PERIODIC TRAJECTORY TRACKING FOR CONTROL-AFFINE DRIFTLESS
SYSTEMS ON COMPACT LIE GROUPS

GABRIEL ARAUJO

ABSTRACT. We treat the periodic trajectory tracking problem: given a periodic trajectory of a control-
affine, left-invariant driftless system in a compact and connected Lie group G and an initial condition in
G, find another trajectory of the system satisfying the initial condition given and that asymptotically
tracks the periodic trajectory. We solve this problem locally (for initial conditions in a neighborhood of
some point of the periodic trajectory) when G is semisimple and the system is Lie-determined (i.e. con-
trollable), and only for a class of periodic trajectories (which we call regular). Finally we present a set
of sufficient conditions to ensure the existence of such trajectories.

1. INTRODUCTION

The present work addresses the problem of periodic trajectory tracking for control-affine driftless
systems, specifically in the case when the ambient manifold is a Lie group G (which we will further assume
to be compact and connected) and the system is left-invariant (see below). It is heavily inspired by [7]
(see also its first author’s PhD thesis [6]), in which the problem is studied in SU(n) aiming applications
to Quantum Computing, and can indeed be considered as a (tentative) extension of their methods to
abstract Lie groups. We do not, however, rely on any of their results or even notations directly, but
rather on their ideas; nor we aim at any applications whatsoever.

In Section 2 we describe the periodic trajectory tracking problem (PTTP) for our system (2.1) and
reduce it to the problem of stabilization of an auxiliary system (2.3). The main conclusion here is that
if the identity element of e of G is a critical point, and moreover a local attractor of this new system,
then one can solve the PTTP locally i.e. for initial conditions close to the reference periodic trajectory.
This leads us to investigate some aspects of the stability of time-dependent vector fields on compact
Riemannian manifolds, which we do in Section 3, and then apply our conclusions to characterize the
w-limit points of an auxiliary vector field W associated to (2.3): they are precisely the critical points
of W. We also conclude that every central point of G is critical to W, so a necessary condition for our
approach to work is that G is semisimple e.g. SU(n).

In Section 4 we restrict our attention to a class of periodic trajectories, which we call regular, for
which an even simpler characterization of the critical points of the associated W is achieved: they are
the critical points of a Lyapunov-like function V; and moreover central points of G are non-degenerate
critical points of V provided G is semisimple. A little more effort then allows us to conclude that, in
that case, the latter points are also local attractors of W, and since e is obviously central we solve the
PTTP locally. We close this work (Section 5) discussing a condition (5.1) that ensures the existence of
regular periodic trajectories, including a more or less concrete construction of them, as well as providing
examples in which such condition holds.

We refer the reader to [5] and [1] for the basics of Control Theory on Lie groups. For more sophisticate
aspects of Lie group theory — notably some results regarding the adjoint representation of G, to which we
are naturally led by the change of variables that produces the auxiliary system (2.3) and that stalks us
until the end, revealing how semisimplicity is an essential feature of the problem — the reader is referred
to a less introductory text on the subject e.g. [3]; more paramount results and definitions, as well as
possibly non-standard notation, are also briefly explained in the footnotes.
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2. THE PERIODIC TRAJECTORY TRACKING PROBLEM

Let G be a compact, connected Lie group, whose Lie algebra of left-invariant vector fields we denote
by g. Given Xy,..., X,, € g we consider the left-invariant driftless system

(2.1) X' = upXi(x)
k=1

where uq,...,u,; € R are controls. We shall work exclusively with smooth trajectories: (m + 1)-uples
(X, U1, ..., Up) Where ug, ..., Uy, : R — R are smooth (i.e. C*°) functions — the controls —and x : R — G
is an integral curve of the time-dependent vector field

X(tx) = up(t) Xp(2).
k=1

The trajectory is said to be T-periodic (T > 0) provided x,uy, ..., u,, are T-periodic functions.
For simplicity, we shall assume that I' = span{ Xy, ..., X,,} is bracket-generating i.e. the Lie algebra
generated by I' is g, and hence I" has a single orbit thanks to Sussmann’s Theorem.

Definition 2.1. The periodic trajectory tracking problem (PTTP) for system (2.1) is stated as follows:
given a T-periodic reference trajectory (x,,ul,...,ul ) and an initial state g € G, find another (non-
periodic) trajectory (x,us, ..., un) of (2.1) such that x(0) = z¢ and!

. ) -1 _
(2.2) tl}inoo x(t) - x,(t) e.
We call x - x ! the tracking error between the two trajectories.
Remark 2.2. When G is a subgroup of GL(n,F) (where F is R or C), and x,y : R — G are curves then
. -1 _ . o _
Jim x(8)-y(t)" = e+ lim [Ix(t) -y(@)]| =0

where || - || is any matrix norm. This is what motivates our definition of the tracking error, and we thus
interpret condition (2.2) as the curve x tracking the reference curve x,.

Consider the following asymptotic controllability problem (also sometimes called the T-sampling sta-
bilization problem, see for instance [3]) for system (2.1):
Given an initial state xy € G and a target state T, € G, find a trajectory (x,u1,. .., Um)

of (2.1) such that, for some T > 0, we have

lim x(kT) = Zoo.
k— 400

It is clear that this problem can be solved if we are able to find

(1) (xp,ul,...,u" ) a periodic reference trajectory for (2.1) with x,(0) = z and
(2) (x,uq,...,unm) a trajectory of (2.1) that tracks (x,,uj,...,ul,) i.e. solving the PTTP.
While the second question above is the main subject of the present paper, we shall discuss the first one
— the existence of periodic reference trajectories passing through arbitrary points of G — in Section 5.
The very definition of the tracking error suggests that we can reduce the PTTP associated to a given
reference trajectory (x,,uj,...,ul, ) to a stabilization problem, via a change of coordinates that we
describe below. From now on we denote

Zoo = %,(0).

le: the identity element of G.
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Proposition 2.3. Assume that (z,vy,...,v,,) is a trajectory of the system?
m

(2.3) 7z = v Ad(x,) X(2)
k=1

such that z(0) = x¢ - 23} and limy_, 4 z(t) = e. If we define

(2.4) X =1z X,

(2.5) up =vp +up, ke{l,...,m}

then (X,u1, ..., Un) is a trajectory of (2.1) solving the PTTP i.e. x(0) = x¢ and limy_, 4o x(t) - x,-(t)"1 =
e.

By (2.3) we mean, of course,
ka H)[Ad(x,(8) X3](2(t)), VteR.

We shall often omit the time parameter ¢ in order to lighten the notation. For the same reason we shall
frequently omit parentheses whenever this does not introduce ambiguities: for instance, given z,y € G
and X € ¢

Ad(z)X (y) means [Ad(z)X](y)
which is a vector in T,G.

Proof of Proposition 2.3. It is essentially based on the following simple fact — a kind of Leibniz rule for
curves on G — which the reader can easily verify: given x1,x5 : R — G two smooth curves we have®

(x1 - x2)" = dRx, X} + dLy, x5.
Let (x,u1, ..., Uny) be defined by (2.4)-(2.5). Then

X' =(z-%X,) = dRy, 7 + dL,X, = dRy, Y vk Ad(x,) Xy (2) + dL; > uf X (x,)
k=1 k=1

where the first sum can be rewritten as

dRy kaAd %) Xi(z deTka X(2)
k=1

= deT Z deRx;le (erz)
k=1

= deTde:l Z v Xk(2z - X;)

k=1
= v Xi(x

k=1

while the second is
AL, Y upXp(x,) Z uhd L, X5 (%) Z up X (Lax,) = Y uf Xi(x)
k=1 k=1 k=1 k=1

Summing it up and using (2.5) we conclude that x solves (2.1). Moreover

x(0) = z(0) - x,(0) = 20 - 7} - 700 = 70

2The adjoint map Ad : G — GL(g) is the group homomorphism that associates to each z € G an invertible linear map
Ad(x) : g — g as follows: if I stands for the map y € G +— z -y -2~ € G then Ad(z) corresponds to d(Ig)e : TeG — TeG
via the canonical isomorphism g = T.G.

3For z € G we denote by La (resp. Rz) the left (resp. right) translation mapy € G — z-y € G (resp. y € G — y-x € G).
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and
. . -1 _ _
t_l}TOO x(t) - %, () t_lgrnooz(t) e.
(|
Thanks to Proposition 2.3, in order to solve the PTTP our main concern shall be, from now on, to find
a trajectory (z,vi,...,vm) of system (2.3) satisfying z(0) = xo - 23! and lim;_ 4, z(t) = e: the solution
(X,U1, ..., Up) of the PTTP for (2.1) can thus be recovered from our knowledge of (z,v1,...,v,) and
(et ).
We define a Lyapunov-like function V : G — R by
(2.6) V(x) = trace Ad(z), =z € G,
and an auziliary vector field W : R x G — TG by
(2.7) W(t,w) = ap(t,w) Ad(x, (£)) X (w), (t,w) €R x G,
k=1
where
(2.8) ar(t,w) = dV (Ad(x,(t)) Xk (w)), ke{l,...,m}.

Notice that W is a time-dependent vector field which is not left-invariant. The main reason for introducing
it is the following: if w : R — G is one of its integral curves and if we define

(2.9) ve(t) = ar(t,w(t)), teR, ke{l,...,m},

then (w,v1,...,v,) is a trajectory of our modified system (2.3). Moreover, let us denote by Cy the set
of critical points of W, that is:

Cw ={weG; W(t,w)=0, Vt € R}.

Recall that one such critical point w € Cy is a local attractor if there exists U C G a neighborhood of
w such that given any initial condition (¢g,wp) € R x U and w : R — G the unique integral curve of W
satisfying w(tg) = wo then lim;_, o w(t) = w.

Ezample (Systems on matrix groups). Suppose that G is a compact subgroup of GL(n,F), where F is R
or C. Then we may rewrite system (2.1) explicitly in matrix form:

x = Zuka(x) = Zuka(x ce) = ZudexXk(e) = Zukx X =x- (Z uka> .
k=1 k=1 k=1

k=1 k=1
Notice that since we are dealing with left-invariant vector fields (instead of right-invariant ones), elements
in g C gl(n,F) act on G by multiplication on the right (as matrices). Moreover, in this case, given X € g
we have, as matrices [3, pp. 79]:

Adx) X =z-X 27!, Vred.

Hence by computations similar to the ones above we may write our modified system (2.3) as

m
7 =z %, - Ekak -XT_1
k=1

as well as the auxiliary vector field (2.7)

W(ta w) =w- Xr(t) : (in: ak(ta w)Xk> : Xr(t)il
k=1

where ay(t,w) = dV (w - x,(t) - Xi - x,(¢)71).

The next result tells us that if the identity element of GG is a local attractor of the auxiliary vector
field W then we can solve the PTTP locally near the target state xo, = x,-(0), and also provides a recipe
to obtain the tracking trajectory (x,ui, ..., uUnm).
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Proposition 2.4. Suppose that e € Cy and is a local attractor for W. Then there exists Uy, C G a
neighborhood of x~ enjoying the following property: for every xo € Uy there exists (X,u1,...,Upn) a
trajectory of (2.1) such that x(0) = x¢ and lim;_, ;oo x(¢) - x,.(t)"! = e. The trajectory (X,u1, ..., Un)

can be obtained as follows: for w : R — G the unique integral curve of W satisfying w(0) = zo - v},

define

x(t) = w(t) - x,(t),
up(t) = ag(t,w(t)) + ugp(t), ke{l,...,m}.

Proof. Let U C G be an attractive neighborhood of e. Then Uy, = U - x4 is clearly a neighborhood

of Zoo, and if 19 € Uy then zg - 2} € U, hence limy_, o W(t) = e. If v1,...,v,, are as in (2.9) then
(W,v1,...,0y) is a trajectory of the modified system (2.3), so the conclusion follows from Proposition 2.3.
O

3. SOME RESULTS ON STABILITY

In this section we shall depart a little from the original setting for the PTTP and establish some
technical results on the stability of time-dependent vector fields that will be needed in the next sections.
Since the group structure here plays no role, we shall take a step back and work in the more general
framework of smooth manifolds.

Remark 3.1. As pointed out by H. B. Silveira in personal communication, our approach in this section
(see especially Proposition 3.6) holds some connections with the periodic version of LaSalle’s Invariance
Principle [4] (for its use in a similar context see [8]). The proofs we present here are, nevertheless,
self-contained.

Let M be a smooth manifold, which for simplicity we assume to be compact, and X : R x M — TM
a time-dependent vector field. Recall that given (tg,z¢) € R x M its w-limit set, wx (to, zo), is the set
of all x € M enjoying the following property: there exists an increasing sequence t,, — +o0o such that
x(t,) — x, where x : R — M is the unique integral curve of X satisfying x(to) = xg. Of course the
compactness of M ensures that the w-limit sets of X are never empty.

Definition 3.2. A continuous function V : M — R is said to be non-decreasing along X if for every
integral curve x : R — M of X the function V o x is non-decreasing.

For instance, if V € C°°(M) satisfies dV (X (¢,2)) > 0 everywhere then clearly V is non-decreasing
along X.

Proposition 3.3. Let V : M — R be continuous and non-decreasing along X. Then V is constant on
wx (to, zo) for any (to,x0) € R x M.

Proof. Let x : M — R be the unique integral curve of X satisfying x(tg) = xo. For j = 1,2 let
xj € wx(to, o) and take increasing sequences {t} },cn, tJ, — +o00, such that x(t},) — x; as n — +o0.
By continuity, V (x(#/,)) — V(z;) and since V o x is non-decreasing we must have

V(x(t,)) < V(zj), ¥neN, j=1,2.

We first extract a subsequence {t2 }ren of {t2}nen with the property that ¢, < t2 for every k € N:
again, since V' is non-decreasing along X one gets

Vi(x(t}) < V(x(t3,)) < V(zz), VkeN.

By letting k — 400 in the left-hand side of the inequality above we conclude that V(z1) < V(z2), and
hence the equality holds. O

Corollary 3.4. If V: M — R be continuous and non-decreasing along X then

, ligl V(x(t)) =V(x), Ve wx(to, o),

where x : M — R be the unique integral curve of X satisfying x(to) = x¢.
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Proof. Tt suffices to prove that any increasing sequence {t,}nen, tn — +00, admits a subsequence
{tn, }ken such that V(x(t,,)) — V(z) as k — +oo. And indeed, by compactness of M there exist
{tn, }ren subsequence of {t, }nen and y € M such that x(t,, ) — y, and by continuity V (x(t,,)) — V(y),
as k — —+o00. Since obviously y € wx (to,xo) we have V() = V(y) by the previous proposition, and the
conclusion follows. |

The last two results in this section do not assume compactness of M. We do, however, endow it with
a Riemannian metric: below we denote by || - || the induced norm on each tangent space.

Lemma 3.5. Let x: R — M be a smooth curve such that
. p _
i [X(0)] = 0
and {tn}nen be an increasing sequence such that t, — +oo and x(t,) = © € M as n — +oo. Then

lim x(t,+¢€) =z, VeecR.

n—-+oo

Proof. We may assume w.l.o.g. that M is connected, and let d : M x M — R be the distance function
on M induced by the Riemannian metric*: we then must prove that

lirf d(x(t, +€),2) =0

whatever € € R. If we denote by I(a,b) C R the closed interval with endpoints a,b € R then by definition

of d we have
/ 1%/ (#)]|dt| < ( sup IIX'(t)H) le|
I(tn,tn+e) tEI(tn,tn+e)

which, we claim, goes to zero as n — +o0. Indeed, given § > 0 there exists R > 0 such that ||x'(t)]] <
for every t > R. Moreover, since t,, — +00 there exists ng € N such that

d(x(tn +€),x(t,)) <

n>ng = max{t,,t, +€} >R=  sup [x'(¢)]| <
tel(tn,tnte)

thus proving our claim. Now for every n € N
d(x(ty, +€),z) < dx(tn +€),x(tn)) + d(x(tn),x) — 0
since both terms go to zero. (]

Proposition 3.6. Let x : R — M be a smooth curve, {t,}nen an increasing sequence and © € M as
in Lemma 8.5. Let also f : R x M — R be continuous, T-periodic (for some T > 0) and such that
lims— 4 oo f(¢,%(t)) = 0. Then

f(s,z) =0, VseR.
Proof. Let s € R. For each n € N select [, € Z such that

Sp =tn —1,T €[0,T)
hence the sequence {s;, }nen admits a convergent subsequence, say

lim s, =6 € 0,7
G sn, =0 €[0,7]

We define
Spp = Snp —0+s
tr, =t —0+s=sn, +1n,T—0+s=s, +1,T.
for each k € N, so clearly s}, — s. Applying Lemma 3.5 with e = —0 + s one gets
x(ty,,) = X(tn, +€) — .

Since f is continuous and T-periodic we have
Floa) = Tim f(s5,x(6,)) = T f(t, — L, Tox(t,)) = T £, x(,)

41.e. the distance between two given points is the infimum of the lengths of all piecewise smooth curves connecting them.
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which is zero thanks to our last hypothesis on f and the fact that ¢}, — +o0. O
Now back to the setup of Section 2, we use our results above to prove:

Theorem 3.7. Let (tg,wp) € R x G. If w € wy (to,wp) then
ar(t,w) =0, VteR, Vke{l,...,m}.
In particular, every w-limit point is a critical point of W.

Its proof depends on some auxiliary results that we prove below. Before we go on, however, let us
make a small digression about its content.

Remark 3.8 (A note on limit sets). It is certain that any critical point of W is also an w-limit point of W,
for given x € Cy we have that the constant curve x = z is an integral curve of W, hence wy (¢, x) = {z}
for every t € R. What Theorem 3.7 claims is simply that these are all the w-limit points of W i.e. there
are no other, more exotic, limit points of W (say, attractive periodic integral curves, for instance): we
are indeed claiming that

{w-limit points of W} = {critical points of W}.

A similar analysis can be carried out for the a-limit points of W — which, however, we will not do since
it is not relevant for our current purposes. Recall that given (g, xg) € R x G its a-limit set, aw (to, zo),
is the set of all z € G such that there exists a decreasing sequence t,, — —oo such that x(¢,) — x, where
x : R — @G is the unique integral curve of W satisfying x(t9) = xo; moreover, we call a point z € G
an a-limit point of W if x € aw (to,xo) for some (tg,z9) € R x G. The arguments below, with suitable
modifications, will likely show that these are also critical points of W (again, critical points of W are
certainly a-limit points of W, and the arguments below prove that no other a-limit points exist).

The reader must keep in mind that nothing prevents a point x € G from being simultaneously an
a-limit point and an w-limit point of W e.g. if € Cyy, and the conclusion one will reach is that actually

(3.1) {a-limit points of W} = {critical points of W} = {w-limit points of W}.

Back to our main line of reasoning, first of all we must obtain a more convenient expression for the
functions ay, defined in (2.8).

Lemma 3.9. For (z,v) € TG we have®

(3.2) dV,v = trace {Ad(x) - ad(dL,-1v)}.
Also, for each k € {1,...,m}:
(3.3) ax(t, w) = trace {Ad(w) - ad (Ad (x,(t)) Xx)}

for (t,w) e R x G.
Proof. We start by showing that
(3.4) dAd, v =Ad(x) -ad(dL,-1v), V(z,v) € TG.

Indeed, notice that dL,-1v € T.G, which we then identify with an element of g, thus making sense
of (3.4). We consider the map F = AdoL, : G — GL(g): by the chain rule we have, on the one hand,

dAd, v =dF.dL,-1v.
On the other hand, we can write
F(y) = Ad(z-y) = Ad(z) - Ad(y), y€eG,
i.,e. F'= Ao Ad where
A :oglle) —  al(g)
T +— Ad(z)-T

5Given X € g the adjoint map ad(X) : g — g is defined by Y € g+ [X,Y] € g. By means of the canonical isomorphism
g = TG it makes perfect sense to write ad(v) for v € T.G — as we do often throughout the text — which we regard as a linear
map T.G — T.G. In that sense, ad : T.G — gl(T.G) is precisely the differential of the adjoint map Ad : G — GL(T.G) at
e € G [3, Proposition 1.91].
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is a linear map: for £ € T.G we have again by the chain rule
dFe = dApqe)d Ade € = A(ad(§)) = Ad(x) - ad(§)
which for £ = dL,-1v proves (3.4) thanks to our previous conclusions.
Now, recalling that the map trace : gl(g) — R is linear and by definition V' = trace o Ad, identity (3.2)

follows immediately from (3.4) after a third application of the chain rule.
To conclude, it follows from the definition of aj and from (3.2) that

ap(t,w) = dV(Ad(x,) X (w)
= trace {Ad(w) - ad (dL,-1 Ad(x,) Xk (w))}
= trace {Ad(w) - ad (Ad(x,)Xx(e))}
= trace {Ad(w) - ad (Ad(x,)X%)}
where we used that Ad (x,(¢)) X is left-invariant for all ¢ € R. O

We can now elucidate a couple of questions raised by Proposition 2.4.

Corollary 3.10. Every® w € Z(G) is a critical point of the auxiliary vector field W. However, if the
identity element is a local attractor of W then G must be semisimple.

Proof. Since Z(G) = ker Ad we have Ad(w) = idy, and then for each k € {1,...,m}
ar(t,w) = trace {Ad(w) - ad (Ad(x,) X))} = tracead (Ad(x,)Xx) =0

for every ¢ € R since ad(X) is traceless” for all X € g. By definition of W we have then W (t,w) = 0 for
all t € Ri.e. wis a critical point.

In particular e € Cy. If G were not semisimple then Z(G) would be a Lie subgroup of G of positive
dimension, hence any neighborhood of e would contain infinitely many points in Z(G). Since Z(G) C Cw
this proves that e would not be an isolated point of Cyy, even less a local attractor. O

The next technical remark will also be needed in Section 5. We define

m
(3.5) X, = uiX;
j=1
where u7,...,u], are the controls of our reference trajectory of system (2.1). We will consider X, both

as a time-dependent vector field on G — of which x,. is an integral curve — and as a smooth curve in g.

Lemma 3.11. Let A : R — g be any smooth curve and define A : R — g by
A = Ad(x,)A°.
Then its n-th derivative is given by
A = Ad(x,)A"
where A™ : R — g is defined inductively by
A" = (A" +ad(X,)A", neN.
Proof. Using the identity Ad(x,)" = Ad(x,) - ad(X,), which in turn follows easily from (3.4), we have
(Ad(x,)A™)" = Ad(x,)'A"™ + Ad(x,)(A") = Ad(x,) ad(X,)A™ + Ad(x,)(A")" = Ad(x,)A" T
O

Proposition 3.12. Let w : R — G be an integral curve of W. For each k € {1,...,m} the function
b : R — R defined by
d
brp(t) = —ag (t, w(t
(1) = Lo (i)
1s bounded.
6Z(G): the center of G i.e. the subgroup of all z € G such that z -y =y - x for every y € G. Since G is compact, it is

semisimple if and only if Z(G) is discrete [3, Corollary 4.25].
7See footnote 8.
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Proof. We shall write down an explicit expression for by, which boils down to computing the partial
derivatives of ay since

_ dax , Do

A T
First, since Ad(z) : g — g is a Lie algebra homomorphism for each x € G, it follows easily that
(3.6) ad (Ad(z)X) = Ad(z) - ad(X) - Ad(z)*

for every X € g (just apply both sides to an arbitrary Y € g). Now, by (3.3) we have that ax(t,w) =
trace {Ad(w) - ad (A\)} where A = Ad(x, )Xk, hence
% = trace {Ad(w) - ad (\')} = trace {Ad(w) - Ad(x,) - ad (ad(X,) Xy) - Ad(x,) "}
by (3.6), since X = Ad(x,) ad(X, )X} thanks to Lemma 3.11.
Moreover, using (3.4) and taking into account that w is an integral curve of W

dAdy w' = Ad(w) - ad (dLy-1W')

= Ad(w) -ad | dLy-1 Y _ a;(t,w) Ad(x,) X (w)
j=1

= Ad(w) - > a;(t,w) ad (Ad(x,)X;)

j=1
from which it follows that
%w’ = trace {d Ady, W' - ad (Ad(x,) X%)}
w

= trace ¢ Ad(w) - > a;(t,w) ad (Ad(x,)X;) - ad (Ad(x,) X})

= trace ¢ Ad(w) - Ad(x,) - Y _ a;(t, w) ad(X;)-ad(X) - Ad(x,)~"

thanks again to a double application of (3.6)
Summing both derivatives evaluated at (¢, w(t)), we conclude that

by, = trace {Ad(w) - Ad(x,) - By, - Ad(x,) "}
where By : R — gl(g) is defined given by

By = ad(ad(XT.)Xk) + i a; (t, W) ad (X]) . ad(Xk)

J=1

Denoting by || - || any norm in gl(g), it follows from the compactness of G the existence of M > 0 such
that || Ad(z)|| < M for every z € G, hence for every t € R we have

b ()| = |trace {Ad(w) - Ad(x,) - By(t) - Ad(xr)*1}| < M3 trace ||| Bx (1)

where || trace || stands for the norm of the linear functional trace : gl(g) — R: in order to finish the proof,
it suffices to show that Bj, is bounded. But

1Bx(0)]] < [l ad(ad(X ()Xl + D la;(t, w)| [|ad (X;) - ad (X))

j=1
and while the first term is clearly bounded for the map

t € R— ad(ad(X,.(t))Xk) € gl(g),
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is T-periodic, the second term is bounded because a; : R x G — R is T-periodic for each j € {1,...,m}
and hence a;(R x G) = q;([0,T] x G) is a compact set. O

Corollary 3.13. If w: R — G is an integral curve of W then
(3.7) lim ay (t,w(t)) =0, Vke{l,...,m}.

t——+oo
In particular

lim [lw'(t)] =0

t——+oo

where || - || is the norm associated to any left-invariant Riemannian metric on G.

Proof. Let o =V ow where V is our Lyapunov-like function (2.6). Its first derivative is

of = dV(w') = dV (fj ax(t,w) Ad(xr>xk<w>> = 3 e (b w)AV (A Xe(w) = 3 an (b, w)?
k=1

k=1 k=1

by definition of aj (2.8), and thus non-negative. Differentiating once again yields

_2Zaktw ak(t, w) —2Zaktw)bk()

k=1

where by, is as in Proposition 3.12, hence bounded, which implies boundedness of o’. In turn, this ensures
that o' is uniformly continuous. Now

dV (W (t,w)) = Em: ar(t,w)? >0, VY(t,w) ERxG

so V is non-decreasing along W, thus thanks to Corollary 3.4 we have

lim V(w(t) = V(w)

where w € wy (0, w(0)) is arbitrary (recall that the latter set is never empty). We have proved that
t

lim d'(s)ds = lim a(t) —a(0) = V(w) — V(w(0))

t—+oo 0 t—+oco
which brings us into position to apply Barbalat’s Lemma [2, Lemma 8.2] to o’ and conclude that

lim &'(t) =0

t——+oo

which clearly proves (3.7) thanks to our previous computations. Our second statement now follows:

W’ (t)|| = Zak t,w) Ad(x,) Xi (W) || <D Jar(t, w)| | Ad(x,) X || < Mka t,w)| | Xx| — 0.
k=1 k=1 k=1
([
Proof of Theorem 3.7. Let || - || stand for the norm associated to some left-invariant metric on G. For

w : R — G the unique integral curve of W satisfying w(tg) = wo we have, thanks to Corollary 3.13,
that ||w’(t)]| — 0 as t — 4+o00. Moreover, the function f : R x G — R defined by f(t,w) = ax(t,w) is
T-periodic and satisfies, again by Corollary 3.13,

Jimf(w(t) = lm_ax(t, w() =0.
But since w € wywy (to, wo) there exists a sequence {t, }nen increasing to infinity such that w(t,) — w as
n — +o0o. The conclusion follows from Proposition 3.6. (I
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4. REGULAR TRAJECTORIES

Up to this point, all the results obtained are valid for arbitrary periodic reference trajectories of (2.1).
In this section we introduce a special class of trajectories such that the set of critical points of their
associated auxiliary vector fields W admit a nice algebraic description: it coincides with the set of critical
points of our Lyapunov-like function V. This characterization allows us to show that the identity element
is a local attractor for W provided G is semisimple, hence solving the PTTP in a neighborhood of the
target state x., by Proposition 2.4.

Definition 4.1. A trajectory (x,u1,...,u,) of (2.1) (not necessarily periodic) is said to be regular if
span {Ad (x(¢)) X ; teR, 1<k <m}=g.
In Section 5 we prove the existence of regular periodic trajectories through any initial state zqg € G

under some extra assumptions on system (2.1), and also provide some simple examples in concrete matrix
groups in which these extra assumptions are satisfied. Theorem 3.7 admits the following:

Corollary 4.2. Assume (X,,u],...,ul) is a reqular periodic trajectory of system (2.1) and let W be its

auziliary vector field. If w € G is any w-limit point of W then
trace {Ad(w) - ad(X)} =0, VX €g.
Or, by Lemma 3.9: dVX(w) =0 for all X € g.
Proof. By Theorem 3.7 we have ay(t,w) =0 for every t € R and k € {1,...,m}, so by Lemma 3.9
trace {Ad(w) - ad (Ad (x,-(t)) X))} =0, VieR, Vke{l,...,m}.

But since (x;,ul,...,u ) is regular the linear functional trace {Ad(w) - ad(-)} vanishes on g. O
In particular, for a regular periodic trajectory (x,,u7,...,ul ) the set of critical points of its auxiliary

field W can be expressed as

(4.1) Cw ={w € G ; trace {Ad(w) -ad(X)} =0, VX € g}.

Indeed, if w belongs to the set in the right-hand side of (4.1) then by (3.3) we have ay(t,w) = 0 for all
t € R and every k € {1,...,m}, hence clearly w € Cyy. We have thus equated, in this case:

e the set of critical points of the vector field W,
e the set of w-limit points of W and
e the set of critical points of the Lyapunov-like function V.

Remark 4.3. Although our result above might seem a little awkward at first, there is no inherent contra-
diction to it. Actually, it enlightens a very natural question one might ask: what about global minima
of V', which are the bona fide candidates for a-limit points of W (since V' is non-decreasing along the
integral curves of W)? They certainly exist by compactness of G, and are critical points of V| hence
w-limit points of W. But recall (see also Remark 3.8) that nothing prevents a point € G from being
both an a- and an w-limit point of W — for instance, if x is a critical point of W, which is precisely the
case by our results above.

Also, being a critical point of W could be the only reason to classify a point as an w-limit point of
W (and that would definitely be the case, for instance, if such critical point were repulsive), and does
not reflect what kind of critical point of V' (maximum, minimum, or otherwise) it is: there is no problem
whatsoever in all critical points of V' (including minimal!) being w-limit points of W.

Thereby, the full picture is drawn as follows: we further equate the sets in (3.1) to the set of all critical
points of V', and these can be categorized into maxima (candidates for attractive equilibria of W, hence
“true” w-limit points — although the latter notion is meaningless in the present context), minima (likely
repulsive equilibria of W; “true” a-limit points), and possible saddle-like points of V.

The next result gathers some interesting consequences of (4.1), which, however, we will not use in
what follows.

Proposition 4.4. Let (x,,ul,...,ul,) be a reqular periodic trajectory of (2.1) and W be its auxiliary
vector field. Then for z,y € G:
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1) zeCw =y z-y 'ely.
(2) z-yelyw =y -z €Cy.
(3) r€Cw = a7 €Cy.

Moreover, if G is semisimple and Cy, is a subgroup of G then Cy is finite.

Proof.
(1) For X € g a simple computation shows that
trace {Ad (y -2 -y~ ') -ad(X)} = trace {Ad(z) - ad (Ad(y) "' X)} =0
since x belongs to Cyy, hence so does y - 2 -y~ 1.
(2) Follows from the previous item since y - (- y) -y~ ! =y - .
(3) Pick Y1,...,Y,, an orthonormal basis of g w.r.t. some Ad-invariant® inner product (-,-). Then:

trace {Ad (z7') - ad(X)} = Z ad(X)Y;,Y;)

- ZYad ) Ad(z)Y;)

=— trace {Ad(z) - ad(X)}

which equals 0 if z € Cy. Since X € g is arbitrary, 27! € Cyy.

As for the second part of the statement, since Cyy is a closed set it is a Lie subgroup of G: let h C g
be its Lie algebra. Let X € b and for each Y € g define fy : R — R by®

fy(t) = trace {Ad (") -ad(Y)}, teR

Since then e'X € Cy we have fy (t) = 0 for every t € R, and thus
fy(t) = c(lit trace {Ad (e fX) ~ad(Y)}
d
= trace {dt Ad (e'Y) - ad(Y)}

= trace {Ad (e'X) - ad <dLetX jtetX> : ad(Y)}
= trace {Ad ("¥) - ad (dLg-ix X (e'X)) -ad(Y)}
= trace {Ad (e"*) - ad (X) - ad(Y)}

also equals 0 for all ¢ € R, in particular for ¢ = 0: we have thus proved that trace {ad (X)-ad(Y)} =0
for every Y € g. But this is the Killing form of g, which is non-degenerate since we are assuming G
semisimple!®, from which we conclude that X = 0. Since X € b is arbitrary we have h = {0} i.e. Cy is a
discrete subgroup of G. Since G is compact and Cyy is closed the latter must be finite. O

As we have seen, e € Cy and if this set is finite then e is an isolated point, which is a necessary
condition for e to be a local attractor. Next we shall focus on proving the latter property without relying
on the assumption of Cy being a group.

Proposition 4.5. If G is semisimple then every x € Z(Q) is a non-degenerate critical point of V, and,
in particular, an isolated point in Cyy .

8 An inner product on g is said to be Ad-invariant if Ad(z) is orthogonal w.r.t. it for every z € G. Such an inner product
always exists when G is compact, and thanks to the relationship between the adjoint maps (see footnote 5) one also has
that ad(X) is skew-symmetric w.r.t. it for every X € g [3, Proposition 4.24]. In particular, trace ad(X) = 0 for every X € g.

9Here and below we denote by eX € G the exponential of X € g.

10This is Cartan’s Criterion for Semisimplicity [3, Theorem 1.45]: the Killing form of g is the bilinear form B: gxg— g
defined by B(X,Y) = trace{ad(X) - ad(Y)}. It is always negative semidefinite, while non-degenerate precisely when G is
semisimple.
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Proof. By Corollary 3.10, every « € Z(G) belongs to Cy, hence is a critical point of V' by our character-
ization of the latter set following Corollary 4.2 (since (x,,ul,...,u,) is regular). As such, we check its
non-degeneracy by computing the Hessian matrix of V' in convenient coordinates around zx.

We denote by B the Killing form of g. Since G is assumed semisimple, —B is an inner product on g
and we denote by Y7,...,Y,, € g an orthonormal basis w.r.t. it to introduce the so-called coordinates of
second kind: let ¢ : R™ — G be defined by

s1Y1 |

SnYn
.-€e ,

o(81,...,8p) = € ($1,.-.,8n) € R™.

Simple computations show that

de (aasj S_()) =Yj(z), Vje{l,...,n},
hence ¢ is a local diffeomorphism near s = 0. Moreover
V(p(s1,...,s,)) = trace {Ad (z - es1iY1. .esn,Yn)}
= trace {Ad(m) -Ad (eslyl) . Ad (esnYn>}
= trace {Ad(x) cedd(siY) ead(SnYn)}

= trace {esl ad(Y1) . . gsn ad(Yn)}

where we used two well-known facts: that Z(G) is precisely the kernel of the Ad homomorphism; and
the identity [3, Proposition 1.91]:

Ad(e®) = e vX eg.

Another simple computation then shows that

o2V
FWoy)| trace {ad(Y;) - ad(Yi)} = B(Y;, Vi) = 030, Vi, k€ {1,....n}
0s;0sk |,
thus showing that the Hessian matrix of V' at © = ¢(0) is non-degenerate. The last claim follows from
Morse Lemma. U

Next we characterize the center of G in terms of V regardless of semisimplicity. Let gc denote the
complexification of g and let Adc(z) : gc — gc be the complexification of Ad(z). Therefore
n
trace Ad(x) = trace Adc(z) = Z Aj(2)
j=1
where A1(x),...,A,(x) € C are the eigenvalues of Adc(z), repeated according to their multiplicities.
Let (-,-) be any Ad-invariant inner product on g (recall that G is compact) and let (-, )¢ stand for its
sesquilinear extension to gc, which is then a Hermitian inner product on gc. Clearly Adc(x) is unitary
w.r.t. {-,-)¢, in particular it is a diagonalizable map and

(@) =1, Vje{l....n}.
It follows then that for every x € G we have

n

V(z) < |V(x)| = |trace Ade(z)| = Z)\j(m) < Z I\j(x)] =n.

Jj=1

Therefore, if z € Z(G) then Ad(x) = idy and hence V(z) = n, and thus is a global maximum of V.
We claim that the converse is also true i.e. if V() = n then z € Z(G). We must prove that A\;(z) =1
for every j € {1,...,n}. Indeed we have

n= Z)\j(ac) =

Jj=1

ReXj(x) +i ) ImX;(x)
1 j=1
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which implies that

D Redj(z)=n, Y Im);(x)=0.
j=1 j=1

Moreover
Re)j(z) < [Re;(2)| < [Nj(z)[ =1, Vje{l,....n},
so if ReAg(z) < 1 for some k € {1,...,n} then

D Rej(x) = ReMp(z) + > Rej(z) <n

j=1 J#k
which would lead us to a contradiction, hence ReAg(z) =1 for every k € {1,...,n}, and since [Ag(x)| =1
we must also have ImAg(z) = 0 for every k € {1,...,n}. In particular, we have proved:

Lemma 4.6. Any x € G belongs to Z(G) if and only if V(z) = dim g.

Now we can prove one of the main results of the present work. Recall that W denotes the auxiliary
vector field associated to a regular periodic reference trajectory.

Theorem 4.7. If G is semisimple then every x € Z(G) is a local attractor of W.

Proof. By Proposition 4.5 we may find a neighborhood U C G of x such that U is compact and contains
no point in Cyy other than x. We may further assume U connected, and define

M = 75161%)5 V(y).

Clearly M < n for 0U N Z(G) = 0. Also, since V(z) = n we have by continuity that there exists U’ C U
another neighborhood of z such that V(y) > M for every y € U’.

Now let (tg,wp) € R x U" and w : R — G be the unique integral curve of W satisfying w(tg) = wy.
Since V o w is non-decreasing (for V' is non-decreasing along W, as pointed out earlier) we have

V(w(t)) > V(w(t)) = V(wp) > M

for every t > o since wo € U’ by hypothesis. Thus w(¢) ¢ OU and by continuity we have that w(t) € U
for every t > t.

It remains to show that w(t) — = as t — +oco. Indeed, we will show that any sequence {t,}nen
increasing to infinity admits a subsequence {t,, }rcn such that w(t,, ) — x as k — +0o. We may assume
w.l.o.g. that ¢, > to for every n € N, hence w(t,) € U. Because U is compact there exists w € U and a
subsequence {t,, }ren of {t, }nen such that w(t,,) — w as k — +oo. In particular w € wyw (g, wo) C Cw,

but as we have seen U N Cy = {z}. O

In particular e is a local attractor of W, hence Proposition 2.4 solves the PTTP locally.

5. EXISTENCE OF REGULAR PERIODIC TRAJECTORIES: SUFFICIENT CONDITIONS

Recall that we are always assuming that our left-invariant system (2.1) is bracket-generating i.e. the

Lie algebra spanned by Xi,...,X,, is g. In this section, we will prove that if moreover
(5.1) span{ad(X;)"Xy ; 1<k<m,neN}=g
then given any zo, € G and T > 0 there exists (x,,uf,...,ul,) a smooth T-periodic trajectory of (2.1)

satisfying x,.(0) = zo and which is regular in the sense of Definition 4.1. Before that, however, we
present a few examples in which condition (5.1) can be easily verified, as well as some examples in which
condition (5.1) does not hold in spite of being controllable. For the first couple of them, recall that the
special unitary group of order n > 1 is defined by

SU(n) = {z € GL(n,C) ; z* -z =e, detz =1}

(where e stands for the n x n identity matrix) which is a compact and connected subgroup of GL(n, C).
Tts Lie algebra, realized as a linear subspace of gl(n,C), is

Su(n) = {X € g[(nv(c) 5 X+ X*= 0, trace(X) = 0}
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Moreover, SU(n) is semisimple (actually simple) for every n.

Ezxample (Systems in SU(2)). The matrices

10 i L 1(0 -1 L1
X1_2<i 0)’ X2_2<1 0 ) X3_2(0 —i

0

)

form a linear basis of su(2), and moreover the following commutation relations hold

[X13X2] :X37 [XQaX3] :X17 [X?nXl] :X2

which characterize the Lie algebra su(2) up to isomorphism. Therefore, each one of the families

{X1, Xo}, {Xo, X3}, {X1, X3}
is not only bracket-generating on SU(2) but also satisfies (5.1).

Ezample (System in SU(3)). A linear basis for su(3) is given by the matrices

0 i O 0 0 14 0 0 O
X1 = i 0 0], Xo=|(0O0O], Xg={(00 ¢ ), Ti=
0 0 O i 0 0 0 ¢« O
0 -1 0 0 0 -1 0 0 O
Y, = 1 0 0], Yo=]1 0 0 0 , Ys=| 0 0 -1 |, Tp=
0 0 0 1 0 0 01 0
They obey the following commutation table
X1 X2 X3 Y1 YQ Y3 Tl TQ
X110 Y5 Yo 2Ty —X3 — X5 -2Y; 0
X5 0 Y7 X3 T1+15 X =Y, -3Y;
X3 0 X9 X1 T — Ty Y3 —-3Y3
Yy 0 Y3 -Y5 2X, 0
Yo 0 Y1 X9 3Xo
Y3 0 —-X3 3X3
T 0 0
Ty 0

where the entries below the diagonal are obtained by skew-symmetry of the commutator bracket.

follows from these relations that the system
{X17 X23 X3}
is bracket-generating, but does not satisfy (5.1) since

span{ Xy, X2, X3, Y5, Y3} is invariant by ad(X),
span{ X1, X2, X3, Y1, Y3} is invariant by ad(Xs),
span{ X1, X2, X3, Y1, Y2} is invariant by ad(X3).

On the other hand, the enlarged system
{X1, X5, X3, Y1, To}
satisfies (5.1) since ad(X1)Xs = Y3, ad(X1) X5 = Yz, ad(X1)Y7 = 273.
Ezample (Systems in SO(4)). The special orthogonal group of order 4
SO(4) = {z € GL(4,R) ; 'z-x =¢, detz =1}
is compact, connected and semisimple (but not simple). Its Lie algebra is

s0(4) = {X € gl(4,R) ; X +'X =0}

15

It
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and a linear basis for it is given by

0 1 0 0 0 0 1 0 0 0 0 1
|l -1 00 0 0 0 0 0 0 0 0 0
K=l 0 o000l T 2000 = 0 000
0 0 0 0 0 0 0 0 -1 0 0 0
0 0 00 0 0 00 00 0 0
1o o0 10 0 0 0 1 00 0 0
M=ty 100 2o 0 00 3 oo 0 1|
0 0 00 0 -1 0 0 00 -1 0

which satisfy the commutation table

X1 X2 X3 Y Yy Y3
X110 -7 -9 X, X3 0
X, 0 -V -X; 0 X
X3 0 0 -X1 N
Y, 0 -Y: -V
Y, 0 -Y]
Y3 0

As in the previous example, one can check that while the system {X7, X5, X3} is bracket-generating but
does not satisfy (5.1), the enlarged system {X1, X2, X3, Y3} does.

Now we proceed to the proof of the existence of regular periodic trajectories provided (5.1) holds. For

je{l,...,m} and p € Z let

i~ 1)T T
P = <M+pT,3+pT) — J9 4 pT.
m m

Clearly J7 C (pT, (p+1)T) = (0,T) + pT and
(5.2) NI #0<=j=k p=q

Take x; € CEO(J]Q) equal to 1 in some open interval I; C J]Q and with zero integral, and let u} : R — R
be the unique T-periodic function which is equal to x; on [0,77: this is clearly smooth.
Since supp x; C JJQ it is easy to check that

(5.3) suppuj C U J?
PEZL

which, together with (5.2), easily ensures the following:
Proposition 5.1. Givent € R, if uj(t) # 0 for some j € {1,...,m} then up(t) =0 for every k # j.

Thus on IJP = I + pT" we have uj = 1, while uj = 0 for k # j, identically. Next, define {; : R — R by

@@'[@@m

which is obviously smooth and also T-periodic since uj is T-periodic and its integral over [0,T] is zero.

Moreover, one may check that

(5.4) suppé; C U J7.
pEZ

We finally define x, : R — G by

xo(t) = {efj(t)Xj (Too), ift€Upep J7, forj=1,...,m;

Too, otherwise.



PERIODIC TRAJECTORY TRACKING ON LIE GROUPS 17

This is well-defined thanks to (5.2), and moreover smooth by (5.4). Also, on I} we have

x(t) = %egi(”xf (o) = €)X (€9 (o)) = uf ()X (3 (£) = D up () X (x,(1))
k=1

where the last identity follows from Proposition 5.1. On the other hand, if ¢ ¢ Jf for any j € {1,...,m}
and p € Z then near ¢t we have X, = z identically, hence x/.(t) = 0, which also agrees with (2.1) thanks

to (5.3): we have proved that (x,,u7,...,ul,) is a trajectory of (2.1), which is T-periodic by construction.

Theorem 5.2. If (5.1) holds then the trajectory (x,,uj,...,ul) above is regular.

Proof. We denote by
VY =span {Ad (x,(t)) X ; t e R, 1 <k <m}

which we must prove that is equal to g. For each k € {1,...,m} let A} = X} and \;, : R — g be defined
by A, = Ad(x,)AY: this is a smooth curve that lies in V, and since the latter is a linear subspace of g
the same is true for all of its derivatives. By Lemma 3.11 we have, for every n € N,

A = Ad(x,) AP
ARt = (AR) + ad(X, ) AT

where X, is given by (3.5).

We need the following technical lemma, which does not depend on the construction of (x,,u,...,ul,).

Lemma 5.3. For each n € N we may write
AZ =A, X, + ad(XT)”Xk
where Ag = Ay = 0 and, forn > 2, A, is a sum of products enjoying the following property: in each

summand there is at least one factor that is a derivative of some order of ad(X,.).

Proof of Lemma 5.3. By induction on n. We start calculating recursively by Lemma 3.11
AL = X,
Ap = ad(X,) Xy
A7 = ad(X,)' Xy + ad(X,)* Xi

from which we identify Ay = 0, A; = 0 and As = ad(X/), thus proving our claim for n = 0,1, 2, which
we use as basis for induction. Assuming our conclusion for some n > 2 we have

AR = (AR) + ad(X, ) AR
= (A Xy +ad(X,)" X)) + ad(X,) (A, Xy + ad(X,)" X})
— (M) Xp + (ad(X,)™) Xy + ad(X,) A, X, + ad(X,)" T X,
= A1 Xy +ad(X,)" X
where obviously
Api1 = (A + (ad(X)™) +ad(X,)A,,.

Since A,, is a sum of products in which each summand there is at least one factor that is a derivative
!/

of some order of ad(X,) then of course the same property holds true for both (A,)" and ad(X,)A,.
Moreover

(ad(X,)") =Y ad(X,)P~" - ad(X,) - ad(X,)" P
p=1

also enjoys the aforementioned property, hence so does A, 1. O
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Now, if t; € I{ then uf(t;) = 1, while for j # 1 we have by Proposition 5.1 that u’; vanishes identically

near t1, and therefore

Xr(tl) = iu;(tl)X] = X1

j=1
while
XM (t;) =0, VYn>1.
It follows from Lemma 5.3 that A, (t;) = 0 (for ad : g — g is linear, hence ad(X,)*) = ad (Xr(k)> for

every k € N) for every n € N, so

AZ(tl) = An(tl)Xk + ad(XT(tl))"Xk = ad(Xl)”Xk

for every n € N. We conclude that

A (1) = Ad(x,(81) AP (1) = Ad(x,.(t1)) ad(X;)" X,

belongs to V for every n € N and k € {1,...,m}; in other words, if we denote

W = span{ad(X1)" X, ; 1 <k <m, neN}

then Ad(x,(t1))W C V. But we assumed in (5.1) that W = g and Ad(x,(¢1)) is invertible, hence also
VY =gie. (Xp,uf,...,ul) is regular. |

(1]
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