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Abstract
We study large fluctuations of emitted radiation in the system of N non-
interacting two-level atoms. Two methods are used to calculate the probability 
of large fluctuations and the time dependence of excitation and emission. The 
first method is based on the large deviation principle for Markov processes. 
The second one uses an analogue of the quantum formalism for classical 
probability problems.

Particularly we prove that in a large fluctuation limit approximately half of 
the atoms are excited. This fact is independent on the fraction of the excited 
atoms in equilibrium.

Keywords: continuous-time Markov processes, large deviations, reversibility, 
stationary probabilities, product-formula

1.  Motivations

In recent years there has been considerable interest in studying optimal realizations of large 
deviations in stochastic interacting particle systems, see e.g. [1, 3, 4] for optimal profiles in 
current large deviations of the asymmetric simple exclusion process or [10, 11] for condensa-
tion in the zero-range process. In addition to the mathematical interest in understanding how 
large deviations are typically realized (when they occur), motivation comes also from the fact 
that such large deviations are studied experimentally in order to test the validity of fluctuation 
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theorems such as the Gallavotti–Cohen theorem [9], the Lebowitz–Spohn results [14] or the 
Jarzynski relation [12]. Generally, fluctuation theorems predict the ratio of probabilities of a 
positive large deviation of some observable to a negative large deviation of the same abso-
lute magnitude [5, 14, 21]. Particularly simple and therefore transparent systems where such 
relations can be probed experimentally are two-level systems where each microscopic entity 
can be either in a ground state or in an excited state. As an example we mention the optical 
excitation of an ensemble of single-defect centres in diamond. Measurements of the dissipated 
work [19] and entropy [22] agree with the expected integral fluctuation relations. Fluctuation 
relations for driven two-level systems have been investigated recently also in the context of 
biological motors [6] and quantum two-level systems [15].

Here we address the question of optimal realizations of a large deviation in an ensemble 
of two-level systems. We consider a scenario where every two-level system in the ensemble 
of (independent) two-level systems can be excited by an external source of energy and later 
relaxes to its ground state by the emission of radiation. Conditioning on a large deviation of 
the emitted radiation in a time interval [0, T] we ask how the number of excited states ΞN(t) 
and also how the accumulative radiation ΥN(t) will typically behave during this time interval 
assuming that the number N of elements of the two-level system is large. In particular, we 
wish to answer the question whether such a large deviation is typically realized by the typical 
behaviour for most of the time and only some strong bursts of radiation, or by non-typical 
behaviour throughout [0, T], or by both, i.e. by non-typical behaviour together with bursts.

For definiteness we refer to microscopic two-level systems as atoms. To keep the model 
simple we study the case where both excitation and emission occur after exponentially distrib-
uted random times with parameters λ and μ respectively. It will transpire that the behaviour 
of the ensemble of two-level systems is non-trivial: the optimal realization of a large deviation 
involves non-typical radiation intensity throughout [0, T]. If T is large then at intermediate 
times the radiation activity is approximately constant (and different from its typical value), 
and one has moderate bursts or suppression at the beginning or the end (or both) of the time-
interval [0, T], depending on the initial state and on the magnitude of the large deviation that 
is under consideration. The ‘moderate bursts’ are defined as an expected increase in the radia-
tion intensity Υ̇N(t) during a short (exponentially bounded) interval of time. The probabilistic 
interpretation of this behaviour is that in order to generate a large deviation from typical 
behaviour in a long time interval T it is less costly to have a relatively small, but lasting, devia-
tion from non-typical behaviour than to have almost permanent typical behaviour, punctuated 
by occasional strong deviations (strong bursts of radiation). The (moderate) bursts at initial 
and/or final times realize the transition from the initial state (and/or to the final state) to the 
intermediate mildly nontypical behaviour.

We address this problem both from a macroscopic Hamiltonian perspective and from a 
microscopic approach employing generating function techniques. The latter indicates that 
qualitatively similar behaviour is expected for any number of excited states per atom.

2.  Macroscopic approach. Large deviations

In this section fluctuations of an ensemble of two-level atoms are described by means of the large 
deviation principle. The goal is to study a rare event where a very large emission is happening 
during time interval [0, T]. More exactly, we find a mean dynamics of the number of emissions 
and the number of excited atoms during [0, T] conditioned on the rare event mentioned above.

Consider an ensemble (a sample) of N atoms where each atom can be either in a ground 
state or in an excited state. The sample is under a radiation by steady flux of photons. Each 
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atom in the ground state can absorb a photon transiting to the exited state. An atom in the 
excited state can emit a photon and consequently undergoes a transition to the ground state. 
There are no interactions between the atoms. Therefore all atom transformations are inde-
pendent of each other. Given the parameters of mean times that an atom spends in the ground 
and the excited states it is easy to find the mean dynamics of the number of excited atoms and 
of the cumulative number of the photon emissions on [0, T].

We show that the process path given the large emission on [0, T] is close to a linear function. 
Moreover, under the large emission the conditional input and output flows are close to each 
other in the interior of [0, T]. This fact holds for any stationary regime of both flows.

We describe this dynamics by a two-dimensional Markov process. For any t ∈ [0, T], the 
components of the process describe the number of the excited atoms at moment t and the 
cumulative number of emission events during [0, t]. In terms of the Markov process, our goal 
is to describe the shape of paths of the Markov process given the large cumulative number of 
emission events on [0, T].

A tool we used for the analysis is the large deviation theory, which studies the probabilities 
of rare events, and also describes how these rare events evolve. The main tool of the large 
deviation theory is a theorem called the large deviation principle. There exists many versions 
of the large deviation principle for different stochastic models. Here we apply the large devia-
tion principle to Markov processes following [8].

2.1. The model

We formalize our model as follows. Consider N independent random variables (atoms in what 
follows) that take two values 0 and 1. We say that the atom is in the ground state if the corre
sponding random variable is 0, otherwise the atom is excited. We study time dynamics of 
every atom. As time passes, any atom randomly changes its state. The stochastic dynamics of 
a single atom is a Markov process on the state space {0, 1}. The transition of the atom from 
the excited state to the ground state 1 → 0 is called an emission. The opposite transition is 
called an excitation.

A stochastic dynamics of the ensemble Σ = (σ1, ...,σN) of N two-level atoms where 
σi ∈ {0, 1} is described by a two dimensional Markov process ΓN(t) =

(
ΞN(t),ΥN(t)

)
, where 

ΞN(t) is the number of excited atoms at time t and ΥN(t) is the cumulative number of emitted 
photons on the interval [0, t]. The components ΞN(t) and ΥN(t) are strongly correlated.

2.1.1.  Excitation component.  The process ΞN(t) takes its values in the set N = {0, 1, 2, ..., N}. 
A random event (ΞN(t) = n), n ∈ N  means that the number of excited atoms is equal to n. 
Then N − n is the number of the atoms in their ground states. The process ΞN(t) is a jump 
Markov process. Every jump is either +1 or −1, either enlarging or reducing the number of 
the excited atoms by one.

An operator semigroup (Pt, t ∈ R+) drives the dynamics of ΞN(t) with the initial value 
ΞN(0) = x ∈ N . Namely, for any G ∈ F

PtG(x) = ExG(ΞN(t)),� (2.1)

i.e. the operators Pt  act on the space F  of functions N → R. The semigroup can be repre-
sented by an infinitesimal operator L as

PtG = etLG� (2.2)

for G ∈ F . The infinitesimal operator L of ΞN(t) is determined by two parameters λ > 0 and 
µ > 0 as follows:

E Pechersky et alJ. Phys. A: Math. Theor. 50 (2017) 455203
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LG(n) = λ(N − n) [G(n + 1)− G(n)] + µn [G(n − 1)− G(n)] .� (2.3)

The constants λ and μ are intensities of the jumps +1 and −1 respectively.
The process ΞN(t) is ergodic and reversible with the stationary distribution

π(n) := Pr(ΞN(t) = n) =

(
N
n

)
γn

(1 + γ)N ,� (2.4)

where γ = λ/µ. The distribution π can be found from the detailed balance equations

λ(N − n)π(n) = µ(n + 1)π(n + 1), for n < N.� (2.5)

2.1.2.  Emission component.  The second component ΥN(t) describes the number of emission 
events and is equal to the number of negative jumps of the process ΞN on the time interval 
[0, t]. Namely, let k(t) = k+(t) + k−(t) be the total number of jumps of ΞN up to the moment 
t ∈ [0, T], where k+(t) and k−(t) are the numbers of positive and negative jumps, respectively. 
Then we define

ΥN(t) = −k−(t).

It is assumed that k+(0) = k−(0) = 0. Note that ΞN(t) = ΞN(0) + k+(t)− k−(t).

2.1.3. The process.  The two-dimensional process

ΓN(t) = (ΞN(t),ΥN(t))� (2.6)

is a Markov process with dependent components taking their values in N × Z−, where 
Z− = {... − 2,−1, 0}. The process ΓN(t) is a non-equilibrium jump process. Observe that the 
process has only two types of jumps {(1, 0), (−1,−1)}. The infinitesimal operator of ΓN(t) is

LΓG(n, m) = λ(N − n)[G(n + 1, m)− G(n, m)] + µn[G(n − 1, m − 1)− G(n, m)],
� (2.7)

where n ∈ N , m ∈ Z−, and λ,µ are positive parameters introduced in section 2.1.1, G(n, m) 
belongs to the function space FΓ of functions N × Z− → R.

2.2.  Large deviations

The goal of our studies is to find the probability of a very large emission and a large deviation 
path of the process which produces very large emission during the interval [0, T]. It is assumed 
that the number N of the atoms is large and grows to infinity. The theory of large deviations 
allows one to solve both mentioned tasks: to find the asymptotics of the large emission prob-
ability as N → ∞ as well as the path of the dynamics that realizes the large deviation on the 
interval [0, T]. Solving these problems by the method of large deviations we follow construc-
tions and results in [8] (see also appendix in [7]).

In order to study the asymptotics in N it is convenient to consider the scaled process

γN(t) =
(
ξN(t) =

1
N
ΞN(t), ζN(t) =

1
N
ΥN(t)

)
� (2.8)

instead of (2.6). The scaled process γN = (ξN , ζN) takes values in DN =
( 1

NN × 1
NZ−

)
. The 

process γN  is a jump process with two types of jumps: 
( 1

N , 0
)
 and 

(
− 1

N ,− 1
N

)
 with intensities λ 

and μ respectively. Let (x, y) ∈ DN  and α = 1
N. Then the infinitesimal operator of γN  is
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LγN G (xN , yN) = Nλ(1 − xN)[G(xN + α, yN)− G(xN , yN)]

+ NµxN [G(xN − α, yN − α)− G(xN , yN)].

Since DN ⊂ D = [0, 1]× R− for every N , we will assume that the processes γN  take their 
values in D. Let F2 be the space of smooth functions D → R. Assume that the sequence 
(xN , yN) ∈ DN  converges to some (x, y) ∈ D, as N → ∞. Then

lim
N→∞

LγN G(xN , yN) = λ(1 − x)
∂

∂x
G(x, y)− µx

(
∂

∂x
G(x, y) +

∂

∂y
G(x, y)

)
.

�

(2.9)

The Lagrangian plays a key role in the large deviations of the Markov processes γN

L( f1, f2)(t) = sup
κ1(t),κ2(t)

{
ḟ1(t)κ1(t) + ḟ2(t)κ2(t)− H( f1(t), f2(t),κ1(t),κ2(t))

}
,

�

(2.10)

which is the Legendre transform of the corresponding Hamiltonian

H( f1, f2,κ1,κ2) = λ(1 − f1)[eκ1 − 1] + µf1[e−κ1−κ2 − 1].� (2.11)

Thus

ḟ1 = λ(1 − f1) exp{κ1} − µf1 exp{−(κ1 + κ2)},
ḟ2 = −µf1 exp{−(κ1 + κ2)}.
� (2.12)

Here f1 belongs to the set C1[0, T] of differentiable functions on [0, T] with values from interval 
[0, 1], and f2 ∈ C−[0, T] the set of differentiable functions on [0, T] taking values in R−. The 
functions κ1,κ2 ∈ C[0, T], where C[0, T] is the space of differentiable functions on [0, T] tak-
ing values in R . The functions κ1,κ2 are called the momenta of the dynamics, and the pair 
( f1, f2) describes the dynamics of the process γN(t) at large N: the probability that a trajectory 
of the process γN  is close to the path ( f1(t), f2(t)) is asymptotically represented by Lagrangian 
(2.10)

P
(
(γN(t))t∈[0,T] ≈ ( f1(t), f2(t))t∈[0,T]

)
≈ exp

(
−N

∫ T

0
L( f1, f2)(t)dt

)
.

To derive (2.11), we follow the scheme in [8]. First, we have to construct a non-linear 
Hamiltonian

(HNG)(xN , yN) :=
1
N

exp{−NG(xN , yN)} × LγN exp{NG}(xN , yN)

= λ(1 − xN)

[
exp

{
N
(

G
(

xN +
1
N

, yN

)
− G (xN , yN)

)}
− 1

]

+ µxN

[
exp

{
N
(

G
(

xN − 1
N

, yN − 1
N

)
− G (xN , yN)

)}
− 1

]
.

And, second, to find its limit as N → ∞:

lim
N
(HNG)(xN , yN)

= λ(1 − x)
[
exp{ ∂

∂x
G(x, y)} − 1

]
+ µx

[
exp{− ∂

∂x
G(x, y)− ∂

∂y
G(x, y)} − 1

]
.

�

(2.13)

The right-hand side of (2.13) is the Hamiltonian (2.11) after the following changes of variables:

E Pechersky et alJ. Phys. A: Math. Theor. 50 (2017) 455203
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f1 = x, f2 = y,κ1 =
∂

∂x
G(x, y),κ2 =

∂

∂y
G(x, y).

We consider the problem of finding the optimal paths of large radiations. Namely, we consider 
the following boundary conditions:

f1(0) = d ∈ [0, 1],
f2(0) = 0, f2(T) = −B, where B > 0,� (2.14)

for the Hamiltonian system corresponding to H in (2.11)



ḟ1 = λ(1 − f1) exp{κ1} − µf1 exp{−(κ1 + κ2)},
ḟ2 = −µf1 exp{−(κ1 + κ2)},
κ̇1 = λ exp{κ1} − µ exp{−(κ1 + κ2)} − λ+ µ,
κ̇2 = 0.

.� (2.15)

We study the system for large B.
The solution of (2.15) with the boundary conditions (2.14) presents the mean dynamics f1 

and f2 of the occupation and radiation processes. We add the boundary condition κ1(T) = 0 
because the value of f1(T) is free.

Remark 2.1 (On the large deviations principle).  The book [8] proposes a program 
how to prove the large deviation principle for stochastic processes (in particular, Markov 
processes) in consideration. This program requires special considerations, depending on the 
studied process. For example, see [13], where the large deviation principle is studied for a 
model that is close to our model in some respect.

We, however, consider the Markov process ΓN(t) which is a scaled sum of N independent 
Markov processes. Each one of these Markov processes is concentrated on piece-wise con-
stant paths on [0, T]. We can consider the Skorohod space of piece-wise continuous paths on 
[0, T] (see [2], section 12). For our N independent paths we can use the Sanov theorem with 
subsequent application of the contraction principle (see [18]). This combination of the Sanov 
theorem and the contraction principle gives the rate function (see (2.17)) for our process Γ.

2.3.  Results

Assume that the total radiation during the time interval [0, T] is �BN�, where �·� is integer part, 
i.e. ΥN(T) = −�BN�, B > 0, with initial value ΥN(0) = 0. The initial number of excited 
atoms is ΞN(0) = �dN� ∈ [0, N]. For example, we can choose d = λ

λ+µ. Then the large devia-
tion principle yields

lim
N→∞

1
N

ln Pr

(
ξ(0) =

�Nd�
N

, ζ(0) = 0, ζ(T) = −�NB�
N

)

= − inf
f1,f2

{I( f1, f2) : f1(0) = d, f2(0) = 0, f2(T) = −B} ,
�

(2.16)

where the rate function is, see (2.10) and (2.11),

I( f1, f2) =
∫ T

0
L( f1, f2)dt

=

∫ T

0
sup
κ1,κ2

(
κ1 ḟ1 + κ2 ḟ2 − λ(1 − f1)[eκ1 − 1]− µf1[e−κ1−κ2 − 1]

)
dt.

E Pechersky et alJ. Phys. A: Math. Theor. 50 (2017) 455203
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Remark 2.2.  The rate function is convex therefore the infimum in (2.16) is achieved and 
unique. Indeed, as the functional I( f1, f2) is the convex combination of suprema of affine 
functionals it is convex. So its critical point is its minimum. This minimum is unique because 
the corresponding boundary value problem for Euler system has a unique solution as follows 
from calculations.

We rewrite the rate function in an alternative way.

I( f1, f2) =
∫ T

0
sup

κ1(t),κ2(t)

(
κ1(t)ḟ1(t) + κ2(t)ḟ2(t)− ρ( f1)[ϕ(κ1(t),κ2(t))− 1]

)
dt,

�

(2.17)

where ρ( f1) = λ(1 − f1) + µf1, and

ϕ(κ1,κ2) =
λ(1 − f1)
ρ( f1)

exp{κ1}+
µf1
ρ( f1)

exp{−(κ1 + κ2)}.� (2.18)

The supremum over κ1(t),κ2(t) in (2.17) can be found from the equations

ḟ1 = λ(1 − f1) exp{κ1} − µf1 exp{−(κ1 + κ2)},

ḟ2 = −µf1 exp{−(κ1 + κ2)}.
� (2.19)

The infimum over f1, f2  can be found from Euler equations

κ̇1 = λ exp{κ1} − µ exp{−(κ1 + κ2)} − λ+ µ,
κ̇2 = 0.
� (2.20)

In other words, we have to solve the Hamiltonian system of equation (2.15)



ḟ1 = λ(1 − f1) exp{κ1} − µf1 exp{−(κ1 + κ2)},
ḟ2 = −µf1 exp{−(κ1 + κ2)},
κ̇1 = λ exp{κ1} − µ exp{−(κ1 + κ2)} − λ+ µ,
κ̇2 = 0.

under boundary conditions f1(0) = d , f2(0) = 0, f2(T) = −B and κ1(T) = 0 with the 
Hamiltonian (2.11). We have derived the system of equations (2.15) with boundary conditions 
(2.14) as a solution of optimization problem. The solution of the boundary problem is unique 
and gives an extremal path for the radiation problem.

2.3.1.  Solutions of (2.15).  Two last equations of (2.15) do not depend on fi, ḟi, i = 1, 2. These 
equations can be solved as follows. The function κ2 does not depend on t. Having κ2 fixed 
we look for κ1 by means of the change of variable y(t) = eκ1(t). Then the third equation of 
(2.15) is

ẏ = λy2 − (λ− µ)y − µe−κ2 .� (2.21)

Using notations

γ = µ
λ ,

a = 1 − γ,
b = γe−κ2

� (2.22)

we reduce (2.21) to the form

ẏ = λ
(
y2 − ay − b

)
.� (2.23)

E Pechersky et alJ. Phys. A: Math. Theor. 50 (2017) 455203
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The value of a is upper bounded, a � 1, since γ � 0, however a may be negative and may 
have a large absolute value. We represent the expression in the parentheses of (2.23) as

y2 − ay − b = (y − r1)(y − r2),� (2.24)

where

r1,2 =
a
2
∓
√(a

2

)2
+ b.� (2.25)

Since b > 0, the roots r1 and r2 have different signs: r1 < 0 < r2. The equation (2.23) can be 
represented as

ẏ
y − r2

− ẏ
y − r1

= λ(r2 − r1).� (2.26)

The solution of (2.24) is

y(t) = eκ1(t) =
r2 − r1C1 exp{tλ(r2 − r1)}

1 − C1 exp{tλ(r2 − r1)}
,� (2.27)

where C1 is a constant within the interval 
( r2

r1
, 1
)
. The value of C1 cannot be out of this interval 

because 0 < y(t) < ∞. Remark that r2
r1
< 0.

Note that κ1(T) = 0 since there are no constraints on the value of f1(T). Then

C1 =
r2 − 1
r1 − 1

exp{−Tλ(r2 − r1)}� (2.28)

and

eκ1(t) =
r2 + r1

r2−1
1−r1

exp{(t − T)λ(r2 − r1)}
1 + r2−1

1−r1
exp{(t − T)λ(r2 − r1)}

.� (2.29)

The energy conservation law implies (see (2.11)) that there exists a constant K such that, 
for any t ∈ T ,

H( f1, f2,κ1,κ2) = K.

Thus the path f1 corresponding to the density of excited atoms is

f1(t) =
λ(eκ1 − 1)− K

λ(eκ1 − 1) + µ(1 − e−κ1−κ2)
.� (2.30)

The constant K is sought from the initial condition f1(0) = d . That is,

K = λ(eκ1(0) − 1)(1 − f1(0))− f1(0)µ(1 − e−κ1(0)−κ2).� (2.31)

Next we have to evaluate the emission path (see (2.15))

f2(t) = −µe−κ2

∫ t

0
f1(s)e−κ1(s)ds, t ∈ [0, T].� (2.32)

To this end we evaluate the integral

J(t) =
∫ t

0

λ(eκ1(s) − 1) + K
λ(eκ1(s) − 1) + µ(1 − e−κ1(s)e−κ2)

e−κ1(s)ds.� (2.33)

The denominator of this integral multiplied by eκ1(s) can be written as

E Pechersky et alJ. Phys. A: Math. Theor. 50 (2017) 455203



9

λe2κ1(s) − (λ− µ)eκ1(s) − µe−κ2 = λ(eκ1(s) − r1)(eκ1(s) − r2),

see (2.23)–(2.25). Hence

J(t) =
∫ t

0

ds
eκ1(s) − r2

+

∫ t

0

λ(r1 − 1) + K
λ(eκ1(s) − r1)(eκ1(s) − r2)

ds

=

∫ t

0

ds
eκ1(s) − r2

+
λ(r1 − 1) + K
λ(r2 − r1)

(∫ t

0

ds
eκ1(s) − r2

−
∫ t

0

ds
eκ1(s) − r1

)

=
(

1 +
λ(r1 − 1) + K
λ(r2 − r1)

)∫ t

0

ds
eκ1(s) − r2

− λ(r1 − 1) + K
λ(r2 − r1)

∫ t

0

ds
eκ1(s) − r1

.

Since

eκ1(s) − r1 =
r2 + r1

r2−1
1−r1

eλ(r2−r1)(s−T)

1 + r2−1
1−r1

eλ(r2−r1)(s−T)
− r1 =

r2 − r1

1 + r2−1
1−r1

eλ(r2−r1)(s−T)

then

J1(t) =
∫ t

0

ds
eκ1(s) − r1

=

∫ t

0

1 + r2−1
1−r1

eλ(r2−r1)(s−T)

r2 − r1
ds

=
t

r2 − r1
+

r2 − 1
1 − r1

· e−λ(r2−r1)T

λ(r2 − r1)2

(
eλ(r2−r1)t − 1

)
.

Since

eκ1(s) − r2 =
r2 + r1

r2−1
1−r1

eλ(r2−r1)(s−T)

1 + r2−1
1−r1

eλ(r2−r1)(s−T)
− r2 =

(r1 − r2)
r2−1
1−r1

eλ(r2−r1)(s−T)

1 + r2−1
1−r1

eλ(r2−r1)(s−T)

then

J2(t) =
∫ t

0

ds
eκ1(s) − r2

=

∫ t

0

1 + r2−1
1−r1

eλ(r2−r1)(s−T)

(r1 − r2)
r2−1
1−r1

eλ(r2−r1)(s−T)
ds

= − t
r2 − r1

− 1 − r1

r2 − 1
· eλ(r2−r1)T

λ(r2 − r1)2

(
1 − e−λ(r2−r1)t

)
.

Thus

J(t) =
(

1 +
λ(r1 − 1) + K
λ(r2 − r1)

)
J1(t)−

λ(r1 − 1) + K
λ(r2 − r1)

J2(t)� (2.34)

and

f2(t) = −µ exp{−κ2}I(t).� (2.35)

Therefore κ2 is a solution of

−B = f2(T) = −µ exp{−κ2}
[(

1 +
λ(r1 − 1) + K
λ(r2 − r1)

)
J1(T)−

λ(r1 − 1) + K
λ(r2 − r1)

J2(T)
]

.

� (2.36)
Remark that e−κ2 is present in the definition of constants r1, r2 and K. Therefore (2.36) is not 
a linear equation with respect to e−κ2.
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3.  Emergence of chaos in large fluctuations

3.1.  Equations

Here we derive a surprising feature of the asymptotic ‘quasi-equilibrium’ behaviour of the 
emission and excitation rates within the interval [0, T]. We will prove that these rates become 
equal in the limit and do not depend on λ and μ.

For the hamiltonian system (2.15) with boundary conditions (2.14), let us make a change 
of variables y(t) = eκ1(t) and z(t) = e−κ1(t)−κ2(t). Recall that κ2(t) = κ2 is a constant. From 
(2.27), we get

y(t) =
r2(1 − r1) + r1(r2 − 1)ϕ(t)

1 − r1 + (r2 − 1)ϕ(t)
,� (3.1)

where

ϕ(t) = e(t−T)λ(r2−r1).� (3.2)

We also have

r2 − r1 =

√
(λ− µ)2 + 4µλe−κ2

λ
,

(hence 0 < ϕ(t) � 1 for 0 � t � T) and

r2 =
λ− µ+

√
(λ− µ)2 + 4µλe−κ2

2λ
.� (3.3)

Note that the values of r1, r2 and κ2 depend on the parameter B > 0 and the values of λ > 0, 
µ > 0, and T > 0 are fixed.

3.2.  Some bounds

First, note that the right-hand side of (3.1) is monotone decreasing as φ changes from 0 to 1 if 
r2 > 1 and monotone increasing in φ at the same interval if r2 < 1. Indeed, we have

y(t) =
r1(1 − r1) + (r2 − r1)(1 − r1) + r1(r2 − 1)ϕ(t)

1 − r1 + (r2 − 1)ϕ(t)

= r1 +
(r2 − r1)(1 − r1)

1 − r1 + (r2 − 1)ϕ(t)
,

where (r2 − r1)(1 − r1) > 0 and 1 − r1 > 0. Hence,

y(t) = r1 +
c1

c2 + c3ϕ(t)
,

where c1, c2 > 0 and where c3 > 0 if r2 > 1 and c3 < 0 if r2 < 1. Moreover, the denominator 
1 − r1 + (r2 − 1)ϕ(t) is positive for all ϕ(t) ∈ [0, 1]. Then the monotonicity follows.

We have y(t) = r2 if ϕ(t) = 0 and y(t) = 1 if ϕ(t) = 1. Since 0 � ϕ(t) � 1, we conclude 
that

y(t) � max{1, r2} � r2 + 1, 0 � t � T .� (3.4)
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Integrating the second equation in (2.15), we get

µ

∫ T

0
z(t) f1(t)dt = B.� (3.5)

Since 0 � f1(t) � 1, we conclude from (3.5) that
∫ T

0
z(t)dt �

B
µ

.� (3.6)

From the third equation in (2.15) and from the boundary condition κ1(T) = 0 we get the 
equality

κ1(0) = µ

∫ T

0
z(t)dt − λ

∫ T

0
y(t)dt + (λ− µ)T .

Next, we use (3.1) and (3.6) and derive the bound

κ1(0) � B − λ(r2 + 1)T + (λ− µ)T .� (3.7)

Since κ1(0) = ln y(0) and, hence, κ1(0) � ln(r2 + 1), we conclude from (3.7) that

ln(r2 + 1) � B − λ(r2 + 1)T + (λ− µ)T .� (3.8)

In order to derive a lower bound for r2, we denote r = λT(r2 + 1) and b =
B + (λ− µ)T + ln(λT) and reduce (3.8) to

ln(r) + r � b.� (3.9)

We assume that b > 1 (this is true for B large enough). Let us consider two cases: r > b and 
r � b. One verifies that (3.9) implies

r � b − ln(b).� (3.10)

This inequality in the first case follows from ln b > 0, and in the second case it follows from 
ln r � ln b. Hence, we have

r2 � cB − d,� (3.11)

for some c, d > 0 and all sufficiently large B > 0.
A lower bound of the same form holds for −r1 since r1 + r2 = 1 − µ/λ. Now, let us turn 

to (3.2). Fix some α > 0, α < T  and note that

ϕ(t) � eαλ(r2−r1)� (3.12)

for all t ∈ [0, T − α]. It follows that both products r1(r2 − 1)ϕ(t) and (r2 − 1)ϕ(t) vanish 
uniformly for all t ∈ [0, T − α] as B → ∞ (the exponent dominates polynomials). Therefore, 
from (3.1) we get

lim
B→+∞

max
0�t�T−α

|y(t)− r2| = 0.� (3.13)

Now, we find the asymptotics of z(t) for t ∈ [0, T − α] as B → +∞. To this end we express 
e−κ2 via r2 from the equality (3.3):

(2λr2 − λ+ µ)2 = (λ− µ)2 + 4µλe−κ2 .� (3.14)

Namely, we get

(2λr2 + (µ− λ))2 = (µ− λ)2 + 4µλe−κ2� (3.15)
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and then

4λ2r2
2 + 4λr2(µ− λ) + (µ− λ)2 = (λ− µ)2 + 4µλe−κ2 ,

that is,

λr2
2 + r2(µ− λ) = µe−κ2 .� (3.16)

Since z(t) = e−κ2

y(t) , we conclude that

lim
B→+∞

z(t)
r2

=
λ

µ
� (3.17)

uniformly for all t ∈ [0, T − α].

3.3. The turnpike theorem

Let us turn to the first equation in (2.15) and write it in the form

ḟ1(t) = λy(t)(1 − f1(t))− µz(t) f1(t),� (3.18)

where, as follows from (3.17) and (3.13),

lim
B→+∞

λy(t)
λr2

= 1 and lim
B→+∞

µz(t)
λr2

= 1� (3.19)

uniformly for all t ∈ [0, T − α].
We are ready to state and prove the main result of this section. There is a striking resem-

blance with a series of turnpike theorems in mathematical economics, see [17].

Theorem 3.1.  For any α > 0 and any ε > 0, there exists B0 > 0 such that inequality

| f1(t)−
1
2
| < ε

holds for all t ∈ [α, T − α] whenever B � B0.

Proof.  We make a linear time change τ = λr2t  and derive the required assertion from the 
explicit solutions of resulting linear differential equations.

Rewrite (3.18) on [0, T − α] as

ḟ1(t) = λr2(1 + ε1(t))(1 − f1(t))− λr2(1 + ε2(t)) f1(t),� (3.20)

where |εi(t)| � ε for i = 1, 2, and for all t ∈ [0, T − α]. Because of (3.19), this is true for all B 
large enough. After the time change, we have

d
dτ

f1(τ) = (1 + ε1(
τ

λr2
))(1 − f1(τ))− (1 + ε2(

τ

λr2
)) f1(τ),� (3.21)

or, equivalently,

d
dτ

f1(τ) = 1 − 2f1(τ) + ε0(τ),� (3.22)

where |ε0(τ)| � ε for all τ ∈ [0,λr2(T − α)]. It remains to note that 0 � f1(0) � 1 for all 
B > 0 and, hence, f1(τ) converges to 1/2 exponentially and uniformly in B > 0. Indeed, this 
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follows from the explicit solution

x(τ) = e−2τx(0) +
∫ τ

0
ε0(s)e2(s−τ)ds,

where we denoted x = f1 − 1/2.� □ 

4.  Microscopic approach. Quantum Hamiltonian formalism

In this section we study the model described in the previous sections by the so-called quantum 
Hamiltonian formalism [16, 20]. This is somewhat a misnomer as no quantum physics is 
used. The name comes from certain formal analogies with linear operators used in quantum 
mechanics. In essence, the fundamental idea is to write the generator as a matrix and then to 
use linear and multi-linear algebra for explicit computations of expectations.

4.1.  Notation and definitions

The first step is to consider not only the number of the excited atoms at moment t and the 
cumulative number of emissions during [0, t], but the state ηi(t) of each atom i, 1 � i � N , at 
moment t. These atoms form a particle system. A microstate, i.e. a microscopic configuration 
of the particle system, is denoted by η = {η1, . . . , ηN} where ηi ∈ {0, 1} denotes the state of 
atom i. The value 0 corresponds to the ground state, while 1 corresponds to the excited state. 
The state space of the particle system is therefore SN = {0, 1}N . The number ΥN(t) of emis-
sions up to time t is a non-negative integer so that the state space SN of the process (η(t),ΥN(t)) 
is SN = SN × N0. The number of excited atoms at time t is given by ΞN(t) =

∑N
i=1 ηi(t).

For a given configuration η we shall use the shorthand ηk for the switched configuration 
with state variables

ηk
i = ηi + (1 − 2ηk)δk,i� (4.1)

which corresponds to a switch of the state of atom k in the configuration η. The generator for 
the process then reads

LNf (η,ΥN) =

N∑
k=1

[
λ(1 − ηk)

(
f (ηk,ΥN)− f (η,ΥN)

)
+ µηk

(
f (ηk,ΥN + 1)− f (η,ΥN)

)]
.

� (4.2)
It is easy to see that one recovers (2.7) for functions f (ΞN ,ΥN) with ΞN =

∑N
i=1 ηi.

In order to apply the quantum Hamiltonian formalism we map the states of a single atom 
to the basis vectors e0 := (1, 0)T  (corresponding to the ground state) and e1 := (0, 1)T  (corre
sponding to the excited state), forming the canonical basis of C2. The superscript T denotes 
transposition, i.e. these vectors are considered to be column vectors. For the N-particle sys-
tem a state η is then mapped to the tensor basis | η 〉 = eη1 ⊗ eη2 ⊗ · · · ⊗ eηN of (C2)⊗N . 
Analogously we define row vectors 〈 η | = | η 〉T  with orthogonality relation 〈 η | η′ 〉 = δη,η′ 
where 〈 · | · 〉 denotes the usual scalar product. A Bernoulli product measure on SN  with density 
ρ0 is thus given by the vector

| x 〉 = ((1 − ρ0, ρ0)
T)⊗N = (1 − ρ0)

N((1, x)T)⊗N� (4.3)

where x = ρ0/(1 − ρ0) is the fugacity. Normalization is reflected by the property 〈 s | x 〉 = 1 
where 〈 s | =

∑
η∈SN

〈 η | = (1, 1, . . . , 1) is the so-called summation vector.
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In order to consider also the number ΥN of radiation events we define infinite-dimensional 
vectors |ΥN 〉 with components |ΥN 〉n = δn,ΥN for n � 0. Then a state (η,ΥN) is mapped to the 
tensor product | η,ΥN 〉〉 := | η 〉 ⊗ |ΥN 〉 which is a vector in V := (C2)⊗N ⊗ CN0 denoted by 
the double-ket symbol | · 〉〉. In complete analogy to above we define also 〈〈 η,ΥN | = | η,ΥN 〉〉T 
with the orthogonality relation 〈〈 η,ΥN | η,Υ′

N 〉〉 = δη,η′δΥN ,Υ′
N
. A probability measure μ on 

SN = {0, 1}N × N0 is thus represented by a vector

|µ 〉〉 =
∑

(η,ΥN)∈SN

µ(η,ΥN)| η,ΥN 〉〉.
� (4.4)

Normalization is reflected by the property 〈〈 s |µ 〉〉 = 1 where 〈〈 s | = ∑
η,ΥN

〈〈 η,ΥN | = 〈 s | ⊗ 〈 s′ | with 〈 s′ | =
∑

ΥN∈N0
〈ΥN |.

Following the quantum Hamiltonian formalism we first introduce the two-dimensional unit 
matrix 1 and the Pauli matrices σx,y,z. In order to build operators for the N-particle system 
we define the unit operator 1̃ := 1⊗N  on (C2)⊗N  and the unit operator 1 on CN0. In order to 
describe the evolution of the number of excited atoms we next introduce the diagonal num-
ber operator N̂ =

∑N
i=1 n̂i which is composed of the the sum of local operators n̂i with the 

property n̂i| η 〉 = ηi| η 〉 and therefore N̂| η 〉 = ΞN | η 〉. The subscript i at a matrix ai denotes 
the ith  position in the tensor product ai = 1 ⊗ · · · ⊗ 1 ⊗ a ⊗ 1 · · · ⊗ 1. In terms of Pauli 
matrices the single-atom number operator takes the form n̂ = 1/2(1 − σz). We also need the 
operator V̂ =

∑N
i=1(1 − n̂i) and the (non-diagonal) flipping operators Ŝ± =

∑N
i=1 σ

±
i , where 

σ± = 1/2(σx ± iσy) with imaginary unit i. The matrix σ+
i  turns excited atom i into its ground 

state, while σ−
i  corresponds to excitation of atom i.

For the radiation process we define the diagonal counting operator K̂  where 
K̂|ΥN 〉 = ΥN |ΥN 〉. We also introduce the matrix K̂+ where K̂+ acts as raising operator on 
CN0, i.e. K̂+|ΥN 〉 = |ΥN + 1 〉 with ΥN ∈ N0 . We note the commutation relation

[K̂, K̂+] = K̂+,� (4.5)

which will play a role in the computation of the radiation activity.
Finally, we lift the action of these operators to V  by tensor multiplication with the respec-

tive unit operators: N̂ = N̂ ⊗ 1, V̂ = V̂ ⊗ 1, Ŝ
±
= Ŝ± ⊗ 1, K̂ = 1̃ ⊗ N̂ , K̂

+
= 1̃ ⊗ K̂+. The 

generator of the process can now be written in matrix form as

H = −µ(Ŝ+K̂+ − N̂)− λ(Ŝ− − K̂) =
N∑

i=1

Ai,� (4.6)

with

Ai = µ(n̂i ⊗ 1− σ+
i ⊗ K̂+) + λ(1̃ − n̂i − σ−

i )⊗ 1.� (4.7)

For any initial measure |µ 〉〉 the measure at time t � 0 is given by

|µ(t) 〉〉 = e−Ht|µ 〉〉.� (4.8)

Notice that the Ai  commute among themselves and therefore e−Ht =
∏N

i=1 e−Ait.
Consider now the initial measure | x 〉〉 = | x 〉 ⊗ | 0 〉 with the Bernoulli product measure 

| x 〉 for the state of the atoms defined in (4.3) and define

FT(x, y, z) := Ex

(
yΞN(T)zΥN(T)

)
� (4.9)
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which is the generating function for the probability to arrive at ΞN = M  and ΥN = K at time 
T, starting at time 0 from K = 0 (number of radiation events) and Bernoulli product measure 
| x 〉 for the state of the atoms.

Moreover define for 0 � t � T  the two-time expectations

GT(x, y, z, t) := Ex

(
ΞN(t)yΞN(T)zΥN(T)

)
� (4.10)

HT(x, y, z, t) := Ex

(
ΥN(t)yΞN(T)zΥN(T)

)
� (4.11)

and the scaled and normalized quantities

gT(x, y, z, t) :=
1
N

GT(x, y, z, t)/FT(x, y, z)� (4.12)

hT(x, y, z, t) :=
1
N

HT(x, y, z, t)/FT(x, y, z).� (4.13)

They can be interpreted as conditional expectations of the scaled variables ξN(t) and ζN(t) of 
the scaled process (2.8). Thus gT(x, y, z, t) is the conditional mean number of excited atoms at 
time t (normalized by the total number of atoms) and hT(x, y, z, t) is the conditional number of 
radiation events up to time t per atom. In the following we show that these functions are the 
microscopic analogs of f1(t) and f2(t) of the previous section. The case when f1(T) is free 
corresponds to y = 1.

4.2.  Computation of the generating functions

In the quantum Hamiltonian formalism we have by definition FT(x, y, z) = 〈〈 s |yN̂zK̂e−HT | x 〉〉. 
Using the fact that yN̂  and zK̂ are diagonal and factorize we get that

FT(x, y, z) = 〈〈 s |e−Ĥt| xy 〉〉� (4.14)

where Ĥ = yN̂zK̂ H y−N̂z−K̂ =:
∑N

i=1 Âi with Âi = yn̂i ⊗ zK̂ Ai y−n̂i ⊗ z−K̂ . Next we expand 
the exponential of Ĥ into its Taylor series and use the fact that 〈 s |K̂

+
= 〈 s |. It follows 

that 〈 s |e−ĤT = 〈 s |e−H̃T ⊗ 1 = 〈 s |e−H̃T ⊗ 〈 s′ | with the weighted generator H̃ =
∑N

i=1 Ãi   
(acting on (C2)⊗N ) and

Ãi = µ(n̂i − y−1zσ+
i ) + λ(1 − n̂i − yσ−

i ).� (4.15)

Observe that the action of H̃ ⊗ 1 on the subspace CN0 is trivial. Hence the inner prod-
uct in (4.14) in this subspace can be factorized and is trivially equal to one. Therefore 

FT(x, y, z) = 〈 s |e−H̃T | xy 〉 which is an inner product only in (C2)⊗N . Moreover, due the fac-
torization of both the weighted generator and the initial measure we arrive at

FT(x, y, z) = (1 − ρ0)
N
[
(1, 1)e−ÃT(1, xy)T

]N
� (4.16)

with the 2 × 2 matrix

Ã =

(
λ −µy−1z

−λy µ

)
.� (4.17)

A general 2 × 2 matrix
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M =

(
a b
c d

)
� (4.18)

has eigenvalues λ1 = (a + d − δ)/2 and λ2 = (a + d + δ)/2 with δ =
√
(a − d)2 + 4bc. For 

δ �= 0 its exponential takes the form

e−Mτ = e−
(a+d)τ

2

(
cosh δ

2 τ + a−d
δ sinh δ

2 τ
2b
δ sinh δ

2 τ
2c
δ sinh δ

2 τ cosh δ
2 τ − a−d

δ sinh δ
2 τ

)
.� (4.19)

For Ã we have δ =
√
(µ− λ)2 + 4µλz and for convenience we define

fT(x, y, z) :=
e

(λ+µ)T
2

1 − ρ0
(FT(x, y, z))

1
N .� (4.20)

This yields

fT(x, y, z) = (1, 1)

(
cosh δ

2 T + µ−λ
δ sinh δ

2 T 2y−1zµ
δ sinh δ

2 T
2yλ
δ sinh δ

2 T cosh δ
2 T − µ−λ

δ sinh δ
2 T

)(
1
xy

)

= (1 + xy) cosh
δ

2
T +

1
δ
[2yλ+ 2xzµ+ (µ− λ)(1 − xy)] sinh

δ

2
T .

�

(4.21)

Next we consider GT(x, y, z, t). According to definition one has

GT(x, y, z, t) =
N∑

i=1

〈〈 s |yN̂zK̂e−H(T−t)N̂e−Ht| x 〉〉.� (4.22)

In a similar fashion to above one finds

GT(x, y, z, t) = N(1 − ρ0)
Ne

−(λ+µ)(N−1)T
2 f N−1

T (x, y, z)
[
(1, 1)e−Ã(T−t)n̂e−Ãt(1, xy)T

]
,

�

(4.23)

and, using (4.19),

gT(x, y, z, t) =
1

fT(x, y, z)

[
y cosh

δ

2
(T − t) +

2zµ− y(µ− λ)

δ
sinh

δ

2
(T − t)

]

×
[

x cosh
δ

2
t +

2λ− x(µ− λ)

δ
sinh

δ

2
t
]

�

(4.24)

with initial condition

gT(x, y, z, 0) =
x

fT(x, y, z)

[
y cosh

δ

2
T +

2zµ− y(µ− λ)

δ
sinh

δ

2
T
]

� (4.25)

parametrized by the fugacity x = ρ0/(1 − ρ0).
Next we note that

HT(x, y, z, t) = 〈〈 s |yN̂zK̂e−H(T−t)K̂e−Ht| x 〉〉.� (4.26)

In order to compute this quantity it is convenient to consider its derivative w.r.t. t. Using 
d/dt eHtK̂e−Ht = eHt[H, K̂]e−Ht  and (4.5), steps analogous to those that gave rise to (4.21) 
lead to
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ḢT(x, y, z, t) = µy−1z
N∑

i=1

〈〈 s |e−Ĥ(T−t)Ŝ+K̂+e−Ĥt| xy 〉〉

= N(1 − ρ0)
Ne

−(λ+µ)(N−1)T
2 f N−1

T (x, y, z)
[
(1, 1)e−Ã(T−t)σ+e−Ãt(1, xy)T

]
.

� (4.27)
Using (4.19) this yields

ḣT(x, y, z, t) =
zµ

fT(x, y, z)

[
cosh

δ

2
(T − t) +

2yλ+ µ− λ

δ
sinh

δ

2
(T − t)

]

×
[

x cosh
δ

2
t +

2λ− x(µ− λ)

δ
sinh

δ

2
t
]

.

�

(4.28)

Integration of this quantity w.r.t. t is straightforward and yields h(t) with initial condition 
h(0) = 0. The final values gT(x, y, z, T) ∈ [0, 1] and hT(x, y, z, T) � 0 are parametrized by the 
variables y, z.

Remark 4.1.  In the limit T → ∞ straightforward computation for intermediate times 
t ∝ cT  shows that

g∗(z) := lim
T→∞

gT(x, y, z, cT) =
1
2

(
1 +

λ− µ

δ

)
� (4.29)

ḣ∗(z) := lim
T→∞

ḣT(x, y, z, cT) =
zλµ
δ

� (4.30)

are constants that depend neither on the initial fugacity x nor on the atypical density of excited 
atoms parametrized by y. Moreover, for any choice of λ and μ the radiation activity ḣ∗(z) is 
monotone in z, i.e. one has ḣ∗(z) �= ḣ∗(1) for z �= 1. If λ = µ where radiation and excitation 
are in balance one finds somewhat surprisingly that, despite the conditioning on a strongly 
atypical number of excited atoms at time T and a strongly atypical number of radiation events 
up to time T, the mean number of excited atoms at intermediate times t = O(T) is 1/2, which 
for λ = µ is the typical value without conditioning.

4.3. The case λ = µ = 1

The expressions derived above simplify for λ = µ = 1 corresponding to γ = 1 in (2.22). We 
present this case in more detail. One gets δ = 2

√
z and it is convenient to introduce ỹ := y/

√
z  

and x̃ := x
√

z . With this the expression obtained above for the general case reduce to

fT(x, y, z) =
1
2

[
(1 + ỹ)(1 + x̃)e

√
zT + (1 − ỹ)(1 − x̃)e−

√
zT
]

� (4.31)

gT(x, y, z, t) =
1
2

(
1 − (1 + ỹ)(1 − x̃)e

√
z(T−2t) + (1 − ỹ)(1 + x̃)e−

√
z(T−2t)

(1 + ỹ)(1 + x̃)e
√

zT + (1 − ỹ)(1 − x̃)e−
√

zT

)

�

(4.32)

ḣT(x, y, z, t) =
√

z
2

(
h∗ − (1 + ỹ)(1 − x̃)e

√
z(T−2t) − (1 − ỹ)(1 + x̃)e−

√
z(T−2t)

(1 + ỹ)(1 + x̃)e
√

zT + (1 − ỹ)(1 − x̃)e−
√

zT

)

� (4.33)
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with

h∗ =
(1 + ỹ)(1 + x̃)e

√
zT − (1 − ỹ)(1 − x̃)e−

√
zT

(1 + ỹ)(1 + x̃)e
√

zT + (1 − ỹ)(1 − x̃)e−
√

zT
.� (4.34)

For large time frame T one gets with the definition τ = T − t  the following asymptotic 
behaviour for g(x, y, z, t) := limT→∞ gT(x, y, z, t):

g(x, y, z, t) =




1
2

(
1 − 1−x̃

1+x̃ e−2
√

zt
)

for t = o(T)
1
2 for t = O(T)
1
2

(
1 − 1−ỹ

1+ỹ e−2
√

zτ
)

for τ = o(T)

.� (4.35)

The corresponding asymptotics for h(x, y, z, t) := limT→∞ hT(x, y, z, t) are:

h(x, y, z, t) =





√
z

2 t − 1
4

1−x̃
1+x̃ e−2

√
zt t = o(T)

√
z

2 t t = O(T)
√

z
2 t − 1

4
1−ỹ
1+ỹ e−2

√
zτ τ = o(T)

.� (4.36)

Thus, for T large, the radiation intensity ḣT(x, y, z, t) is approximately constant except initially 
and towards the end of the observation period T.

In order to make contact with the macroscopic results of the previous sections we take T 
fixed, choose y = 1, and impose the initial condition gT(x, y, z, t) = 1/2. This requires choos-
ing the initial fugacity x such that (1 + ỹ)(1 − x̃)e

√
zT + (1 − ỹ)(1 + x̃)e−

√
zT = 0, i.e. for 

ỹ = 1/
√

z one chooses

1 − x̃
1 + x̃

=
1 −√

z
1 +

√
z

e−2
√

zT =: C.� (4.37)

Thus one obtains for t ∈ [0, T]

gT(x, 1, z, t) =
1
2
+

C
1 − C2 sinh (2

√
zt)� (4.38)

hT(x, 1, z, t) =
√

z
2

(
1 − 2

1 − C2

)
t +

C
2(1 − C2)

sinh (2
√

zt).� (4.39)

With the choice z = e−κ2 (see (2.22)) one finds f1(t) = gT(x, 1, z, t) and f2(t) = hT(x, 1, z, t) 
(see (2.30) and (2.35) together with (2.31), (2.34) and (2.36) for λ = µ = 1), thus relating 
the macroscopic constant κ2 appearing in the Hamiltonian (2.11) to the generating function 
parameter z introduced in (4.9).

We point out two other special cases. (a) For initial fugacity x = 1/
√

z and arbitrary y one 
has

fT(1/
√

z, y, z, t) = (1 + ỹ)e
√

zT� (4.40)

gT(1/
√

z, y, z, t) =
1
2

(
1 − 1 − ỹ

1 + ỹ
e−2

√
z(T−t)

)
� (4.41)

hT(1/
√

z, y, z, t) =
√

z
2

t +
1
4

1 − ỹ
1 + ỹ

(
e−2

√
z(T−t) − e−2

√
zT
)

.� (4.42)
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Hence for initial times such that T − t � 1/
√

z  both the number of excited atoms and the 
radiation activity are essentially constant. (b) On the other hand, for y =

√
z and arbitrary 

initial fugacity x the expressions (4.31)–(4.33) reduce to

fT(x,
√

z, z, t) = (1 + x̃)e
√

zT� (4.43)

gT(x,
√

z, z, t) =
1
2

(
1 − 1 − x̃

1 + x̃
e−2

√
zt
)

� (4.44)

hT(x,
√

z, z, t) =
√

z
2

t +
1
4

1 − x̃
1 + x̃

(
e−2

√
zt − 1

)
.� (4.45)

In this case the number of excited atoms and the radiation activity approach a constant for 
times t � 1/

√
z.

Remark 4.2.  In all cases the radiation intensity is not constant, but has deviations from 
a constant in time windows of length 1/(2

√
z), i.e. the intensity approaches a constant (or 

deviates from it) exponentially with a decay rate 1/(2
√

z). We refer to this behaviour as the 
occurence of ‘moderate bursts’.

Remark 4.3.  The quantum Hamiltonian approach makes clear that the behaviour of a 
two-level system is generic. In a m-level system the functions g and h (and their analogs for 
similar observables) will always be of the factorized form gT(. . . , t) = a(. . . , T − t)b(. . . , t) 
and the functions a and b will be sums of exponentials of the eigenvalues of the single-atom 
generator A.
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