to healthy body tissues can overcome the effectiveness limited 
by primary and acquired drug resistance [18]. 

Furthermore, resistance to chemotherapy is estimated to be the 
cause of therapeutic failure in 90% of patients with metastatic cancer 
[19]. These limitations are based on the traditional use of 
chemotherapy to control the disease in a systematic way; therefore, 
radical and/or strategic changes in the treatment protocol for these 
tumors are necessary, to achieve more effective clinical results. 

Certainly, if we could overcome drug resistance, the impact on 
patient survival would be immense. An interesting alternative often 
used in the clinic is the combination of different chemotherapies to 
enhance the therapeutic effect of these drugs. The modalities of drug 
combinations are based on their complementary mechanisms of 
action, to create an appropriate therapeutic program considering the 
characteristics of the patient and tumor. What is sought with this 
therapeutic strategy is that the cytotoxic effect of the drugs together is 
synergistic. Thus, it is possible to administer lower doses and obtain 
the same or better therapeutic effects and, at the same time, reduce 
side effects often associated with chemotherapy. 

Neoadjuvant treatment for the most aggressive breast cancer 
subtype, triple-negative breast cancer, is an example of a current 
regimen that consists of drug combinations of anthracyclines plus 
cyclophosphamide followed by platinum compounds and taxanes 
which significantly increase pathologic complete response and reduce 
the risk of recurrence [20]. 

Anticancer therapeutic regimens must also consider the impact of 
systemic therapies on the tumor microenvironment, which is often 
established by the tumor-host relationship. The components of the 
microenvironment have great importance in tumor growth and 
progression. Endothelial cells, stromal fibroblasts, specific natural 
killer cells, tumor-associated macrophages, and specific lymphocytes 
stand out in the tumor microenvironment. Currently, the 
understanding of the tumor-host interaction has been used as a 
determinant of clinical evolution and types of responses to treatment 
for human neoplasms [19–22].  

Some drugs classified as antiangiogenic, such as sunitinib, 
sorafenib, and bevacizumab, are used in combination to manipulate 
the tumor-host interaction favoring the reduction of the tumor, 
through the biological targeting of the endothelial cell and 
interruption of the vascularization associated with the tumor [23].  

Furthermore, new methods of therapy based on activation of the 
immune system have added many benefits to patients with several 
types of cancer in relation to the duration of response and survival 
time, especially when combined with chemotherapeutic drugs.  

Nevertheless, chemotherapy is not restricted to being cytotoxic to 
cancer cells; it also affects other cells, such as endothelial cells and 
immune cells in general [24]. The same happens with antiangiogenic 
and tumor-specific monoclonal therapies [25, 26]. Any changes in the 
cancer biology process will affect other elements present in the tumor 
microenvironment and host elements. 

Thus, a careful assessment of the impact of combinations between 
drugs already established, including chemotherapy, and new drugs 
designed to modulate the immune system, such as vaccines, 
checkpoint inhibitors, and adoptive cellular therapy, has been 
necessary to generate a more effective multimodal therapeutic 
integration in the treatment of cancer. 

Moreover, genetic variability in combination or not with other 
factors, such as medical conditions or even environmental influences, 
can alter the response of an individual to treatment [27, 28]. Thus, 
each patient in a large population can respond differently to the same 
medicine. 

Pharmacogenomics studies the variability in response to drugs due 
to genetic variations that are often related to single-nucleotide 
polymorphisms (SNPs) causing mutations in genes, for example, 



 
REVIEW 

                                               Drug Combination Therapy 2022;4(2):6. https://doi.org/10.53388/DCT2022006 

 3 
Submit a manuscript: https://www.tmrjournals.com/dct 

multidrug resistance (MDR) 1, multidrug resistance protein (MRP) 1, 
and MRP2, which are associated with resistance to drugs or other 
genes involved in drug metabolism and transport [29, 30]. Such 
mutations can change the gene expression or structure of proteins 
involved in pharmacokinetic and pharmacodynamic parameters, 
which explains why a treatment never has the same effect in several 
patients and why different patients can present distinct adverse drug 
events [28]. 

Adverse drug events may significantly change the expected effect of 
prescribed medications and are often related to so-called drug-gene 
interactions (DGIs) and/or drug-drug-gene interactions (DDGIs) [30, 
31]. The genome affects metabolism through polymorphisms that 
alter a drug’s metabolic enzyme by decreasing or increasing its 
function. If a SNP causes the expression of a low function enzyme, for 
example, this enzyme may reduce the metabolism of the administered 
drug through a DGI (Figure 1A) [30]. Then, this low-function drug’s 
metabolic enzyme can interact with another drug by DDGIs by 
inhibitory or inductive interactions, or also an interaction of 
phenoconversion [30]. The interaction of the enzyme with an 
enzyme-inhibitor drug or an enzyme-inducing drug may promote 
reductions or increases in drug metabolism, respectively, leading to 
pharmacokinetic and pharmacodynamic changes in the medication 
(Figure 1B) [30].  

Considering that DDIs and DDGIs are linked with adverse drug 
responses in the treatment of several diseases, the identification of 
clinically relevant interactions becomes increasingly important. 
Currently, pharmacogenomics enables the investigation of genes and 
genetic variants and the identification of particular genetic loci of an 
individual and/or related to a disease that determines the drug 
response of patients [28]. Thus, information such as this will allow 
individual development and planning of more effective and accurate 
therapeutic approaches for each patient shortly. 
Cancer vaccine and chemotherapy combination Currently, the 
potential use of therapeutic combinations that incorporate chemo and 
radiotherapy has been discussed with a view to synergy with 
antitumor vaccines. In general, chemotherapy is considered 
immunosuppressive because it acts on dividing cells, including bone 
marrow cells and peripheral lymphoid tissue. The use of cancer 
vaccines as an immunotherapeutic strategy is based on their ability to 
capture and present tumor proteins, triggering a strong and effective 
immunogenic response, through the activation and expansion of 
effector cells such as Th1 lymphocytes, cytotoxic T lymphocytes 
(CTLs), and natural killer cells. The recognition of peptide complexes 
of tumor cells via major histocompatibility complex class-I (MHC-I), 
through the T-cell receptor, promotes CTL activation and releases 
cytotoxins (perforin and granzyme), destroying malignant cells. 
However, this treatment alone is insufficient to generate tumor 
regression, especially in advanced diseases [32, 33]. 

Several studies have shown benefits in the combination of vaccines 
and some chemotherapy drugs in low doses against some tumors, 
including breast lymphomas [34]. The first Food and Drug 
Administration (FDA) approved antitumor dendritic cells (DCs) is a 
first-generation vaccine, called Sipuleucel-T (Provenge®), which was 
approved for all types of cancer. In a randomized phase III study, 
patients with prostate cancer hormone-resistant or metastatic 
castrating were treated with DCs autologous cells obtained from 
peripheral blood cells cultured in vitro with granulocyte-monocyte 
colony-stimulating factor (GMCSF) and a prostate-specific antigen, 
acid phosphatase (PA2024). The cell immunotherapy induced an 
immune response in these patients, reducing the risk of death by 22% 
and increasing overall survival (OS) in 4.1 months compared with the 
placebo group. Despite the substantial difference in OS, the single use 
of Sipuleucel-T does not alter disease progression in the short term. A 
phase III trial showed more benefit in survival when patients received 
docetaxel after vaccine treatment [32, 33]. 
T-regulatory cell modulation and chemotherapy combination 
Several clinical studies have demonstrated an important synergistic 
effect between chemotherapy and checkpoint inhibitors when used in 
combination. By causing the death of tumor cells, chemotherapy 

promotes the release of antigens that are presented by 
antigen-presenting cells, making the tumors more immunogenic for 
the performance of immunotherapeutic agents. This combination has 
been reflected in the increased response rate and progression-free 
survival of several types of tumors [25, 32, 33, 35–38]. With 
technological development and greater knowledge of the immune 
system, inhibitory pathways which attenuate this immune response 
was discovered. Drugs acting on this interface of the immune system 
are called immunological checkpoint inhibitors [34]. 

The cytotoxic T lymphocyte antigen 4 (CTLA-4) molecule expressed 
in T lymphocytes after being activated, has great homology with the 
CD28 molecule. It also has a greater affinity for CD80/CD86 than the 
CD28 molecule, activating an immunoregulatory response that 
inactivates the T4 lymphocyte response [39–41]. Ipilimumab was the 
first monoclonal antibody against CTLA-4. Its use proved to be 
effective in the regression of melanoma, renal carcinoma, prostate 
cancer, urothelial carcinoma, and ovarian cancer [42, 43]. In addition, 
the combination of ipilimumab with other immune checkpoint 
inhibitors had positive anti-cancer effects for metastatic melanoma, 
metastatic colorectal cancer, and advanced renal cell carcinoma [44]. 

The programmed death 1 (PD-1) pathway is a checkpoint that limits 
mediated immune response by T cells. Its ligands, PD-L1 and PD-L2 on 
cancer cells bind to the PD-1 receptor on immune cells and induce 
PD-1 signaling for T cell “exhaustion”, reversible inhibition of T cell 
activation and proliferation [43, 45]. Multiple antibodies (PD1 or 
PDL1-inhibitors) are in clinical phase studies [46, 47]. Pembrolizumab 
and Nivolumab are PD1-inhibitors approved for the treatment of 
advanced melanoma, renal cell carcinoma, and non-small cell lung 
cancer (NSCLC), as clinical studies have shown improvements in OS 
[48, 49]. However, many patients do not benefit from PD1 or 
PDL1-inhibitors. Thus, the combination of immunotherapy and 
chemotherapy are options for first-line treatment in patients with 
metastatic NSCLC without epidermal growth factor receptor (EGFR) 
mutation or anaplastic lymphoma kinase (ALK) translocation which 
has improved OS, progression-free survival (PFS), and overall 
response rate [44, 50]. 

Although immunotherapy has benefited cancer patients, it is worth 
mentioning the high cost of this therapy, which can limit access to 
patients [51]. 
Targeted therapy plus immunotherapy Targeted therapies have 
been used in several types of tumors with very expressive clinical 
responses rates. Targeted therapy uses small molecules or monoclonal 
antibodies to attack features unique to cancer cells as growth, 
division, and spread. Nevertheless, the response rate is often transient, 
causing the escape by tumor cells through the generation of resistance 
mutations, months after starting treatment. By contrast, 
immunotherapies have shown more durable responses in several types 
of tumors, mainly in combination with other available therapies. 
Several clinical studies corroborate this new approach-mainly through 
a deeper understanding of the mechanisms of tumor immunity and 
their interaction with genomic mutations, generating an important 
impact on therapy directed to the tumor microenvironment. To date, 
translational studies have shown clear benefits in combining target 
therapies with checkpoint inhibitors (anti-PD1 and PDL-1) [52]. 

The results of preclinical and translational studies revealed 
interesting effects of combining mitogen-activated protein kinase 
(MAPK) inhibition, as BRAF ± MEK inhibitors with checkpoint 
inhibitors (anti-CTLA-4 and/or anti-PD-1/PD-L1). Such combinations 
had a significant effect on the immunomodulation of melanoma 
patients increasing the proportion of CD8+, CD4+, and PD-1+ T 
lymphocytes in the tumor microenvironment, consequently increasing 
the anti-tumor immune response [48]. 

Currently, clinical trials combining anti-vascular endothelial growth 
factor (VEGF) and anti-PD-1 therapies have shown good clinical 
benefits compared to monotherapy, in advanced NSCLC and 
melanoma patients [37, 53]. The therapeutic atezolizumab 
(anti-PD-L1) and bevacizumab (anti-VEGF) combination can increase 
the immune system’s potential by the ability of atezolizumab to 
activate T cell responses against the tumor [53]. Another study 
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evaluated the combination of ipilimumab and bevacizumab versus 
monotherapy with ipilimumab alone in advanced melanoma. The 
combination therapy increased the expression of adhesion molecules 
and intratumoral CD8+ T-lymphocytes, improving the clinical 
responses [54]. 

In renal cancer cells, the combination of nivolumab (check-point 
inhibitor; anti-PD1 antibody) and ipilimumab (check-point inhibitor; 
anti-CTLA-4 antibody) was tested versus sunitinib in metastatic 
patients not previously treated (Checkmate 214 study). The combined 
treatment was able to reduce the risk of death by 37%, increasing the 
response rate from 27% to 42% and from 8.4 to 11.6 months PFS in 
the intermediate-risk and poor population. PD-L1 expression seems to 
be related to the best response to immunotherapy. Meanwhile, in a 
subgroup analysis, patients at favorable risk responded better to 
sunitinib, with a higher response rate and higher PFS [54]. Another 
phase III study, IMmotion 151, evaluated the combination of 
atezolizumab (anti-PDL1 antibody) and bevacizumab (anti-VEGF 
antibody) versus sunitinib at the first line, showing an increase in PFS 
manly in immunohistochemical positive PDL-1 (≥ 1%) samples [55]. 
 
Viral diseases 
In human viral diseases, such as acquired immunodeficiency 
syndrome (AIDS) and hepatitis, the progress of treatment has also 
relied on the use of combination therapies. The strategies for 
treatment of human immunodeficiency virus (HIV) infection, the 
agent behind the AIDS disease, changed with the knowledge that viral 
replication of the causative virus. HIV replication occurs during the 
years before the development of the clinical disease, with a 
progressive decline of the immune function by latent infection of CD4 
T cells [56, 57]. Antiretroviral therapy (ART) also called HIV regimen, 
consists of treatment with the combination of two or three medicines. 
By 1998, drugs licensed in the US for use in combination therapy to 
HIV included nucleoside and non-nucleoside reverse transcriptase 
inhibitors, integrase inhibitors, and protease inhibitors [56, 58]. ART, 
outstandingly, improves the prognosis of individuals infected with 
HIV, being efficient by suppressing viral load, preventing viral 
resistance demonstrating low toxicity in a short time, and good 
tolerance by patients [58, 59]. After some years of studies, ART 
consisting of combined drugs, such as tenofovir alafenamide, 
ritonavir, zidovudine, dolutegravir, bictegravir among others, has 
resulted in a survival range for patients living with HIV similar to 
HIV-uninfected people, and reduction of the viral transmission [57, 
58]. Other antiviral therapies of combined drugs have only been 
explored in recent years for conditions such as chronic hepatitis C and 
B [60]. 

A leading cause of severe liver disease, hepatitis C virus (HCV) 
infection can result in cirrhosis and hepatocellular carcinoma in 
patients [61]. After the discovery of interferon alfa as the principal 
agent in HCV therapy, the development of direct-acting antiviral 
agents (DAAs) has provided an important advance in the treatment 
[62]. Although interferon-based HCV therapies offer a 40% cure for 
the most difficult to treat genotype-1 infection, treatment with 
interferon-free DAA regimens, such as combinations of DAAs and 
medicines, has been successful in most patients [61]. Nevertheless, the 
implementation of DAAs is still a challenge due to the different six 
clinical genotypes of HCV. The first oral regimen of sofosbuvir and 
ribavirin that was approved by the US for genotypes 1–4 became the 
standard treatment for genotypes 2 and 3, but its efficacy was not 
sufficient in genotype 1 and did not have sufficient evidence to 
genotypes 5–6 [61]. In the case of hepatitis B virus (HBV) infection, 
various combination therapies have been evaluated over time but just 
a few of them have been shown to induce higher rates of response as 
compared to monotherapy [60]. Currently available therapeutic 
options include medications such as interferon or pegylated 
interferon, nucleotide, and nucleoside analogues but although when 
combined they achieved good results it is still needed more trials [63, 
64]. Many agents available for the treatment of HBV are also part of 
combination regimens for HIV infection. Thus, the combination 
therapy option is especially attractive for HBV, since interferon 

monotherapy has therapeutic effectiveness limited to 25% to 40% 
[63]. 
 
Cardiovascular diseases 
Hypertension is considered one of the strongest risk factors for 
different cardiovascular diseases because of the direct relationship 
between blood pressure and cardiovascular events [65]. Decades of 
research have offered antihypertensive treatment a lot of medications 
that can reduce elevated blood pressure by being used alone or in 
combination with one another [66]. Since the treatment demands a 
quick normalization of blood pressure rate, the achievement of the 
ideal blood pressure is difficult in most patients [67]. Recently, 
evidence indicates that the use of combined drugs at the beginning of 
treatment can normalize blood pressure more quickly, reducing 
significantly major adverse cardiac and cerebrovascular events [65]. 
The fact that hypertension is multifactorial, therapies based on drug 
combination may be favorable since the combination of the agents 
may lead to better blood pressure control by the action of a supposed 
complementary mechanism [67]. Nowadays, the combination of a 
blocker of the renin-angiotensin system, generally one of the 
angiotensin-converting enzyme (ACE) inhibitors of first-generation as 
captopril, enalaprilat, and lisinopril, with a calcium channel blocker of 
the class of dihydropyridine or non-dihydropyridine; or an ACE 
inhibitor with a diuretic for reducing sodium and water levels in the 
body are prescribed. These drug combinations have been successful to 
promote the best cardiovascular protection and good therapeutic 
results for providing greater antihypertensive effectiveness and fewer 
side effects than the use of high doses of monotherapy [65, 66].  
 
Neurological diseases  
Diverse neurological disorders are multifactorial, thus single-target 
drugs are mostly inadequate to achieve satisfactory therapeutic effect 
[68]. In addition, the therapeutic strategy available for some 
well-described neurodegenerative diseases is still based on the 
treatment of symptoms. In this topic, we will highlight some common 
drug interactions that are beneficial or harmful to affected patients by 
neurological diseases, such as depression and Alzheimer’s disease.  

Major depressive disorder, also commonly called depression, affects 
increasingly amount of the population year after year. The cause is 
still unclear; however, many drugs are available to fight the disorder. 
One of the most recent challenges on psychopharmacology is the 
drug-drug interactions (DDIs), since psychiatrists are treating patients 
with increasing complexity medication [69, 70]. DDIs are defined by 
the alteration of the pharmacokinetic or pharmacodynamic activities 
of one drug by another drug [71, 72]. In pharmacokinetic interactions, 
a drug can change the absorption, distribution, metabolism, and 
elimination (ADME) of other drugs reciprocally, besides affecting its 
concentrations at the sites of action (Figure 2). Knowledge of the 
mechanisms behind DDIs and their consequences is crucial for the 
development of combination therapies, since the most widely used 
treatments may have secondary pharmacologic characteristics that 
could induce or inhibit the activity of drug-metabolizing enzymes or 
transport proteins [73]. According to Greenblatt, metabolic inhibition 
results from an inhibitory DDI that may reversibly or irreversibly 
affect the drug-metabolizing enzymes themselves, frequently the 
cytochrome P450 enzyme (CYP450) (Figure 1) [73]. For instance, the 
administration of fluoxetine to a patient that already has a titrated 
dose for Nortriptyline will produce clinical tricyclic toxicity, because 
fluoxetine is an inhibitor of the enzyme that metabolizes 
Nortriptyline, which the consequence is higher levels of Nortriptyline 
[74]. In addition, the reverse situation will also induce toxicity, for 
example, the administration of Phenytoin (degradation 
enzyme-substrate) to fluoxetine or fluvoxamine-treated patient [75, 
76]. 

Furthermore, some drugs can induce the degradation of another 
one, by activating its metabolic enzyme, as previously discussed [77–
79]. Such a situation happens in the co-administration of Phenytoin 
and Risperidone [75]. The first is an inducer of CYP450 3A4 enzyme, 
the same that metabolize risperidone. Therefore, the patient will need 
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higher doses of risperidone to achieve the same effect. As well as 
Alprazolam addition to the carbamazepine-treated patient [80]. 

Another classic situation is the change of habit of a smoker. 
Smoking tobacco is a potent and ubiquitous inducer of CYP4501A2, 
which metabolizes some drugs such as Clozapine [81]. Once the 
patient decides to quit smoking, the blood levels of clozapine will rise 
causing morbidity. Accordingly, it is highly recommended for 
clinicians to prescribe medicaments within a given class with a low 
likelihood of producing DDIs, likewise citalopram/escitalopram 
among the selective serotonin reuptake inhibitors (SSRIs), mirtazapine 
or venlafaxine among the non-SSRI antidepressants, pravastatin 
among the statins, and azithromycin among the macrolides [82–84, 
77]. 

Although current medications cannot cure Alzheimer’s disease or 
stop it from progressing, they may help lessen symptoms, such as 
memory loss and confusion, for a limited time. Therefore, in order to 
treat Alzheimer’s symptoms in early to moderate stages, there is a 
class of drugs called cholinesterase inhibitors.  

Cholinesterase inhibitors are usually prescribed to treat symptoms 
related to memory, thinking, language, judgment, and other cognitive 
processes. Some examples of this category are donepezil, galantamine 
and, rivastigmine (see Miranda et al. for a complete review on 
Alzheimer’s drug discovery) [85]. However, cholinesterase inhibitors 
are not effective enough for advanced stages of Alzheimer’s disease, 
given that, the current FDA-approved treatment is the combination of 
donepezil with memantine [86].  

Memantine regulates the activity of the neurotransmitter glutamate, 
by antagonizing one of its receptors, the NMDA receptor [68, 13, 86]. 
Though powerful, this treatment still displays notable disadvantages, 
including increased toxicity such as seizures, irregular heartbeat, 
dizziness, and stomach ulcer; and treatment costs [68, 86]. Opposing, 
a clinical trial led by Robert Howard in 2012 did not show any 
significant benefits of the combination of donepezil and memantine 
over donepezil alone [87]. Taken together, these data emphasize that 
the combination treatment for neurological diseases should be well 
studied.  
 
Studying drug combinations  

In vitro studies 
Combining drugs, resolving their individual and combined effects, and 
translating the results into clinically plausible recommendations is 
indeed a challenge. In pharmacokinetic DDI studies, it is possible to 
measure the expression of enzymes, transporter systems, and human 
cellular fractions, and their specific interactions with drugs of interest 
[88]. On the other hand, pharmacodynamic interpretations of 
synergism and antagonism demand well-described theoretical 
approaches, usually based on a reference model, which establishes an 
index of additivity or null interaction [89, 90].  

Null models define an ideal “non-interacting” system, from which 
definitions of additivity and synergism are derived. In 1992, scientists 
from all over the world reunited to reach a common understanding of 
the terminology employed in drug combinations research, leading to 
the Saariselkä agreement [91]. The consensus reached was that there 
was no one-best model and that the two approaches predominantly 
used in the research field are appropriate for different sets of 
applications. Next, we will briefly discuss these approaches: the Loewe 
additivity and the Bliss independence models [92, 93].  
Loewe’s model The null model proposed by Loewe is based on the 
sham principle, which postulates that one agent cannot interact with 
itself [92]. Thus, if two drugs do not interact, effects obtained by their 
combination should be equivalent to those observed if one drug is 
combined with itself. This is the principle of concentration addition, 
the reason why Loewe’s additivity model is also known as the 
concentration addition method [92]. For determining a reference 
non-interactive scenario among two compounds, one should 
determine complete dose-effect or dose-response curves for both, 
which will correspond to the first line and column of a matrix of 
combinations [94]. 

Some criteria must be met so that these assumptions are accurate: 
the principle of dose equivalence, similar pharmacodynamic 
properties, and a constant potency ratio. In summary, dose-response 
curves must be parallel, as shown in Figure 3. This ensures that a 
concentration α of a compound A (Aα) able to disclose an effect y is 
equivalent to a concentration β of a compound B (Bβ) able to disclose 
the same effect y. Let’s assume that both concentrations individually 
result in the half-maximum effect (i.e. y = 0.5; α and β are the IC50 
values of compounds A and B, respectively). If a concentration a = is 
used in a co-exposure experiment and the principle of dose 
equivalence holds up, to produce the same half-maximum effect, the 
concentration of the compound B must be b = B - xB, so that the 
following mathematical correlation applies:   

a
Aα

 + b
Bβ

 = 1 

This equation is known as the median-effect equation. If this 
correlation applies, the combination is considered additive. 
Thenceforth, it is possible to define relationships between pairs of 
several dosages tested. In 1983, Chou and Talalay proposed an 
algorithm based on this equation called “combination index” (CI), 
which categorizes the combinations as synergic (CI < 1), antagonistic 
(CI > 1), or additive (C = 1) [95, 96]. Moreover, when several values 
of y are considered, the isobole equation arises: 

a

∫ (y)-1
A

 + b

∫ (y)-1
B

 = 1 
A graphical representation called isobologram plots growing 

concentrations of the compounds analyzed to draw a straight-line 
distinguishing additive non-interaction from synergistic and 
antagonistic interactions (Figure 3A) [97–99]. 

Derived from Loewe’s model several others emerged, such as 
Tallarida’s model and Hand’s model [97, 100–102]. For constant 
potency ratio drugs, the Loewe, Hand, and Tallarida models are 
considered very similar [94]. Although, Hand suggests building 
dose-effect curves for the combination of full and partial agents in 
instantaneous time. This characteristic is essential in biochemical 
models where molecular reactions happen all the time even though do 
not give knowledge about them [94].  
Bliss’s model The Bliss model follows an effect-based null strategy, 
relying on the principle that drugs act independently through different 
sites of action and together assemble a combined response [93, 94, 
99]. Based on a probabilistic assumption and considering the effect as 
a fraction of the maximal possible response, the additive effect of a 
drug A on a dose α (Aα) and a drug B on a dose β (Bβ) would 
correspond to the observed effect of Aα plus the effect of Bβ on the 
remaining fraction. For didactic purposes, consider that the measured 
effect is cell survival. If Aα impairs the viability of a fraction x of the 
observed cells while Bβ reaches a fraction y, the combined effect in a 
non-interaction context would correspond to the sum of: 

a. The cell viability reduction produced by Aα alone = x, and  
b. The cell viability reduction produced by Bβ in the remaining 
population of cells = (1 - x) * y 
Thus, a general formula could be written as: 
Aα Bβ BLISS = Aα + (1 - Aα) x Bβ  

or   
Aα Bβ BLISS = (Aα+ Bβ) - Aα x Bβ 

If doses Aα and Bβ act independently, the surviving fraction of the 
cells after simultaneous administration will be the same as cells that 
survived only drug A or drug B treatments. In other words, after the 
effect of drug A, the remaining fraction x of cells is then affected by 
drug B that produces the fraction y, acting independently. However, if 
there is synergy, the fraction of surviving cells after the simultaneous 
administration of the drugs will be smaller than cells that have been 
treated only with drug A or drug B [103]. If there is antagonism, the 
fraction of surviving cells will be bigger than cells treated only with 
drug A or drug B [103]. Thus, there are three basic types of drug 
combinations in the Bliss model [93]: independent, similar, and 
synergistic/antagonistic. If the combined drugs present different 
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modes of action and act independently, can be defined as 
independent; if the drugs present similar effects and interact 
independently, can be classified as similar; finally, if the effect is more 
or less potent than individual effect, the response is considered 
synergistic or antagonistic [3, 93]. 

Such Bliss’s model suggests that two drugs reach their effects 
independently, the Highest Single Agent (HSA) model also suggests 
that the expected combination effect should be equal to the higher 
effect of the individual drugs [104]. Therefore, any additional effect 
over the higher single drug is considered synergy [105]. 

 

 

 
 
 
Figure 1 Representative scheme of drug-gene and drug-drug-gene interactions. (A) In drug-gene interactions, a single-nucleotide polymorphism (SNPs) in DNA can 
cause dysfunction of a drug-metabolizing enzyme, such as CYP450. For instance, a reduction in its activity can result in a reduction in the metabolism and also in the 
response of the drug once its pharmacokinetic and pharmacodynamic properties would be changed [28]. (B) In drug-drug-gene interactions, the effect of one drug can be 
affected by the interactions between the mutated drug-metabolizing enzyme and another drug, causing (I) inhibitory, (II) inductive, or (III) phenoconversion interactions 
[30]. Interactions of inhibitory and inductive character are caused by drugs that promote a reduction or increase of the metabolism of the drug, respectively, leading to 
changes in the pharmacokinetics and pharmacodynamics properties [30]. The phenoconversion interaction is also inhibitory or inductive, but it is usually related to 
strong drugs that can promote expressive changes in metabolism resulting in a change of the phenotype [30]. Basically, drug-gene interactions occur when the genome 
affects the ability of a patient to metabolize a drug, while drug-drug-gene interactions occur when the genome and another drug together affect the metabolism of a 
medication [123]. Image created with BioRender. 
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Figure 2 Pharmacokinetic and pharmacodynamic drug interactions. In pharmacokinetic interactions, orally administered drugs may change the absorption in the 
gastrointestinal system and the consequent distribution into the bloodstream [71]. Even after being absorbed, the action of the drug may change before its elimination 
from the body, since the metabolism of drugs in the liver can pass through alterations if one of the drugs inhibits or induces transport proteins and/or drug-metabolizing 
enzymes, such as CYP450 [73]. In pharmacodynamic interactions, the effect of one drug can be affected by the administration of another drug through synergistic, 
additive, or antagonistic effects that can directly affect the binding of the drugs to their molecular receptors and also the levels or sensitivity of the receptor [72]. These 
interactions can cause an alteration in the cell signaling cascade responsible for the mechanism of action and response of the drug in the body. Image created with 
BioRender.  

In silico methods 
To identify new combinations, systematic high-throughput in vitro 
testing of pairwise drug combinations can be applied. But this can be 
time and resource-consuming as for every 100 drugs there are 4, 950 
possible drug pairs combinations that could be tested; if we are 
searching for combinations of three drugs the number rises to 161, 
700 possibilities. Thus, to decrease the number of combinations to be 
tested in vitro, computational approaches can be used to tackle this 
issue and prioritize more promising combinations, although the 
development of models to foresee drug combinations with high 
accuracy is not an easy task.  

In order to improve the understanding of drug combination synergy 
and facilitate the development of novel and better computational 
tools, in 2015 a challenge called the DREAM Challenge was launched 
and brought relevant advances on the field [106]. For this challenge 
the AstraZeneca dataset was created, containing 11, 576 experiments 
from 910 combinations across 85 cancer cell lines, that were provided 
to the 160 participating teams to train new models. The best 
performing team applied a random forest algorithm, a Machine 
Learning (ML) approach, to perform the predictions and achieved a 
high performance compared to the theoretical limit, using as input 
monotherapy data, gene interaction networks, drug target 
information, and the molecular profile of the 85 cell lines to calculate 
the synergy scores [107, 108]. ML are algorithms that can derive 
models for classification, prediction, and pattern recognition from 
existing data; so, data such as the AstraZeneca set can be used to 
identify patterns on known synergic drugs to predict new and 
unknown synergic drugs based on these patterns [109]. 

ML algorithms have been widely applied to predict drug synergy for 
cancer treatment, as exemplified by the winning team of the DREAM 
challenge, especially due to the considerable amount of available data 
from this disease, which is essential and limiting to train new models 
[110–113, 107, 108]. Another example is DeepSynergy, which was the 
first method to apply Deep Learning to predict anti-cancer drug 
synergy, requiring the genomic profiles of cancer cell lines and 
compounds represented by their chemical descriptors to perform the 

predictions [114]. Further, to overcome the cancer data scarcity from 
some understudied tissues, such as bone, prostate, and pancreas, a 
deep neural networks model was developed to utilize information 
from the data-rich tissues (breast, kidney, skin, and lungs) and 
improve prediction accuracy [115]. 

Nevertheless, ML algorithms can also be applied to predict 
combinations for the treatment of other diseases, as shown by the 
computation model INDIGO-MTB that uses drug-gene associations 
inferred from transcriptomic data from Mycobacterium tuberculosis 
and experimentally measured drug-drug interactions to infer 
interactions between new combinations of drugs for the treatment of 
tuberculosis [116]. This model could also be applied to other 
pathogens with transcriptomic data available. 

Network-based methods, which generally use information from 
genomic, chemical, and pharmacological properties to build a network 
representing the associations among drugs, proteins, and pathways, 
can also be very powerful tools [117]. One example is the method 
developed by Cheng et al. to identify clinically efficacious drug 
combinations that provided novel insights to understand drug synergy 
[118]. This method is based on the relationship between drug-target 
pathways and the disease pathways via network proximity in the 
human protein interactome built based on protein-protein interactions 
(PPI) experimentally confirmed. They found, using known drug 
combinations for hypertension and cancer, that to have synergism 
with lower adverse effects each drug must target different groups of 
interacting genes that are affected by the disease, and that drugs that 
target a similar group of genes have more adverse effects [118]. These 
results are corroborated by Qian et al., which also indicated that 
known adverse drug pairs tend to have more genetic interaction on 
their targets [119].  

The method developed by Cheng et al. was later applied for drug 
repurposing for treatment of the novel coronavirus SARS-CoV-2, using 
virus-host interactome information from 4 human coronaviruses 
(SARS-CoV, MERS-CoV, HCoV-229E, and HCoV-NL63) and other 
viruses, and transcriptomics data in human cell lines [118, 120]. From 
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Figure 3 Summary of the two main mathematical approaches used to determine drug interactions, from which several other models were derived. (A) Loewe’s 
additivity method. The A1-Typical experiment design employed in studies that apply Loewe’s model. The drugs under evaluation (A and B in the picture) are individually 
administered to the cell culture in crescent concentrations. Also, dose-effect curves are drawn for an anchored (non-varying concentration) drug plus a varying drug. 
A2-Hypothetical dose-response curves for drugs A and B that aim to decrease cell viability, for example, chemotherapy, meeting the principles of drug equivalence, a 
pharmacodynamic similarity, constant potency ratio. Drug equivalence relies on the existence of doses that produce equivalent effects. In the figure, doses A1 and B1 are 
equivalent, as well as doses A2 and B2, and doses A3 and B3, as they produce the same percentage of reduction in cell viability, as the measured effect. Pharmacodynamic 
similarity is demonstrated by the same minimal and maximal effects reached by both drugs, and similar slope of the curves. Finally, the constant potency ratio is shown by 
the constant ratio observed between drug concentrations that produce the same effects. In simple words, A1/B1 = A2/A2 = A3/B3. Finally, combination index 
calculations originate dots throughout the graph representing the concentration of compound B required to achieve half-maximal effect in different combination 
scenarios: additive, synergic or antagonistic interactions. A3-An isobologram drawn from IC50 concentrations of compounds A and B represent, for an anchored 
concentration of drug A, varying concentrations of B hypothetically required to produce the half-maximal effect in combination with A. Interactions are interpreted as 
additive (when the null model applies), synergic (when the concentration of B required for half-maximal effect is lower than expected), and antagonistic (when the 
concentration of B required for half-maximal effect is higher than expected). (B) Bliss’s independence method. B1-Typical single-dose experiment design used to evaluate 
drug interactions applying Bliss’s independence model. Drugs A and B are used at fixed concentrations, either individually or combined. B2-Histogram showing 
hypothetical cell viability measurements following treatments with drugs A and B drugs A and B that aim to decrease cell viability, for example, chemotherapy at fixed 
concentrations. B3-Mathematical interpretation of the hypothetical results represented in B2. As the action of both drugs is not independent (observed combined effects 
are different (lower) from the expected product of both individual effects), an interaction is detected and categorized as synergism. Image created with BioRender. 

2000 FDA-approved or experimental drugs, three potential drug 
combinations were identified that now could be prioritized for 
experimental testing. Another in silico approach was capable of 
prioritizing 73 combinations of 32 drugs with potential activity 
against SARS-CoV-2, from which 16 synergistic and 8 antagonistic 
combinations were found in vitro, showing the usefulness of in silico 
approaches in the combat of the novel coronavirus outbreak [121]. 
Among the interactions identified we may highlight the remdesivir 
and hydroxychloroquine combination that demonstrated strong 
antagonism, and the nitazoxanide and remdesivir combination with a 

strong synergistic interaction [121]. The nitazoxanide-remdesivir 
combination to treat COVID-19 patients is very promising from a 
clinical perspective because both drugs are FDA approved, and the 
concentrations with synergistic effect identified in vitro can be 
achievable in plasma and lung [121]. 
 
Conclusion 

The multiple targeting strategies through drug combination therapy 
raises many challenges since each drug has different properties [6]. 



 
REVIEW 

                                                Drug Combination Therapy 2022;4(2):6. https://doi.org/10.53388/DCT2022006 

 9 
Submit a manuscript: https://www.tmrjournals.com/dct 

The search for combined drugs targeting complementary mechanisms 
requires a large-scale search of several possible target combinations, 
but can also reveal potential synergies or interactions between 
disease-relevant pathways, leading to a greater understanding of the 
disease biology [4]. Despite the constant effort to quantify the effect of 
the combination of compounds in biological systems, there is still no 
agreement on which approach should generally be used since Loewe, 
Tallarida, Hand, Bliss, and HAS methods have limitations and 
problems [98, 122]. Although, each model of study has a different 
mathematical interpretation of results that should be considered in the 
study of possible combinations. In silico methods are extremely useful 
to lower the number of combinations to be tested in vitro, since you 
can prioritize more promising combinations and predict drug 
combinations with more accuracy. ML algorithms have been widely 
applied to predict drug synergy in the treatment of several diseases. 

Knowledge of the mechanisms and consequences of 
pharmacokinetic and pharmacodynamic drug-drug interactions is 
crucial to the development of therapies since treatments can have 
secondary pharmacologic characteristics. Thus, it is important to 
consider that these effects generally depend on the concentration of 
the drugs through the dose-response effect, by the binding to specific 
receptors and the activity of drug-metabolizing enzymes or 
transporters. These effects can also change through DGI and DDGIs 
since genetic variability can alter the response of an individual to 
treatment, highlighting the importance of identifying possible drug 
interactions in different individuals to accurate therapeutic 
approaches [28]. 

Finally, although combined therapy has made advances in studies of 
a vast number of diseases as previously mentioned, it is clever to 
remember that treatments, despite improving the quality of life of 
patients, are hardly curative and further studies are always needed. 
The combined therapies have the potential to play an essential role in 
still unexplored therapies of several diseases, but it requires 
knowledge about the properties of the drugs, the multi-targets to be 
treated, and the possible genetic polymorphisms to better predict 
pharmacokinetics and pharmacodynamics and potential interactions 
[68]. 
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