





The study of the FC-center of groups of units of group rings started with
papers by S.K.Sehgal and H.J. Zassenhaus [14], C. Polcino Milies 8] and G.
CLiff and S.K. Sehgal [2]. Also, A. Williamson [16}, studied elements of a
periodic group G which have finite conjugacy class in the group of units of its
integral group ring. A more general approach was given by S.K. Sehgal and
H.J. Zassenhaus in [15]. This work was followed by several papers studying
group rings over fields {9], (3].

Theorem 2.2 below shows that a result similar to that of Herstein holds
for finite dimensional algebras over infinite fields and this fact is extended to
algebraic algebras in Corollary 2.3. However, it follows from [3, Example 1]
that it cannot be extended to all infinite dimensional algebras. In Section 3
we consider orders in finite dimensional algebras where the situation is more
complicated. In particular, a theorem of Williamson for integral group rings
[16] shows that an analogue of Herstein’s result does not hold for orders.
However, we are able to obtain general positive results for large classes of
orders and we give a partial extension of a theorem of Sehgal and Zassenhaus
[15, Theorem 1]. In Section 4 we consider some applications to group rings
and, in particular, we obtain a short proof of the theorem of Williamson.

2 Algebras

The following fact should be known, however we include an argument for
the sake of completeness.

Proposition 2.1 Let G be a connected algebraic group over an infinite field.
Then every FC-element of G is central.

Proof. Let G be a connected algebraic group and z € G an FC-element.
Then, the centralizer Cq(z) is a closed subgroup of finite index of G. For a
fixed y € G the map z—yz € G is polynomial and, therefore, continuous.
Since the same holds for its inverse, it is a homeomorphism. Hence, each
coset yCq(z) is closed in G and G is a union of a finite number of them.
Since G is connected (even irreducible), it follows that z € Z(G). m]

For a group G let TG denote the torsion part of G.

Theorem 2.2 Let A be an algebra with unity over an infinite field K.



(i) If A is finite dimensional, then UA is a connected linear algebraic
group and, consequently,

AUA) = Z(UA).

Moreover, A is generated by its units, as a vector space over K and, there-
fore, UA is FC if and only if A is commutative.

(ii) Every torsion unit of A(UA) commutes with each algebraic unit of
A and, consequently, A(UA) is solvable of length at most 2.

(tii) Every element of A(UA) commutes with each nilpotent element of
A.

Proof. (i) Let » = dimgA and T' : A—+M,(K) be the regular represen-
tation of A. Then z € A is invertible if and only if det(I'(z)) # 0. Indeed,
if det(I'(z)) # 0 then I'(z) is invertible in M, (K), thus it can not be a zero
divisor in T'(A). Since an element in a finite dimensional algebra is either a
zero divisor or invertible, the statement follows.

Taking a basis in A, det(I'(z)) can be considered as a polynomial f in
coordinates 21, - -, z, of z. Hence

UA = {(11,"'131:) € Alf(zla""zn) #0}

So, with respect to the Zariski topology on A, we have that /A is
a principal open subset in A = K™. Therefore, A is an irreducible (=
connected) algebraic group. Therefore, by Proposition 2.1, we have that
A{UA)=ZUA).

Note that A is a linear algebraic group as both I' : A—I'(4) and its
inverse are polynomial maps. Since U A is an open subset of A, we have that
I7A = A. Let A; be the linear span of Z{A. Since every linear subspace is
closed under Zariski’s topology, we have that Z{A C A;; hence A; = A.

Item (ii) is an easy consequence of (i), indeed, let z € TA(UA), y € UA
be algebraic and n be the dimension of the subalgebra generated by y. Then
by Dietzmann’s Lemma (see [11, 15.1.11]) the conjugates of z in H = (z,y)
generate a finite normal subgroup N, and every element of H can be writ-
ten as a K-linear combination of elements of the form hy* with A € N and
0 < i < n— 1. Hence the K-linear span of H is a finite dimensional algebra
and by item (i), zy = yz, as desired. In particular, TA(U A) is abelian
and, since A({A)' C TA(UA), by Neuman’s Theorem [11, 15.1.7], AUA)



is solvable of length at most 2.

(i) Let y € A be a nilpotent element and let n be a positive integer
such that y» # 0 and y™+' = 0. For each & € K we consider z, = 1+ ay,
which is a unit whose inverse is z;! = 31 o(—1)*(ow)* and we have that:

n
'tz =2+ ) (na'),
i=1
where v; = (-1)'(y'z — y*lzy), 1< i< n.
Since z € A(UA), there exists an infinite set S of K such that the set

{z;122, | @ € S} consists of a single element.
Let B be a K-basis of A and set o, § € 5, with 8 fixed. Write

vi= Y vi(b)b

beB

and
zﬂ‘lzzg —z= Z w(b)b.

beB

As Jl2z, = z;lzzp, we get:

S wE)b=a(d v (d)b)+ a* (3 va (b)) +---.

beB beB beB
Assume that vy = zy — yz # 0. Then, there exists an element by € B
such that v;(bo) # 0. Consequently, the polynomial —w(bo) + av;(b) +
a?v;(bo) + - - - is non zero and has infinitely many roots, since it is zero for
every a € S, a contradiction. a

We note that the proof of (iif) also works in the case of orders, as we
show in the beginning of the next section.

Notice that if K is a finite field, results similar to those of the previous
theorem need not hold. In fact, let A be a direct sum of infinitely many
copies of a full matrix ring M,(K), » > 2. Then every unit in A is FC so

UA = AUA) # ZUA).

Moreover, U/ A is not solvable and clearly units need not commute with nilpo-
tent elements so none of the statements of the theorem above holds.



Throughout this section we shall always assume that the algebras con-
sidered are taken over an infinite field K.

Corollary 2.3 IfUA and A(UA) are generated by algebraic units then
AUA) = Z(UA).

In particular, this happens if A is an algebraic algebra. In this case A is
generated by units as a vector space, and UA is FC if and only if A is
commutative.

Proof. Let z € A(U/A),y € UA be algebraic, H = (z,y) and z;,...,z,
be the conjugates of z in H. Each commutator of {zy,...,z,) is torsion
and, therefore, central by (ii) of Theorem 2.2. Hence each h € H can
be written as h = y"'a:‘ls‘...zf‘ [lz;, =514, with a, By, ...8,, 7ij € Z. Now,
let n; (respectively n) be the dimension of the subalgebra generated by z;
(respectively y). Then h is a K-linear combination of elements of the form
y'as ..zl [1[zi, 25]*9 with 0 < 6 < 1,0 < & < 14,0 < wjj < of[zi, 7). We
have finitely many such elements and, consequently, the K-linear span of H
is a finite dimensional algebra. It follows from (i) of Theorem 2.2 that z and
y commute, as desired. The last statement also follows from part (i) of that
theorem. o

Now, we wish to consider algebras with many units; more precisely, al-
gebras that are generated, as a vector space, by their units. These include
large classes of algebras, such as group rings, crossed products, finite di-
mensional algebras, algebraic algebras and algebras unitally generated by
nilpotent elements such as considered in [1].

The following lemma is an extension of [3, Lemma 2.1] to the general
case.

Lemma 2.4 Let z € A be an element such that 22 = bz for some b € K.
Then zy = yz for ally € A(UA).

Proof. Let k be an arbitrary element in K. If b # 0 we set u; =
1-b"'z 4+ b6 kz. Then uy is a unit of A whose inverse is u;' =1—-b"1z +
b=lk~1lz. Given an element y € U A, we compute:

e = wyur'=(1-0"tz+ b k2)y(1-b 'z + b7k 7Iz) =
= y—blzy~-blyz+ b Ykay + bk lyz 4 (2672 ~ b2k — b7k ) aya.
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If we denote ¢ = yzy~!, we have that yz = cy and we can write:
=1+ 0%z - bz = b le+ b7k o+ 2672z — b %kzc — b2k zc)y.
Hence
zyr = z(k + b~le — b~ lke)y = k(z — b~ zc)y + b~ zey.

Thus, if z — b~ zc # 0, as K is infinite, we would have infinitely many
conjugates for y. So we must have that z = b~'zc and, back in the expression
of y; we obtain:

ve=0-ble+b x4+ b7 % (c—2))y.

Once again, if ¢ # z we would have infinitely many conjugates for y, a
contradiction. Hence, z = y~!zy, as desired.

The case where b = 0 can be obtained by a similar argument, consid-
ering the unit 4, = 14 az. It also follows immediately from Theorem 2.2. O

Let A; denote the linear span of A(L{A) in A. Since A(UA) is a group,
it follows immediately that A; is a subalgebra of A.

Corollary 2.5 Every idempotent of A; is central in A.

Proof. Let e € A; be an idempotent and let z be an arbitrary element of
A. The elements a = ez(1—e) and 8 = (1 —¢€)ze are such that o? = 82 = 0.

Write ¢ as a linear combination e = 3, l;u; of elements u; € A( A) with
coefficients I; € K. By the previous lemma, both @ and 8 commute with
every u; and thus, with e. Hence:

ex = ae=0,
ef = Pe=0.
Now, ea = ez(1 —¢) and thus ez = eze. In a similar way we obtain that
ze = eze and thus ze = ez, as claimed. o

Theorem 2.6 Let A be an algebra generated by its units, as a linear space
over an infinite field K such that UA is FC. Then, every idempotent and
every nilpotent element are central in A.

Moreover, if A is generated by its torsion units, as g linear space over
K, then UA is FC if and only if A is commutative.
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Proof. The first part of the statement follows immediately from Corol-
lary 2.5 and item (ii%) of Theorem 2.2 while the second is a consequence of
item (ii) of the same theorem. a

3 Orders

Let D be a domain, K its field of fractions and let A be a K-algebra. By a D-
order A in A we mean a D-subalgebra of A such that A = KA. Notice that
this implies that A contains a K-basis of A. Of course, A(UA) C AUA)NA
but, in general, equality does not hold. To see this take, for example, Kg =
(a,b] a* =1,a% = b%,bab™! = a~') and set A = ZKjz and A = QKs. Then
the element 2 = 1+ a + a® lives in A, is central and invertible in A, with
inverse z71 = 1/3(1+ a — 24 + a3), but z ¢ UA.

Proposition 3.1 Let D be an infinite domain and let K be its field of
Sractions. Let A be a K-algebra and A a D-order in A. If z € A(UA)
and y € A is nilpotent then zy = yz.

Proof. Let y € A be a nilpotent element. Since A is a D-order in A, there
exists an element d € D such that y; = dy € A.

For eac”h o € Dset zy, =1+ ayy. Then 2z, is a unit in A whose inverse
is 27l = ‘g(—l)‘(ayl)’..

As in item (#ii) of Theorem 2.2 we can conclude that there exists an
infinite set S of D such that the set {212z, | @ € S} consists of a single
element. If zy; # y = taking a K-basis B of A contained in A and a fixed
scalar 8 € S we can obtain, as before, a nonzero polynomial —w(bg) +
av; (bp) +a?vy(bg) +- - - which has infinitely many roots in S, a contradiction.

Hence, zy; = 1= and thus also zy = yz. o

As a consequence of Proposition 3.1 we obtain the following theorem.

Theorem 8.2 Let D be an infinite domain, K its field of fractions, A a
finite dimensional K —algebra, A a D—order in A, J = J(A) the Jacobson
Radical of A and A= A/J. Assume that Homa(P;, P;) = 0 for every pair
of non-isamorphic principal modules P;, P; of multiplicity 1 in A. If every
minimal ideal of A which is a division ring is isomorphic to K, then

AUA) C Z(A),



Proof. Let A = M, (D)) X - -+ x M,,(D,) be the Wedderburn decom-
position of A, let V; be the i —th irreducible A—module and P; the principal
~ A-module corresponding to V;. Then we have an A—module isomorphism

AP @B n,P, (1)

and by the Peirce decomposition (see [4, p.26]) we obtain that A is isomor-
phic to the algebra of matrices of the form

G611 G12 " Gis
Q21 Q22 *-- G2,

Qg1 Gy2 *°° Qg

where a;; € Homa(n;P;, niP;). Notice that End4(n;P;) = My, (Enda(P;))-

We shall denote by e;;(a;;) a matrix whose entry in position (%, §) is equal
to a;; and all other entries are equal to zero.

Let 2 € A(UA). By Proposition 3.1, we have that z commutes with
all nilpotent elements of A. In particular, if i # j, it commutes with every
matrix e;;(a;;). Thus it remains to show that 2 centralizes the diagonal
subalgebra Ends(niP1) X - -+ X Enda(n,P,).

Let z;; € A be the entry of z belonging to Hom(n;P;, n;P;). We wish
to show that z is a diagonal matrix. Assume that, in the decomposition
of A given in (1) above, we have that n; > 1if 1 < i < tandn; =1if
t+1 < i £ s It follows directly, from our assumption on the principal
modules of multiplicity 1 in A, that z is of the form:

Z1,1 12 " T1p T1,041 142 " Tis
T2,1 Z22 -t T2 T2,t41 T2442 " T,

2 Zt,1 Tez vt Tt Tt,t41 Tt,t42 Tt,s
Tep11 Te412 0t Tegdgr Tiglidd 0 - 0
Ti42,1 Te422 "0 et 0 Te42,642 0
Ts,1 Tg2 = Tyt 0 0 cee Tys |

For an index i < t and every nilpotent element a € Ends{(n;F;), by
Proposition 3.1 we have that e;;(a)z = ze;;(a). A straightforward computa-
tion shows that

azi; =0 =z;a  forallj # . (2)
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We claim that this implies z;; = z;; = 0, forall j #4,1 < i < s.
In fact, recall that Ends(niP;) = My, (Ends(P;)) and set @ = en(l) €
M, (End4(F;)) with k # 1. For an arbitrary element y € n; P; we compute
zii(y) € n;P; so, if we consider n; P; as column matrices with entries in F;,
we can write z;;(y) in the form:

z};(y)

site) = | W

27 ()

Then:
2(1) 0
!
0 = azii(y) = ew(V) [ ¥ .(fl) zi) |

z% (y) "

where z};(y) is the k** entry of the column.

This implies that zf-j(y) = 0 for | # k. Since k and ! are arbitrary
distinct, we have that z;;(y) = 0, for all y € n;P; and thus z;; = 0. A
similar argument shows that also z;; = 0. Consequently, z is diagonal.

Fix an index i with 1 < i < ¢ (and, thus, »; > 1). Consider the element
y = eii(exm (1)) of the diagonal subalgebra where k # m and the elementary
matrix egm (1) belongs to My, (Enda(P;)). Then y* = 0 and the equality
zy = yz implies that z;; commutes with exm(1). Since ¥ and m are arbitrary,
it follows that z; must be scalar, z; = al, a € Enda(P;). Moreover, for all
b € End4(P;) and eixm (b) € Ends(P;), we have that

alepm (b) = aberm (1) = €5 (b)al = baexm(1).

Consequently, a € Z(End(P;)). Thus z;; centralizes E4s(niP;) with
n; > 1.

Now assume ¢ > ¢ and thus n; = 1. :

In this case, My,(D;) = D; is a division ring so, by our hypothesis
D; 2 End(V;) & K. Therefore, Enda(P;)/J (Enda(P;)) is also isomorphic
to K. Hence,

Enda(P;) = Ke; @ T (Enda(Py)),
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a direct sum of K —vector spaces. Since we have shown that z is diagonal,
it follows immediately that it commutes with the elements of Ke; and, as z
centralizes J(End4(P;)), we conclude that z € C4(End4(P;)), which com-
pletes the proof. o

Remark. Notice that the restriction that Hom4(P;, P;) = 0 for every
pair of non-isomorphic principal modules P;, P; of multiplicity 1 in A is
always verified in the case of semisimple algebras, by Schur’s Lemma. On
the other hand, we observe that it is essential in the nonsemisimple case, as
shown by the following example.

Take Q Q T
o[58] waef2 1]

[31]

It is easy to see that the conjugacy class of z in Z/A is of order 2, so z is
noncentral but z € A(L/A).

and set

Corollary 8.3 Let D and K be as above, A be a finite dimensional K — algebra
and A an order in A. Assume that Hom4(P;, P;) = 0 for every pair of non-
tsomorphic principal modules F;, P; of multiplicity 1 in A. If K is a splitting
field for A, then

AUA) C Z(A).

Corollary 3.4 Let D and K be as above, A be a semisimple finite dimen-
sional K—algebra and A a D—order in A. If A has no minimal ideal which
i3 @ non-commutative division ring then

A(UA) C Z(A).

Proof. The proof of the theorem shows that z € A(Y/A) centralizes
each Wedderburn component M, (D;) of A with n; > 1. On the other hand,
by our assumption, n; = 1 implies that D; is a field. Hence z € 2 (4. o

Theorem 8.5 Let D be an infinite domain and R a D-algebra.

() If R is torsion free as a D-module then
A(GL.(R)) = A(UR)I,
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where I is the identity matriz of M,,(R).
() If char(D) =0 and n > 1 then
A(GL,(R)) = Z(GLn(R)).

Proof. Let {e;; : 1 <i,j < n} be the basis of elementary matrices of
M, (R) and let
a= E a;jei; € A(GL,(R)).
()

Fix 1 < 49, jo < n with €g # jo and for each r € D set
o, = (I = reyj)a(l + regj,)-

Since D is infinite and the conjugacy class of a is finite, there exist
r,8 € D, r # s, such that a, = a,. This implies that ¢ commutes with
I+ (r — s)e;,;, and hence with €;,;,, as R is torsion free over D. It follows
that aj; = ay, = 0 for all j # jo and § # i and that a;; = aj,5,. Since
this holds for all 1 < 4p,50 < n, fp # jo, we conclude that a = ay; 7 and
ay; € A(R) and (z) follows.

Now suppose that char(D) = 0. For i # j set u;; = I +¢;;. Then u;; is
a unit. If a € A(GLA(R)) then there exists a positive integer k such that uf;
centralizes a. Note that ufj = I + ke;;. Since char(D) = 0, it follows easily
that ae;; = e;;a if i # j and, as e;; = ¢;; - ej;, we conclude that a commutes
with all the matrices of the basis of M,(R) and thus a is a scalar matrix;
i.e. of the form @ = Aol, where I is the identity matrix and A, € R. Finally,
set u = I + Aeyz with A € R. Since u* = I 4 kAe;q, an argument similar to
the one above shows that \g € Z(R). a]

Notice that the arguments in the proof above do not depend on the fact
that the given matrix a is invertible. Hence, if for a given ring R we denote
by A(R) the set of elements in R who have finitely many conjugates under
the action of U R, we actually have the following.

Corollary 3.8 Let D be an infinste domain and R a D-algebra.

(i) If R is torsion free as a D-module then
A(Ma(R)) = A(R)],
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where I is the identity matriz of My(R).
(#) If char(D) =0 and n > 1 then
A(Mn(R)) = Z(Ma(R))-

4 Group Rings

In this section, we shall apply our previous results to the case of group rings.
First, we notice that if G is a finite group such that the group algebra QG
has no minimal ideal which is a non-commutative division ring, then Corol-
lary 3.4 shows that A(U(ZG)) C Z(QG). We remark that there are many
important classes of groups which satisfy this condition, as all finite sim-
ple groups, nilpotent groups of odd order ([13, Corollary 20.7)) and groups
which have no nonabelian homomorphic image which is fixed point free as
considered in [10].
We begin with some technical lemmas.

Lemma 4.1 Let K be a field and let G be a subgroup of GL(Z,K). Then
(i) if & € GL(2, K) is noncentral, its centralizer in GL(2, K) is abelian
and
(i) either A(G) = Z(G) or G is abelian-by-finite.

Proof. To prove (i) we may assume, without loss of generality, that K
is algebraically closed. Then the statement follows directly, considering the
Jordan normal form of a.

To prove (ii), notice that if A(G) # Z(G), taking @ € A(G) noncentral,
we have that [G : Cg(a)] is finite and the argument above showed that Cg(a)
is abelian so G is abelian-by-finite, as desired. a

Notice that, if K3 is the quaternion group of order 8, it is well-known
that U(ZKs) = £Ks and thus an analogue of Herstein’s result does not
hold for the order ZKg in QKs. However, we have the following.

Proposition 4.2 Let G = K3 x (¢}, where ¢ is an element of order p, an
odd prime, and Kg = (a,b) is the quaternion group of order 8. Then

AU(ZG)) = ZU(ZG)).
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Proof. Let Kg = (a,b: a* = 1,a® = b%,b'ab = a~1). Consider the ring
representation ¥ : ZG — M;(C) given by

t 0 0 -1 £ 0
a—)(o _i),b—r(l 0 ),c-—)(o f)'

where £ is a primitive p**-root of unity.
If we write u = 29+ 216+ 22b + z3ab € ZG with 2z, = ag, +aj. e+
ap-1,6*"1 € Z(< ¢ >) then

_ [ wt+ni —(y2+ysi)
'/’(u)_(yz—yai Yo~ thi )’

with g = ag, + @1, + - - + 0p_1, €77 € Z[¢] and Kery = 6ZG.
If we restrict ¥ to #(ZG) we have a group homomorphism:

9| :U(ZG) — GL(2,C),

whose kernel is Kery| = (14 éZG) NU(ZG), where =1+ ¢+ -+ -+ ¢,
We will show that there are no units of ZG of this form, other than 1, that
is, the restriction of 9 is an injection of U(ZG) into GL(2, C). For this let
@ : G = Kg be a group homomorphism defined by a — a, b — b and ¢ — 1.
Extend it linearly to ¢ : ZG — ZKs. Now let z = 1 + 8y € U(ZG), and
observe that we may assume that y € ZKjz. So () = 1 + py is a unit in
ZKg and then it must be trivial. Hence y = 0.

Suppose now that A(/(ZG@)) is not contained in the center of U(ZG).
Let u € AU(ZG)), u ¢ Z(U(ZG)). Then y(u) ¢ Z(GL(2,C)) and by
Lemma 4.1, ¥(U (ZG)) is abelian-by-finite.

On the other hand, by a Theorem of Hartley and Pickel, (see [13, The-
orem 5.1]), we have that Z{(ZG) contains a noncyclic free group, therefore
Y(U(ZG)) = U(ZG) cannot be abelian-by-finite, a contradiction. Hence
AU(ZG)) = 2U(ZG)). o

Lemma 4.8 Let G be a group and let go € TA(U(ZG)) and g € G. Then
the commutator [go, g] is an element of {go) ({g)-

Proof. Since TA(U(ZG)) is a periodic normal subgroup of U(ZG),
it follows from [12, Theorem I1.5.1] that TA(U(ZG)) C G and that all its
subgroups are also normal. In particular, g normalizes the group (go) so we
only need to prove that also gp normalizes the group (g).
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Let @ = (1—g)god. If a is zero then the claim follows easily. If not, since
« is nilpotent, Proposition 3.1 tells us that ago = goa 80 it also follows that
go normalizes (g) as desired. o

Proposition 4.4 Let G be a finite group and suppose that TAWU(ZQG)) is
non-abelian. Then G is a 2-group. '

Proof. Since TA(U(ZG)) is 2 torsion normal subgroup, it follows again
from [12, Theorem I1.5.1] that it is contained in G and that every subgroup
of TAU(ZG)) is normal. As we are assuming that it is not abelian, it
must be a Hamiltonian group and thus contains a subgroup H isomorphic
to Kg. Suppose that there exists a prime p > 3 dividing the order of G
and let z € G be an element of order p. As H N (z) = 1, it follows from
Lemma 4.3 that z centralizes H. Hence, G; = H X {z} is a subgroup of
G. Thus H C TA(U(ZG,)) which, according to Proposition 4.2 should be
central, a contradiction. o

Our next result first appeared in [16, Theorem 1] and alternative proofs
were given in [15]. The proof we offer is shorter than the previous ones.

Theorem 4.5 Let G be a periodic group. If TA(U(ZG)) has a noncentral
element go then there ezist an element z € G of order 4 and an abelian
subgroup A such that G = (A,z | 2* = g} andz~az = a~'Va € A4).

Proof. Assume that there exist elements go € TA(U(ZG)), g € G such
that gog # ggo. Then, Lemma 4.3 shows that {(go) and (g) are both normal
in (g, go), so every cyclic subgroup of this group is normal and thus, the
group is Hamiltonian. As it has only two generators, it must be isomorphic
to Ks. Since the only element of order 2 in Kg is central, it follows that
o(g) = o(go) = 4 and also that g% = g3 and g~"gog = g5 -

Let A denote the centralizer of go in G. If g € G is not in A then, for
each element a € A we have that ag ¢ A, so (ag)go # go(ag) and, by the
argument in the above paragraph, we have that (ag)® = g~'a~1. On the
other hand, (ag)® = ag® = ag™!, so we also conclude that gag™! = a~* for
all a € A. This implies that A is abelian.

Finally, let us observe that, if z, y are two elements that do not commute
with go, we have that 2~y gozy = z7'g5'z = go s0 y € zA and thus
G = (A, z), as claimed. ]
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We can also use Proposition 4.1 to give an example in the case of infinite
groups.

Example Consider the infinite dihedral group D = (a,b | b? = 1,
bab = 67} and let R be an integral domain of characteristic 0. We claim
that A(U(RD)) = Z(U(RD)).

In fact, it is well known that, if N is a subgroup of a group G with
[G : N] = n, then RG can be imbedded in the full matrix ring M,(RN).
So, as (a) is torsion free, abelian, we have that R(a) is an integral domain
and it follows that RD can be imbedded in M;(K), where K denotes the
field of fractions of R({a).

Once again, a result of Hartley and Pickel [13, Theorem 5.1] shows that
U(RD) contains a free group on two generators. Hence, Proposition 4.1
implies that A(U(RD)) = Z(U(RD)), as claimed. ‘

Proposition 4.8 Let G be a finite group such that QG has no Wedderburn
component which is a noncommulative division ring and let H be a free
abelian group. Then,

AU(ZIG x HY)) = ZU(Z[C x H])).

Proof. Set Gy = G x H. Then QG; = QG @ QH and, if QG
@i My, (D;) is the Wedderburn decomposition of QG, we have that:

QG: 2 QH @ (@i M,,,(D;)) = &:M,,(QH @ D;).

Notice that Proposition 3.1 implies that an element z € A/(Z[G x H]))
commutes with every nilpotent element in each component. This shows that
the components of z are scalar matrices. Also, since they commute with
every matrix of the form e;;(d), for all d € D, we have that each component
of z is central, so the result follows. a

We conclude this section showing that our main theorem allows us to
obtain some results also in the case of positive characteristic.

Corollary 4.7 Let R be an infinite domain of positive characteristic and let
G be a finite group. If char(R) does not divide |G| then A(RG) = Z(RG).

Proof. Let K be the field of fractions of R and suppose that p does not
divide |G|. Then KG is semisimple.
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Assume that a Wedderburn component of KG is a division ring D. Then
D is generated, as a K-vector space by the image Gy of G under the projec-
tion to D. But G is a finite subgroup of D and a theorem of Herstein [6]
shows that Gy is cyclic so D is commutative. The result now follows from
Corollary 3.4. o
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