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Abstract
We study large fluctuations of emitted radiation in the system of N non-
interacting two-level atoms. Two methods are used to calculate the probability
of large fluctuations and the time dependence of excitation and emission. The
first method is based on the large deviation principle for Markov processes.
The second one uses an analogue of the quantum formalism for classical
probability problems.

Particularly we prove that in a large fluctuation limit approximately half of
the atoms are excited. This fact is independent on the fraction of the excited
atoms in equilibrium.

Keywords: continuous-time Markov processes, large deviations, reversibility,
stationary probabilities, product-formula

1. Motivations

In recent years there has been considerable interest in studying optimal realizations of large
deviations in stochastic interacting particle systems, see e.g. [1, 3, 4] for optimal profiles in
current large deviations of the asymmetric simple exclusion process or [10, 11] for condensa-
tion in the zero-range process. In addition to the mathematical interest in understanding how
large deviations are typically realized (when they occur), motivation comes also from the fact
that such large deviations are studied experimentally in order to test the validity of fluctuation
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theorems such as the Gallavotti-Cohen theorem [9], the Lebowitz—Spohn results [14] or the
Jarzynski relation [12]. Generally, fluctuation theorems predict the ratio of probabilities of a
positive large deviation of some observable to a negative large deviation of the same abso-
lute magnitude [5, 14, 21]. Particularly simple and therefore transparent systems where such
relations can be probed experimentally are two-level systems where each microscopic entity
can be either in a ground state or in an excited state. As an example we mention the optical
excitation of an ensemble of single-defect centres in diamond. Measurements of the dissipated
work [19] and entropy [22] agree with the expected integral fluctuation relations. Fluctuation
relations for driven two-level systems have been investigated recently also in the context of
biological motors [6] and quantum two-level systems [15].

Here we address the question of optimal realizations of a large deviation in an ensemble
of two-level systems. We consider a scenario where every two-level system in the ensemble
of (independent) two-level systems can be excited by an external source of energy and later
relaxes to its ground state by the emission of radiation. Conditioning on a large deviation of
the emitted radiation in a time interval [0, 7] we ask how the number of excited states Zy(7)
and also how the accumulative radiation Yy(#) will typically behave during this time interval
assuming that the number N of elements of the two-level system is large. In particular, we
wish to answer the question whether such a large deviation is typically realized by the typical
behaviour for most of the time and only some strong bursts of radiation, or by non-typical
behaviour throughout [0, 7], or by both, i.e. by non-typical behaviour together with bursts.

For definiteness we refer to microscopic two-level systems as atoms. To keep the model
simple we study the case where both excitation and emission occur after exponentially distrib-
uted random times with parameters A and p respectively. It will transpire that the behaviour
of the ensemble of two-level systems is non-trivial: the optimal realization of a large deviation
involves non-typical radiation intensity throughout [0, T]. If T is large then at intermediate
times the radiation activity is approximately constant (and different from its typical value),
and one has moderate bursts or suppression at the beginning or the end (or both) of the time-
interval [0, T, depending on the initial state and on the magnitude of the large deviation that
is under consideration. The ‘moderate bursts’ are defined as an expected increase in the radia-
tion intensity TN(t) during a short (exponentially bounded) interval of time. The probabilistic
interpretation of this behaviour is that in order to generate a large deviation from typical
behaviour in a long time interval T it is less costly to have a relatively small, but lasting, devia-
tion from non-typical behaviour than to have almost permanent typical behaviour, punctuated
by occasional strong deviations (strong bursts of radiation). The (moderate) bursts at initial
and/or final times realize the transition from the initial state (and/or to the final state) to the
intermediate mildly nontypical behaviour.

We address this problem both from a macroscopic Hamiltonian perspective and from a
microscopic approach employing generating function techniques. The latter indicates that
qualitatively similar behaviour is expected for any number of excited states per atom.

2. Macroscopic approach. Large deviations

In this section fluctuations of an ensemble of two-level atoms are described by means of the large
deviation principle. The goal is to study a rare event where a very large emission is happening
during time interval [0, T]. More exactly, we find a mean dynamics of the number of emissions
and the number of excited atoms during [0, 7] conditioned on the rare event mentioned above.
Consider an ensemble (a sample) of N atoms where each atom can be either in a ground
state or in an excited state. The sample is under a radiation by steady flux of photons. Each
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atom in the ground state can absorb a photon transiting to the exited state. An atom in the
excited state can emit a photon and consequently undergoes a transition to the ground state.
There are no interactions between the atoms. Therefore all atom transformations are inde-
pendent of each other. Given the parameters of mean times that an atom spends in the ground
and the excited states it is easy to find the mean dynamics of the number of excited atoms and
of the cumulative number of the photon emissions on [0, 7.

We show that the process path given the large emission on [0, T]is close to a linear function.
Moreover, under the large emission the conditional input and output flows are close to each
other in the interior of [0, T]. This fact holds for any stationary regime of both flows.

We describe this dynamics by a two-dimensional Markov process. For any ¢ € [0, T}, the
components of the process describe the number of the excited atoms at moment ¢ and the
cumulative number of emission events during [0, #]. In terms of the Markov process, our goal
is to describe the shape of paths of the Markov process given the large cumulative number of
emission events on [0, 7.

A tool we used for the analysis is the large deviation theory, which studies the probabilities
of rare events, and also describes how these rare events evolve. The main tool of the large
deviation theory is a theorem called the large deviation principle. There exists many versions
of the large deviation principle for different stochastic models. Here we apply the large devia-
tion principle to Markov processes following [8].

2.1. The model

We formalize our model as follows. Consider N independent random variables (atoms in what
follows) that take two values 0 and 1. We say that the atom is in the ground state if the corre-
sponding random variable is 0, otherwise the atom is excited. We study time dynamics of
every atom. As time passes, any atom randomly changes its state. The stochastic dynamics of
a single atom is a Markov process on the state space {0, 1}. The transition of the atom from
the excited state to the ground state 1 — O is called an emission. The opposite transition is
called an excitation.

A stochastic dynamics of the ensemble ¥ = (oy,...,0ny) of N two-level atoms where
o; € {0, 1} is described by a two dimensional Markov process T'y(f) = (En(f), Tn(t)), where
En(t) is the number of excited atoms at time 7 and Ty/(#) is the cumulative number of emitted
photons on the interval [0, 7]. The components Zy(¢) and Yy(¢) are strongly correlated.

2.1.1. Excitation component. The process Zy () takes its values in the set A" = {0, 1,2, ..., N}.
A random event (Ey(¢) = n), n € N means that the number of excited atoms is equal to n.
Then N — n is the number of the atoms in their ground states. The process Zy(¢) is a jump
Markov process. Every jump is either +1 or —1, either enlarging or reducing the number of
the excited atoms by one.

An operator semigroup (P, ¢ € R, ) drives the dynamics of Zy(¢) with the initial value
En(0) = x € N. Namely, for any G € F

P,G(x) = ExG(En(1)), 2.1

i.e. the operators P, act on the space F of functions N'— R. The semigroup can be repre-
sented by an infinitesimal operator L as

P,G =e'G (2.2)

for G € F. The infinitesimal operator L of Zy(¢) is determined by two parameters A > 0 and
1> 0 as follows:
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LG(n) = AN — ) [G(n + 1) = G(n)] + un [G(n — 1) — G(n)] . 2.3)

The constants A and p are intensities of the jumps +1 and —1 respectively.
The process Ey(7) is ergodic and reversible with the stationary distribution

()
n)” (2.4)

w(n) :=Pr(En(t) =n) =

(L+y)V
where v = A/u. The distribution 7 can be found from the detailed balance equations
AN —n)r(n) = p(n+ Dm(n+ 1), forn < N. (2.5)

2.1.2. Emission component. The second component Yy (#) describes the number of emission
events and is equal to the number of negative jumps of the process =y on the time interval
[0, 7]. Namely, let k(#) = k() + k—(¢) be the total number of jumps of Ey up to the moment
t € [0, T], where k4 (¢) and k_ (r) are the numbers of positive and negative jumps, respectively.
Then we define

Tn(t) = —k_(1).
It is assumed that k; (0) = k_(0) = 0. Note that =y (1) = Ex(0) + k4 (1) — k_(1).

2.1.3. The process. The two-dimensional process

Ln(r) = (En(2), Tn(1)) (2.6)
is a Markov process with dependent components taking their values in N x Z_, where
Z_ ={...—2,—1,0}. The process I'y(#) is a non-equilibrium jump process. Observe that the
process has only two types of jumps {(1,0), (—1, —1)}. The infinitesimal operator of I'y(¢) is
LrG(n,m) = A(N —n)[G(n + 1,m) — G(n,m)] + pn|G(n — 1,m — 1) — G(n,m)],

2.7
where n € N,m € Z_, and A, p are positive parameters introduced in section 2.1.1, G(n, m)
belongs to the function space Fr of functions N x Z_ — R.

2.2. Large deviations

The goal of our studies is to find the probability of a very large emission and a large deviation
path of the process which produces very large emission during the interval [0, T]. It is assumed
that the number N of the atoms is large and grows to infinity. The theory of large deviations
allows one to solve both mentioned tasks: to find the asymptotics of the large emission prob-
ability as N — oo as well as the path of the dynamics that realizes the large deviation on the
interval [0, 7). Solving these problems by the method of large deviations we follow construc-
tions and results in [8] (see also appendix in [7]).
In order to study the asymptotics in N it is convenient to consider the scaled process

) = (60) = 200,60 = L Tw0) 8)

instead of (2.6). The scaled process vy = (&, v) takes values in Dy = (3N x % Z_). The
process Yy is a jump process with two types of jumps: (%, 0) and (f% f%) with intensities A

and p respectively. Let (x,y) € Dy and o = ﬁ Then the infinitesimal operator of yy is
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LG (v, yn) = NA(L = xn)[G(xy + . yn) — Glxn, yw )]
+ Nuxy[G(xy — a,yy — @) — Gxy, yn)]-

Since Dy C D = [0, 1] x R_ for every N, we will assume that the processes yy take their
values in D. Let F; be the space of smooth functions D — R. Assume that the sequence
(xn,yn) € Dy converges to some (x,y) € D, as N — oco. Then

0 0 0
. v _ 2.9
Jim L., G(xn,yn) = A1 —x) 8xG()c, y) — pux <8XG(x, y)+ o G(x, y)) : (2.9)

The Lagrangian plays a key role in the large deviations of the Markov processes v

L(fi.fo)(t) = B (S,)UE o {fl(’)%l () + A ()sa(t) — H(A (f),fz(f),%l(f),%z(f))} ; (2.10)

which is the Legendre transform of the corresponding Hamiltonian

H(fi.fo, 71, 20) = M1 = fi)[e™ — 1] + pfile™™ 72 —1]. (2.11)
Thus

fi = A1 —f)exp{sa} — pfi exp{—(a + 0)},

, (2.12)

= —phexp{—(a +)}

Here f; belongs to the set C, [0, T] of differentiable functions on [0, T] with values from interval
[0,1], and f» € C_[0,T] the set of differentiable functions on [0, 7] taking values in R_. The
functions s, 2 € CJ0, T], where C[0, T]is the space of differentiable functions on [0, 7] tak-
ing values in R. The functions sz}, 7, are called the momenta of the dynamics, and the pair
(f1,f>) describes the dynamics of the process yy(7) at large N: the probability that a trajectory
of the process yy is close to the path (f;(¢),f>(t)) is asymptotically represented by Lagrangian
(2.10)

P(w)en ~ (A(0AO)eom) = exo(-N [ LUA0).

To derive (2.11), we follow the scheme in [8]. First, we have to construct a non-linear
Hamiltonian

(HnG) (xn, yn) = %exp{—NG(xN,yN)} x L., exp{NG}(xn,yn)

— A1~ ) [exp {N (c; <xN n I‘V,y,v> - G(xN,yN)) } - 1]
+ pxy [exp {N (G (XN - %,)’N = ;) - G@NJN))} - 1] .

And, second, to find its limit as N — oo:

h]{]n(’HNG)(XN,yN)

_ 0 0 0 (2.13)
= A1 =) [exp{ G} = 1] + i fexpl- -6) — 26} —1].

The right-hand side of (2.13) is the Hamiltonian (2.11) after the following changes of variables:
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0 0
fi=xfr=y, = aG(X’)’)’KZ = gyG(x’)’)~

We consider the problem of finding the optimal paths of large radiations. Namely, we consider
the following boundary conditions:

fi(0)=de]0,1],

£(0) =0, /2(T) = —B, where B > 0, 214
for the Hamiltonian system corresponding to H in (2.11)
fio = M1 =fi)exp{sa} — pfi exp{—(a + )},
f = —ufiexp{—(a + )},
. . (2.15)
s = Aexp{s} — pexp{—(a +0)} — A+ p,
sm = 0.

We study the system for large B.

The solution of (2.15) with the boundary conditions (2.14) presents the mean dynamics f;
and f> of the occupation and radiation processes. We add the boundary condition 3¢ (T) = 0
because the value of f;(T) is free.

Remark 2.1 (On the large deviations principle). The book [8] proposes a program
how to prove the large deviation principle for stochastic processes (in particular, Markov
processes) in consideration. This program requires special considerations, depending on the
studied process. For example, see [13], where the large deviation principle is studied for a
model that is close to our model in some respect.

We, however, consider the Markov process I'y(#) which is a scaled sum of N independent
Markov processes. Each one of these Markov processes is concentrated on piece-wise con-
stant paths on [0, 7]. We can consider the Skorohod space of piece-wise continuous paths on
[0, T] (see [2], section 12). For our N independent paths we can use the Sanov theorem with
subsequent application of the contraction principle (see [18]). This combination of the Sanov
theorem and the contraction principle gives the rate function (see (2.17)) for our process I'.

2.3. Results

Assume that the total radiation during the time interval [0, T]is | BN |, where | -] is integer part,
ie. Yy(T) = —|BN], B > 0, with initial value YTn(0) = 0. The initial number of excited
atoms is Ey(0) = |dN] € [0, N]. For example, we can choose d = W/\u Then the large devia-
tion principle yields

[NB]

Jim 5t (5“” - B o =o0.qm - _N>

= —f{I(fi.f2) - /1(0) = d, o(0) = 0.L(T) = B}, (2.16)

where the rate function is, see (2.10) and (2.11),

T
I(fl,fz):/o L(fi,f>)dt

T
= / sup (%]fl +50f — M1 = fi)[e* — 1] — pfile > — 1]) dr.
0 2,20
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Remark 2.2. The rate function is convex therefore the infimum in (2.16) is achieved and
unique. Indeed, as the functional I(fi,f;) is the convex combination of suprema of affine
functionals it is convex. So its critical point is its minimum. This minimum is unique because
the corresponding boundary value problem for Euler system has a unique solution as follows
from calculations.

We rewrite the rate function in an alternative way.

1) = [ s (a@h()+ ) = ol () = 1) dr, @17)

%1([),%2([)

where p(fi) = A(1 = fi) + pfi, and

_Ad —fl)ex o wh
ploa.sn) = = v emlal + o0

The supremum over 3¢ (¢), 35 (¢) in (2.17) can be found from the equations

fi =M1 —fi) exp{sa} — pfi exp{— (31 + 50)}.

exp{—(0 + )} (2.18)

. (2.19)
fo = —pfiexp{—(a + 30)}.
The infimum over fj,f, can be found from Euler equations
s = hexp{rg}t — pexp{—(3 +30)} — A+ pu,
1 p{sa} — pexp{—(a + )} I 2.20)

30 =0.

In other words, we have to solve the Hamiltonian system of equation (2.15)

fi = M1=fi)exp{sa} — pfi exp{—(a1 + )},
L= —ufiexp{—(a + )},

s = Adexp{sa} —pexp{—(a +m)}—-A+p,
n = 0.

under boundary conditions f1(0) =d, £(0) =0, f2(T) =—B and 3 (T) =0 with the
Hamiltonian (2.11). We have derived the system of equations (2.15) with boundary conditions
(2.14) as a solution of optimization problem. The solution of the boundary problem is unique
and gives an extremal path for the radiation problem.

2.3.1. Solutions of (2.15). Two last equations of (2.15) do not depend on f;,f;, i = 1,2. These
equations can be solved as follows. The function s, does not depend on ¢. Having s, fixed

we look for ; by means of the change of variable y(f) = e*'(), Then the third equation of
(2.15) 1s

Y= = (A= p)y — pe= (2.21)
Using notations

v=15

a=1-—r, (2.22)

b=ye

we reduce (2.21) to the form

y=A0"—ay—b). (2.23)
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The value of a is upper bounded, a < 1, since v > 0, however ¢ may be negative and may
have a large absolute value. We represent the expression in the parentheses of (2.23) as

Y —ay—b=(y—r)y—nr), (2.24)

ria = g 1/ (g)z +b. (2.25)

Since b > 0, the roots 7| and r, have different signs: r; < 0 < r,. The equation (2.23) can be
represented as

where

¥ y

y—r  y—ri = A=), (2.26)
The solution of (2.24) is
—rC tA(ry —
W) = e = 27N 1exp{tA(r, —r1)} (2.27)

1-— C] eXp{t/\(r2 — F])} ’

where C is a constant within the interval (%, 1). The value of C; cannot be out of this interval
because 0 < y(#) < co. Remark that 2 < 0.
Note that s¢ (T) = 0 since there are no constraints on the value of fi(7T). Then

rn —

L exp{—TA(r2 — )} (2.28)

C:
! }”1—1

and

41 ?:ri exp{(t — T)\(r, — 1)}

e () — . .
[+ =L exp{( = DA — )} 229

1

The energy conservation law implies (see (2.11)) that there exists a constant K such that,
foranyteT,

H(fi,f>, »1,0) = K.
Thus the path f; corresponding to the density of excited atoms is
AMe —1)—K
et — 1)+ p(l —e=—)
The constant K is sought from the initial condition f;(0) = d. That is,
K=\ = 1)(1=£(0)) = fi(0)u(1 — e~ @), 231)

Next we have to evaluate the emission path (see (2.15))

filr) = N (2.30)

f(t) = —pe™= /0 fils)e™Wds, 1 e [0,T]. (2.32)

To this end we evaluate the integral

! AMe#® — 1) + K
J(t) = — () ds. 2.33
( ) /0 )\(e%](s) _ 1) + /J/(l _ e—xl(s)e—;(z)e A ( )

The denominator of this integral multiplied by e*!(*) can be written as
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A2 (9) _ (A — 'u)e%l(s) — e = )\(C%I(S) _ rl)(e"‘(s) —n),
see (2.23)—(2.25). Hence

! ds ! AMri—1)+K
6= /o e () —ry +/o )\(6”‘@)(— Vl)()‘f”‘(s) - Vz)ds
! ds ANri—1)+K/ [ ds ! ds
:/0 e () — + Ay — 1) </0 e=1(s) —py 7/0 e’ (s) —r1>
:(1+)\(r1—1)+K>/’ ds )\(rl—l)—i-K/' ds
o e 0

A(ry —rp) V—r An—n) el —r’
Since
=1 Xrn—r)(s-T
L::%l(s)_rlzerrrllz_—rle(2 0 )—rlz =
1+ 2=leA(n=r)(-1) 1+ 2=LeA(n=r)(=T)
then
t d ]+ %e)\(rzfrl)(sz)
Ji(r) = / o S / L=n ds
0 6”1(3)7}”1 0 I —n
—X(r—r)T
_ +r2—1 e (r2—r1) (e)‘(rz_rl)t_l)'
rn—r  l—r Xr—r)?
Since
6%1 (V) — I = 2 + n %ek(rz_rl)(s_r‘) — I = (rl B rz)%e)\(rz_rl)(s_T)
SIS PSR Te) 1+ p=leAte=r)(-T)
— =7
then
t d 1 1+ %e)\(rzfrl)(sz)
Ja(1) = / —— = / Sy ds
o €1 —rJo (r1 — ) Eer o=
rh —n r2—1 )\(}"2—7‘])2
Thus
Ar —1)+K Al —1)+K
J(t) = (1 7> - :
0=+ 0 Sm =y 20 (2.34)
and

(1) = —pexp{—s}(1). (2.35)
Therefore sz, is a solution of

/\(V]*l)‘f’K )\(i’]*l)‘i’K
—B=((T) = — - (1 7>JT—7JT .
A1) = —pexpl s} | (14 252K Yy - 20 = DK g
(2.36)
Remark that e > is present in the definition of constants 7, r, and K. Therefore (2.36) is not
a linear equation with respect to e ~**.
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3. Emergence of chaos in large fluctuations

3.1. Equations

Here we derive a surprising feature of the asymptotic ‘quasi-equilibrium’ behaviour of the
emission and excitation rates within the interval [0, T]. We will prove that these rates become
equal in the limit and do not depend on A and .

For the hamiltonian system (2.15) with boundary conditions (2.14), let us make a change
of variables y(¢) = () and z(r) = e=*()—>2()_ Recall that 3¢,(r) = sz, is a constant. From
(2.27), we get

~n=r)+rn(n—De()

t - 9 3.1
Y1) l—ri+ (- l)w(t) G.h
where
(1) = et=DA=r), 3.2)
We also have
O T e
A 9’
(hence 0 < (r) < 1for0 < ¢t < T)and
A— A — )2 4+ dule—*=
py = AT VO W e (33)

2\

Note that the values of ry, r, and sz, depend on the parameter B > 0 and the values of A > 0,
p>0,and T > 0O are fixed.

3.2. Some bounds

First, note that the right-hand side of (3.1) is monotone decreasing as ¢ changes from 0 to 1 if
r, > 1 and monotone increasing in ¢ at the same interval if r, < 1. Indeed, we have

r(l—=r)+ (rn—r)(1 =r)+r(rn—1)e()
L—ri+(r2 = De(2)
(rn=—r)(1—r)
1—ri+(rn— Do)’
where (r, —r1)(1 —r;) > 0and 1 — r; > 0. Hence,

y(t) =

:r1+

=r+—
=r .
Y ! ¢ + c3p(1)

where ¢, ¢, > 0 and where ¢c3 > 0if r, > 1 and ¢3 < 0 if r, < 1. Moreover, the denominator
1 —r1 + (r2 — 1)e(2) is positive for all p(¢) € [0, 1]. Then the monotonicity follows.

We have y(1) = rp if ¢(¢) = 0 and y(¢) = 1 if ¢(¢) = 1. Since 0 < ¢(f) < 1, we conclude
that

y() Kmax{l,n}<rn+1, 0<r<T. (3.4)

10



J. Phys. A: Math. Theor. 50 (2017) 455203 E Pechersky et al

Integrating the second equation in (2.15), we get

T
M/ z(2) fi(¢)dr = B. (3.5)
0
Since 0 < fi(¢) < 1, we conclude from (3.5) that
T
B
/ zZ(t)dt > —. (3.6)
0 H

From the third equation in (2.15) and from the boundary condition s (T) = 0 we get the
equality

2(0) = M/o z(¢)dr — /\/0 y(O)dt + (A — w)T.

Next, we use (3.1) and (3.6) and derive the bound

5(0) =B — A+ )T+ (A — p)T. (3.7)
Since 3¢ (0) = Iny(0) and, hence, »(0) < In(r, + 1), we conclude from (3.7) that
In(r,+1)>2B—XNr+ )T+ (A= p)T. (3.8)

In order to derive a lower bound for r,, we denote r=AT(r,+1) and b=
B+ (A — )T 4 In(AT) and reduce (3.8) to

In(r) +r = b. (3.9)

We assume that b > 1 (this is true for B large enough). Let us consider two cases: » > b and
r < b. One verifies that (3.9) implies

r>b— ln(b). (3.10)

This inequality in the first case follows from Inb > 0, and in the second case it follows from
Inr < Inb. Hence, we have

rn>=cB—d, (3.11)

for some ¢,d > 0 and all sufficiently large B > 0.
A lower bound of the same form holds for —r; since | +r, = 1 — /. Now, let us turn
to (3.2). Fix some a« > 0, @ < T and note that

o(1) < e (3.12)

for all + € [0,T — «]. It follows that both products ri(r, — 1)¢(¢) and (r, — 1)¢(¢) vanish
uniformly for all ¢ € [0, T — ] as B — oo (the exponent dominates polynomials). Therefore,
from (3.1) we get

A, b0 =l =0 a1

Now, we find the asymptotics of z(¢) for ¢t € [0,T — a] as B — 4-00. To this end we express
e’ via r, from the equality (3.3):

(2Ar — A+ ) = (A — p)* +dpde . (3.14)
Namely, we get

(2Ar2 + (= A)* = (1 — A + dpde ™ (3.15)

1
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and then
AN A (— N+ (= N)? = (A — p)* + 4ude 2,
that is,
A3+ — N) = pe™ . (3.16)
Since z(t) = %, we conclude that
t A
lim @ =— (3.17)
B—+o00 r 1%
uniformly for all r € [0, T — «].
3.3. The turnpike theorem
Let us turn to the first equation in (2.15) and write it in the form
A0 =201 = fi(0) = pz(0) fi(0), (3.18)
where, as follows from (3.17) and (3.13),
im 20y and om0y (3.19)
B—+00 Arp B—+oo Arp

uniformly for all z € [0, T — a.
We are ready to state and prove the main result of this section. There is a striking resem-
blance with a series of turnpike theorems in mathematical economics, see [17].

Theorem 3.1.  For any o > 0 and any € > 0, there exists By > 0 such that inequality
1
() -5l <<

holds for all t € [a, T — o) whenever B > By,

Proof. We make a linear time change 7 = Arpt and derive the required assertion from the
explicit solutions of resulting linear differential equations.
Rewrite (3.18) on [0, T — «] as

fi(t) = Ana(1 +e1(0)(1 = fi(2)) = Ara(1 + 2(0)) /1 (2), (3.20)

where |¢;(7)| < efori= 1,2, and forall # € [0, T — . Because of (3.19), this is true for all B
large enough. After the time change, we have

d
(0 =1 +alN0=A(0) =1+ a)A0). (321)
or, equivalently,
difl (1) =1 =2fi(7) + €o(7), (3.22)
-

where |eo(7)| < € for all 7 € [0, A\r2(T — «)]. It remains to note that 0 < f(0) < 1 for all
B > 0 and, hence, fi(7) converges to 1/2 exponentially and uniformly in B > 0. Indeed, this

12
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follows from the explicit solution
x(1) = e 27x(0) + / g0(s5)e27)ds,
0
where we denoted x = f; — 1/2. O

4. Microscopic approach. Quantum Hamiltonian formalism

In this section we study the model described in the previous sections by the so-called quantum
Hamiltonian formalism [16, 20]. This is somewhat a misnomer as no quantum physics is
used. The name comes from certain formal analogies with linear operators used in quantum
mechanics. In essence, the fundamental idea is to write the generator as a matrix and then to
use linear and multi-linear algebra for explicit computations of expectations.

4.1. Notation and definitions

The first step is to consider not only the number of the excited atoms at moment ¢ and the
cumulative number of emissions during [0, #], but the state 7;(¢) of each atom i, 1 < i < N, at
moment 7. These atoms form a particle system. A microstate, i.e. a microscopic configuration
of the particle system, is denoted by n = {,...,ny} where n; € {0, 1} denotes the state of
atom i. The value 0 corresponds to the ground state, while 1 corresponds to the excited state.
The state space of the particle system is therefore Sy = {0, 1}". The number Y y(¢) of emis-
sions up to time 7 is a non-negative integer so that the state space Sy of the process (7(1), Ty(z))
is Sy = Sy x Ny. The number of excited atoms at time ¢ is given by Ey (1) = 25\1:1 7 ().

For a given configuration ) we shall use the shorthand 7* for the switched configuration
with state variables

nt=mi+ (1 — 20¢) 6, (4.1)

which corresponds to a switch of the state of atom k in the configuration 7. The generator for
the process then reads

N

Laf(m.Cn) = ML =m) (F05 ) —f(0.Cn)) + s (F(s T 4+ 1) = f(0. )] -

! .2)
It is easy to see that one recovers (2.7) for functions f(Zy, Ty) with Zy = Zf’zl ;.

In order to apply the quantum Hamiltonian formalism we map the states of a single atom
to the basis vectors ¢y := (1,0)7 (corresponding to the ground state) and ¢; := (0, 1)7 (corre-
sponding to the excited state), forming the canonical basis of C2. The superscript T denotes
transposition, i.e. these vectors are considered to be column vectors. For the N-particle sys-
tem a state 7 is then mapped to the tensor basis |n) = ¢, ® e, ® -+ ® ¢, of (C?)®N,
Analogously we define row vectors (1| = |7 )" with orthogonality relation (n|n’) = &,
where (- | - ) denotes the usual scalar product. A Bernoulli product measure on Sy with density
po is thus given by the vector

[20) = ((1 = po. po) )N = (1 = po)"((1,.2)") =" 4.3)
where x = po/(1 — po) is the fugacity. Normalization is reflected by the property (s |x) =1
where (s =3 s (n]|=(1,1,...,1)is the so-called summation vector.

13
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In order to consider also the number Yy of radiation events we define infinite-dimensional
vectors| Yy ) with components | Yy }, = d, 1, forn > 0. Then a state (r, Ty ) is mapped to the
tensor product |7, Ty )) := |n) ® | Ty ) which is a vector in V := (C?)®N @ CM denoted by
the double-ket symbol | - }). In complete analogy to above we define also ((n, Ty | = | n, Ty ))T
with the orthogonality relation ((n, Yn |7, Ty )) = 6,61, 1} A probability measure x on
Sy = {0,1} x Ny is thus represented by a vector

)= > YN0 ). (4.4)

(n.Yw)ESy

Normalization is reflected by the property ((s|u))=1 where ({s|=
2onr, (T | = (s @ (5" [with (s"| = >y ey (T |

Following the quantum Hamiltonian formalism we first introduce the two-dimensional unit
matrix 1 and the Pauli matrices o™”*. In order to build operators for the N-particle system
we define the unit operator 1 := 18 on (C2)®" and the unit operator 1 on C'°. In order to
describe the evolution of the number of excited atoms we next introduce the diagonal num-
ber operator N = va: , i which is composed of the the sum of local operators 7; with the
property ;| ) = ;| 1) and therefore N|7n) = Zy|n ). The subscript i at a matrix a; denotes
the i position in the tensor product ¢, =1®---®1®a®1---® 1. In terms of Pauli
matrices the single-atom number operator takes the form 72 = 1/2(1 — o¢). We also need the
operator V = vazl (1 — #;) and the (non-diagonal) flipping operators S+ = Ziv | o, where
oF = 1/2(0* £+ io”) with imaginary unit i. The matrix o;" turns excited atom i into its ground
state, while o, corresponds to excitation of atom i.

For the radiation process we define the diagonal counting operator K where
K|Ty) = Ty| Ty ). We also introduce the matrix KT where K™ acts as raising operator on
CN,ie. KT Yy) = | Ty + 1) with Yy € Ny. We note the commutation relation

[K.KT] =K, (4.5)

which will play a role in the computation of the radiation activity.

Finally, we lift the action of these operators to V by tensor multlphcatlon with the respec-
tive unit operators: N=N®1L,V=V®l, S —Sto1LK=1aN, K" =1®K™*. The
generator of the process can now be written in matrix form as

H=—puSTKF—N)—AS™-K) =) A, (4.6)
with

Ai=p @l -0 @K+ X1 -y — 0, ) @ 1. 4.7
For any initial measure | 11 )) the measure at time 7 > 0 is given by

| w(6))) = e ). 4.8)
Notice that the A; commute among themselves and therefore e "H = Hf;l e A

Consider now the initial measure |x)) = |x) ® | 0) with the Bernoulli product measure
| x ) for the state of the atoms defined in (4.3) and define

Fr(xy.2) = E, (yEN(T)ZTN(T)) (4.9)

14
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which is the generating function for the probability to arrive at =y = M and Ty = K at time
T, starting at time O from K = 0 (number of radiation events) and Bernoulli product measure
| x ) for the state of the atoms.

Moreover define for 0 < ¢ < T the two-time expectations

Gr(x,y,z,1) := E, (EN(I)}’EN(T)ZTN(T)> (4.10)
Hr(x,y,5,1) 1= Ey (Xu(0y® D) @.11)
and the scaled and normalized quantities
1
gr(xy.z1) = S Grxy.2,1)/Fr(x.y.2) (4.12)
1
hr(x,y,z,t) = NHT(x,y, 7,t)/Fr(x,y,2). (4.13)

They can be interpreted as conditional expectations of the scaled variables &y() and (y(7) of
the scaled process (2.8). Thus gr(x, y, z, t) is the conditional mean number of excited atoms at
time ¢ (normalized by the total number of atoms) and Ar(x, y, z, ) is the conditional number of
radiation events up to time ¢ per atom. In the following we show that these functions are the
microscopic analogs of fi(¢) and f>(¢) of the previous section. The case when fi(7T) is free
corresponds to y = 1.

4.2. Computation of the generating functions

In the quantum Hamiltonian formalism we have by definition Fr(x,y,z) = ({5 yNZKe—HT| 1)),
Using the fact that yV and zX are diagonal and factorize we get that

Frixy.2) = {({s]e™™|xy)) (4.14)
where H = yNzK Hy_N K = SN A with Ay =y @ KAy @ z*K Next we expand
the exponentlal of H into its Taylor series and use the fact that (s |K = (s]. It follows
that (sle M7 = (s|e AT @ 1 = (s]|e T @ (| with the weighted generator H = Y1 A,

(acting on (C2)®N) and

A = p(iy—y '2o) + A1 — iy — yo,). (4.15)

Observe that the action of H ® 1 on the subspace CM is trivial. Hence the inner prod-
uct in (4.14) in this subspace can be factorized and is trivially equal to one. Therefore

Fr(x,y,z) = (s|e=#T| xy) which is an inner product only in (C2)®". Moreover, due the fac-
torization of both the weighted generator and the initial measure we arrive at

Fr(x,y,z) = (1 — po)¥ [(1, l)ef/iT(l,xy)T ! (4.16)

with the 2 x 2 matrix

- A uyIZ)
A= . 4.17
(—/\y p @17

A general 2 x 2 matrix

15
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M= a b
“\e 4 (4.18)

has eigenvalues \; = (a+d — §)/2and \, = (a +d + §)/2 with § = \/(a — d)? + 4bc. For
0 # 0 its exponential takes the form

oM _ - lhr (cosh g;—k “g‘;sinh o7 2 blnh 5T ) @419
5 sinh 37 cosh 3 5T — T sin h
For A we have § = /(11 — \)? + 4u)\z and for convenience we define
e(>\+2u)7
1
frixy.z) = (Fr(x.y,2)" . (4.20)
1 —po
This yields
Sy p=A 8 PA TN N 1
i) = (1) (ML AT ST ()
=~ sinh 5T cosh §T — B2 sinh 57 ) \ Xy
0 1 )
= (1 4+ xy) cosh iT + 5 [2yA + 2xzp + (1 — A)(1 — xy)] sinh ET. “4.2D)
Next we consider Gr(x,y, z, 7). According to definition one has
N
.z t) = > (s PNKe HTINe 1| x)), (4.22)

i=1
In a similar fashion to above one finds

—(A+p)(N=1)T
e Q=0T g

Gr(x,y,z,t) = N(1 — pg fr o (6y,2) [(1, le —A(T-1) 7At(1 xy) } (4.23)

and, using (4.19),

1 5 2zpp—y(p—A) . 6 ]
9’9t: h*T—t—'-— th_t
gT(x ¥,Z ) fT(x7 y, Z) |:y COs 2( ) 5 Sin ( )
1) 2\ — - A 1)
X |xcosh =t + A=l =) sinh —¢ (4.24)
2 1) 2
with initial condition
x ) 2zp—y(p—A) . 8
),2,0) = ——— h-T+ =2 2\ ginh -T .
gr(x,y,2,0) o) {)’COS 3 + 5 St > (4.25)
parametrized by the fugacity x = po/(1 — po).
Next we note that
Hr(x,y,z.1) = (s YNKe TT=IKe M| 1)), (4.26)

In order to compute this quantity it is convenient to consider its derivative w.r.t. . Using
d/dre"Ke M = e'[H,K]e ™ and (4.5), steps analogous to those that gave rise to (4.21)
lead to
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N
Hr(x,y,2,0) = py~ 'z ) ((s[e I8 K e ™| xy))
i=1

=N(1- po)Ne7(A7+“2)(N71)Tf}v*1(x,y, 2) [(1, 1)e_A(T_’)a+e_Al(1,xy)T} .
4.27)
Using (4.19) this yields
; Zp 0 9A+p—X . 0
hr(x,y,2,t) = ———— sh — (T — = P T ginh — (T —
(%, ¥,2,1) 7o) [cos 2( 1) + 5 sin 2( 7)
0 2x—x(p—=A) .. 0
hZ —t . 4.28
X [xcos 2t+ 5 sinh 2t ( )

Integration of this quantity w.r.t. ¢ is straightforward and yields Ai(¢) with initial condition
h(0) = 0. The final values gr(x,y,2z,T) € [0, 1] and hzr(x,y,z,T) > 0 are parametrized by the
variables y, z.

Remark 4.1. In the limit T — oo straightforward computation for intermediate times
t o< cT shows that

1 A—
§"(z) := lim gr(x,y,z,cT) = 5 <1 + H) (4.29)
T—o0 2 6
h*(z) := lim hr(x,y,z,cT) = — (4.30)
T—o00 (5

are constants that depend neither on the initial fugacity x nor on the atypical density of excited
atoms parametrized by y. Moreover, for any choice of A and p the radiation activity h* (z) is
monotone in z, i.e. one has i*(z) # h*(1) for z # 1. If A = y1 where radiation and excitation
are in balance one finds somewhat surprisingly that, despite the conditioning on a strongly
atypical number of excited atoms at time 7 and a strongly atypical number of radiation events
up to time 7, the mean number of excited atoms at intermediate times ¢t = O(T) is 1/2, which
for A = p is the typical value without conditioning.

4.3. Thecase A= pu =1

The expressions derived above simplify for A = p = 1 corresponding to v = 1in (2.22). We
present this case in more detail. One gets & = 2,/z and it is convenient to introduce 3 := y/+/z
and X := x,/z. With this the expression obtained above for the general case reduce to

frlny,z) = % [(1 L9 +0eVT + (1-5)(1 —x)e—ﬁT} 431)
1 (1 +3)(1 = x)eVET=20 1 (1 —3)(1 4 x)e~ VT2
grinnat) =3 (1 T (4140 + (1 =) (1 —®)e VT (4.32)
- V(e QD0 =0V — (1= 5)(1 4 1)
s =5 (h T U0+ (L)1~ R
4.33)
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with
e — (1+3)(1 +x)eVT — (1 —3)(1 —x)e VT
(1+3)(1 +x)evT + (1 —y)(1 —x)e~ VT~

For large time frame T one gets with the definition 7 = T — ¢ the following asymptotic
behaviour for g(x,y,z, 1) := limr_, o0 gr(x, ¥, 2, 1):

(4.34)

(1 - }—jrj‘;e_z\ﬁ’) for t = o(T)
forr=O(T) . (4.35)
(1 - %e’zﬁ7> for 7 = o(T)

g(x,y,2,t) =

[SIEE ST SIE

The corresponding asymptotics for A(x,y,z,t) := limy_, o hr(x,y, 2, 1) are:

N eV 1=0(T)
h(x,y.z.1) = Ly t = O(T). (4.36)
T gipe T r=o(l)

Thus, for T large, the radiation intensity hr (x,y,z, ) is approximately constant except initially
and towards the end of the observation period 7.

In order to make contact with the macroscopic results of the previous sections we take 7'
fixed, choose y = 1, and impose the initial condition g7 (x,y, z,f) = 1/2. This requires choos-
ing the initial fugacity x such that (1 +7)(1 —%)evV¥ + (1 —7)(1 +%)e” V¥ =0, i.e. for
y = 1/4/z one chooses

b-x_ 1_\ﬁe_z‘ﬁT =: C.

1+% 1442 (4.37)
Thus one obtains for ¢ € [0, 7]
1 c .
gr(x,1,z,1) = 3 + e sinh (2+/zt) (4.38)
Wz 2 C :
s Lzt) = 55 (1= 1= ) 1 5oy sinb (V). (4.39)

With the choice z = e™*2 (see (2.22)) one finds fi(¢) = gr(x, 1,z,¢) and f5(t) = hr(x, 1,2, 1)
(see (2.30) and (2.35) together with (2.31), (2.34) and (2.36) for A = pt = 1), thus relating
the macroscopic constant sz, appearing in the Hamiltonian (2.11) to the generating function
parameter z introduced in (4.9).

We point out two other special cases. (a) For initial fugacity x = 1/,/z and arbitrary y one
has

Fr(1/Vay, o) = (1+5)eV (4.40)
gr(1//z,9,2,1) = 1 1 Qefz\/z('nr) @41
R 2 14y :
2, 1=y 5 _
1 = — — \/Z(T I) _ ZﬁT .
hr(1/7/2, 9,2, 1) 2 t+ AT+ (e e ) (4.42)
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Hence for initial times such that T — 7 >> 1/,/z both the number of excited atoms and the
radiation activity are essentially constant. (b) On the other hand, for y = /z and arbitrary
initial fugacity x the expressions (4.31)—(4.33) reduce to

fr(x vz z.1) = (1 + %)eVT (4.43)
gr(nyEan = 5 (1- 1 eV (4.44)
9 9 b 2 1 +x .

_ ﬁ 1 X —2/zt
hr(x,v/z,2,t) = > AT (e 1) . (4.45)

In this case the number of excited atoms and the radiation activity approach a constant for
times > 1//z.

Remark 4.2. 1In all cases the radiation intensity is not constant, but has deviations from
a constant in time windows of length 1/(2,/z), i.e. the intensity approaches a constant (or
deviates from it) exponentially with a decay rate 1/(2+/z). We refer to this behaviour as the
occurence of ‘moderate bursts’.

Remark 4.3. The quantum Hamiltonian approach makes clear that the behaviour of a
two-level system is generic. In a m-level system the functions g and /4 (and their analogs for
similar observables) will always be of the factorized form gr(...,#) = a(...,T —1)b(...,1)
and the functions a and b will be sums of exponentials of the eigenvalues of the single-atom
generator A.
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