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Abstract: No evidence-based prosthetic treatment concept for 3-unit fixed-dental-prostheses (FDPs)
on ceramic implants is currently available. Therefore, the aim of this in vitro study was to investigate
the failure load and fatigue behavior of monolithic and bi-layer zirconia FDPs supported by one-
piece ceramic implants. Eighty 3-unit FDPs supported by 160 zirconia-implants (ceramic implant;
vitaclinical) were divided into 4 groups (n = 20 each): Group Z-HT: 3Y-TZP monolithic-zirconia
(Vita-YZ-HT); Group Z-ST: 4Y-TZP monolithic-zirconia (Vita-YZ-ST); Group FL: 3Y-TZP zirconia
(Vita-YZ-HT) with facial-veneer (Vita-VM9); Group RL (Rapid-layer): PICN “table-top” (Vita-Enamic),
3Y-TZP-framework (Vita-YZ-HT). Half of the test samples (n = 10/group) were fatigued in a mouth-
motion chewing-simulator (F = 98 N, 1.2 million-cycles) with simultaneous thermocycling (5–55 ◦C).
All specimens (fatigued and non-fatigued) were afterwards exposed to single-load-to-failure-testing
(Z010, Zwick). Statistical analysis was performed using ANOVA, Tukey’s post-hoc tests and two-
sample t-tests (p < 0.05, Bonferroni-corrected where appropriate). All specimens withstood fatigue
application. While the effect of fatigue was not significant in any group (p = 0.714), the choice of
material had a significant effect (p < 0.001). Material FL recorded the highest failure loads, followed
by Z-ST, Z-HT and RL, both with and without fatigue application. Taken together, all tested FDP
material combinations survived chewing forces that exceeded physiological levels. Bi-Layer FL and
monolithic Z-ST showed the highest resilience and might serve as reliable prosthetic reconstruction
concepts for 3-unit FDPs on ceramic implants.

Keywords: dental implant; zirconium; ceramics; fatigue; aging; dental restoration failure; materials
testing; dental stress analysis

1. Introduction

Today, a large variety of dental materials are currently available for reconstructive
dentistry and dental implantology. Modern dental ceramics can be subdivided into esthetic
glass ceramics, resin-matrix ceramics and high-strength zirconia ceramics [1,2].

Dental implants consisting of pure titanium or titanium alloys are considered to
be the gold-standard in replacing missing teeth, due to their biocompatibility, fatigue
strength and good long-term results [3,4]. However, the grey color of titanium implants
can impair esthetics when a thin soft tissue phenotype or a mucosal peri-implant recession
is present [5].

Lately, ceramic implants have received increasing interest from dentists and patients
due to their positive esthetic outcome and tooth-like appearance [6]. Modern ceramic
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implants are made of either 3 mol% yttria-doped tetragonal zirconia (Y-TZP) or alumina-
toughened zirconia (ATZ) with similar hard and soft tissue integration capacities compared
to titanium implants [7,8]. Moreover, in both pre-clinical and clinical studies, zirconia
implants demonstrated beneficial behavior concerning plaque affinity and inflammatory
conditions, such as mucositis and peri-implant infections [9–11]. High survival rates of
94.3–98.4% confirm a positive mid-term performance of zirconia implants after 5 years
of clinical observation [12–14]. Therefore, ceramic implants can serve as a valuable treat-
ment addendum in the armamentarium of dental implantology for single tooth-gaps and
edentulous spaces [15]. However, regarding reconstructive treatment concepts for ceramic
implants, no clear consensus can be found in the dental literature.

A recent systematic review reported a cumulative survival rate of 95% after 5 years
for all-ceramic single crowns (SCs) and 3-unit fixed dental prostheses (FDPs) supported
by ceramic implants [16]. A detailed analysis of technical complications showed that
significantly fewer chipping events occurred with monolithic SCs than with veneered SCs.
Similarly, significantly more chipping events were observed with bi-layer FDPs than with
veneered SCs over time, which is in line with titanium implants [16–18].

As traditional veneering systems are prone to delamination failures and chip-off
fractures, CAD/CAM fabricated monolithic zirconia restorations should be chosen for
posterior SCs and FDPs on implants to decrease technical complications [2,16]. Innovative
translucent zirconia ceramics (4Y-TZP, 5Y-TZP) with enhanced optical properties were
recently developed to meet the esthetic expectations of patients and clinicians from former
opaque 3Y-TZP zirconia restorations [2]. The improved translucency of these zirconia
ceramics is, however, accompanied by reduced strength and toughness [2,19].

As with glass ceramics, zirconia restorations benefit from adhesive bonding, es-
pecially in cases of compromised retention, high shear forces and minimum ceramic
thicknesses [20,21]. Prerequisites for the long-term success of zirconia prostheses are
proper pretreatment of the adhesive surfaces, application of specific primers and adequate
composite cements [20,22–24]. A recent systematic review was able to show that high-
translucent zirconia restorations can also be pretreated with the same simplified bonding
protocol as 3Y-TZP zirconia, consisting of air-particle abrasion, application of an MDP
(10-methacryloyloxydecyl dihydrogen phosphate) or phosphate-monomer based primer
and cementation with a self- or dual-cure composite cement [22].

Currently, two diametrically opposed paths are being pursued to achieve both esthetic
and durable, high-strength restorations. On the one hand, multilayer zirconia discs with
color and strength gradient technology were launched to merge the positive mechanical
and optical properties of different zirconia generations; on the other hand, the combination
of different all-ceramic bi-layer materials is used for esthetic restorations [25,26]. This
includes a high-strength zirconia framework with all functional parts in the monolithic
core material and a facial layering with felspathic porcelain or a combination of different
tooth-like materials [27,28].

Currently, no robust prosthetic treatment concept exists for prosthetic reconstructions
on ceramic implants. Moreover, wear of zirconia-based restorations is another relevant topic
that is extensively discussed within the scientific community, especially when both jaws
are restored with different prosthetic materials. So far, no study has investigated possible
novel treatment concepts to overcome these issues. A recent in vitro study presented a
restorative rapid-layer concept with a polymer-infiltrated ceramic network (PICN) material
and a 3Y-TZP framework [28,29]. This design performed well for SCs on ceramic implants,
but it is currently unclear if this concept is also transferable to FDPs.

As neither in vitro nor clinical studies have analyzed the performance of monolithic
translucent zirconia restorations or the rapid-layer concept of a PICN material with a
zirconia framework as FDPs on ceramic implants, this needs to be investigated. Therefore,
the aim of this in-vitro study was to assess the thermo-mechanical fatigue behavior and
failure modes of monolithic and bi-layer zirconia FDPs supported by one-piece zirconia
implants. The tested null hypotheses assumed: There is no difference in (i) failure load and
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(ii) fatigue behaviour of bi-layer and monolithic implant restorations on zirconia implants.
Monolithic 3Y-TZP implant FDPs served as a control.

2. Materials and Methods

In total, 80 FDPs with two one-piece zirconia implants (Y-TZP, ceramic implant
4.5 × 10 mm, vitaclinical, Bad Säckingen, Germany), serving as abutments for a 3-unit FDP,
were used. The 80 FDP specimens were split into three test groups and one control group
(n = 20 per group) depending on the prosthetic material (Figure 1 and Table 1):

• Group Z-HT: monolithic 3Y-TZP zirconia FDP (Vita YZ-HT, Vita Zahnfabrik, Bad
Säckingen, Germany)

• Group Z-ST: monolithic 4Y-TZP zirconia FDP (Vita YZ-ST, Vita Zahnfabrik)
• Group FL: 3Y-TZP zirconia FDP (Vita YZ-HT, Vita Zahnfabrik) with facial veneer

(Feldspathic porcelain: Vita VM9, Vita Zahnfabrik)
• Group RL: polymer-infiltrated ceramic network (PICN Vita Enamic, Vita Zahnfabrik)

“tabletop” resin bonded to a 3Y-TZP zirconia framework (Vita YZ-HT, Vita Zahnfabrik)
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Table 1. Prosthetic materials with group names and studied implant with characteristic flexural
strength according to manufacturer’s information.

Group
(n = 20)

FDP
/Implant
Design

Type Name Y2O3
[Weight%]

Flexural
Strength

[MPa]
Manufacturer

Z-HT Monolithic
FDP

3Y-TZP
Zirconia

Vita YZ
HT 4–6 1200

Vita Zahnfabrik,
Bad Säckingen,

Germany

Z-ST Monolithic
FDP

4Y-TZP
Zirconia

Vita YZ
ST 6–8 >850

Vita Zahnfabrik,
Bad Säckingen,

Germany

FL Bi-layer
FDP

Feldspathic
Veneer VM9 - 100

Vita Zahnfabrik,
Bad Säckingen,

Germany

3Y-TZP
Zirconia

Vita YZ
HT 4–6 1200
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Table 1. Cont.

Group
(n = 20)

FDP
/Implant
Design

Type Name Y2O3
[Weight%]

Flexural
Strength

[MPa]
Manufacturer

RL

Rapid-
Layer FDP PICN Vita

Enamic - 150–160 Vita Zahnfabrik,
Bad Säckingen,

Germany3Y-TZP
Zirconia

Vita YZ
HT 4–6 1200

All
groups

One-piece
Implant

3Y-TZP
Zirconia

ceramic.
implant 5 1400

vitaclinical,
Bad Säckingen,

Germany

2.1. Fabrication of Implant Crowns

To standardize test specimens, all zirconia implants were embedded either in the
position of a mandibular second premolar or a second molar in a prosthetically optimal
position for a 3-unit fixed-dental prosthesis in a master model (frasaco-Model, frasaco,
Tettnang, Germany). An optical impression was made (CEREC Primescan, Dentsply Sirona,
Charlotte, USA) and a master design of a 3-unit FDP (InLab 20.0, Dentsply Sirona) was used
for all monolithic FDPs (Group Z-HT and Z-ST) to ensure identical and comparable test
samples (Figure 2A). Group FL received a facial cut-back design with all functional parts
in the monolithic core material (Figure 2B). To guarantee a uniform veneering thickness,
silicone keys of the monolithic master designs were produced. Afterwards, all FDPs of
Group FL were manually veneered with feldspathic porcelain (VM9, Vita Zahnfabrik).
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Figure 2. Digital restoration design: (A) Master design for monolithic Groups Z-HT and Z-ST;
(B) Bi-Layer Group FL with facial veneering; (C) Split design of Group RL into 3-YTZP framework
and PICN tabletop.

For Group RL, a split design from the original master design was used to generate a
separate framework and veneer layer (Figure 2C). All implant FDPs were produced by the
same master dental technician strictly according to the manufacturer’s recommendation.
The connectors of the FDP had an oval shape with a size of 25 mm2 (mesial) and 35 mm2

(distal). The zirconia FDPs were milled in a five-axis milling unit (Ceramill Motion 2,
Amann Girrbach, Pforzheim, Germany). Polymer-infiltrated ceramic (PICN) Tabletops of
Group RL were milled out of industrially prefabricated CAD/CAM blocks (VITA Enamic,
Vita Zahnfabrik) in a three-axis milling machine (CEREC Primemill, Dentsply Sirona).
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2.2. Preparation of Specimens

All zirconia implants were perpendicularly embedded in epoxy resin (RenCast®

CW20/ Ren® HY 49, Huntsman Advanced Materials, Salt Lake City, UT, USA) [30,31].
Clinically marginal bone losses of 0.7–0.79 mm after 1 year [15,32] and 0.7 ± 0.6 mm after
5 years are reported in the dental literature, therefore, a clearance of 0.5–1 mm between the
implant shoulder and resin surface was chosen [12].

2.3. Adhesive Cementation

The intaglio surface of the zirconia FDPs of all groups were air-particle abraded
with 50 µm aluminum-oxide at a pressure of 2 bar prior to adhesive bonding. Prosthetic
restorations were subsequently cleaned with 70% ethanol for 3 min in an ultrasound
bath (Bandelin Sonorex, Bandelin, Berlin, Germany), followed by the application of an
MDP-containing primer (Clearfil Ceramic Primer Plus, Kuraray Noritake).

Polymer-infiltrated ceramic “tabletops” of Group RL were etched with 5% hydrofluoric
acid (Vita Ceramics Etch, Vita Zahnfabrik) for 60 s, cleaned with water and dried with
oil-free air and then a primer (Clearfil Ceramic Primer Plus) was applied. PICN “tabletops”
were then adhesively bonded with a self-curing composite cement (Panavia V5 opaque,
Kuraray Noritake) to the air-particle abraded and MDP pretreated occlusal surface of the
corresponding 3Y-TZP zirconia framework. The MDP Primer (Clearfil Ceramic Primer)
was also applied to the zirconia implants.

Afterwards, all zirconia FDPs were bonded with a self-curing composite (Panavia V5
opaque) to the one-piece ceramic implants. To allow a complete polymerization of the
adhesive interface, all specimens were put in distilled water at 37 ◦C in an incubator (Uni-
versalschrank UF 55, Memmert, Schwabach, Germany) for 24 h [33]. Table 2 summarizes
the pretreatments and resin cementation of all tested materials.

Table 2. Pretreatment and adhesive cementation of tested materials.

Zirconia
FDP’s

Polymer-Infiltrated Ceramic
Tabletop

Zirconia
Implant

Group Z-HT, Z-ST, FL,
RL (framework) RL All

Surface
Pre-treatment

Air-particle abrasion with 50 µm
Al2O3 at 2 bar,

Ultrasonic cleaning with 70% ethanol
for 3 min

Cleaning with 70% Ethanol,
Etching with 5% hydrofluoric acid for 60 s (Vita Ceramics
Etch, Vita Zahnfabrik), rinsed with air-water spray (30 s),

ultrasonic cleaning with distilled water (5 min)

-

Primer Clearfil Ceramic Primer Plus (Kuraray Noritake)

Resin Cement Panavia V5 opaque (Kuraray Noritake)

2.4. Fatigue Analysis

Ten specimens from each group were subjected to dynamic thermomechanical loading
(5 ◦C to 55 ◦C, dwell time 120 s) in a mouth motion fatigue simulator (CS-4.8 professional
line, SD Mechatronik, Feldkirchen-Westerham, Germany). An occlusal load of 98 N at
1.2 million chewing cycles with a frequency of 1.6 Hz was applied to the central fossa of
the pontic of the restoration, equivalent to a 5-year clinical service time [34–36]. A steatite
indenter (r = 3 mm, Hoechst CeramTec, Wunsiedel, Germany) was sliding 0.5 mm down
the central fossa towards the mesio-buccal cusp, with a vertical movement of 2 mm to
simulate aspects of natural chewing. During thermomechanical loading, specimens were
investigated regularly for cracks and/or fracture failures as well as for mobility of the
restorative suprastructure.

2.5. Single Load to Failure (SLF)

All samples (loaded and non-loaded) were vertically loaded until failure in a universal
testing machine (Zwick Z010/TN2S, Zwick Roell, Ulm, Germany). Failure load was
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applied at the same contact point as during the chewing simulation with a crosshead
speed of 1.5 mm/min. A steel ball with a diameter of 6 mm served as a load indenter.
Fractures of the ceramic veneer (chipping, cracks) and catastrophic core fractures of the
framework/monolithic FDP restoration were defined as failure.

2.6. Fractographic Analysis

Firstly, test specimens were investigated under a polarized light microscope (Axio-
Zoom V.16, Carl Zeiss Microscopy, Oberkochen, Germany) after fatigue and SLF. Most
meaningful samples were then analyzed for qualitative fractographic evaluation with a
scanning electron microscope (Vega 3, Tescan, Kohoutovice, Czech Republic) to determine
the failure mode.

2.7. Statistical Analysis

A power calculation (G*Power 3.1.9.7, Düsseldorf, Germany) with the factors
(i) type of material (Z-HT, Z-ST, FL, RL) and (ii) fatigue application (yes/no) of bi-layer and
monolithic FDPs was performed with respect to statistical testing via ANOVA. A sample
size of n = 10 per group (n = 80 in total) was found to enable detection of any effect of at
least large size (Cohen’s effect size of f = 0.38) with 80% power and a two-sided type-I error
of p < 0.05 for the two factors and their interaction.

The statistical software SPSS 28 (IBM Corp., Armonk, NY, USA) was used to perform
the analysis. To test for homogeneity of variance before using ANOVA, the Levene Test
was applied to test for the main effects and interactions of the two factors of interest (type
of prosthetic material and fatigue), followed by Tukey’s post-hoc tests for the pairwise
comparison of material types. Two-sample t-tests were used to test separately for influence
of fatigue for each type of material. The p-value was defined at <0.05 (95% CI) for all tests,
Bonferroni-corrected for multiple comparisons where applicable. Data were graphically
displayed in boxplots.

3. Results
3.1. Cyclic Loading

All investigated samples survived thermomechanical loading, leading to a 100% 5-year
simulated survival rate. No bulk or cohesive fractures within the FDPs or implants were
noticed during and after chewing simulation. Only superficial wear of the glazing material
could be observed for Groups Z-HT, Z-ST and FL (Figure 3A–C). Group RL showed wear
facets with abrasion of the PICN ceramic on the loading area of the central fossa (Figure 3D).
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3.2. Single Load to Failure

Failure loads after static loading are summarized in Table 3 and graphically displayed
in Figure 4.

Table 3. Descriptive statistics of failure load in [N]. Different superscript letters per column without
(small letters) or with fatigue exposure (capital letters) indicate statistically significant differences
(p < 0.05) between materials. Results of t-tests (t-value, p-value) show the effect of fatigue for each
type of material (per row).

Group
Without Fatigue With Fatigue Influence of Fatigue

Mean ± SD Mean ± SD t-Value p-Value

Z-HT 2899 ± 754 b 2866 ± 509 B,C 0.115 0.910
Z-ST 3138 ± 463 a,b 3000 ± 460 B 0.668 0.512
FL 3662 ± 723 a 3923 ± 527 A −0.922 0.369
RL 2654 ± 374 b 2384 ± 438 C 1.481 0.156
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Figure 4. Boxplot of failure load values (in N).

There was neither a significant main effect of fatigue application, F(1,72) = 0.14,
p = 0.714, nor a significant interaction between fatigue application and restoration material,
F(3,72) = 0.85, p = 0.469. However, the main effect of restoration material was significant,
F(3,72) = 19.20, p < 0.001. t-tests for the pairwise comparison between specimens with and
without fatigue exposure for each material type confirmed this and showed no significance
(Table 3).
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The highest failure loads were observed for material FL both without prior fatigue
application (FL0: 3662 N; FL0 > Z-ST0 > Z-HT0 > RL0) and with prior fatigue application
(FL1: 3923 N; FL1 > Z-ST1 > Z-HT1 > RL1). Group RL showed the lowest failure loads of
all materials tested, both without and with fatigue application.

Irrespective of fatigue, material FL showed significantly higher failure loads relative
to all other three materials tested (p < 0.05), except for the comparison of FL0 and Z-ST0
(p = 0.357) (Table 3). No difference could be detected between monolithic 3Y-TZP Z-HT
and 4Y-TZP Z-ST (p = 1.000) and between Z-HT and RL (p ≥ 0.197), regardless of fatigue
application (Table 3).

Materials Z-ST and RL showed a statistical difference in failure load with fatigue
application (p = 0.044) (Table 3) but not without fatigue (p = 0.482).

3.3. Failure and Fractographic Analysis after Single Load to Failure Testing

All FDPs of Z-HT, Z-ST and FL1 revealed bulk fractures within the distal connector
after single load to failure (Figure 5 A,B and Table 4). FDPs of Group FL0 predominately
suffered also from bulk fractures within the distal connector (Table 4). Bulk fracture
without involvement of the connector was observed in two samples (20%) of material FL0
(Figure 5C and Table 4). Material RL predominately showed fractures within the PICN
Enamic Tabletop (80%), whereas the underlying FDP framework revealed only fractures
in a few specimens (20%) (Figure 5D and Table 4). Detailed fractography analysis of
representative specimens of each Group is given in Figures 6–9.
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Figure 5. Representative samples of all Groups after single-load-to-fracture assessment. Light
microscopy shows (A) occlusal and side view of Group Z-HT, bulk fracture of FDP within the distal
connector (B) Group Z-ST, bulk fracture of FDP within the distal connector (C) Group FL, bulk
fracture without involvement of the distal connector (D) Group RL, chipping fracture of PICN and
bulk fracture of the zirconia framework.

Table 4. Failure analysis of FDPs after SLF. Chipping of Group RL is referred to the PICN Tabletop.

Group
Z-HT Z-ST FL RL

Z-HT0 Z-HT1 Z-ST0 Z-ST1 FL0 FL1 RL0 RL1

Bulk fracture within
connector

10/10
(100%)

10/10
(100%)

10/10
(100%)

10/10
(100%)

8/10
(80%)

10/10
(100%)

3/10
(30%)

1/10
(10%)

Bulk fracture without
connector - - - - 2/10

(20%) - - -

Chipping - - - - - - 7/10
(70%)

9/10
(90%)
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lines (dotted arrows) indicating the direction of crack propagation. 

Figure 6. Representative scanning electron microscopy (SEM) micrographs of fractured monolithic
FDP from Group Z-HT. Occlusal overviews of abutments (A,C) show intact marginal ridges and
connectors whereas the pontic (B) presents a cohesive fracture at the occlusal (asterisk) and buccal
surfaces, as well as a crack that extends towards the distal abutment. (D) Buccal overview shows
loading area at the occlusal surface where the fracture seems to have originated (asterisk) and a crack
that extends down to the gingival part of the connector. In a magnification view of the cohesive
surface fracture at the buccal surface (E) arrest lines (pointer) with their concave portion pointing
towards the occlusal surface indicate the fracture origin. (F) is a magnification of the occlusal surface
where the solid arrows show a crack initiating at the occlusal and propagating down towards the
gingival portion of the connector and the other crack front showing its direction towards the buccal
surface, eventually leading to the cohesive fracture at the buccal surface (suggested by the hackle
lines pointed by the dotted arrows). (G) is a magnification of the area circled in D where the main
buccal cohesive fracture ended at the mesial portion of the FDP distal abutment showing hackle lines
(dotted arrows) indicating the direction of crack propagation.
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and the fractured pontic (B). The buccal view in (D) shows a crack that connects the occlusal surface 
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Figure 7. Meaningful specimen of Group Z-ST after single-load-to-failure assessment. (A–C) are an
overview of the occlusal surfaces of an entire monolithic Z-ST FDP showing intact abutments (A,C)
and the fractured pontic (B). The buccal view in (D) shows a crack that connects the occlusal surface
to the gingival portion of the connector of the pontic. Magnifications of the buccal surface are shown
in the subsequent images where the asterisk indicates the possible fracture origin site and the dotted
arrows the direction of crack propagation (E). (F,G) are magnifications of the damage caused by the
indenter at the occlusal surface.
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and pontic (B) of an FDP showing the fracture initiation site at the asterisk. (D) is a buccal overview 
of the fractured surface of the pontic showing the origin (asterisk) and direction of crack propaga-
tion (dotted arrows). Clockwise magnification of (D) is presented in subsequent micrographs (E–G) 
where dotted arrows point at the hackle lines indicating the direction of crack propagation from the 
occlusal surface towards the margins. 

Figure 8. SEM micrographs of fractured FDP from Group FL. Occlusal views of abutments (A,C) and
pontic (B) of an FDP showing the fracture initiation site at the asterisk. (D) is a buccal overview of
the fractured surface of the pontic showing the origin (asterisk) and direction of crack propagation
(dotted arrows). Clockwise magnification of (D) is presented in subsequent micrographs (E–G) where
dotted arrows point at the hackle lines indicating the direction of crack propagation from the occlusal
surface towards the margins.
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fracture origin at the occlusal surface (asterisk) and (E) buccal view showing the origin (dotted white 
arrow) and direction of crack propagation (dotted black arrows) within the PICN material halted at 
the interface with the zirconia framework. (F,G) are magnified views of E where the dotted arrows 
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beneficial esthetics, as well as the combination into strength-gradient multilayer pucks, 
are extensively investigated in current scientific research. In addition to zirconia, resin-
matrix ceramics, such as PICN and CAD/CAM composites are widely analyzed due to 

Figure 9. Representative SEM micrographs of fractured FDP from Group RL. Occlusal views of
abutments (A,C) and of fatigued pontic (B) with indenter sliding path (dotted white arrow) leading
to discrete wear of the PICN tabletop bonded to the zirconia framework. (D) Magnified view of the
fracture origin at the occlusal surface (asterisk) and (E) buccal view showing the origin (dotted white
arrow) and direction of crack propagation (dotted black arrows) within the PICN material halted at
the interface with the zirconia framework. (F,G) are magnified views of E where the dotted arrows
of (F) point at the hackle lines indicating the direction of crack propagation towards the zirconia
framework and (G) shows damage from loading at the occlusal region (asterisk).

4. Discussion

Zirconia ceramics and their different generations with increased translucency and
beneficial esthetics, as well as the combination into strength-gradient multilayer pucks,
are extensively investigated in current scientific research. In addition to zirconia, resin-
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matrix ceramics, such as PICN and CAD/CAM composites are widely analyzed due to their
attractive application for chairside workflow and efficient machinability and processing [37].
Moreover, additive CAD/CAM methods are of interest in reconstructive dentistry and
presently exploited [38].

This laboratory study investigated the failure load and fatigue behavior of different
designs of monolithic translucent zirconia, 3Y-TZP with a facial veneer and rapid-layer
posterior FDPs bonded to one-piece zirconia implants. The tested null hypothesis was
partially rejected as the type of restoration material affected the failure load.

All tested materials survived dynamic loading up to 1.2 million cycles with simulta-
neous thermocycling, resulting in a 100% in vitro survival rate after chewing simulation.
Measured failure loads (>2384 N) of all implant-supported FDPs surpassed normal phys-
iological occlusal forces of 200–900 N in the posterior dentition, irrespective of fatigue
application [39]. Accordingly, this may suggest that all tested restorative concepts are suit-
able for clinical use as 3-unit FDPs on one-piece zirconia implants in the posterior region.

To the authors’ best knowledge, this is the first in vitro study that investigated different
restorative concepts for FDPs on ceramic implants. Furthermore, no laboratory studies
with monolithic all-ceramic FDPs on titanium implants are reported in the dental literature.
Therefore, a comparison to other studies is difficult.

Most in vitro studies investigated different posterior bi-layer 3Y-TZP FDPs on titanium
implants [40–45]. Studies without thermodynamical loading and solely water storage for
up to 48 h recorded failure loads of 692 N (30◦ angulated) [40], 2086 N (axial) [41] and
1380–2690 N (axial) [43]. Failure loads of 2465–2583 N (600,000 cycles, 50 N) [44] and
2086 N (100,000 cycles, 20–200 N) [45] were reported for bi-layer 3Y-TZP FDPs with fatigue
application. A study with a similar test design (1.2 m. cycles, 100 N), as in the present study,
measured failure loads of 1636 N in an axial loading setting and 1086 N with angulated
loading forces [42]. All reported failure loads are in the range or below the lowest recorded
values (<2384 N) of the present study.

The highest failure loads both without and with fatigue application were measured for
Group FL. Different from the monolithic groups Z-HT and Z-ST, group FL had a porcelain
veneer over a 3Y-TZP framework. It is possible that t-m phase transformation due to
moisture of the porcelain slurry may have led to compressive stresses, eventually increasing
the load to failure [46]. Another possible explanation might be an improved hardness,
density and surface without irregularities and defects due to the increasing number of
firings during the veneering process [47,48]. Moreover, the different restorative designs
might have an impact on force absorption and stress distribution, ultimately leading to
different failure loads.

No differences between failure loads of monolithic 3Y-TZP and 4Y-TZP FDPs could
be detected. This is in line with a previous study in which no statistically differences
could be found between failure loads of the same 3Y-TZP and 4Y-TZP material on SCs [28].
Therefore, monolithic 4Y-TZP might be an esthetic and durable alternative for 3-unit FDPs
on one-piece ceramic implants. Clinical studies reporting on 3Y-TZP monolithic zirconia
FDPs on titanium implants detected high survival rates of 100% after one and 96% after
3 years [49,50]. These high short-term survival rates confirm that monolithic reconstructions
might be preferred not only for titanium but also for ceramic implants [16,51].

The lowest failure load values were measured for Group RL. As this might be expected
with a PICN material as a tabletop on a 3Y-TZP framework, loads were nevertheless high.
Most of the observed fractures would be repairable in a clinical scenario with either a new
chairside fabricated PICN tabletop or a direct repair with a resin composite.

The PICN material, with mechanical properties imitating a human tooth, such as a
similar wear behavior and a dampening effect, might protect the implant from uncontrolled
high occlusal forces and overloading [52]. The results of this study suggest that the tested
rapid-layer material combination proved to be an attractive material combination not
only for single-crowns, but also for 3-unit FDPs [28]. The easy replaceability of the PICN
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material in the event of fractures or extreme wear, can serve as a cost- and time-effective
restoration concept.

Failure and fractographic analysis of monolithic zirconia FDPs resulted in 100% bulk
fractures with and without fatigue application. The fracture originated from the occlusal
surface in the zone of the highest compressive forces down to the distal connector of the
3-unit FDP. As the contact area was on the pontic site and not along the axis of the implants,
this unfavorable loading condition resulted in the gingival portion of the connector becom-
ing the weakest link due to localized tensile stress with the highest probability of fracture
and also an origin of a competing failure mode [53].

For Group FL, almost all of the specimens showed the same fracture pattern with bulk
fractures through the distal connector, except two specimens which showed bulk fractures
through the pontic. Interestingly, the facial veneering withstood the high forces and did
not fail before bulk fracture.

However, Group RL showed a different failure pattern: 80% of the specimens showed
chipping fractures of the PICN tabletops without detachment and involvement of the
3Y-TZP substructure. Only 20% of the RL specimens fractured through the distal connector
as the other groups.

According to the present findings all tested monolithic and bi-layer all-ceramic restora-
tions can serve as 3-unit FDPs on one-piece ceramic implants, whereas facial veneered 3Y-
TZP and monolithic translucent 4Y-TZP FDPs presented the highest load to
failure values.

A limitation of this study is that the obtained result of the implant-restoration complex
might be only transferred to a certain limit to other available one-piece ceramic implants.
Future studies should compare the proposed restorative rapid-layer concept with novel
strength-gradient multilayer zirconia SCs and FDPs. Other materials, such as bioactive
restoratives, should also be explored as potential prosthetic materials [54,55]. Likewise,
recently introduced two-piece ceramic implants with a screw-connection should be inves-
tigated in comparison to one-piece ceramic implants, as they allow increased prosthetic
flexibility and retrievability of the suprastructure.

5. Conclusions

The following conclusions can be drawn based on the obtained results and within the
limits of this laboratory study:

1. The applied fatigue protocol had no effect on the failure load of the materials investigated.
2. All tested prosthetic reconstructions showed higher failure loads (>2384 N) than

normal physiological occlusal forces (200–900 N) in the posterior region and can be
used clinically.

3. Bi-Layer FL and monolithic Z-ST showed the highest resilience and might serve as
reliable prosthetic reconstruction concepts for 3-unit FDPs on ceramic implants.

4. The Rapid-Layer concept shifted failure modes from catastrophic bulk fractures to
clinically repairable failures within the PICN veneer layer.

5. The proposed rapid-layer design with a PICN “tabletop” might be an interesting
restorative treatment concept for zirconia implants due to their tooth-like wear behav-
ior and easy replaceability.

6. Proper veneer design with a limited extension to the buccal/facial area resulted in
superior failure load results.

7. Future research should focus on novel strength-gradient multilayer zirconia ceramics
for SCs and FDPs on one- and two-piece ceramic implants.
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