
DISCRIMINAÇÃO DE RAÍZES
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1. Introdução

Encontrar os zeros de um polinômio de uma variável com coeficientes reais p(x) =
anxn + an−1x

n−1 + ... + a1x + a0, ou em outras palavras, encontrar as ráızes de uma
equação algébrica anx

n + an−1x
n−1 + ... + a1x + a0 = 0 é um problema clássico da

matemática1. O teorema fundamental da álgebra estabelece que polinômios de grau
n possuem n ráızes2. Sob certas condições sobre os coeficientes pode-se garantir, por
exemplo, que tais ráızes são ráızes reais e distintas.

O caso das equações algébricas do segundo grau é bem conhecido. As duas ráızes
da equação ax2+bx+c = 0, dependem do valor ∆ = b2−4ac; ou seja, os coeficientes
da equação verificam a desigualdade ∆ > 0 se, e somente se, as duas ráızes são
reais simples. Quando ∆ = 0 temos uma única raiz dupla; isto é, uma raiz com
multiplicidade 2.

No caso das equações de grau maior que 2, a discriminação entre ráızes reais e
complexas e a obtenção das multiplicidades das ráızes através de condições sobre os
coeficientes não é tão trivial.

Iniciaremos com a análise de um exemplo de uma equação do quarto grau. Em
seguida trataremos do caso geral das equações do terceiro e quarto graus.

À classificação das ráızes em reais e complexas (i.e. parte imaginária não nula)
e a determinação da multiplicidade corresponde uma subdivisão do espaço dos coe-
ficientes (estratificação). Quem determina tal subdivisão é um conjunto do espaço
dos coeficientes da equação denominado discriminante, ou popularmente conhecido
como o delta da equação. Descreveremos tal estratificação no caso geral das equações
de grau n.

Faremos uma análise detalhada das equações de grau quatro ax4 + bx3 + cx2 +
dx + e = 0. Este caso é bastante rico em número de estratos; isto é, em número de
posśıveis tipos de ráızes.

Veremos também como o número de estratos está relacionado ao número de
posśıveis partições do grau n da equação e que este cresce exponencialmente com
n, provocando assim uma dificuldade imensa no estudo do caso geral. Finalizamos
com um exemplo de uma equação do quinto grau.

1O registro mais antigos do tratamento deste tipo de problema, particularmente no caso n = 2,
é atribuido ao matemático Abu Ja’far Muhammad ibn Musa al-Khwarizmi, que viveu em Bagdá no
século VIII. Foi ele quem introduziu a palavra algebra e é do sobrenome dele que deriva a palavra
algarismo.

2Gauss, em sua tese de doutorado [G], apresenta a primeira demonstração do teorema funda-
mental, baseado em idéias de Euler.
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2. Um exemplo

Considere a equação do quarto grau

x4 − x2 + bx + c = 0

Sabemos do teorema fundamental da algebra que esta equação possui 4 ráızes.
Dependendo dos valores dos coeficientes b e c algumas das ráızes podem ser reais e
outras complexas. Em particular, para certos valores de b e c podemos ter apenas
ráızes reais. Neste caso, podem ocorrer:
(i) quatro ráızes distintas, ditas ráızes simples.
(ii) duas ráızes simples e uma raiz dupla; isto é, de multiplicidade 2.
(iii) duas ráızes duplas distintas.
(iv) uma raiz simples e uma outra de multiplicidade 3.

Para este exemplo, a relação entre os coeficientes b e c que fornece informações
sobre os diferentes tipos de ráızes é ∆ = 4b2 − 27b4 + 16c− 128c2 − 144b2c + 256c3,
como demonstraremos em breve.

A curva algébrica ∆ = 0 (Figura 1) divide o plano de coordenadas b e c em três
componentes conexas.

Figura 1

Vamos denominar essas regiões como:
região A= {(b, c) : ∆ < 0}, a região ”externa” à curva ∆ = 0
região B= {(b, c) : ∆ > 0}, a região ”interna” à curva ∆ = 0
Subdividimos a região B em duas:
região B1 é a componente limitada da região B e
região B2 é a componente não limitada da região B.
Aos coeficientes b e c da região A correspondem as equações x4 − x2 + bx + c = 0

que possuem duas ráızes reais simples e duas complexas.
Aos coeficientes b e c da região B1 correspondem as equações x4−x2 + bx+ c = 0

que possuem quatro ráızes reais simples.
Aos coeficientes b e c da região B2 correspondem as equações x4−x2 + bx+ c = 0

que possuem quatro ráızes complexas simples.
Aos coeficientes b e c sobre a curva ∆ = 0 correspondem três tipos de equações

do quarto grau x4 − x2 + bx + c = 0. O primeiro tipo corresponde ao ponto de
auto-interseção da curva ∆ = 0; isto é, b = 0 e c = 1

4
. Neste caso, a equação do

quarto grau correspondente é (x2− 1
2
)2 = 0; ou seja, temos duas ráızes reais duplas.

Para os valores de b e c que são as coordenadas dos dois pontos cuspidais da curva
∆ = 0 correspondem equações com duas ráızes reais sendo uma raiz simples e uma
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de multiplicidade 3. Aos pontos dos arcos da curva ∆ = 0 entre os pontos cuspidais
e entre esses e o ponto de auto-interseção correspondem equações x4−x2 + bx+ c =
0 que possuem três ráızes reais sendo uma raiz real de multiplicidade 2 e duas
ráızes reais simples. Finalmente, aos pontos dos arcos da curva ∆ = 0 que partem
do ponto de auto-interseção correspondem as equações que possuem uma raiz real
de multiplicidade 2 e duas ráızes complexas. Em outras palavras, podemos ter
x4 − x2 + bx + c = (x − x0)

2(x − (u + iv)(x − (u − iv)), com v 6= 0. De fato,
expandindo o lado direito da igualdade e comparando os coeficientes de cada lado
obtemos: −2x0 − 2u = 0 (coeficiente de x3), −2u2 + v2 = −1 (coeficiente de x2),
2uv2 = b e u4 + u2v2 = c. Por exemplo, quando b = c = 2, ∆ = 0 e a equação
x4−x2 +2x+2 = 0 possui as ráızes 1+ i, 1− i além da raiz −1 de multiplicidade 2.

Na Figura 2 são indicados os diversos tipos de equações nas diferentes regiões e
partes da curva ∆ = 0.

Figura 2

Em resumo, para a equação do quarto grau x4 − x2 + bx + c = 0 descrevemos a
natureza das ráızes através das seguintes condições sobre os coeficientes b e c

x4 − x2 + bx + c = 0 b e c região

4 reais simples ∆ > 0 B1

4 complexas simples ∆ > 0 B2

2 reais simples e 2 complexas ∆ < 0 A

1 real dupla e duas reais simples ∆ = 0 bordo de B1

1 real dupla e duas complexas ∆ = 0 bordo de B2

1 real tripla e uma simples ∆ = 0 cúspides

2 ráızes reais duplas ∆ = 0 auto-interseção
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Na seqüência estudaremos a equação geral do quarto grau e a classificação dos
diferentes tipos de ráızes. Antes, porém aplicaremos uma transformação nas equações
que reduz, sem perda de generalidade, a dimensão do espaço de coeficientes.

3. Forma reduzida das equações de grau n

Consideremos a equação algébrica geral de grau n

anx
n + an−1x

n−1 + ... + a1x + a0 = 0.

Sendo o grau da equação igual a n, segue que o coeficiente an é não nulo. Assim,
podemos dividir toda a equação por an e obter a chamada forma mônica da equação
geral de grau n,

xn + bn−1x
n−1 + ... + b1x + b0 = 0.

Através da transformação x = X− bn−1

n
a equação mônica na nova variável X não

apresentará o termo de grau n− 1. De fato, substituindo x = X − bn−1

n
na equação

xn + bn−1x
n−1 + ... + b1x + b0 = 0, obtemos uma equação em X da forma

Xn + An−2X
n−2 + ... + A1X + A0 = 0,

sendo os coeficientes A′
is dados pelos coeficientes b′is. Esta forma da equação de grau

n é chamada forma reduzida. Como bn−1

n
é real a natureza das ráızes da equação

reduzida e da equação original é a mesma. Obtendo-se as ráızes da equação reduzida,
obtém-se as ráızes da equação geral através da transformação inversa daquela que
leva a equação geral para a forma reduzida.

Exemplo: A equação x7 + 7x6 + 1 = 0 depois da transformação x = X − 1 toma
a forma reduzida X7 − 21X5 + 70X4 − 105X3 + 84X2 − 35X + 7 = 0.

4. O discriminante

O fato de uma equação Pn(X) = Xn + An−2X
n−2 + ... + A1X + A0 = 0 possuir

uma raiz X0 significa que podemos fatorar o termo (X −X0) do polinômio Pn(X);
isto é, a equação pode ser escrita na forma (X −X0)Pn−1(X) = 0, sendo Pi(X) um
polinômio de grau i. Já o fato de X0 ser uma raiz de multiplicidade 2, significa que
podemos fatorar o termo (X − X0)

2, isto é, a equação pode ser escrita na forma
(X −X0)

2Pn−2(X) = 0.
Ráızes com multiplicidade maior ou igual a 2 serão chamadas ráızes com multi-

plicidade.
A seguinte proposição fornece um modo prático de se obter condições sobre os

coeficientes para detectar ráızes com multiplicidade.

Proposição: A equação Pn(X) = 0 possui raiz X0 com multiplicidade se, e
somente se, Pn(X0) = 0 e sua derivada P ′

n(X0) = 0.

Demonstração: Se Pn(X) = 0 possui raiz X0 com multiplicidade, então Pn(X) =
(X −X0)

2Pn−2(X). Assim, P ′
n(X) = 2(X −X0)Pn−2(X) + (X −X0)

2P ′
n−2(X). Por-

tanto, X0 anula ambos Pn(X) e P ′
n(X). Reciprocamente, se Pn(X0) = 0 então

Pn(X) = (X − X0)Pn−1(X), para algum polinômio Pn−1(X) de grau n − 1. Logo,
P ′

n(X) = (X − X0)P
′
n−1(X) + Pn−1(X). Se P ′

n(X0) = 0 então Pn−1(X0) = 0, e as-
sim podemos fatorar (X − X0) de Pn−1(X), isto é Pn−1(X) = (X − X0)Pn−2(X).
Portanto, Pn(X) = (X −X0)

2Pn−2(X), que é o mesmo que dizer que X0 é raiz com
multiplicidade da equação Pn(X) = 0.
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Exemplo: Considere P3(X) = X3 + AX + B. Seja X0 = t uma raiz com multi-
plicidade. Então t3 + At + B = 0 e 3t2 + A = 0. Podemos escrever os coeficientes
A = −3t2 e B = 2t3, como função de t. Variando-se t ∈ R obtemos o conjunto
das equações X3 + AX + B = 0 que possuem raiz com multiplicidade; em outras
palavras, obtemos uma parametrização do conjunto de coeficientes das equações
reduzidas X3 + AX + B = 0, que possuem raiz com multiplicidade (Figura 3 (a)).

Figura 3. (a), (b), (c)

Definição: O conjunto {(An−2, An−3, ..., A1, A0) ∈ Rn−1 : Pn(X) = 0 tem raiz
com multiplicidade} é denominado discriminante da equação reduzida Pn(X) =
Xn + An−2X

n−2 + ... + A1x + A0 = 0 de grau n.

Observações: 1) A cada ponto (An−2, An−3, ..., A1, A0) do discriminante fica as-
sociado um polinômio Pn(X) e reciprocamente.

2) Para a equação de grau 3, o discriminante é uma curva algébrica parametrizada
no R2. Em geral, o discriminante é a imagem de uma aplicação Rn−2 → Rn−1. Um
dos n − 2 parâmetros corresponde à raiz com multiplicidade. Eliminando-se este
parâmetro obtemos uma equação definindo o discriminante da equação de grau n
que será denotada por ∆n = 0.

5. Indexação dos tipos de ráızes

Uma partição de um número natural n é uma decomposições da forma γ(n) =
(r1, r2, ..., rk), com ri ∈ N, ri ≥ ri+1 e

∑
ri = n. O número k é chamado comprimento

da partição.
Podemos indexar as posśıveis multiplicidades das ráızes de uma equação de grau n

através das partições do número n. De fato, dada uma partição γ(n) = (r1, r2, ..., rk)
do número n, associamos a cada ri a multiplicidade de uma dada raiz da equação
de grau n.

Assim, o problema de saber quantos tipos de ráızes uma equação do grau n possui,
reduz-se ao problema de saber quantas partições o número n possui3. Por exemplo,
o número de partições do número 2 é 2, a saber, (1, 1) e (2). O que corresponde ao
fato de equações de grau 2 possuirem duas ráızes de multiplicidade 1 ou uma raiz de
multiplicidade 2. Já o número 3 possui 3 partições, a saber, (1, 1, 1), (2, 1) e (3). Em
outras palavras, as equações de grau 3 podem possuir três ráızes de multiplicidade
1, uma raiz de multiplicidade 2 e uma de multiplicidade 1 ou uma única raiz de mul-
tiplicidade 3. Se n = 4, γ(4) pode ser uma das seguintes cinco partições (1, 1, 1, 1),

3Parece um problema simples, porém sua solução, magnificamente não trivial, só foi obtida por
volta de 1920 por G. Hardy e S. Ramanujam (v. observações finais)
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(2, 1, 1), (2, 2), (3, 1) e (4). Se n = 5 teremos 7 partições posśıveis. O número de
partições de um número n cresce exponencialmente com n.

O discriminante da equação reduzida de grau n é um conjunto contido no espaço
(n−1)−dimensional dos coeficientes da equação, e que divide este espaço em compo-
nentes conexas. Por sua vez o discriminante é subdividido em partes correspondentes
aos coeficientes cujas equações possuem ráızes de um dado tipo, que é indexado pelas
diversas partições do grau da equação. Esta subdivisão é chamada estratificação do
discriminante e cada parte, correspondente a uma das diversas partições do grau da
equação, é chamada estrato.

O comprimento k de uma dada partição γ(n) = (r1, r2, ..., rk) mede a dimensão
do correspondente estrato, visto como subvariedade do Rn−1.

Vimos que para uma equação de grau n (sempre na forma reduzida) a dimensão
do discriminante é n− 2, uma hipersuperf́ıcie no Rn−1.

Proposição: O estrato associado a uma partição γ(n) = (r1, · · · , rk) de compri-
mento k tem dimensão k − 1.

Demonstração: Sejam Xi, i = 1, · · · , k as k ráızes distintas do polinômio
Pn(X) = Xn+An−2X

n−2+· · ·+A1X+A0 de multiplicidades ri, i = 1, · · · , k respec-

tivamente. Então Pn(X) =
k∏

i=1

(X −Xi)
ri . Desta igualdade vem que os coeficientes

A0, · · · , An−2 são funções dos X1, · · · , Xk. Contudo, expandindo o lado direito desta
igualdade obtemos que o coeficiente do termo Xn−1 é igual a −r1X1− r2X2 − · · · −
rkXk e portanto se anula. Logo, Xk = − r1

rk
X1 − r2

rk
X2 − · · · − rk−1

rk
Xk−1. Assim,

cada coeficiente Aj, j = 0, · · · , n− 2 é função apenas de X1, · · · , Xk−1. Variando-se
continuamente X1, · · · , Xk−1, obtem-se uma parametrização do estrato associado à
partição γ(n) = (r1, · · · , rk). De fato, a aplicação (X1, · · · , Xk−1) → (A0, · · · , An−2)
é um homeomeorfismo sobre o estrato. Como a dimensão é um invariante topológico
(Brouwer), obtemos o resultado.

Observação: O espaço dos coeficientes fica estratificado por subvariedades de
dimensões que variam de zero até n− 1. Observe que, variando-se continuamente os
coeficientes da equação, o tipo das ráızes mantem-se o mesmo, exceto na passagem
de um estrato para outro. Cada estrato associado a uma partição de comprimento k
é um aberto em Rk−1 e na parte correspondente exclusivamente às ráızes reais temos
que os estratos de dimensão k− 1 estão na aderência de um estrato de dimensão k.
O mesmo não acontece na parte correspondente às ráızes complexas (v. Figura 4
(b)).

6. Geometria dos discriminantes

Descreveremos em detalhes os discriminantes das equações de graus 3 e 4 no
espaço euclidiano.

6.1. Equação do terceiro grau. A equação cúbica geral x3 + ax2 + bx + c = 0 é
reduzida, através da transformação x = X − a

3
, à equação

X3 + AX + B = 0

sendo A = −a2

3
+ b e B = 2

27
a3 − 1

3
ab + c.

O discriminante da equação é lugar geométrico dos coeficientes A e B onde a
equação X3 + AX + B = 0 possui ráızes com multiplicidade e portanto, pela
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proposição, é dado pelas equações X3 + AX + B = 0 e 3X2 + A = 0. Substituindo
A = −3X2 na equação obtém-se B = 2X3.

Eliminando-se X de A = −3X2 e B = 2X3 obtemos uma equação definindo o
discriminante, a saber, ∆3 = 4A3 + 27B2 = 0.

No espaço dos coeficientes da equação X3 + AX + B = 0; isto é no plano 0AB,
essa expressão representa uma curva cuspidal. Esta curva decompõe o espaço dos
coeficientes em duas componentes conexas. Uma delas 4A3 + 27B2 < 0 corresponde
aos coeficientes cujas equações possuem 3 ráızes reais distintas, enquanto 4A3 +
27B2 > 0 caracterizam as equações que possuem ráızes complexas (Figura 3 (b)).

6.2. Equação do quatro grau. A equação quártica geral x4+ax3+bx2+cx+d = 0
é reduzida, através da transformação x = X − a

4
, à equação

X4 + AX2 + BX + C = 0.

O discriminante desta equação é um subconjunto do espaço tridimensional, cujas
coordenadas são todos os posśıveis valores dos coeficientes A,B e C, dados pelo
anulamento de P4(X) = X4 + AX2 + BX + C e pelo anulamento de sua derivada
4X3 + 2AX + B. Ou seja, o discriminante é o conjunto {(A,B, C) ∈ R3 : X4 +
AX2 + BX + C = 0 e 4X3 + 2AX + B = 0} que também pode ser escrito como
{(A,B, C, X) ∈ R4 : B = −4X3−2AX e C = −X4−AX2−BX}. Esse subconjunto
do R4 é portanto a interseção de duas hipersuperf́ıcies algébricas no R4.

Podemos parametrizá-lo tomando parâmetros u e v no plano R2. Deste modo, o
discriminante é a superf́ıcie do R3 imagem da aplicação δ : R2 → R3, dada por
δ(u, v) = (u,−4v3 − 2uv, 3v4 + uv2).

Para obtermos uma equação definindo o discriminante da equação do quarto grau,
procedemos à eliminação dos parâmetros u e v das expressões A = u,B = −4v3−2uv
e C = 3v4+uv2. Depois de tal eliminação obtemos a expressão ∆4 = 4A3B2+27B4−
16A4C+128A2C2−144AB2C−256C3 = 0, em outras palavras, a função F : R3 → R
dada por F (X,Y, Z) = 4X3Y 2+27Y 4−16X4Z+128X2Z2−144XY 2Z−256Z3 define
o discriminante da equação do quarto grau como F−1(0), portanto uma superf́ıcie
algébrica de grau cinco.

Figura 4. (a), (b)
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René Thom apelidou o discriminante da equação do quarto grau X4+AX2+BX+
C = 0 de rabo de andorinha, devido a forma sugestiva desta superf́ıcie (Figura 4
(a)).

Note que o discriminante da equação do quarto grau x4−x2 + bx+ c = 0, (Figura
1) considerada no primeiro exemplo, é a curva obtida como interseção do plano
A = −1 com a superf́ıcie ∆4 = 0.

7. Estratificação do discriminante

7.1. Equação do terceiro grau. O curva discriminante da equação do terceiro
grau é estratificada em duas partes associadas às partições (2, 1) e (3). Em outras
palavras, os coeficientes A e B coordenadas dos pontos da curva discriminante cor-
respondem às equações que possuem ráızes com multiplidade, a saber, uma raiz com
multiplicidade 2 e uma raiz simples para os coeficientes correspondentes à partição
(2, 1) e uma única raiz de multiplicidade 3 para os coeficientes A = B = 0, que
corresponde à partição (3) (Figura 3 (c)).

7.2. Equação do quarto grau. No caso n = 4, o discriminante é uma superf́ıcie
(com auto-interseção) no espaço tridimensional dos coeficientes da equação (Figura
4 (a)). Os tipos de ráızes, indexadas pelas partições do grau da equação induzem
uma estratificação do discriminante com cada estrato associado a uma das partições
(Figura 4 (b)).

Com efeito, inicialmente observemos que à partição (1, 1, 1, 1) correspondem três
componentes conexas do complementar do discriminante ∆4 = 0; isto é, o conjunto
dos coeficientes (A, B, C) para os quais a equação X4 +AX2 +BX +C = 0 possui 4
ráızes simples, todas reais ou todas complexas quando ∆4 < 0 ou duas reais simples
e duas complexas quando ∆4 > 0 (componente externa). Na componente em forma
de tetraedro encontramos os coeficientes das equações que possuem quatro ráızes
reais distintas. Correspondente à partição (2, 1, 1) temos o conjunto dos coeficientes
(A,B,C) pertencentes ao discriminante ∆4 = 0, para os quais a equação X4+AX2+
BX + C = 0 possui 3 ráızes, uma delas de multiplicidade 2 e as outras duas ráızes
são simples. Neste caso, dois tipos se apresentam, a saber, todas ráızes reais (na

fronteira da componente em forma de tetraedro) ou uma real e duas complexas. À
partição (2, 2) correspondem os coeficientes para os quais a equação possui 2 ráızes,
cada uma com multiplidade 2, portanto ou um par de ráızes reais duplas ou um
par de complexas duplas (parábola). A partição (3, 1) caracteriza os coeficientes
das equações que possuem 2 ráızes, uma com multiplidade 3 e a outra raiz simples,
portanto ambas reais (linhas cuspidais). Finalmente a partição (4) refere-se aos
coeficientes cuja equação de grau 4 possui uma única raiz de multiplicidade 4, ou
seja, todos os coeficientes são nulos e a equação se reduz a X4 = 0.

De fato, o estrato correspondente à partição (4) é {(A,B, C) : existe X0 com X4+
AX2 + BX + C = (X −X0)

4}. Expandindo (X −X0)
4 e igualando os coeficientes

obtemos: −4X0 = 0 coeficiente de X3, 6X0
2 = A, −4X0

3 = B e X0
4 = C, portanto

A = B = C = 0. Assim, o estrato associado à partição (4) reduz-se ao ponto (0, 0, 0).
O estrato correspondente à partição (3, 1) é {(A,B,C) : existem X0 e X1 com X4+

AX2 + BX + C = (X −X0)
3(X −X1)}. Expandindo (X −X0)

3(X −X1) e igua-
lando os coeficientes obtemos: X1 +3X0 = 0, coeficiente de X3, 3X0X1 +3X0

2 = A,
−3X0

2X1 −X0
3 = B e X0

3X1 = C, portanto A = −6X0
2, B = 8X0

3 e C = −3X0
4.
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Assim, o estrato associado à partição (3, 1) tem dimensão um. Analogamente, o es-
trato correspondente à partição (2, 2) é a curva parametrizada por (−2X0

2, 0, X0
4).

Portanto uma parábola no plano B = 0.
Note que esta parábola é dividida pelo estrato associado à partição (4) em dois

estratos, a saber, a parte correspondente às ráızes reais duplas e a parte correspon-
dente às ráızes camplexas duplas. Note também que este último é um estrato contido
no estrato tridimensional e não na aderência de outro estrato.

8. Observações finais

1) A função p(n) que fornece o número de partições do número n é conhecida
como formula de Hardy - Ramanujan [H].

Denotamos por [x] o maior inteiro menor que x, por (a, b) o maior divisor comum

de a e b e por ((x)) =

{
x− [x]− 1

2
,

0,
se x não é inteiro

se x é inteiro
Então o número de partições de um inteiro n é p(n) = [t(n)], sendo

t(n) = 1
π
√

2

[2
√

n/3]∑
k=1

√
kAk(n) d

dn
(

sinh(π
k

√
2
3
(n− 1

24
))√

n− 1
24

)

Ak(n) =
∑

0<h≤k,(h,k)=1

eπis(h,k)e−2πihn/k e s(h, k) =
k−1∑
j=1

j
k
((hj

k
)).

2) É uma coincidência curiosa que, sob o ponto de vista dos discriminantes,
a limitação do grau 4 para as equações serem solúveis por radicais coincide com
a limitação de nossa capacidade visual usual. De fato, para equações reduzidas
do segundo grau X2 − ∆2 = 0, o discriminante é um ponto na reta, no caso das
equações do terceiro grau uma curva (cuspidal) no plano e no caso extremo do quarto
grau, uma superf́ıcie (singular) no espaço tridimensional. Equações do quinto grau
possuem discriminante tridimensional no espaço de dimensão quatro, portanto de
dif́ıcil de concepção visual, como estamos acostumados. René Thom apelidou o
discriminante da equação do quinto grau X5 + AX3 + BX2 + CX + D = 0 de
borboleta. Quem sabe isso ajude o leitor numa posśıvel visualização.

3) Exemplo do quinto grau: O discriminante da equação reduzida do quinto
grau x5+ax3+bx2+cx+d = 0 é a hipersuperf́ıcie ∆5 = 825a2b2d2−4a3b2c2−27b4c2+
16a3b3d+2000ac2d2+108b5d+144ac3b2−900a3cd2−3750abd3+560a2c2bd−72a4cdb−
630acdb3 +2250b2d2c− 1600bdc3 +16a4c3− 128a2c4 +256c5 +3125d4 +108a5d2 = 0.

Considere a equação x5 − 5x3 + cx + d = 0. Neste caso o discriminante é obtido
como interseção de ∆5 = 0 com os hiperplanos a = −5 e b = 0, portanto uma curva
no plano de coordenadas c e d (Figura 5).

Para os coeficientes na região central limitada pela curva com 0 < c < 25
4

a
equação possui 5 ráızes reais distintas, sobre as quatro linhas limitando esta região
a equação possui 4 ráızes reais sendo uma de multiplicidade 2 e 3 ráızes simples e nos
3 pontos de auto-interseção, cujas coordenadas são (c, d) = (25

4
, 0), (5, 2) e (5,−2)

(3 vértices superiores desta região central) a equação possui 3 ráızes reais, sendo
duas de multiplicidade 2 e uma simples. Além disso, no vértice inferior (quando
c = 0 = d) a equação possui três ráızes reais, sendo uma de multiplicidade 3 e duas
simples. Assim, para esta equação particular do quinto grau temos contempladas as
seguintes partições (1, 1, 1, 1, 1), (2, 1, 1, 1), (2, 2, 1) e (3, 1, 1).
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