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Abstract: In this paper, we examine the role played by topology, and some specific boundary
conditions as well, on the physics of a higher-dimensional black hole. We analyze the line element of
a five-dimensional non-extremal Reissner–Nordström black hole to obtain a new family of subspaces
that are types of strong retractions and deformations, and then we extend these results to higher
dimensions in order to deduce the relationship between various types of transformations. We also
study the scalar field perturbations in the background under consideration and obtain an analytical
expression for the quasibound state frequencies by using the Vieira–Bezerra–Kokkotas approach,
which uses the polynomial conditions of the general Heun functions, and then we discuss the stability
of the system and present the radial eigenfunctions. Our main goal is to discuss the physical meaning
of these mathematical applications in such higher-dimensional effective metric.
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1. Introduction

One of the most exciting areas of physics over the past ten years has been the study of
black holes [1], in which it was proposed that rather than being viewed as mathematical
constructs, black holes might be thought of as physical systems, and that information
theory could be used to comprehend their physics. In order to study quantum gravity,
one needs to combine classical mechanics and gravity, and quantum mechanics within the
theory of black hole thermodynamics [2].

In addition, when combined with a negative cosmological constant, the Reissner–
Nordström black hole (RNBH) has shown to be a valuable tool for research into the
thermodynamical features of gravity [3,4], as well as to determine the effect of the changed
radiation equation of state at the Planck scale on the Reissner–Nordström–anti-de Sitter
black hole (RNAdSBH) [5]. Even though the RNBH in AdS spacetime is a universally
efficient solution to many effective field theories of gravity, it still has a lot of baffling
problems. It does not saturate the bootstrap bound, even at extremes or at absolute zero,
unlike in asymptotically Minkowski spacetime. Without additional charged matter, its
classical instability has not been explicitly demonstrated, but it may indicate that the
extremal RN solution in AdS spacetime is unstable [6–8].

It is known that under charged large scalar perturbations, superradiant stability
applies to all non-extremal RNBHs in five dimensions. According to this, all RNBHs in
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higher dimensions, under charged massive scalar perturbations, may be superradiantly
stable [9]. On the other hand, the relaxation rate of the four-dimensional RNBH associated
with the massless scalar field was analyzed in ref. [10].

Asymptotically flat charged black holes can support complex arrangements of both
massive and massless scalar fields. These fields exhibit connections to the electromag-
netic field tensor of the corresponding central charged black holes (for a review, see the
highly fascinating ref. [11] and references therein). In the literature [12–16], mathematical
studies have also been conducted on higher-dimensional RNBHs. A numerical approach
was used to demonstrate that asymptotically flat RNBHs, in the range of dimensions
D = (5, 6, . . . , 11), under massless scalar perturbations, remained relatively stable [17,18].

The present paper has two broad aims. First, to present some important results on
both geometrical and topological aspects of the five-dimensional RNBH spacetime, by
constructing different types of strong retractions and strong homotopy retracts on the
background under consideration, which is mathematically denoted, for simplicity, by N5

black hole. In addition, we use it to prove the existence of apparent horizons, which are
crucial to the studies of wave phenomena on black hole spacetimes. Furthermore, we
also show that the end limit of an N5 black hole is a zero-dimensional non-extremal black
hole. Second, to discuss the interaction between quantum charged massive scalar particles
and the background under consideration, by obtaining the spectrum of quasibound states,
which are related to the boundary conditions imposed on the radial wave solution. In
addition, we also calculate the corresponding angular and radial wave eigenfunctions.
Indeed, these are two very important interesting features from a mathematical physics
point of view.

The main interesting field of topology is the theory of strong retracts, and this theory is
used to describe the horizon as a subspace in the non-extremal 5DRNBH. In fact, from the
theory of geodesics, we infer some types of strong retractions as a cross-sectional apparent
horizon of the non-extremal 5DRNBH. Also, quasibound states are wave phenomena that
occur near the exterior event horizon of a black hole. However, the relation between the
algebraic topology on a non-extremal 5DRNBH and a spectrum of quasibound states comes
from the way we can describe the horizons of the non-extremal 5DRNBH in these two
different fields.

The quasibound states (or quasistationary levels) are localized in the black hole’s
potential well, which means that there may exist a flux of particles crossing into the black
hole’s exterior surface [19,20]. Therefore, the spectrum of quasibound states is constituted
by complex frequencies, which are denoted by ωn = Re[ω] + iIm[ω], where the imaginary
part determines the stability of the system, and the real part is the oscillation frequency.
In fact, the wave solution is said to be stable when the imaginary part of the frequency
is negative (Im[ω] < 0, decay rate), while the wave solution is said to be unstable when
the imaginary part of the frequency is positive (Im[ω] > 0, growth rate). In this work,
the quasibound states are obtained by using the so-called Vieira–Bezerra–Kokkotas (VBK)
approach [21,22] (for more details and applications, see also refs. [23–28]).

The paper is organized as follows. In Section 2, we introduce the general metric
corresponding to D-dimensional RNBH spacetimes, and then we particularize it for the
five-dimensional case. In Section 3, we investigate some geometrical and topological aspects
of the N5 black hole and the theory of retracts. In Section 4, we find exact solutions for the
charged massive Klein–Gordon equation, and then we obtain an analytical expression for
the quasibound states. Finally, in Section 5, we summarize the obtained results. At this
point, we utilize the natural units where G ≡ c ≡ h̄ ≡ 1.
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2. Higher-Dimensional Reissner–Nordström Black Holes

The standard four-dimensional black hole solutions to Einstein’s equations were
generalized to higher dimensions by Myers and Perry in [29]. The higher-dimensional
action, which is a generalization of the Einstein–Hilbert action, is given by

S =
∫ (

1
16πGD

R + L
)√

−gdDx, (1)

where GD is the D-dimensional gravitational constant, R is the Ricci scalar, L is the La-
grangian density for any other fields one may wish to consider, and g ≡ det(gµν). Then,
by varying this action with respect to the spacetime metric gµν, we obtain the Einstein
equations in higher dimensions

Rµν −
1
2

Rgµν = 8πGDTµν, (2)

where Rµν is the Ricci tensor. Now, for simplicity and without loss of generality (WLOG), we
may adopt the natural units where GD = 1. Next, by imposing a harmonic gauge condition,
a static, asymptotically flat and spherically symmetric vacuum solution of Equation (2),
which generalizes the RNBH solution in D dimensions, has the following form

ds2 = − f (r)dt2 + f (r)−1dr2 + r2dΩ2
D−2, (3)

where the metric function, f (r), and the solid angle element, dΩ2
D−2, are given, respectively, by

f (r) = 1 − 2M
rD−3 +

Q2

r2(D−3)
, (4)

and

dΩ2
D−2 = dθ2

1 + sin2 θ1dθ2
2 + · · ·+

[(D−3

∏
j=1

sin2 θj

)
dθ2

D−2

]
. (5)

The parameters M and Q are related to the black hole’s mass M and charge Q, respectively,
through the relations

M =
8π

(D − 2)ΩD−2
M, (6)

and
Q =

8π√
2(D − 2)(D − 3)ΩD−2

Q, (7)

with

ΩD−2 =
2π

D−1
2

Γ(D−1
2 )

, (8)

where ΩD−2 is the volume of a (D − 2)-dimensional unit sphere, and Γ(x) is the gamma
function.

Observe that the solution (3) can be reduced to the standard Reissner–Nordström
metric when D = 4, as well as to the Schwarzschild one for Q = 0. This metric is Ricci
flat and is simply called the D-dimensional Reissner–Nordström black hole (DDRNBH)
spacetime. This study concentrates on the five-dimensional Reissner–Nordström black hole
(5DRNBH). Thus, the explicit line element given by Equation (3) for D = 5 reads

ds2 = − f (r)dt2 + f (r)−1dr2 + r2[dθ2 + sin2 θ(dϕ2 + sin2 ϕ dχ2)], (9)

with

f (r) = 1 − 2M
r2 +

Q2

r4 , (10)
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M =
4M
3π

, (11)

Q =
2Q√
3π

, (12)

where θ and ϕ run over the range 0 to π, and χ from 0 to 2π. The causal structure of the
5DRNBH spacetime can be identified from the surface equation

f (r) =
1
r4 (r

4 − 2Mr2 +Q2) = 0 =
1
r4 (r − r1)(r − r2)(r − r3)(r − r4), (13)

whose solutions are the exterior (outer) and interior (inner) “event” horizons [30], given by
r1 =

√
M+

√
M2 −Q2 and r2 =

√
M−

√
M2 −Q2, respectively, and two negative non-

physical solutions, given by r3 = −
√
M−

√
M2 −Q2 and r4 = −

√
M+

√
M2 −Q2.

Then, since the wave phenomena occurring outside the event horizons of a black hole
could give us some insight on the physics of these interesting objects, it is meaningful
to investigate the existence of such singularities in the background under consideration.
Afterward, we discuss a very special type of wave phenomena that occurs near a black
hole, namely, the quasibound states of charged massive scalar particles.

In this work, we concentrate on the non-extreme case, that is, when M ̸= Q. In
fact, the 5DRNBH spacetime has apparent horizons (not event horizons, essentially); these
horizons represent the outermost surface where outgoing photons become marginally
trapped (for a comprehensive investigation about the radiating black hole horizons, see
refs. [31,32] and references therein). Nevertheless, for simplicity, convenience, and WLOG,
we refer to these solutions as the exterior, r1, and interior, r2, “event” horizons. The behavior
of the function f (r), as well as that of the horizons, is shown in Figure 1; Evidently, the
surface equation f (r) = 0 has four (real) solutions.
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Figure 1. Top panel: The metric function f (r) with Q = 0.1 and varying parameter M (left), and
with M = 1 and varying parameter Q (right). Bottom panel: The horizons with Q = 0.1 as functions
of the BH’s mass M (left), and with M = 1 as functions of the BH’s charge Q (right).

3. Geometric Topology and Theory of Retracts

Geometric topology is a field that focuses on exploring the properties of manifolds
and maps. Specifically, we are dealing with embeddings of one manifold into another. Re-
traction is the continuous mapping from a topological space into a subspace by preserving
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the position of all points in that subspace, and hence the subspace is called a retract of the
original space [33].

In summary, geometric topology concentrates on matters arising in special spaces such
as manifolds and the theory of deformations and retractions. If W and V are topological
spaces with W ⊑ V, then a continuous function r : V → W is a retraction if r(y) = y for
all y ∈ W. It means that the function r collapses the space V onto its subset W. Whenever
W ⊑ V, the inclusion function i : W → V can be defined by i(y) = y within the bigger
space V. In fact, r is a retraction of R2 − {0} onto S1, since any element y ∈ S1 is sent
to itself by r [33–35]. As a result, the theory of retracts may be viewed as the concept of
determining a class of functions related to topological properties.

In addition to being significant, these maps are more special than arbitrary continuous
maps, and these maps are also significantly more generalized than homeomorphisms.
Many additional topological aspects are also included in this theory, many of which have a
definite geometrical aspect.

Next, we establish two intriguing topological requirements: strong retraction and
strong homotopy retraction. After that, we utilize this theory to analyze the metric of a N5

black hole (for details, please see ref. [32]).

3.1. Basic Definitions

At this point, we present some essential concepts concerning to the theory of deformations.

Definition 1. Let W be an n-dimensional manifold with a subspace topology W0 ⊑ W. A strong
retraction is a continuous map ξ : W 7→ W0 for which

(a) W is open;
(b) ξ(y) = y (∀y ∈ W0);
(c) ξ(W) = W0;
(d) ξ(W) is a manifold with constant curvature [32].

Definition 2. A subset W0 of a manifold W is called a strong homotopy retract if there exists a
strong retraction ξ : W 7→ W0 and a homotopy σ : W × [0, 1] 7→ W for which

(a) σ(y, 0) = y (∀y ∈ W);
(b) σ(y, 1) = ξ(y) (∀y ∈ W);
(c) σ(y0, t) = y0 (∀y0 ∈ W0 and ∀t ∈ [0, 1]) [32].

Definition 3. Suppose that W1 and W2 are two Riemannian manifolds of dimensions m1 and m2,
respectively. A map ϑ : W1 → W2 is called an isometric folding of W1 into W2, if the induced
path ϑ ◦ γ : [0, 1] → W2 is a piecewise geodesic and of the same length as γ, whenever a path
γ : [0, 1] → W1 is a piecewise geodesic [36]. We shall just use the term folding to indicate an
isometric folding. In what follows, we introduce the chain of limit folding as lim

n→∞
ϑn(Wn−1) =

lim
n→∞

ϑn(ϑn−1(. . . (ϑ1(W0)))), for which {ϑm : Wm−1 → Wm : m = 1, 2, . . . , n} is a chain of

foldings. If Wn is a Riemannian manifold of dimension n, and lim
n→∞

ϑn(Wn) = Wn−1, then this type
of folding is called folded conditionally.

3.2. Components of an N5 Black Hole

In order to investigate some kinds of retractions on the N5 black hole, we first deter-
mine some background parameters and then use the Lagrangian formalism to obtain a set
of geodesic equations. Thus, the standard metric for a five-dimensional black hole solution
can be written as

ds2 = −dp2
1 + dp2

2 + dp2
3 + dp2

4 + dp2
5, (14)

where the components pi (i = 1, . . . , 5) can be constructed by comparing Equations (9) and (14).
Then, by solving (integrating) a system of differential equations, we can find that these compo-
nents are given by
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p1 = ∓
√

1 − 2M
r2 +

Q2

r4 t + a1,

p2 = ∓
iβ1

√
1 + r2

β2

√
1 − r2

β1
EllipticE

[
i sinh−1( r√

β2
), β2

β1

]
− EllipticF

[
i sinh−1( r√

β2
), β2

β1

]
r2√

β2

√
1 − 2M

r2 + Q2

r4

+ a2,

p3 = ∓rθ + a3,

p4 = ∓r(sin θ)ϕ + a4,

p5 = ∓r(sin θ)(sin ϕ)χ + a5, (15)

with
β1 = M+

√
M2 −Q2, (16)

β2 = M−
√
M2 −Q2, (17)

where ai (i = 1, . . . , 5) are constants (of integration) to be determined. Here, EllipticF[µ, ν]
and EllipticE[µ, ν] are the elliptic integral of the first and second kind, respectively. For
simplicity, we can define a five-vector as p = (p1, p2, p3, p4, p5). Now, we want to obtain the
components of the geodesic equation from the Lagrangian L and Euler–Lagrange equation,
which are given, respectively, by

L =
1
2

gµνυ̇µυ̇ν, (18)

and
d
ds

(
∂L
∂υ̇µ

)
− ∂L

∂υµ = 0, (19)

where µ, ν = (1, 2, . . . , 5), and the dot “˙” indicates the derivative with respect to the proper
length. Next, by using the relation

2L = ds2, (20)

we can write

ϖ = − f (r)ṫ2 + f (r)−1ṙ2 + r2[θ̇2 + sin2 θ(ϕ̇2 + sin2 ϕ χ̇2), (21)

where we have used the identity 2L = ϖ. In fact, for null geodesics, we have ϖ = 0, and
for massive particles we get ϖ = 1. Thus, the components of the geodesic equation are
reduced to

f (r)ṫ = E1, (22)

− d
ds

(
2ṙ

f (r)

)
+

{
− f ′(r)ṫ2 − ṙ2 f ′(r)

[ f (r)]2
+ 2r[θ̇2 + sin2 θ(ϕ̇2 + sin2 ϕ χ̇2)]

}
= 0, (23)

d
ds

(2r2θ̇)− r2[sin 2θ(ϕ̇2 + sin2 ϕ χ̇2)] = 0, (24)

d
ds

(2r2 sin2 θ ϕ̇)− r2(sin2 θ)(sin 2ϕ)χ̇2 = 0, (25)

r2(sin2 θ)(sin2 ϕ)χ̇ = E2, (26)

where E1 and E2 are constants (of integration) to be determined, and the quotation marks
“ ′ ” represents the derivative with respect to the radial coordinate r.
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Then, from Equation (22), by considering E1 = 0, we obtain a time solution t = E3,
where E3 is also a constant (of integration) to be determined. Moreover, if we assume that
f (r) = 0, we have four surfaces, namely, ri (i = 1, . . . , 4), which are the two event (apparent)
horizons and the two non-physical solutions to the surface equation of a 5DRNBH space-
time. Therefore, the surfaces r1 and r2 describe the exterior and interior event (apparent)
horizons of N5. Thus, the photons can escape from the exterior horizon and reach an
arbitrary large distance from the black hole; this confirms that these surfaces are, in fact,
apparent horizons, not the event horizons.

Now, by putting E2 = 0 in Equation (26), we obtain at least one of θ, ϕ, or χ̇ equal to zero.

Hence, in the case of ϕ ̸= 0 and χ̇ ̸= 0, we have θ = 0. Thus, we obtain a subspace
[θ=0]

B ⊑ N5,
and the components have the following form

[θ=0]
p1 = ∓

√
1 − 2M

r2 +
Q2

r4 t + a1,

[θ=0]
p2 = ∓

iβ1

√
1 + r2

β2

√
1 − r2

β1
EllipticE

[
i sinh−1( r√

β2
), β2

β1

]
− EllipticF

[
i sinh−1( r√

β2
), β2

β1

]
r2√

β2

√
1 − 2M

r2 + Q2

r4

+ a2,

[θ=0]
p3 = a3,

[θ=0]
p4 = a4,

[θ=0]
p5 = a5. (27)

Therefore, we can write the first strong retraction as
[θ=0]

ξ : N5 →
[θ=0]

B .
Now, by considering θ ̸= 0 and χ̇ ̸= 0, we obtain ϕ = 0, and hence we have a subspace

[ϕ=0]
B ⊑ N5, whose components are given by

[ϕ=0]
p1 = ∓

√
1 − 2M

r2 +
Q2

r4 t + a1,

[ϕ=0]
p2 = ∓

iβ1

√
1 + r2

β2

√
1 − r2

β1
EllipticE

[
i sinh−1( r√

β2
), β2

β1

]
− EllipticF

[
i sinh−1( r√

β2
), β2

β1

]
r2√

β2

√
1 − 2M

r2 + Q2

r4

+ a2,

[ϕ=0]
p3 = ∓rθ + a3,

[ϕ=0]
p4 = a4,

[ϕ=0]
p5 = a5. (28)

Therefore, the strong retraction can be represented as
[ϕ=0]

ξ : N5 →
[ϕ=0]

B .
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Next, under the condition that θ ̸= 0 and ϕ ̸= 0, we can conclude that χ̇ = 0, which

implies that χ = constant = 0 (a special case), and then, there exists a subspace
[χ=0]

B ⊑ N5

that contains the following components

[χ=0]
p1 = ∓

√
1 − 2M

r2 +
Q2

r4 t + a1,

[χ=0]
p2 = ∓

iβ1

√
1 + r2

β2

√
1 − r2

β1
EllipticE

[
i sinh−1( r√

β2
), β2

β1

]
− EllipticF

[
i sinh−1( r√

β2
), β2

β1

]
r2√

β2

√
1 − 2M

r2 + Q2

r4

+ a2,

[χ=0]
p3 = ∓rθ + a3,

[χ=0]
p4 = ∓r(sin θ)ϕ + a4,

[χ=0]
p5 = a5. (29)

Therefore, with this approach, we can find the other strong retraction, namely,
[χ=0]

ξ : N5 →
[χ=0]

B .

3.3. Strong Homotopy Retracts

Here, we use all types of strong retractions stated above to introduce strong homotopy
retracts of the N5 black hole.

Thus, by using the strong retractions
[θ=0]

ξ : N5 →
[θ=0]

B ,
[ϕ=0]

ξ : N5 →
[ϕ=0]

B , and
[χ=0]

ξ : N5 →
[χ=0]

B , we can construct the homotopy retracts on N5 as follows.

First, the strong homotopy retracts of N5 onto a geodesic
[θ=0]

B ⊑ N5 can be character-
ized by

σ
[θ=0]

B : N5 × [0, 1] → N5, (30)

where

σ
[θ=0]

B (p, s) = (1 − s)[σ
[θ=0]

B (p, 0)] + s[σ
[θ=0]

B (p, 1)], (31)

which is valid ∀p ∈ N5 and ∀s ∈ [0, 1], with

σ
[θ=0]

B (p, 0) = p,

σ
[θ=0]

B (p, 1) =

{(
[θ=0]
p1 ,

[θ=0]
p2 ,

[θ=0]
p3 ,

[θ=0]
p4 ,

[θ=0]
p5

)}
. (32)

Next, we can write the strong homotopy retracts of N5 onto a geodesic
[ϕ=0]

B ⊑ N5 as

σ
[ϕ=0]

B : N5 × [0, 1] → N5, (33)

where

σ
[ϕ=0]

B (p, s) = (1 − s)[σ
[ϕ=0]

B (p, 0)] + s[σ
[ϕ=0]

B (p, 1)], (34)

which is valid ∀p ∈ N5 and ∀s ∈ [0, 1], with

σ
[ϕ=0]

B (p, 0) = p,

σ
[ϕ=0]

B (p, 1) =

{(
[ϕ=0]
p1 ,

[ϕ=0]
p2 ,

[ϕ=0]
p3 ,

[ϕ=0]
p4 ,

[ϕ=0]
p5

)}
. (35)
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Finally, we can achieve the strong homotopy retracts of N5 onto a geodesic
[χ=0]

B ⊑ N5 as

σ
[χ=0]

B : N5 × [0, 1] → N5, (36)

where

σ
[χ=0]

B (p, s) = (1 − s)[σ
[χ=0]

B (p, 0)] + s[σ
[χ=0]

B (p, 1)], (37)

which is valid ∀p ∈ N5 and ∀s ∈ [0, 1], with

σ
[χ=0]

B (p, 0) = p,

σ
[χ=0]

B (p, 1) =

{(
[χ=0]
p1 ,

[χ=0]
p2 ,

[χ=0]
p3 ,

[χ=0]
p4 ,

[χ=0]
p5

)}
. (38)

In all of these results, Equations (15), (27)–(29) provide the values of the components
pi (i = 1, . . . , 5).

Therefore, based on these findings, we can infer that all the strong retractions, as a
subspace of N5, induce strong homotopy retractions on N5. Furthermore, we deduce that
every geodesic provides a strong retraction on a cross-sectional apparent horizon of the
5DRNBH. In addition, the subspaces are strongly homotopically retracted, and they are
also contained within a subspace of N5. Thus, we have proved and substantiated (from
a rigorous mathematical standpoint) the existence of apparent horizons in the 5DRNBH
spacetime. Then, these findings allow us to investigate an interesting physical phenomenon
which occurs in the gravity surface of an exterior (apparent) horizon, namely, the qua-
sibound states at the black hole’s potential well. Since we have proved the existence of
such an exterior horizon, we are able to investigate the boundary condition related to this
surface, and at the spatial infinity as well, in order to discuss one of the physical meanings
of this mathematical tool. In what follows, first, we conclude the topological studies by
investigating the limit case of these transformations, and then we address the motion of
scalar particles in the exterior region of the 5DRNBH spacetime by imposing some specific
conditions on the radial solution.

3.4. Limit Transformation on a Non-Extremal D-Dimensional RNBH

Now, we look at the limit of strong retraction and the limit of folding on a D-
dimensional non-extremal RNBH from the standpoint of commutative diagrams.

Theorem 1. Suppose that GD is a D-dimensional non-extremal RNBH. Let HD be a subspace
of GD. This yields chains of folded conditionally ϑi (i = 1, . . . , n) and strong retractions ξ j

(j = 1, . . . , n), with i, j ∈ N, such that ϑ1(GD) = GD
1 , ϑ2(GD

1 ) = GD
2 , . . ., ϑn(GD

n−1) = GD
n ,

in which the end limit is a zero-dimensional non-extremal RNBH (G0) with a zero-dimensional
subspace (H0).
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Proof. In this approach, we introduce the following chains of strong retractions and condi-
tionally folded foldings as commutative diagrams:

GD ϑ1−→ GD
1

ϑ2−→ GD
2 · · ·

lim
n→∞

ϑn
−→ GD−1

↓ ξ1 ↓ ξ2 ↓ ξ3 · · · ↓ lim
n→∞

ξn

HD ϑ1−→ HD
1

ϑ2−→ HD
2 · · ·

lim
n→∞

ϑn
−→ HD−1

...
...

... · · ·
...

GD−1 ϑ1−→ GD−1
1

ϑ2−→ GD−1
2 · · ·

lim
n→∞

ϑn
−→ GD−2

↓ ξ1 ↓ ξ2 ↓ ξ3 · · · ↓ lim
n→∞

ξn

HD−1 ϑ1−→ HD−1
1

ϑ2−→ HD−1
2 · · ·

lim
n→∞

ϑn
−→ HD−2

...
...

... · · ·
...

G1 ϑ1−→ G1
1

ϑ2−→ G1
2 · · ·

lim
n→∞

ϑn
−→ G0

↓ ξ1 ↓ ξ2 ↓ ξ3 · · · ↓ lim
n→∞

ξn

H1 ϑ1−→ H1
1

ϑ2−→ H1
2 · · ·

lim
n→∞

ϑn
−→ H0.

From the existence of the lower limit, we can consequently obtain the zero-dimensional
non-extremal RNBH.

4. Charged Massive Scalar Equation of Motion

In this section, our focus is on the fundamental attributes of the 5DRNBH spacetime,
especially the ones related to their interaction with quantum scalar fields, in particular
the classical scalar wave phenomena such as the quasibound states (QBSs). To this end,
we consider the covariant, conformally coupled, charged massive Klein–Gordon equation,
which is given by[

1√−g
∂µ(gµν

√
−g∂ν)− ie(∂µ Aµ)− 2ieAµ∂µ − ie√−g

Aµ(∂µ

√
−g)− e2 Aµ Aµ − µ2

]
Ψ = 0, (39)

where g ≡ det(gµν), Ψ = Ψ(t, r, θ, ϕ, χ) is the five-dimensional scalar wave function,
and µ and e are the mass and the charge of the scalar particle, respectively. Here, the
electromagnetic five-vector Aµ of the 5DRNBH is given by [37]

Aµ =

√
3Q

2r2 (−1, 0, 0, 0, 0). (40)

Then, in order to obtain exact analytical solutions of Equation (39), due to the stationarity
and axisymmetry of the 5DRNBH spacetime, we can use the following ansatz

Ψ(t, r, θ, ϕ, χ) = e−iωtU(r)P(θ, ϕ, χ), (41)

where U(r) = R(r)/r3/2 is the radial function, P(θ, ϕ, χ) is an angular function, and
ω is the frequency (energy, in the natural units). Thus, by using the 5DRNBH space-
time metric, the electromagnetic potential, and the separation of variables, given by
Equations (9), (40), and (41), respectively, the equation of motion (39) can be separated into
an angular and a radial equation as{

1
sin2 θ

∂

∂θ

(
sin2 θ

∂

∂θ

)
+ λ − 1

sin2 θ

[
1

sin ϕ

∂

∂ϕ

(
sin ϕ

∂

∂ϕ

)]
+ λ̄ +

1
sin2 ϕ

∂2

∂χ2

]}
P(θ, ϕ, χ) = 0, (42)

and
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R′′(r) +
f ′(r)
f (r)

R′(r) +
1

f 2(r)

{(
ω − ϖ0

r2

)2

− f (r)[4λ + 4r2µ2 + 3 f (r) + 6r f ′(r)
4r2

}
R(r) = 0, (43)

where ϖ0 =
√

3Qe/2, and λ and λ̄ are the separation constants. Thus, the general exact
analytical solutions of the angular equation (42) are provided by the generic formulas
P(θ, ϕ, χ) = Pl

ν,4(cos θ)Ylm(ϕ, χ), where Pl
ν,4(cos θ) are the corresponding Legendre func-

tions in four dimensions [38–40] with arbitrary degree ν(∈ C) and order l, in which
λ = ν(ν + 2), and Ylm(ϕ, χ) are the spherical harmonics, with l and m being the angular
and magnetic quantum numbers, respectively, for which λ̄ = l(l + 1). Next, we analytically
solve the radial Equation (43) by applying the VBK approach, which means to rewrite it as
a (general) Heun type differential equation [41].

4.1. Radial Equation

To solve the radial Equation (43), first, we need to find a more convenient form
(parametrization) for the metric function f (r) given by Equation (10). In fact, the left-hand
side of surface Equation (13) is a biquadratic equation, and we can “reduce” the number of
singularities by defining a new radial coordinate, x, as

x = r2, (44)

such that
f (x) =

1
x2 (x2 − 2Mx +Q2), (45)

and hence, we get the metric function through parametrization

f (x) = 0 =
1
x2 (x − x1)(x − x2), (46)

whose (positive) solutions are now the exterior and interior “apparent horizons”, given by
x1 = M+

√
M2 −Q2 and x2 = M−

√
M2 −Q2. Thus, with this parametrized metric

function, given by Equation (46), we demonstrate that Equation (43) is totally appropriate
to study QBSs with purely ingoing boundary conditions at the exterior event horizon and
decaying boundary conditions far from the BH at spatial infinity. The behavior of the metric
function f (x), including the horizons, is shown in Figure 2; we can see that the surface
equation f (x) = 0 has two (real, positive) solutions.

Now, by following the steps defined in the VBK approach, we can deduce the exact
analytical solutions of Equation (43). First, we need to establish a new radial coordinate, z, as

z =
x
x2

, (47)

such that
z1 =

x1

x2
. (48)

These new definitions move the three singularities (0, x2, x1) to the points (0, 1, z1), as well
as keeping a regular singularity at (spatial) infinity. Note that the regular singular point
at z = z1 is located outside |z1| > 1. Then, the next step is to perform an F-homotopic
transformation, such that R(z) 7→ y(z) by

R(z) = z
3
4 (z − 1)

δ−1
2 (z − z1)

ϵ−1
2 y(z), (49)
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where

δ = 1 −
i
√

x2(ω − ϖ2)

x1 − x2
, (50)

ϵ = 1 −
i
√

x1(ω − ϖ1)

x1 − x2
, (51)

with ϖj = ϖ0/xj. Now, by substituting Equations (44)–(51) into Equation (43), we obtain

d2y(z)
dz2 +

(
γ

z
+

δ

z − 1
+

ϵ

z − z1

)
dy(z)

dz
+

αβz − q
z(z − 1)(z − z1)

y(z) = 0, (52)

where

α =
−x2

√
(µ2 + 4)x1 + x1[

√
(µ2 + 4)x2 + 2

√
x2]− iω

√
x1x2 − 2

√
x1x2 + iϖ0

2x1
√

x2 − 2
√

x1x2
, (53)

β =
x2
√
(µ2 + 4)x1 − x1[

√
(µ2 + 4)x2 − 2

√
x2]− iω

√
x1x2 − 2

√
x1x2 + iϖ0

2x1
√

x2 − 2
√

x1x2
, (54)

γ = 1, (55)

q =
1
4

[
2ix1(x2ω − ϖ0)

x3/2
2 (x2 − x1)

−
ϖ2

0
x1x2

2
− 2i(x1ω − ϖ0)√

x1(x1 − x2)
+

λ

x2

]
. (56)

Equation (52) has the exact (canonical) form of a general Heun equation, where
y(z) ≡ HeunG(z1, q; α, β, γ, δ; z) represents the general Heun function, which is the so-
lution corresponding to the exponent 0 at z = 0 when considering the value 1 there. Thus,
if γ is not a negative integer, the existence of HeunG(z1, q; α, β, γ, δ; z) can be deduced from
the Fuchs–Frobenius theory, which is analytic in the disk |z| < 1 and represented by a
Maclaurin series expansion:

HeunG(z1, q; α, β, γ, δ; z) =
∞

∑
n=0

cnzn, (57)

where

−qc0 + z1γc1 = 0,

Pncn−1 − (Qn + q)cn + Xncn+1 = 0 (n ≥ 1), (58)

with

Pn = (n − 1 + α)(n − 1 + β),

Qn = n[(n − 1 + γ)(1 + z1) + z1δ + ϵ],

Xn = (n + 1)(n + γ)z1. (59)

Here, Karl Heun [42] adopted the normalization c0 = 1. Also, when γ is not a positive
integer, the solution of Equation (52) corresponding to the exponent 1 − γ at z = 0 is
z1−γHeunG(z1, (z1δ + ϵ)(1 − γ) + q; α + 1 − γ, β + 1 − γ, 2 − γ, δ; z).
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Figure 2. Top panel: The metric function f (x) with Q = 0.1 and varying parameter M (left), and
with M = 1 and varying parameter Q (right). Bottom panel: The horizons with Q = 0.1 as functions
of the BH’s mass M (left), and with M = 1 as functions of the BH’s charge Q (right).

Hence, the exact solution for the radial part of the conformally coupled charged
massive Klein–Gordon equation in the 5DRNBH spacetime can be represented as

Rj(z) = z
3
4 (z − 1)

δ−1
2 (z − z1)

ϵ−1
2 [C1,j y1,j(z) + C2,j y2,j(z)], (60)

where C1,j and C2,j are constants (to be determined), and j = {0, 1, z1, ∞} labels the solution
at all singular points. Consequently, we obtain a pair of linearly independent solutions at
z = 0 (r = 0) through

y1,0(z) = HeunG(z1, q; α, β, γ, δ; z), (61)

y2,0(z) = z1−γHeunG(z1, (z1δ + ϵ)(1 − γ) + q; α + 1 − γ, β + 1 − γ, 2 − γ, δ; z). (62)

Similarly, the pair of linearly independent solutions for exponents 0 and 1 − δ at x = 1
(r = r2) is provided by

y1,1(z) = HeunG(1 − z1, αβ − q; α, β, δ, γ; 1 − z), (63)

y2,1(z) = (1 − z)1−δHeunG(1 − z1, ((1 − z1)γ + ϵ)(1 − δ) + αβ − q; α + 1 − δ, β + 1 − δ, 2 − δ, γ; 1 − z). (64)

The pair of linearly independent solutions for exponents 0 and 1 − ϵ at z = z1 (r = r1) is
provided by

y1,z1 (z) = HeunG
(

z1
z1 − 1

,
αβz1 − q

z1 − 1
; α, β, ϵ, δ;

z1 − z
z1 − 1

)
, (65)

y2,z1 (z) =

(
z1 − z
z1 − 1

)1−ϵ

HeunG
(

z1
z1 − 1

,
(z1(δ + γ)− γ)(1 − ϵ)

z1 − 1
+

αβz1 − q
z1 − 1

; α + 1 − ϵ, β + 1 − ϵ, 2 − ϵ, δ;
z1 − z
z1 − 1

)
. (66)

Finally, the pair of linearly independent solutions for exponents α and β at z = ∞ (r = ∞)
is provided by
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y1,∞(z) = z−αHeunG
(

1
z1

, α(β − ϵ) +
α

z1
(β − δ)− q

z1
; α, α − γ + 1, α − β + 1, δ;

1
z

)
, (67)

y2,∞(z) = z−βHeunG
(

1
z1

, β(α − ϵ) +
β

z1
(α − δ)− q

z1
; β, β − γ + 1, β − α + 1, δ;

1
z

)
. (68)

Next, by assuming a specific asymptotic behavior (boundary condition) on these exact
solutions, namely, near the exterior black hole event horizon (r → r1) and at the spatial
infinity (r → ∞), we can discuss the physical solutions related to the quasibound states.

4.2. Quasibound States

Now, we apply the VBK approach [21,22] to deduce the characteristic resonance
equation and then determine the spectrum of QBS frequencies. To do this, we need to
impose the following two boundary conditions on the radial solution: it should describe a
purely ingoing wave at the exterior black hole event horizon and tend (decaying) to zero
far from the black hole at spatial infinity. Since QBSs are mode solutions to the eigenvalue
problem, we refer to QBSs as ωn. In addition, it can be shown that the fact that at spatial
infinity QBSs decay exponentially enables an analytic evaluation. Here, we only present
the most important and final results, and hence we cordially invite the readers to check all
the necessary calculations/steps on the VBK approach papers [21,22].

Thus, the general Heun function becomes a (class I) polynomial of degree n (≥0) iff it
satisfies two conditions [41], namely,

α + n = 0, (69)

cn+1(q) = 0. (70)

From the first condition, which is called α-condition, we find the frequency eigenvalues.
Moreover, based on the second condition, we determine the constant λ for all value of
n, and then we use it to find the eigenvalues ν, as well as the radial and angular wave
eigenfunctions. Therefore, by implementing Equation (69), we have that the exact analytical
spectrum of QBSs is provided by

ωn =
ϖ0 + i{x2[2(n + 1)

√
x1 +

√
(µ2 + 4)x1]− x1[2(n + 1)

√
x2 +

√
(µ2 + 4)x2]}√

x1x2
, (71)

where n is now the overtone number, which can be called the principal quantum number.
In fact, Re[ω] = ϖ0. On the other hand, by imposing Equation (70) for the fundamental
mode when n = 0 leads to

cn+1(q)
∣∣∣∣
n=0

= q0 = q = 0, (72)

whose solution is

λ0 =
ϖ2

0
x1x2

+
2i[x1x2ω − ϖ0(x1 +

√
x1x2 − x2)]√

x1x2(
√

x1 −
√

x2)
, (73)

from which we can determine the angular eigenvalue ν0 for the ground state, as, for
example, ν0 = 1.25178 − 0.03845i for M = 1, µ = 0.5, Q = 0.5, and e = 0.1.

In Figure 3 we show the behavior of the imaginary part of charged massive scalar
QBSs in the 5DRNBH spacetime; The real part for the QBS ωn is always constant and equal
to ϖ0.
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Figure 3. Top panel: The imaginary part of the charged massive scalar QBSs ωn of a five-dimensional
non-extremal Reissner–Nordström black hole with respect to n = 0, 1, 2 and varying the BH’s mass
M (left) and the field’s mass µ (right). Bottom panel: The imaginary part of the charged massive
scalar QBSs ωn of a five-dimensional non-extremal Reissner–Nordström black hole with respect to
n = 0, 1, 2 and varying the BH’s charge Q (left) and the field’s charge e (right).

4.3. Radial Wave Eigenfunctions

Finally, we introduce the radial wave eigenfunctions, which correspond to the charged
massive scalar QBS frequencies in the 5DRNBH spacetime. To do this, we also follow the
VBK approach.

Thus, the QBS radial wave eigenfunctions for charged massive scalar fields propagat-
ing in a 5DRNBH spacetime are given by

Un(z) =
1

z
3
4

R(z) = Cn(z − 1)
δ−1

2 (z − z1)
ϵ−1

2 HeunGpn(z1, qn;−n, β, γ, δ; z), (74)

where Cn is a constant to be determined, and HeunGpn(z1, qn;−n, β, γ, δ; z) are the general
Heun polynomials.

In Figure 4, we present the squared radial wave eigenfunctions for the fundamental
mode. We can see that these radial solutions tend to zero at spatial infinity and diverge
(reaching a maximum value) at the exterior event horizon.
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Figure 4. The squared radial wave eigenfunctions (left) and their log-scale plots (right) for the
fundamental n = 0 of charged massive scalar QBS frequencies ωn in a 5DRNBH spacetime as
functions of M, µ, Q, and e. The units are in multiples of Cn.

5. Final Remarks

In this work, we investigated novel mathematical implications of concepts in geometric
topology, retract theory, and physics, focusing on strong homotopy retracts in the five-
dimensional non-extremal Reissner–Nordström black hole spacetime. From the metric
describing the aforementioned background, we showed that the geodesics were strong
retractions. In addition, we also proved that the end limit of folding on a D-dimensional
non-extremal Reissner–Nordström black hole was a zero-dimensional non-extremal RNBH.

We used the theory of retracts to investigate the importance of geometric topol-
ogy in the study of spacetime singularities, especially the apparent horizons of the five-
dimensional non-extremal Reissner–Nordström black hole. We also looked at how quantum
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charged massive scalar fields behaved as they moved near the exterior event horizon of the
five-dimensional non-extremal Reissner–Nordström black hole spacetime. We deduced
the exact analytical solution for the radial part of the conformally coupled Klein–Gordon
equation, provided in terms of the general Heun functions, and subsequently studied a
significant physical phenomenon associated with the boundary conditions imposed on it,
namely, the quasibound states. The spectrum of quasibound state frequencies for charged
massive scalar fields was obtained by using the VBK approach.

Finally, we discussed the stability of the system. The system was stable, since the imagi-
nary part of its resonant frequencies were negative. Here, it is worth emphasizing that these
quasibound state frequencies were obtained directly from the general Heun functions by
using their polynomial conditions, and, to our knowledge, there have not been any similar
results in the literature for the background under consideration. In fact, there exist some re-
sults on bound states (not quasibound) of both 4D and 5D RNBHs obtained by Huang, Zhao
,and Zou [37], where they imposed a bound state condition given by ω2 < µ2, which is a
low-frequency limit, meaning that the particle was not absorbed by the black hole, and even-
tually, it could be emitted with a superradiant frequency; therefore, the spectrum of eigenfre-
quencies was just real, that is, ω = Re[ω], such that it did not depend on an overtone num-
ber n. Furthermore, in our case, the radial solution diverged near the exterior event horizon,
and achieving a maximum value indicated that the scalar particles could cross into the
black hole.

We hope that, in the near future, our results can be used to fit some astrophysical
and/or experimental data and hence may shed some light on the physics of black holes
and higher-dimensional theories of gravity as well.
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