DISCRIMINACAO DE RAIZES

TON MARAR

1. INTRODUCAO

Encontrar os zeros de um polinomio de uma varidavel com coeficientes reais p(z) =
Apx™ + ap_ 12" 4 ..+ a1x + ag, ou em outras palavras, encontrar as rafzes de uma
equacao algébrica a,x™ + a,_12" ' + ... + a1z + ap = 0 é um problema cléssico da
matematical. O teorema fundamental da 4lgebra estabelece que polinémios de grau
n possuem n raizes®. Sob certas condicoes sobre os coeficientes pode-se garantir, por
exemplo, que tais raizes sao raizes reais e distintas.

O caso das equagoes algébricas do segundo grau é bem conhecido. As duas raizes
da equacao az®+bx+c = 0, dependem do valor A = b? —4ac; ou seja, os coeficientes
da equacao verificam a desigualdade A > 0 se, e somente se, as duas raizes sao
reais simples. Quando A = 0 temos uma unica raiz dupla; isto é, uma raiz com
multiplicidade 2.

No caso das equacoes de grau maior que 2, a discriminacao entre raizes reais e
complexas e a obtencao das multiplicidades das raizes através de condigoes sobre os
coeficientes nao é tao trivial.

Iniciaremos com a andlise de um exemplo de uma equacao do quarto grau. Em
seguida trataremos do caso geral das equacoes do terceiro e quarto graus.

A classificacao das raizes em reais e complexas (i.e. parte imagindria nao nula)
e a determinacao da multiplicidade corresponde uma subdivisao do espaco dos coe-
ficientes (estratificacdo). Quem determina tal subdivisdo é um conjunto do espago
dos coeficientes da equacao denominado discriminante, ou popularmente conhecido
como o delta da equagao. Descreveremos tal estratificacao no caso geral das equagoes
de grau n.

Faremos uma andlise detalhada das equacoes de grau quatro az* + bx® + cx? +
dx + e = 0. Este caso ¢é bastante rico em nimero de estratos; isto é, em nimero de
possiveis tipos de raizes.

Veremos também como o nimero de estratos esta relacionado ao nimero de
possiveis particoes do grau n da equacgao e que este cresce exponencialmente com
n, provocando assim uma dificuldade imensa no estudo do caso geral. Finalizamos
com um exemplo de uma equagao do quinto grau.

1o registro mais antigos do tratamento deste tipo de problema, particularmente no caso n = 2,
é atribuido ao matematico Abu Ja’far Muhammad ibn Musa al-Khwarizmi, que viveu em Bagda no
século VIII. Foi ele quem introduziu a palavra algebra e é do sobrenome dele que deriva a palavra
algarismo.

2Gauss, em sua tese de doutorado [G], apresenta a primeira demonstragdo do teorema funda-

mental, baseado em idéias de Euler. 1
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2. UM EXEMPLO

Considere a equagao do quarto grau

= 4br+ce=0

Sabemos do teorema fundamental da algebra que esta equacao possui 4 raizes.
Dependendo dos valores dos coeficientes b e ¢ algumas das raizes podem ser reais e
outras complexas. Em particular, para certos valores de b e ¢ podemos ter apenas
raizes reais. Neste caso, podem ocorrer:

(i) quatro raizes distintas, ditas raizes simples.

(i) duas raizes simples e uma raiz dupla; isto é, de multiplicidade 2.
(ili) duas raizes duplas distintas.

(iv) uma raiz simples e uma outra de multiplicidade 3.

Para este exemplo, a relagao entre os coeficientes b e ¢ que fornece informagcoes
sobre os diferentes tipos de raizes é A = 4b? — 27b* + 16¢ — 128¢? — 144b%c + 256¢3,
como demonstraremos em breve.

A curva algébrica A = 0 (Figura 1) divide o plano de coordenadas b e ¢ em trés
componentes conexas.

FiGura 1

Vamos denominar essas regioes como:

regigo A= {(b,c) : A < 0}, a regido "externa” a curva A =0

regiago B= {(b,c) : A > 0}, a regido "interna” a curva A =0

Subdividimos a regido B em duas:

regiao B1 é a componente limitada da regiago B e

regiao By é a componente nao limitada da regiao B.

Aos coeficientes b e ¢ da regido A correspondem as equacoes z* — 22 +br +c =0
que possuem duas raizes reais simples e duas complexas.

Aos coeficientes b e ¢ da regido B, correspondem as equacoes ¢ — 22 +bx+c =0
que possuem quatro raizes reais simples.

Aos coeficientes b e ¢ da regido By correspondem as equacoes x* — 22 +bx+c=0
que possuem quatro raizes complexas simples.

Aos coeficientes b e ¢ sobre a curva A = 0 correspondem trés tipos de equacoes
do quarto grau z* — 2% + bx + ¢ = 0. O primeiro tipo corresponde ao ponto de
auto-intersecao da curva A = 0; isto é, b = 0 e ¢ = }l. Neste caso, a equacao do
quarto grau correspondente é (22 — %)2 = 0; ou seja, temos duas raizes reais duplas.
Para os valores de b e ¢ que sao as coordenadas dos dois pontos cuspidais da curva
A = 0 correspondem equacoes com duas raizes reais sendo uma raiz simples e uma
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de multiplicidade 3. Aos pontos dos arcos da curva A = 0 entre os pontos cuspidais
e entre esses e o ponto de auto-intersecao correspondem equacoes z* — z? +bx +c =
0 que possuem tres raizes reais sendo uma raiz real de multiplicidade 2 e duas
raizes reais simples. Finalmente, aos pontos dos arcos da curva A = 0 que partem
do ponto de auto-intersecao correspondem as equagoes que possuem uma raiz real
de multiplicidade 2 e duas raizes complexas. Em outras palavras, podemos ter
2t — 22 +br+c = (v — 29)*(x — (u+ w)(x — (u—v)), com v # 0. De fato,
expandindo o lado direito da igualdade e comparando os coeficientes de cada lado
obtemos: —2x¢ — 2u = 0 (coeficiente de z3), —2u? + v? = —1 (coeficiente de z?),
2uv? = b e ut + u*v? = c. Por exemplo, quando b = ¢ = 2, A = 0 e a equacdo
2 — 22422 +2 = 0 possui as raizes 1414, 1 — ¢ além da raiz —1 de multiplicidade 2.

Na Figura 2 sao indicados os diversos tipos de equagoes nas diferentes regioes e
partes da curva A = 0.

FiGURrA 2

Em resumo, para a equacao do quarto grau z* — 22 + bx + ¢ = 0 descrevemos a
natureza das raizes através das seguintes condigoes sobre os coeficientes b e ¢

H 2 =224+ br+c=0 H bec H regiao H
H 4 reais simples H A>0 H B, H
I 4 complexas simples [A>0] B, |
| 2 reais simples e 2 complexas [| A <0 | A |
H 1 real dupla e duas reais simples H A=0 H bordo de B, H
H 1 real dupla e duas complexas H A=0 H bordo de Bo H
| 1real tripla e uma simples [[A=0]  cispides |
I 2 raizes reais duplas | A =0 [ auto-intersecao ||
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Na seqiiéncia estudaremos a equacao geral do quarto grau e a classificagao dos
diferentes tipos de raizes. Antes, porém aplicaremos uma transformacao nas equagoes
que reduz, sem perda de generalidade, a dimensao do espago de coeficientes.

3. FORMA REDUZIDA DAS EQUAQ@ES DE GRAU n

Consideremos a equacao algébrica geral de grau n
™ + ap_ 12"V + .+ a1 + ag = 0.

Sendo o grau da equagao igual a n, segue que o coeficiente a,, é nao nulo. Assim,
podemos dividir toda a equagcao por a,, e obter a chamada forma monica da equagao
geral de grau n,

2" 4 by 2" 4 4 b+ by = 0.

bn—1
n

Através da transformacao r = X — a equagao monica na nova variavel X nao

bnfl

apresentara o termo de grau n — 1. De fato, substituindo xr = X — na equacao
2"+ by 2™+ ..+ bix + by = 0, obtemos uma equacao em X da forma

X"+ Ay o X" 2+ 4+ A X+ A, =0,

sendo os coeficientes As dados pelos coeficientes b;s. Esta forma da equagao de grau
n é chamada forma reduzida. Como boo1 & real a natureza das rafzes da equacao
reduzida e da equacao original é a mesma. Obtendo-se as raizes da equagao reduzida,
obtém-se as raizes da equacgao geral através da transformacao inversa daquela que
leva a equagao geral para a forma reduzida.

Exemplo: A equacao 27 + 725 + 1 = 0 depois da transformacao z = X — 1 toma
a forma reduzida X7 — 21X° 4+ 70X* — 105X3 +84X2%2 — 35X +7 = 0.

4. O DISCRIMINANTE

O fato de uma equagao P,(X) = X" + A, 2 X" 2+ ...+ A1 X + Ay = 0 possuir
uma raiz Xy significa que podemos fatorar o termo (X — Xj) do polinomio P, (X);
isto é, a equagao pode ser escrita na forma (X — Xy)P,—1(X) = 0, sendo P;(X) um
polinomio de grau i. Ja o fato de X ser uma raiz de multiplicidade 2, significa que
podemos fatorar o termo (X — Xj)?, isto é, a equacao pode ser escrita na forma
(X — X0)?P,_»(X) = 0.

Raizes com multiplicidade maior ou igual a 2 serao chamadas raizes com multi-
plicidade.

A seguinte proposi¢ao fornece um modo pratico de se obter condi¢oes sobre os
coeficientes para detectar raizes com multiplicidade.

Proposicao: A equacio P,(X) = 0 possui raiz Xy com multiplicidade se, e
somente se, P,(Xo) =0 e sua derivada P)(X,) = 0.

Demonstragao: Se P, (X) = 0 possui raiz X, com multiplicidade, entao P, (X) =
(X — X0)2P,_2(X). Assim, P/ (X) = 2(X — Xo) P, 2(X) + (X — X()?P,_,(X). Por-
tanto, Xy anula ambos P,(X) e P.(X). Reciprocamente, se P,(Xy) = 0 entao
P,(X) = (X — Xo)P,_1(X), para algum polinémio P, ;(X) de grau n — 1. Logo,
P(X) = (X —X0)P,_{(X)+ P,-1(X). Se P/(Xy) = 0 entao P,_1(Xo) =0, e as-
sim podemos fatorar (X — Xy) de P,_1(X), isto é P,_1(X) = (X — Xo)P—2(X).
Portanto, P,(X) = (X — X0)?P,_2(X), que é o mesmo que dizer que X, é raiz com
multiplicidade da equagao P,(X) = 0.
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Exemplo: Considere P3(X) = X® + AX + B. Seja Xy = ¢ uma raiz com multi-
plicidade. Entdao t3 4+ At + B = 0 e 3t> + A = 0. Podemos escrever os coeficientes
A = —3t? e B = 2t3, como funcao de t. Variando-se ¢ € R obtemos o conjunto
das equacoes X? + AX + B = 0 que possuem raiz com multiplicidade; em outras
palavras, obtemos uma parametrizacao do conjunto de coeficientes das equacoes
reduzidas X* + AX + B = 0, que possuem raiz com multiplicidade (Figura 3 (a)).

Ficura 3. (a), (b), (c)

Definigao: O conjunto {(A,_2, Ap_3,..., A1, 4g) € R"!1: P,(X) = 0 tem raiz
com multiplicidade} é denominado discriminante da equacao reduzida P,(X) =
X"+ A, o X" 2+ .+ Az + Ay =0 de grau n.

Observagoes: 1) A cada ponto (A,_2, Ay_3, ..., A1, Ag) do discriminante fica as-
sociado um polinomio P,(X) e reciprocamente.

2) Para a equagao de grau 3, o discriminante é uma curva algébrica parametrizada
no R?. Em geral, o discriminante é a imagem de uma aplicacao R"? — R"~!. Um
dos n — 2 parametros corresponde a raiz com multiplicidade. Eliminando-se este
parametro obtemos uma equacao definindo o discriminante da equagao de grau n
que sera denotada por A, = 0.

5. INDEXAGAO DOS TIPOS DE RAIZES

Uma partigao de um ntmero natural n é uma decomposicoes da forma vy(n) =
(r1,72,...,rg), comr; € Ny > 7,01 e > r; = n. O nidmero k é chamado comprimento
da particao.

Podemos indexar as possiveis multiplicidades das raizes de uma equagao de grau n
através das parti¢goes do nimero n. De fato, dada uma parti¢ao y(n) = (r1,rs, ..., %)
do nuimero n, associamos a cada r; a multiplicidade de uma dada raiz da equagao
de grau n.

Assim, o problema de saber quantos tipos de raizes uma equacao do grau n possui,
reduz-se ao problema de saber quantas particoes o niimero n possui®. Por exemplo,
o nimero de partigdes do numero 2 é 2, a saber, (1,1) e (2). O que corresponde ao
fato de equacgoes de grau 2 possuirem duas raizes de multiplicidade 1 ou uma raiz de
multiplicidade 2. J& o nimero 3 possui 3 parti¢oes, a saber, (1,1,1),(2,1) e (3). Em
outras palavras, as equacgoes de grau 3 podem possuir trés raizes de multiplicidade
1, uma raiz de multiplicidade 2 e uma de multiplicidade 1 ou uma tnica raiz de mul-
tiplicidade 3. Se n = 4, v(4) pode ser uma das seguintes cinco parti¢oes (1,1,1,1),

3Parece um problema simples, porém sua solugao, magnificamente nao trivial, s foi obtida por
volta de 1920 por G. Hardy e S. Ramanujam (v. observagoes finais)
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(2,1,1), (2,2), (3,1) e (4). Se n = 5 teremos 7 parti¢oes possiveis. O niimero de
particoes de um numero n cresce exponencialmente com n.

O discriminante da equacao reduzida de grau n é um conjunto contido no espago
(n—1)—dimensional dos coeficientes da equagao, e que divide este espago em compo-
nentes conexas. Por sua vez o discriminante é subdividido em partes correspondentes
aos coeficientes cujas equacgoes possuem raizes de um dado tipo, que é indexado pelas
diversas particoes do grau da equacao. Esta subdivisao é chamada estratificacdo do
discriminante e cada parte, correspondente a uma das diversas particoes do grau da
equacao, é chamada estrato.

O comprimento k de uma dada parti¢cao y(n) = (rq,rs,...,rx) mede a dimensao
do correspondente estrato, visto como subvariedade do R,

Vimos que para uma equagao de grau n (sempre na forma reduzida) a dimensao
do discriminante é n — 2, uma hipersuperficie no R"!.

Proposicao: O estrato associado a uma parti¢ao y(n) = (r1,--- ,7x) de compri-
mento £ tem dimensao k — 1.

Demonstracao: Sejam X;, ¢ = 1,--- ,k as k raizes distintas do polinomio
Po(X)=X"+A, 2 X" 24+ A X + Ay de multiplicidades 7;, t = 1,-- - , k respec-

k
tivamente. Entao P,(X) = [[(X — X;)". Desta igualdade vem que os coeficientes
i=1
A, , An_s sao fungoes dos X1, - -+, X;. Contudo, expandindo o lado direito desta
igualdade obtemos que o coeficiente do termo X" ! é igual a —r; X; —ro Xy — -+ —
re Xy e portanto se anula. Logo, X = —:—;Xl - :—2X2 — = T’:lek,l. Assim,
cada coeficiente A;, j = 0,--- ,n — 2 ¢ fungao apenas de X, --- , Xj_;. Variando-se
continuamente Xy, ---, X;_1, obtem-se uma parametrizacao do estrato associado a
partigdo y(n) = (r1,- -+ ,rk). De fato, a aplicagao (X1, -+, Xp_1) — (Ao, -+, An_2)
¢ um homeomeorfismo sobre o estrato. Como a dimensao é um invariante topolégico
(Brouwer), obtemos o resultado.

Observacao: O espago dos coeficientes fica estratificado por subvariedades de
dimensoes que variam de zero até n — 1. Observe que, variando-se continuamente os
coeficientes da equacao, o tipo das raizes mantem-se o mesmo, exceto na passagem
de um estrato para outro. Cada estrato associado a uma particao de comprimento k
é um aberto em R*~! e na parte correspondente exclusivamente as raizes reais temos
que os estratos de dimensao k — 1 estao na aderéncia de um estrato de dimensao k.
O mesmo nao acontece na parte correspondente as raizes complexas (v. Figura 4

(b)).
6. GEOMETRIA DOS DISCRIMINANTES

Descreveremos em detalhes os discriminantes das equacoes de graus 3 e 4 no
espaco euclidiano.

6.1. Equagao do terceiro grau. A equacao cibica geral 2° + az? +bx +c =0 é
reduzida, através da transformagao z = X — 2, a equagao

X+ AX +B=0
sendo A = —%2+beB: Za® — zab + c.
O discriminante da equacgao é lugar geométrico dos coeficientes A e B onde a
equacao X3 + AX + B = 0 possui raizes com multiplicidade e portanto, pela
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proposicao, ¢ dado pelas equacoes X? + AX + B =0 e 3X? + A = 0. Substituindo
A = —3X? na equacao obtém-se B = 2X3.

Eliminando-se X de A = —3X? e B = 2X? obtemos uma equacao definindo o
discriminante, a saber, Ag = 443 4 2782 = (.

No espaco dos coeficientes da equacao X?® + AX + B = 0; isto é no plano 0AB,
essa expressao representa uma curva cuspidal. Esta curva decompoe o espaco dos
coeficientes em duas componentes conexas. Uma delas 443 + 2782 < 0 corresponde
aos coeficientes cujas equacoes possuem 3 raizes reais distintas, enquanto 443 +
27B? > ( caracterizam as equagoes que possuem raizes complexas (Figura 3 (b)).

6.2. Equacao do quatro grau. A equacao quértica geral z*+ax®+bx?+cx+d =0

¢ reduzida, através da transformagao x = X — ¢, a equagao

X4+ AX?2+ BX +C =0.

O discriminante desta equacao é um subconjunto do espaco tridimensional, cujas
coordenadas sao todos os possiveis valores dos coeficientes A, B e C, dados pelo
anulamento de Py(X) = X* + AX? + BX + C e pelo anulamento de sua derivada
4X3 + 2AX + B. Ou seja, o discriminante é o conjunto {(A, B,C) € R?® : X* +
AX? + BX +C =0 e 4X? + 2AX + B = 0} que também pode ser escrito como
{(A,B,C;X)eR*: B=—-4X3-2AX eC = —X*— AX?— BX}. Esse subconjunto
do R* ¢ portanto a intersecao de duas hipersuperficies algébricas no R*.

Podemos parametrizé-lo tomando parametros « e v no plano R?. Deste modo, o
discriminante ¢ a superficie do R?® imagem da aplicacdo 6 : R? — R?, dada por
§(u,v) = (u, —4v3 — 2uv, 3v* + wv?).

Para obtermos uma equacao definindo o discriminante da equacao do quarto grau,
procedemos a eliminacao dos parametros u e v das expressoes A = u, B = —4v®—2uv
e C = 3v*+uv?. Depois de tal eliminacdo obtemos a expressao Ay = 4A3B? 42784 —
16 A*C+128A%2C?%—144AB%*C—256C? = 0, em outras palavras, a funcao F' : R® — R
dada por F(X,Y, Z) = 4X3Y? 427V~ 16 X" Z+128 X272~ 144X Y2 Z —256 73 define
o discriminante da equacdo do quarto grau como F~!(0), portanto uma superficie
algébrica de grau cinco.

I T TR
] .
Trrry

Ficura 4. (a), (b)
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René Thom apelidou o discriminante da equacao do quarto grau X*+AX?%4BX +
C' = 0 de rabo de andorinha, devido a forma sugestiva desta superficie (Figura 4
(a).

Note que o discriminante da equagao do quarto grau z* — 2% +bx + ¢ = 0, (Figura
1) considerada no primeiro exemplo, é a curva obtida como interse¢cao do plano
A = —1 com a superficie Ay = 0.

7. ESTRATIFICACAO DO DISCRIMINANTE

7.1. Equacao do terceiro grau. O curva discriminante da equacao do terceiro
grau ¢ estratificada em duas partes associadas as parti¢oes (2,1) e (3). Em outras
palavras, os coeficientes A e B coordenadas dos pontos da curva discriminante cor-
respondem as equagoes que possuem raizes com multiplidade, a saber, uma raiz com
multiplicidade 2 e uma raiz simples para os coeficientes correspondentes a particao
(2,1) e uma unica raiz de multiplicidade 3 para os coeficientes A = B = 0, que
corresponde a parti¢ao (3) (Figura 3 (c)).

7.2. Equagao do quarto grau. No caso n = 4, o discriminante é uma superficie
(com auto-intersegao) no espago tridimensional dos coeficientes da equagao (Figura
4 (a)). Os tipos de raizes, indexadas pelas partigoes do grau da equagdo induzem
uma estratificacao do discriminante com cada estrato associado a uma das particoes
(Figura 4 (b)).

Com efeito, inicialmente observemos que a parti¢ao (1,1, 1,1) correspondem trés
componentes conexas do complementar do discriminante A4 = 0; isto é, o conjunto
dos coeficientes (A, B, C') para os quais a equagao X*+ AX?+ BX +C = 0 possui 4
raizes simples, todas reais ou todas complexas quando A4 < 0 ou duas reais simples
e duas complexas quando A4 > 0 (componente externa). Na componente em forma
de tetraedro encontramos os coeficientes das equagoes que possuem quatro raizes
reais distintas. Correspondente a partigao (2,1, 1) temos o conjunto dos coeficientes
(A, B, C) pertencentes ao discriminante A, = 0, para os quais a equacao X*+AX2+
BX + C' = 0 possui 3 raizes, uma delas de multiplicidade 2 e as outras duas raizes
sao simples. Neste caso, dois tipos se apresentam, a saber, todas raizes reais (na
fronteira da componente em forma de tetraedro) ou uma real e duas complexas. A
partigao (2,2) correspondem os coeficientes para os quais a equagao possui 2 raizes,
cada uma com multiplidade 2, portanto ou um par de raizes reais duplas ou um
par de complexas duplas (pardbola). A particao (3,1) caracteriza os coeficientes
das equacoes que possuem 2 raizes, uma com multiplidade 3 e a outra raiz simples,
portanto ambas reais (linhas cuspidais). Finalmente a particao (4) refere-se aos
coeficientes cuja equagao de grau 4 possui uma unica raiz de multiplicidade 4, ou
seja, todos os coeficientes sao nulos e a equacao se reduz a X4 = 0.

De fato, o estrato correspondente & particao (4) é {(4, B, C) : existe Xo com X*+
AX? 4+ BX + C = (X — Xp)*}. Expandindo (X — X;)* e igualando os coeficientes
obtemos: —4X, = 0 coeficiente de X3, 6X> = A, —4X,> = B e X! = C, portanto
A = B = C = 0. Assim, o estrato associado a partigao (4) reduz-se ao ponto (0,0, 0).

O estrato correspondente & partigao (3,1) é {(A, B, C) : existem Xy e X; com X4+
AX? + BX +C = (X — X)3(X — X})}. Expandindo (X — X()3(X — X)) e igua-
lando os coeficientes obtemos: X 43X, = 0, coeficiente de X3, 3XoX; +3X,* = A,
—3X02X: — Xo® = B e Xo®X, = C, portanto A = —6X,%, B =8X,> e C = —3X,".
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Assim, o estrato associado a parti¢ao (3,1) tem dimensao um. Analogamente, o es-
trato correspondente & particdo (2,2) é a curva parametrizada por (—2X,?, 0, X?).
Portanto uma parabola no plano B = 0.

Note que esta parabola é dividida pelo estrato associado a parti¢ao (4) em dois
estratos, a saber, a parte correspondente as raizes reais duplas e a parte correspon-
dente as raizes camplexas duplas. Note também que este tltimo é um estrato contido
no estrato tridimensional e nao na aderéncia de outro estrato.

8. OBSERVAQOES FINAIS

1) A fungao p(n) que fornece o nimero de partigdes do nimero n é conhecida
como formula de Hardy - Ramanujan [H].

Denotamos por [z] o maior inteiro menor que x, por (a,b) o maior divisor comum
x—[z] — %, se x ndo é inteiro

de aebepor ((x)) = 2’

0, se x é inteiro
Entao o nimero de partigoes de um inteiro n é p(n) = [t(n)], sendo
[2v/n/3] N .
t(n) = - VEAL(n)4 (2 (v 5(n—37))
( ) 71‘\/5 kzzzl k( )dn( \/n—i )
k-1
0<h<k,(h,k)=1 =

2) E uma coincidéncia curiosa que, sob o ponto de vista dos discriminantes,
a limitacao do grau 4 para as equagoes serem soliveis por radicais coincide com
a limitacao de nossa capacidade visual usual. De fato, para equacoes reduzidas
do segundo grau X? — A, = 0, o discriminante é um ponto na reta, no caso das
equagoes do terceiro grau uma curva (cuspidal) no plano e no caso extremo do quarto
grau, uma superficie (singular) no espago tridimensional. Equagées do quinto grau
possuem discriminante tridimensional no espaco de dimensao quatro, portanto de
dificil de concepcao visual, como estamos acostumados. René Thom apelidou o
discriminante da equacao do quinto grau X° + AX3 + BX? + CX + D = 0 de
borboleta. Quem sabe isso ajude o leitor numa possivel visualizacao.

3) Exemplo do quinto grau: O discriminante da equacao reduzida do quinto
grau 2°+ax®4+bx?4cx+d = 0 é a hipersuperficie As = 825a2b%d? —4a3b*c® —27b* 2 +
16a3b*d+2000ac?d?4-108b°d+144acb? —900a3 cd? — 3750abd® +560a%c2bd — 72a* cdb—
630acdb® + 22500%d%c — 1600bdc® 4 16a*c® — 128ac* 4 256¢° + 3125d* + 108a°d? = 0.

Considere a equacao z° — 523 + cx + d = 0. Neste caso o discriminante é obtido

como intersecao de Ay = 0 com os hiperplanos a = —5 e b = 0, portanto uma curva
no plano de coordenadas ¢ e d (Figura 5).
Para os coeficientes na regiao central limitada pela curva com 0 < ¢ < % a

equacao possui H raizes reais distintas, sobre as quatro linhas limitando esta regiao
a equacao possui 4 raizes reais sendo uma de multiplicidade 2 e 3 raizes simples e nos
3 pontos de auto-interse¢do, cujas coordenadas sao (¢,d) = (2,0),(5,2) e (5, —2)
(3 vértices superiores desta regido central) a equacdo possui 3 raizes reais, sendo
duas de multiplicidade 2 e uma simples. Além disso, no vértice inferior (quando
¢ =0 =d) a equagao possui trés raizes reais, sendo uma de multiplicidade 3 e duas
simples. Assim, para esta equacao particular do quinto grau temos contempladas as
seguintes partigoes (1,1,1,1,1), (2,1,1,1), (2,2,1) e (3,1,1).
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