

RT-MAT 2000-28

**FInite Conjugacy In Algebras  
and Orders**

M. A. Dokuchaev, S. O. Juriaans,  
C. Polcino Milies and M. L. Sobral Singer

**Dezembro 2000**

Esta é uma publicação preliminar (“preprint”).

# Finite Conjugacy in Algebras and Orders

M.A. Dokuchaev

S.O. Juriaans

C. Polcino Milies

M.L. Sobral Singer

Instituto de Matemática e Estatística

Universidade de São Paulo

Caixa Postal 66281

05315-970 - São Paulo - Brasil

dokucha@ime.usp.br

ostanley@ime.usp.br

polcino@ime.usp.br

mlucia@ime.usp.br

## Abstract

I.N. Herstein showed that the conjugacy class of a noncentral element in the multiplicative group of a division ring is infinite. We prove similar results for units in algebras and orders and give applications to group rings.

## 1 Introduction

For a given group  $G$ , we denote by  $\Delta(G)$  the *FC-center* of  $G$ , that is:

$$\Delta(G) = \{g \in G \mid [G : C_G(g)] < \infty\}.$$

Also, for a ring  $R$  we shall denote by  $UR$  the group of units of  $R$ ; i.e., the set of invertible elements of  $R$ . I.N. Herstein showed in [5] that if  $D$  is a division ring then  $\Delta(UD)$  coincides with  $Z(UD)$ , the centre of  $UD$ .

---

Research partially supported by CNPq (Brazil) Procs. 301115/95-8, 300652/95-0 and 300243/79-0

1991 Mathematics Subject Classification: Primary 16U60; Secondary 16H05, 20F24, 20C05.

Key words and phrases: algebras, orders, units, finite conjugacy.

The study of the FC-center of groups of units of group rings started with papers by S.K. Sehgal and H.J. Zassenhaus [14], C. Polcino Milies [8] and G. Cliff and S.K. Sehgal [2]. Also, A. Williamson [16], studied elements of a periodic group  $G$  which have finite conjugacy class in the group of units of its integral group ring. A more general approach was given by S.K. Sehgal and H.J. Zassenhaus in [15]. This work was followed by several papers studying group rings over fields [9], [3].

Theorem 2.2 below shows that a result similar to that of Herstein holds for finite dimensional algebras over infinite fields and this fact is extended to algebraic algebras in Corollary 2.3. However, it follows from [3, Example 1] that it cannot be extended to all infinite dimensional algebras. In Section 3 we consider orders in finite dimensional algebras where the situation is more complicated. In particular, a theorem of Williamson for integral group rings [16] shows that an analogue of Herstein's result does not hold for orders. However, we are able to obtain general positive results for large classes of orders and we give a partial extension of a theorem of Sehgal and Zassenhaus [15, Theorem 1]. In Section 4 we consider some applications to group rings and, in particular, we obtain a short proof of the theorem of Williamson.

## 2 Algebras

The following fact should be known, however we include an argument for the sake of completeness.

**Proposition 2.1** *Let  $G$  be a connected algebraic group over an infinite field. Then every FC-element of  $G$  is central.*

**Proof.** Let  $G$  be a connected algebraic group and  $x \in G$  an FC-element. Then, the centralizer  $C_G(x)$  is a closed subgroup of finite index of  $G$ . For a fixed  $y \in G$  the map  $z \mapsto yz \in G$  is polynomial and, therefore, continuous. Since the same holds for its inverse, it is a homeomorphism. Hence, each coset  $yC_G(x)$  is closed in  $G$  and  $G$  is a union of a finite number of them. Since  $G$  is connected (even irreducible), it follows that  $x \in Z(G)$ .  $\square$

For a group  $G$  let  $TG$  denote the torsion part of  $G$ .

**Theorem 2.2** *Let  $A$  be an algebra with unity over an infinite field  $K$ .*

(i) If  $A$  is finite dimensional, then  $\mathcal{U}A$  is a connected linear algebraic group and, consequently,

$$\Delta(\mathcal{U}A) = \mathcal{Z}(\mathcal{U}A).$$

Moreover,  $A$  is generated by its units, as a vector space over  $K$  and, therefore,  $\mathcal{U}A$  is FC if and only if  $A$  is commutative.

(ii) Every torsion unit of  $\Delta(\mathcal{U}A)$  commutes with each algebraic unit of  $A$  and, consequently,  $\Delta(\mathcal{U}A)$  is solvable of length at most 2.

(iii) Every element of  $\Delta(\mathcal{U}A)$  commutes with each nilpotent element of  $A$ .

**Proof.** (i) Let  $n = \dim_K A$  and  $\Gamma : A \rightarrow M_n(K)$  be the regular representation of  $A$ . Then  $x \in A$  is invertible if and only if  $\det(\Gamma(x)) \neq 0$ . Indeed, if  $\det(\Gamma(x)) \neq 0$  then  $\Gamma(x)$  is invertible in  $M_n(K)$ , thus it can not be a zero divisor in  $\Gamma(A)$ . Since an element in a finite dimensional algebra is either a zero divisor or invertible, the statement follows.

Taking a basis in  $A$ ,  $\det(\Gamma(x))$  can be considered as a polynomial  $f$  in coordinates  $x_1, \dots, x_n$  of  $x$ . Hence

$$\mathcal{U}A = \{(x_1, \dots, x_n) \in A \mid f(x_1, \dots, x_n) \neq 0\}.$$

So, with respect to the Zariski topology on  $A$ , we have that  $\mathcal{U}A$  is a principal open subset in  $A = K^n$ . Therefore,  $\mathcal{U}A$  is an irreducible (= connected) algebraic group. Therefore, by Proposition 2.1, we have that  $\Delta(\mathcal{U}A) = \mathcal{Z}(\mathcal{U}A)$ .

Note that  $\mathcal{U}A$  is a linear algebraic group as both  $\Gamma : A \rightarrow \Gamma(A)$  and its inverse are polynomial maps. Since  $\mathcal{U}A$  is an open subset of  $A$ , we have that  $\overline{\mathcal{U}A} = A$ . Let  $A_1$  be the linear span of  $\mathcal{U}A$ . Since every linear subspace is closed under Zariski's topology, we have that  $\overline{\mathcal{U}A} \subset A_1$ ; hence  $A_1 = A$ .

Item (ii) is an easy consequence of (i), indeed, let  $x \in T\Delta(\mathcal{U}A)$ ,  $y \in \mathcal{U}A$  be algebraic and  $n$  be the dimension of the subalgebra generated by  $y$ . Then by Dietzmann's Lemma (see [11, 15.1.11]) the conjugates of  $x$  in  $H = \langle x, y \rangle$  generate a finite normal subgroup  $N$ , and every element of  $H$  can be written as a  $K$ -linear combination of elements of the form  $hy^i$  with  $h \in N$  and  $0 \leq i \leq n-1$ . Hence the  $K$ -linear span of  $H$  is a finite dimensional algebra and by item (i),  $xy = yx$ , as desired. In particular,  $T\Delta(\mathcal{U}A)$  is abelian and, since  $\Delta(\mathcal{U}A)' \subset T\Delta(\mathcal{U}A)$ , by Neuman's Theorem [11, 15.1.7],  $\Delta(\mathcal{U}A)$

is solvable of length at most 2.

(iii) Let  $y \in A$  be a nilpotent element and let  $n$  be a positive integer such that  $y^n \neq 0$  and  $y^{n+1} = 0$ . For each  $\alpha \in K$  we consider  $z_\alpha = 1 + \alpha y$ , which is a unit whose inverse is  $z_\alpha^{-1} = \sum_{i=0}^n (-1)^i (\alpha y)^i$  and we have that:

$$z_\alpha^{-1} x z_\alpha = x + \sum_{i=1}^n (v_i \alpha^i),$$

where  $v_i = (-1)^i (y^i x - y^{i-1} x y)$ ,  $1 \leq i \leq n$ .

Since  $x \in \Delta(\mathcal{U}A)$ , there exists an infinite set  $S$  of  $K$  such that the set  $\{z_\alpha^{-1} x z_\alpha \mid \alpha \in S\}$  consists of a single element.

Let  $\mathcal{B}$  be a  $K$ -basis of  $A$  and set  $\alpha, \beta \in S$ , with  $\beta$  fixed. Write

$$v_i = \sum_{b \in \mathcal{B}} v_i(b) b$$

and

$$z_\beta^{-1} x z_\beta - x = \sum_{b \in \mathcal{B}} w(b) b.$$

As  $z_\alpha^{-1} x z_\alpha = z_\beta^{-1} x z_\beta$ , we get:

$$\sum_{b \in \mathcal{B}} w(b) b = \alpha \left( \sum_{b \in \mathcal{B}} v_1(b) b \right) + \alpha^2 \left( \sum_{b \in \mathcal{B}} v_2(b) b \right) + \dots$$

Assume that  $v_1 = xy - yx \neq 0$ . Then, there exists an element  $b_0 \in \mathcal{B}$  such that  $v_1(b_0) \neq 0$ . Consequently, the polynomial  $-w(b_0) + \alpha v_1(b_0) + \alpha^2 v_2(b_0) + \dots$  is non zero and has infinitely many roots, since it is zero for every  $\alpha \in S$ , a contradiction.  $\square$

We note that the proof of (iii) also works in the case of orders, as we show in the beginning of the next section.

Notice that if  $K$  is a finite field, results similar to those of the previous theorem need not hold. In fact, let  $A$  be a direct sum of infinitely many copies of a full matrix ring  $M_n(K)$ ,  $n > 2$ . Then every unit in  $A$  is FC so

$$\mathcal{U}A = \Delta(\mathcal{U}A) \neq \mathcal{Z}(\mathcal{U}A).$$

Moreover,  $\mathcal{U}A$  is not solvable and clearly units need not commute with nilpotent elements so none of the statements of the theorem above holds.

Throughout this section we shall always assume that the algebras considered are taken over an infinite field  $K$ .

**Corollary 2.3** *If  $UA$  and  $\Delta(UA)$  are generated by algebraic units then*

$$\Delta(UA) = \mathcal{Z}(UA).$$

*In particular, this happens if  $A$  is an algebraic algebra. In this case  $A$  is generated by units as a vector space, and  $UA$  is FC if and only if  $A$  is commutative.*

**Proof.** Let  $x \in \Delta(UA)$ ,  $y \in UA$  be algebraic,  $H = \langle x, y \rangle$  and  $x_1, \dots, x_s$  be the conjugates of  $x$  in  $H$ . Each commutator of  $\langle x_1, \dots, x_s \rangle$  is torsion and, therefore, central by (ii) of Theorem 2.2. Hence each  $h \in H$  can be written as  $h = y^\alpha x_1^{\beta_1} \dots x_s^{\beta_s} \prod [x_i, x_j]^{\gamma_{ij}}$ , with  $\alpha, \beta_1, \dots, \beta_s, \gamma_{ij} \in \mathbb{Z}$ . Now, let  $n_i$  (respectively  $n$ ) be the dimension of the subalgebra generated by  $x_i$  (respectively  $y$ ). Then  $h$  is a  $K$ -linear combination of elements of the form  $y^\delta x_1^{\varepsilon_1} \dots x_s^{\varepsilon_s} \prod [x_i, x_j]^{\omega_{ij}}$  with  $0 \leq \delta \leq n, 0 \leq \varepsilon_i \leq n_i, 0 \leq \omega_{ij} \leq o([x_i, x_j])$ . We have finitely many such elements and, consequently, the  $K$ -linear span of  $H$  is a finite dimensional algebra. It follows from (i) of Theorem 2.2 that  $x$  and  $y$  commute, as desired. The last statement also follows from part (i) of that theorem.  $\square$

Now, we wish to consider algebras with many units; more precisely, algebras that are generated, as a vector space, by their units. These include large classes of algebras, such as group rings, crossed products, finite dimensional algebras, algebraic algebras and algebras unitally generated by nilpotent elements such as considered in [1].

The following lemma is an extension of [3, Lemma 2.1] to the general case.

**Lemma 2.4** *Let  $x \in A$  be an element such that  $x^2 = bx$  for some  $b \in K$ . Then  $xy = yx$  for all  $y \in \Delta(UA)$ .*

**Proof.** Let  $k$  be an arbitrary element in  $K$ . If  $b \neq 0$  we set  $u_k = 1 - b^{-1}x + b^{-1}kx$ . Then  $u_k$  is a unit of  $A$  whose inverse is  $u_k^{-1} = 1 - b^{-1}x + b^{-1}k^{-1}x$ . Given an element  $y \in UA_1$ , we compute:

$$\begin{aligned} y_k &= u_k y u_k^{-1} = (1 - b^{-1}x + b^{-1}kx)y(1 - b^{-1}x + b^{-1}k^{-1}x) = \\ &= y - b^{-1}xy - b^{-1}yx + b^{-1}kxy + b^{-1}k^{-1}yx + (2b^{-2} - b^{-2}k - b^{-2}k^{-1})xyx. \end{aligned}$$

If we denote  $c = yxy^{-1}$ , we have that  $yx = cy$  and we can write:

$$y_k = (1 + b^{-1}kx - b^{-1}x - b^{-1}c + b^{-1}k^{-1}c + 2b^{-2}xc - b^{-2}kxc - b^{-2}k^{-1}xc)y.$$

Hence

$$xy_k = x(k + b^{-1}c - b^{-1}kc)y = k(x - b^{-1}xc)y + b^{-1}xycy.$$

Thus, if  $x - b^{-1}xc \neq 0$ , as  $K$  is infinite, we would have infinitely many conjugates for  $y$ . So we must have that  $x = b^{-1}xc$  and, back in the expression of  $y_k$  we obtain:

$$y_k = (1 - b^{-1}c + b^{-1}x + b^{-1}k^{-1}(c - x))y.$$

Once again, if  $c \neq x$  we would have infinitely many conjugates for  $y$ , a contradiction. Hence,  $x = y^{-1}xy$ , as desired.

The case where  $b = 0$  can be obtained by a similar argument, considering the unit  $u_a = 1 + ax$ . It also follows immediately from Theorem 2.2.  $\square$

Let  $A_1$  denote the linear span of  $\Delta(\mathcal{U}A)$  in  $A$ . Since  $\Delta(\mathcal{U}A)$  is a group, it follows immediately that  $A_1$  is a subalgebra of  $A$ .

**Corollary 2.5** *Every idempotent of  $A_1$  is central in  $A$ .*

**Proof.** Let  $e \in A_1$  be an idempotent and let  $x$  be an arbitrary element of  $A$ . The elements  $\alpha = ex(1 - e)$  and  $\beta = (1 - e)xe$  are such that  $\alpha^2 = \beta^2 = 0$ .

Write  $e$  as a linear combination  $e = \sum_i l_i u_i$  of elements  $u_i \in \Delta(\mathcal{U}A)$  with coefficients  $l_i \in K$ . By the previous lemma, both  $\alpha$  and  $\beta$  commute with every  $u_i$  and thus, with  $e$ . Hence:

$$\begin{aligned} e\alpha &= \alpha e = 0, \\ e\beta &= \beta e = 0. \end{aligned}$$

Now,  $e\alpha = ex(1 - e)$  and thus  $ex = exe$ . In a similar way we obtain that  $xe = exe$  and thus  $xe = ex$ , as claimed.  $\square$

**Theorem 2.6** *Let  $A$  be an algebra generated by its units, as a linear space over an infinite field  $K$  such that  $\mathcal{U}A$  is FC. Then, every idempotent and every nilpotent element are central in  $A$ .*

*Moreover, if  $A$  is generated by its torsion units, as a linear space over  $K$ , then  $\mathcal{U}A$  is FC if and only if  $A$  is commutative.*

**Proof.** The first part of the statement follows immediately from Corollary 2.5 and item (iii) of Theorem 2.2 while the second is a consequence of item (ii) of the same theorem.  $\square$

### 3 Orders

Let  $D$  be a domain,  $K$  its field of fractions and let  $A$  be a  $K$ -algebra. By a  $D$ -order  $\Lambda$  in  $A$  we mean a  $D$ -subalgebra of  $A$  such that  $A = K\Lambda$ . Notice that this implies that  $\Lambda$  contains a  $K$ -basis of  $A$ . Of course,  $\Delta(\mathcal{U}\Lambda) \subset \Delta(\mathcal{U}A) \cap \Lambda$  but, in general, equality does not hold. To see this take, for example,  $K_8 = \langle a, b \mid a^4 = 1, a^2 = b^2, bab^{-1} = a^{-1} \rangle$  and set  $\Lambda = \mathbb{Z}K_8$  and  $A = \mathbb{Q}K_8$ . Then the element  $x = 1 + a + a^3$  lives in  $\Lambda$ , is central and invertible in  $A$ , with inverse  $x^{-1} = 1/3(1 + a - 2a^2 + a^3)$ , but  $x \notin \mathcal{U}\Lambda$ .

**Proposition 3.1** *Let  $D$  be an infinite domain and let  $K$  be its field of fractions. Let  $A$  be a  $K$ -algebra and  $\Lambda$  a  $D$ -order in  $A$ . If  $x \in \Delta(\mathcal{U}\Lambda)$  and  $y \in A$  is nilpotent then  $xy = yx$ .*

**Proof.** Let  $y \in A$  be a nilpotent element. Since  $\Lambda$  is a  $D$ -order in  $A$ , there exists an element  $d \in D$  such that  $y_1 = dy \in \Lambda$ .

For each  $\alpha \in D$  set  $z_\alpha = 1 + \alpha y_1$ . Then  $z_\alpha$  is a unit in  $\Lambda$  whose inverse is  $z_\alpha^{-1} = \sum_{i=0}^n (-1)^i (\alpha y_1)^i$ .

As in item (iii) of Theorem 2.2 we can conclude that there exists an infinite set  $S$  of  $D$  such that the set  $\{z_\alpha^{-1} x z_\alpha \mid \alpha \in S\}$  consists of a single element. If  $xy_1 \neq y_1 x$  taking a  $K$ -basis  $B$  of  $A$  contained in  $\Lambda$  and a fixed scalar  $\beta \in S$  we can obtain, as before, a nonzero polynomial  $-w(b_0) + \alpha v_1(b_0) + \alpha^2 v_2(b_0) + \dots$  which has infinitely many roots in  $S$ , a contradiction.

Hence,  $xy_1 = y_1 x$  and thus also  $xy = yx$ .  $\square$

As a consequence of Proposition 3.1 we obtain the following theorem.

**Theorem 3.2** *Let  $D$  be an infinite domain,  $K$  its field of fractions,  $A$  a finite dimensional  $K$ -algebra,  $\Lambda$  a  $D$ -order in  $A$ ,  $\mathcal{J} = \mathcal{J}(A)$  the Jacobson Radical of  $A$  and  $\overline{A} = A/\mathcal{J}$ . Assume that  $\text{Hom}_A(P_i, P_j) = 0$  for every pair of non-isomorphic principal modules  $P_i, P_j$  of multiplicity 1 in  $A$ . If every minimal ideal of  $\overline{A}$  which is a division ring is isomorphic to  $K$ , then*

$$\Delta(\mathcal{U}\Lambda) \subset \mathcal{Z}(A),$$

**Proof.** Let  $\overline{A} = M_{n_1}(\mathcal{D}_1) \times \cdots \times M_{n_s}(\mathcal{D}_s)$  be the Wedderburn decomposition of  $\overline{A}$ , let  $\mathcal{V}_i$  be the  $i$ -th irreducible  $\overline{A}$ -module and  $\mathcal{P}_i$  the principal  $A$ -module corresponding to  $\mathcal{V}_i$ . Then we have an  $A$ -module isomorphism

$$A \cong n_1 \mathcal{P}_1 \oplus \cdots \oplus n_s \mathcal{P}_s \quad (1)$$

and by the Peirce decomposition (see [4, p.26]) we obtain that  $A$  is isomorphic to the algebra of matrices of the form

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1s} \\ a_{21} & a_{22} & \cdots & a_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ a_{s1} & a_{s2} & \cdots & a_{ss} \end{bmatrix}$$

where  $a_{ij} \in \text{Hom}_A(n_j \mathcal{P}_j, n_i \mathcal{P}_i)$ . Notice that  $\text{End}_A(n_i \mathcal{P}_i) \cong M_{n_i}(\text{End}_A(\mathcal{P}_i))$ .

We shall denote by  $e_{ij}(a_{ij})$  a matrix whose entry in position  $(i, j)$  is equal to  $a_{ij}$  and all other entries are equal to zero.

Let  $x \in \Delta(\mathcal{U}\Lambda)$ . By Proposition 3.1, we have that  $x$  commutes with all nilpotent elements of  $A$ . In particular, if  $i \neq j$ , it commutes with every matrix  $e_{ij}(a_{ij})$ . Thus it remains to show that  $x$  centralizes the diagonal subalgebra  $\text{End}_A(n_1 \mathcal{P}_1) \times \cdots \times \text{End}_A(n_s \mathcal{P}_s)$ .

Let  $x_{ij} \in A$  be the entry of  $x$  belonging to  $\text{Hom}_A(n_j \mathcal{P}_j, n_i \mathcal{P}_i)$ . We wish to show that  $x$  is a diagonal matrix. Assume that, in the decomposition of  $A$  given in (1) above, we have that  $n_i > 1$  if  $1 \leq i \leq t$  and  $n_i = 1$  if  $t+1 \leq i \leq s$ . It follows directly, from our assumption on the principal modules of multiplicity 1 in  $A$ , that  $x$  is of the form:

$$x = \begin{bmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,t} & x_{1,t+1} & x_{1,t+2} & \cdots & x_{1,s} \\ x_{2,1} & x_{2,2} & \cdots & x_{2,t} & x_{2,t+1} & x_{2,t+2} & \cdots & x_{2,s} \\ \cdots & & & & & & & \cdots \\ x_{t,1} & x_{t,2} & \cdots & x_{t,t} & x_{t,t+1} & x_{t,t+2} & \cdots & x_{t,s} \\ x_{t+1,1} & x_{t+1,2} & \cdots & x_{t+1,t} & x_{t+1,t+1} & 0 & \cdots & 0 \\ x_{t+2,1} & x_{t+2,2} & \cdots & x_{t+2,t} & 0 & x_{t+2,t+2} & \cdots & 0 \\ \cdots & & & & & & & \cdots \\ x_{s,1} & x_{s,2} & \cdots & x_{s,t} & 0 & 0 & \cdots & x_{s,s} \end{bmatrix}.$$

For an index  $i \leq t$  and every nilpotent element  $a \in \text{End}_A(n_i \mathcal{P}_i)$ , by Proposition 3.1 we have that  $e_{ii}(a)x = xe_{ii}(a)$ . A straightforward computation shows that

$$ax_{ij} = 0 = x_{ij}a \quad \text{for all } j \neq i. \quad (2)$$

We claim that this implies  $x_{ij} = x_{ji} = 0$ , for all  $j \neq i$ ,  $1 \leq i \leq s$ . In fact, recall that  $\text{End}_A(n_i P_i) = M_{n_i}(\text{End}_A(P_i))$  and set  $a = e_{kl}(1) \in M_{n_i}(\text{End}_A(P_i))$  with  $k \neq l$ . For an arbitrary element  $y \in n_i P_j$  we compute  $x_{ij}(y) \in n_i P_i$  so, if we consider  $n_i P_i$  as column matrices with entries in  $P_i$ , we can write  $x_{ij}(y)$  in the form:

$$x_{ij}(y) = \begin{pmatrix} x_{ij}^1(y) \\ x_{ij}^2(y) \\ \vdots \\ x_{ij}^{n_i}(y) \end{pmatrix}.$$

Then:

$$0 = ax_{ij}(y) = e_{kl}(1) \begin{pmatrix} x_{ij}^1(y) \\ x_{ij}^2(y) \\ \vdots \\ x_{ij}^{n_i}(y) \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ x_{ij}^l(y) \\ \vdots \\ 0 \end{pmatrix},$$

where  $x_{ij}^l(y)$  is the  $k^{\text{th}}$  entry of the column.

This implies that  $x_{ij}^l(y) = 0$  for  $l \neq k$ . Since  $k$  and  $l$  are arbitrary distinct, we have that  $x_{ij}(y) = 0$ , for all  $y \in n_i P_j$  and thus  $x_{ij} = 0$ . A similar argument shows that also  $x_{ji} = 0$ . Consequently,  $x$  is diagonal.

Fix an index  $i$  with  $1 \leq i \leq t$  (and, thus,  $n_i > 1$ ). Consider the element  $y = e_{ii}(e_{km}(1))$  of the diagonal subalgebra where  $k \neq m$  and the elementary matrix  $e_{km}(1)$  belongs to  $M_{n_i}(\text{End}_A(P_i))$ . Then  $y^2 = 0$  and the equality  $xy = yx$  implies that  $x_{ii}$  commutes with  $e_{km}(1)$ . Since  $k$  and  $m$  are arbitrary, it follows that  $x_{ii}$  must be scalar,  $x_{ii} = aI$ ,  $a \in \text{End}_A(P_i)$ . Moreover, for all  $b \in \text{End}_A(P_i)$  and  $e_{km}(b) \in \text{End}_A(P_i)$ , we have that

$$aIe_{km}(b) = abe_{km}(1) = e_{ij}(b)aI = bae_{km}(1).$$

Consequently,  $a \in \mathcal{Z}(\text{End}_A(P_i))$ . Thus  $x_{ii}$  centralizes  $\text{End}_A(n_i P_i)$  with  $n_i > 1$ .

Now assume  $i > t$  and thus  $n_i = 1$ .

In this case,  $M_{n_i}(D_i) = D_i$  is a division ring so, by our hypothesis  $D_i \cong \text{End}_A(V_i) \cong K$ . Therefore,  $\text{End}_A(P_i)/\mathcal{J}(\text{End}_A(P_i))$  is also isomorphic to  $K$ . Hence,

$$\text{End}_A(P_i) = Ke_i \bigoplus \mathcal{J}(\text{End}_A(P_i)),$$

a direct sum of  $K$ -vector spaces. Since we have shown that  $x$  is diagonal, it follows immediately that it commutes with the elements of  $Ke_i$  and, as  $x$  centralizes  $\mathcal{J}(End_A(P_i))$ , we conclude that  $x \in C_A(End_A(P_i))$ , which completes the proof.  $\square$

**Remark.** Notice that the restriction that  $Hom_A(P_i, P_j) = 0$  for every pair of non-isomorphic principal modules  $P_i, P_j$  of multiplicity 1 in  $A$  is always verified in the case of semisimple algebras, by Schur's Lemma. On the other hand, we observe that it is essential in the nonsemisimple case, as shown by the following example.

Take

$$A = \begin{bmatrix} Q & Q \\ 0 & Q \end{bmatrix} \quad \text{and} \quad \Lambda = \begin{bmatrix} \mathbb{Z} & \mathbb{Z} \\ 0 & \mathbb{Z} \end{bmatrix}$$

and set

$$x = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}.$$

It is easy to see that the conjugacy class of  $x$  in  $\mathcal{U}\Lambda$  is of order 2, so  $x$  is noncentral but  $x \in \Delta(\mathcal{U}\Lambda)$ .

**Corollary 3.3** *Let  $D$  and  $K$  be as above,  $A$  be a finite dimensional  $K$ -algebra and  $\Lambda$  an order in  $A$ . Assume that  $Hom_A(P_i, P_j) = 0$  for every pair of non-isomorphic principal modules  $P_i, P_j$  of multiplicity 1 in  $A$ . If  $K$  is a splitting field for  $A$ , then*

$$\Delta(\mathcal{U}\Lambda) \subset \mathcal{Z}(A).$$

**Corollary 3.4** *Let  $D$  and  $K$  be as above,  $A$  be a semisimple finite dimensional  $K$ -algebra and  $\Lambda$  a  $D$ -order in  $A$ . If  $A$  has no minimal ideal which is a non-commutative division ring then*

$$\Delta(\mathcal{U}\Lambda) \subset \mathcal{Z}(A).$$

**Proof.** The proof of the theorem shows that  $x \in \Delta(\mathcal{U}\Lambda)$  centralizes each Wedderburn component  $M_{n_i}(\mathcal{D}_i)$  of  $A$  with  $n_i > 1$ . On the other hand, by our assumption,  $n_i = 1$  implies that  $\mathcal{D}_i$  is a field. Hence  $x \in \mathcal{Z}(A)$ .  $\square$

**Theorem 3.5** *Let  $D$  be an infinite domain and  $R$  a  $D$ -algebra.*

(i) *If  $R$  is torsion free as a  $D$ -module then*

$$\Delta(GL_n(R)) = \Delta(\mathcal{U}R)I,$$

where  $I$  is the identity matrix of  $M_n(R)$ .

(ii) If  $\text{char}(D) = 0$  and  $n > 1$  then

$$\Delta(GL_n(R)) = \mathcal{Z}(GL_n(R)).$$

**Proof.** Let  $\{e_{ij} : 1 \leq i, j \leq n\}$  be the basis of elementary matrices of  $M_n(R)$  and let

$$a = \sum_{i,j} a_{ij} e_{ij} \in \Delta(GL_n(R)).$$

Fix  $1 \leq i_0, j_0 \leq n$  with  $i_0 \neq j_0$  and for each  $r \in D$  set

$$a_r = (I - re_{i_0, j_0})a(I + re_{i_0, j_0}).$$

Since  $D$  is infinite and the conjugacy class of  $a$  is finite, there exist  $r, s \in D$ ,  $r \neq s$ , such that  $a_r = a_s$ . This implies that  $a$  commutes with  $I + (r - s)e_{i_0, j_0}$  and hence with  $e_{i_0, j_0}$ , as  $R$  is torsion free over  $D$ . It follows that  $a_{j_0, j} = a_{i_0, j} = 0$  for all  $j \neq j_0$  and  $i \neq i_0$  and that  $a_{i_0, i_0} = a_{j_0, j_0}$ . Since this holds for all  $1 \leq i_0, j_0 \leq n$ ,  $i_0 \neq j_0$ , we conclude that  $a = a_{11}I$  and  $a_{11} \in \Delta(R)$  and (i) follows.

Now suppose that  $\text{char}(D) = 0$ . For  $i \neq j$  set  $u_{ij} = I + e_{ij}$ . Then  $u_{ij}$  is a unit. If  $a \in \Delta(GL_n(R))$  then there exists a positive integer  $k$  such that  $u_{ij}^k$  centralizes  $a$ . Note that  $u_{ij}^k = I + ke_{ij}$ . Since  $\text{char}(D) = 0$ , it follows easily that  $ae_{ij} = e_{ij}a$  if  $i \neq j$  and, as  $e_{ii} = e_{ij} \cdot e_{ji}$ , we conclude that  $a$  commutes with all the matrices of the basis of  $M_n(R)$  and thus  $a$  is a scalar matrix; i.e. of the form  $a = \lambda_0 I$ , where  $I$  is the identity matrix and  $\lambda_0 \in R$ . Finally, set  $u = I + \lambda e_{12}$  with  $\lambda \in R$ . Since  $u^k = I + k\lambda e_{12}$ , an argument similar to the one above shows that  $\lambda_0 \in \mathcal{Z}(R)$ .  $\square$

Notice that the arguments in the proof above do not depend on the fact that the given matrix  $a$  is invertible. Hence, if for a given ring  $R$  we denote by  $\Delta(R)$  the set of elements in  $R$  who have finitely many conjugates under the action of  $UR$ , we actually have the following.

**Corollary 3.6** *Let  $D$  be an infinite domain and  $R$  a  $D$ -algebra.*

(i) *If  $R$  is torsion free as a  $D$ -module then*

$$\Delta(M_n(R)) = \Delta(R)I,$$

where  $I$  is the identity matrix of  $M_n(R)$ .

(ii) If  $\text{char}(D) = 0$  and  $n > 1$  then

$$\Delta(M_n(R)) = \mathcal{Z}(M_n(R)).$$

## 4 Group Rings

In this section, we shall apply our previous results to the case of group rings. First, we notice that if  $G$  is a finite group such that the group algebra  $\mathbb{Q}G$  has no minimal ideal which is a non-commutative division ring, then Corollary 3.4 shows that  $\Delta(\mathcal{U}(ZG)) \subset \mathcal{Z}(\mathbb{Q}G)$ . We remark that there are many important classes of groups which satisfy this condition, as all finite simple groups, nilpotent groups of odd order ([13, Corollary 20.7]) and groups which have no nonabelian homomorphic image which is fixed point free as considered in [10].

We begin with some technical lemmas.

**Lemma 4.1** *Let  $K$  be a field and let  $G$  be a subgroup of  $GL(2, K)$ . Then*

(i) *if  $a \in GL(2, K)$  is noncentral, its centralizer in  $GL(2, K)$  is abelian and*

(ii) *either  $\Delta(G) = \mathcal{Z}(G)$  or  $G$  is abelian-by-finite.*

**Proof.** To prove (i) we may assume, without loss of generality, that  $K$  is algebraically closed. Then the statement follows directly, considering the Jordan normal form of  $a$ .

To prove (ii), notice that if  $\Delta(G) \neq \mathcal{Z}(G)$ , taking  $a \in \Delta(G)$  noncentral, we have that  $[G : \mathcal{C}_G(a)]$  is finite and the argument above showed that  $\mathcal{C}_G(a)$  is abelian so  $G$  is abelian-by-finite, as desired.  $\square$

Notice that, if  $K_8$  is the quaternion group of order 8, it is well-known that  $\mathcal{U}(\mathbb{Z}K_8) = \pm K_8$  and thus an analogue of Herstein's result does not hold for the order  $\mathbb{Z}K_8$  in  $\mathbb{Q}K_8$ . However, we have the following.

**Proposition 4.2** *Let  $G = K_8 \times \langle c \rangle$ , where  $c$  is an element of order  $p$ , an odd prime, and  $K_8 = \langle a, b \rangle$  is the quaternion group of order 8. Then*

$$\Delta(\mathcal{U}(\mathbb{Z}G)) = \mathcal{Z}(\mathcal{U}(\mathbb{Z}G)).$$

**Proof.** Let  $K_8 = \langle a, b : a^4 = 1, a^2 = b^2, b^{-1}ab = a^{-1} \rangle$ . Consider the ring representation  $\psi : \mathbb{Z}G \rightarrow M_2(\mathbb{C})$  given by

$$a \rightarrow \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \quad b \rightarrow \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad c \rightarrow \begin{pmatrix} \xi & 0 \\ 0 & \xi \end{pmatrix},$$

where  $\xi$  is a primitive  $p^{th}$ -root of unity.

If we write  $u = x_0 + x_1a + x_2b + x_3ab \in \mathbb{Z}G$  with  $x_t = \alpha_{0t} + \alpha_{1t}c + \dots + \alpha_{p-1t}c^{p-1} \in \mathbb{Z}(< c >)$  then

$$\psi(u) = \begin{pmatrix} y_0 + y_1i & -(y_2 + y_3i) \\ y_2 - y_3i & y_0 - y_1i \end{pmatrix},$$

with  $y_t = \alpha_{0t} + \alpha_{1t}\xi + \dots + \alpha_{p-1t}\xi^{p-1} \in \mathbb{Z}[\xi]$  and  $\text{Ker } \psi = \hat{c}\mathbb{Z}G$ .

If we restrict  $\psi$  to  $\mathcal{U}(\mathbb{Z}G)$  we have a group homomorphism:

$$\psi| : \mathcal{U}(\mathbb{Z}G) \rightarrow GL(2, \mathbb{C}),$$

whose kernel is  $\text{Ker } \psi| = (1 + \hat{c}\mathbb{Z}G) \cap \mathcal{U}(\mathbb{Z}G)$ , where  $\hat{c} = 1 + c + \dots + c^{p-1}$ . We will show that there are no units of  $\mathbb{Z}G$  of this form, other than 1, that is, the restriction of  $\psi$  is an injection of  $\mathcal{U}(\mathbb{Z}G)$  into  $GL(2, \mathbb{C})$ . For this let  $\varphi : G \rightarrow K_8$  be a group homomorphism defined by  $a \rightarrow a$ ,  $b \rightarrow b$  and  $c \rightarrow 1$ . Extend it linearly to  $\varphi : \mathbb{Z}G \rightarrow \mathbb{Z}K_8$ . Now let  $x = 1 + \hat{c}y \in \mathcal{U}(\mathbb{Z}G)$ , and observe that we may assume that  $y \in \mathbb{Z}K_8$ . So  $\varphi(x) = 1 + py$  is a unit in  $\mathbb{Z}K_8$  and then it must be trivial. Hence  $y = 0$ .

Suppose now that  $\Delta(\mathcal{U}(\mathbb{Z}G))$  is not contained in the center of  $\mathcal{U}(\mathbb{Z}G)$ . Let  $u \in \Delta(\mathcal{U}(\mathbb{Z}G))$ ,  $u \notin Z(\mathcal{U}(\mathbb{Z}G))$ . Then  $\psi(u) \notin Z(GL(2, \mathbb{C}))$  and by Lemma 4.1,  $\psi(\mathcal{U}(\mathbb{Z}G))$  is abelian-by-finite.

On the other hand, by a Theorem of Hartley and Pickel, (see [13, Theorem 5.1]), we have that  $\mathcal{U}(\mathbb{Z}G)$  contains a noncyclic free group, therefore  $\psi(\mathcal{U}(\mathbb{Z}G)) \cong \mathcal{U}(\mathbb{Z}G)$  cannot be abelian-by-finite, a contradiction. Hence  $\Delta(\mathcal{U}(\mathbb{Z}G)) = Z(\mathcal{U}(\mathbb{Z}G))$ .  $\square$

**Lemma 4.3** *Let  $G$  be a group and let  $g_0 \in T\Delta(\mathcal{U}(\mathbb{Z}G))$  and  $g \in G$ . Then the commutator  $[g_0, g]$  is an element of  $\langle g_0 \rangle \cap \langle g \rangle$ .*

**Proof.** Since  $T\Delta(\mathcal{U}(\mathbb{Z}G))$  is a periodic normal subgroup of  $\mathcal{U}(\mathbb{Z}G)$ , it follows from [12, Theorem II.5.1] that  $T\Delta(\mathcal{U}(\mathbb{Z}G)) \subset G$  and that all its subgroups are also normal. In particular,  $g$  normalizes the group  $\langle g_0 \rangle$  so we only need to prove that also  $g_0$  normalizes the group  $\langle g \rangle$ .

Let  $\alpha = (1 - g)g_0\hat{g}$ . If  $\alpha$  is zero then the claim follows easily. If not, since  $\alpha$  is nilpotent, Proposition 3.1 tells us that  $\alpha g_0 = g_0\alpha$  so it also follows that  $g_0$  normalizes  $\langle g \rangle$  as desired.  $\square$

**Proposition 4.4** *Let  $G$  be a finite group and suppose that  $T\Delta(\mathcal{U}(\mathbb{Z}G))$  is non-abelian. Then  $G$  is a 2-group.*

**Proof.** Since  $T\Delta(\mathcal{U}(\mathbb{Z}G))$  is a torsion normal subgroup, it follows again from [12, Theorem II.5.1] that it is contained in  $G$  and that every subgroup of  $T\Delta(\mathcal{U}(\mathbb{Z}G))$  is normal. As we are assuming that it is not abelian, it must be a Hamiltonian group and thus contains a subgroup  $H$  isomorphic to  $K_8$ . Suppose that there exists a prime  $p \geq 3$  dividing the order of  $G$  and let  $x \in G$  be an element of order  $p$ . As  $H \cap \langle x \rangle = 1$ , it follows from Lemma 4.3 that  $x$  centralizes  $H$ . Hence,  $G_1 = H \times \langle x \rangle$  is a subgroup of  $G$ . Thus  $H \subset T\Delta(\mathcal{U}(\mathbb{Z}G_1))$  which, according to Proposition 4.2 should be central, a contradiction.  $\square$

Our next result first appeared in [16, Theorem 1] and alternative proofs were given in [15]. The proof we offer is shorter than the previous ones.

**Theorem 4.5** *Let  $G$  be a periodic group. If  $T\Delta(\mathcal{U}(\mathbb{Z}G))$  has a noncentral element  $g_0$  then there exist an element  $x \in G$  of order 4 and an abelian subgroup  $A$  such that  $G = \langle A, x \mid x^2 = g_0^2 \text{ and } x^{-1}ax = a^{-1} \forall a \in A \rangle$ .*

**Proof.** Assume that there exist elements  $g_0 \in T\Delta(\mathcal{U}(\mathbb{Z}G))$ ,  $g \in G$  such that  $g_0g \neq gg_0$ . Then, Lemma 4.3 shows that  $\langle g_0 \rangle$  and  $\langle g \rangle$  are both normal in  $\langle g, g_0 \rangle$ , so every cyclic subgroup of this group is normal and thus, the group is Hamiltonian. As it has only two generators, it must be isomorphic to  $K_8$ . Since the only element of order 2 in  $K_8$  is central, it follows that  $o(g) = o(g_0) = 4$  and also that  $g^2 = g_0^2$  and  $g^{-1}g_0g = g_0^{-1}$ .

Let  $A$  denote the centralizer of  $g_0$  in  $G$ . If  $g \in G$  is not in  $A$  then, for each element  $a \in A$  we have that  $ag \notin A$ , so  $(ag)g_0 \neq g_0(ag)$  and, by the argument in the above paragraph, we have that  $(ag)g_0 = g_0^{-1}a^{-1}$ . On the other hand,  $(ag)g_0 = agg_0 = ag^{-1}$ , so we also conclude that  $gag^{-1} = a^{-1}$  for all  $a \in A$ . This implies that  $A$  is abelian.

Finally, let us observe that, if  $x, y$  are two elements that do not commute with  $g_0$ , we have that  $x^{-1}y^{-1}g_0xy = x^{-1}g_0^{-1}x = g_0$  so  $y \in xA$  and thus  $G = \langle A, x \rangle$ , as claimed.  $\square$

We can also use Proposition 4.1 to give an example in the case of infinite groups.

**Example** Consider the infinite dihedral group  $D = \langle a, b \mid b^2 = 1, bab = a^{-1} \rangle$  and let  $R$  be an integral domain of characteristic 0. We claim that  $\Delta(\mathcal{U}(RD)) = \mathcal{Z}(\mathcal{U}(RD))$ .

In fact, it is well known that, if  $N$  is a subgroup of a group  $G$  with  $[G : N] = n$ , then  $RG$  can be imbedded in the full matrix ring  $M_n(RN)$ . So, as  $\langle a \rangle$  is torsion free, abelian, we have that  $R\langle a \rangle$  is an integral domain and it follows that  $RD$  can be imbedded in  $M_2(K)$ , where  $K$  denotes the field of fractions of  $R\langle a \rangle$ .

Once again, a result of Hartley and Pickel [13, Theorem 5.1] shows that  $\mathcal{U}(RD)$  contains a free group on two generators. Hence, Proposition 4.1 implies that  $\Delta(\mathcal{U}(RD)) = \mathcal{Z}(\mathcal{U}(RD))$ , as claimed.

**Proposition 4.6** Let  $G$  be a finite group such that  $\mathbf{Q}G$  has no Wedderburn component which is a noncommutative division ring and let  $H$  be a free abelian group. Then,

$$\Delta(\mathcal{U}(\mathbb{Z}[G \times H])) = \mathcal{Z}(\mathcal{U}(\mathbb{Z}[G \times H])).$$

**Proof.** Set  $G_1 = G \times H$ . Then  $\mathbf{Q}G_1 = \mathbf{Q}G \otimes \mathbf{Q}H$  and, if  $\mathbf{Q}G \cong \bigoplus_i M_{n_i}(D_i)$  is the Wedderburn decomposition of  $\mathbf{Q}G$ , we have that:

$$\mathbf{Q}G_1 \cong \mathbf{Q}H \otimes (\bigoplus_i M_{n_i}(D_i)) \cong \bigoplus_i M_{n_i}(\mathbf{Q}H \otimes D_i).$$

Notice that Proposition 3.1 implies that an element  $x \in \Delta(\mathcal{U}(\mathbb{Z}[G \times H]))$  commutes with every nilpotent element in each component. This shows that the components of  $x$  are scalar matrices. Also, since they commute with every matrix of the form  $e_{ij}(d)$ , for all  $d \in D$ , we have that each component of  $x$  is central, so the result follows.  $\square$

We conclude this section showing that our main theorem allows us to obtain some results also in the case of positive characteristic.

**Corollary 4.7** Let  $R$  be an infinite domain of positive characteristic and let  $G$  be a finite group. If  $\text{char}(R)$  does not divide  $|G|$  then  $\Delta(RG) = \mathcal{Z}(RG)$ .

**Proof.** Let  $K$  be the field of fractions of  $R$  and suppose that  $p$  does not divide  $|G|$ . Then  $KG$  is semisimple.

Assume that a Wedderburn component of  $KG$  is a division ring  $D$ . Then  $D$  is generated, as a  $K$ -vector space by the image  $G_1$  of  $G$  under the projection to  $D$ . But  $G_1$  is a finite subgroup of  $D$  and a theorem of Herstein [6] shows that  $G_1$  is cyclic so  $D$  is commutative. The result now follows from Corollary 3.4.  $\square$

## References

- [1] Y. Billig, D. Riley and V. Tasic, Nonmatrix varieties and nil-generated algebras whose units satisfy a group identity, *J. of Algebra*, **190**, 1 (1997), 241-252.
- [2] G.H. Cliff and S.K. Sehgal, Group Rings whose Units form an FC Group, *Math. Z.*, **161** (1978), 163-168.
- [3] S. P. Coelho and C. Polcino Milies, Finite Conjugacy in Group Rings, *Comm. in Algebra*, **19**, 3 (1991), 981-995.
- [4] Y.A. Drozd and V.V. Kirichenko, *Finite Dimensional Algebras*, Springer-Verlag, Berlin, 1994.
- [5] I.N. Herstein, Conjugates in Division Rings, *Proc. A.M.S.*, **7** (1956), 1021-1022.
- [6] I.N. Herstein, Finite multiplicative subgroups in division rings, *Pacific J. of Math.*, **1** (1953), 121-126.
- [7] B.H. Neumann, Groups with finite classes of conjugate elements, *Proc. London Math. Soc.*, **1** (1951), 178-187.
- [8] C. Polcino Milies, Group Rings whose Units form an FC Group, *Archiv der Math.*, **30** (1978), 380-384.
- [9] C. Polcino Milies and S.K. Sehgal, FC elements in group rings, *Comm. in Algebra*, **9** (1981), 1285-1293.
- [10] J. Ritter and S.K. Sehgal, Generators and Subgroups of  $\mathcal{U}(\mathbb{Z}G)$ , *Contemporary Math.*, **93** (1989), 331-347.
- [11] W.R. Scott, *Group Theory*, Prentice-Hall, Englewood Cliffs, N.J., 1964.
- [12] S.K. Sehgal, *Topics in group rings*, Marcel Dekker, New York, 1978.

- [13] S.K. Sehgal, *Units in integral group rings*, Longman Scientific and Technical, Essex, 1993.
- [14] S.K. Sehgal and H.J. Zassenhaus, Group Rings whose Units form an FC Group, *Math. Z.*, 153 (1977), 29-35.
- [15] S.K. Sehgal and H.J. Zassenhaus, On the Supercentre of a Group and its Ring Theoretic Generalization, in *Integral Representations and its Applications*, Lecture Notes in Mathematics No 882, Springer-Verlag, Berlin, 1981, pp. 117-144.
- [16] A. Williamson, On the conjugacy classes in an integral group ring, *Canad. Math. Bull.*, 21, 4 (1978), 491-496.

**TRABALHOS DO DEPARTAMENTO DE MATEMÁTICA**  
**TÍTULOS PUBLICADOS**

1999-01 FERNANDES, J.D., GROISMAN, J. and MELO, S.T. Harnack inequality for a class of degenerate elliptic operators. 19p.

1999-02 GIULIANI, O. F. and PERESI, A.L., Minimal identities of algebras of rank 3. 9p.

1999-03 FARKAS, D. R., GEISS, C., GREEN, E.L., MARCOS, E.N. Diagonalizable Derivations of Finite-Dimensional Algebras I. 25p.

1999-04 FARKAS, D. R., GEISS, E.L., MARCOS, E.N. Diagonalizable Derivations of Finite-Dimensional Algebras II. 13p.

1999-05 LOBÃO, T. P. and MILIES, C. P. The normalizer property for integral group rings of Frobenius groups. 7p.

1999-06 PICCIONE, P. and TAUSK, D.V. A note on the Morse index theorem for geodesics between submanifolds in semi-Riemannian geometry. 15p.

1999-07 DOKUCHAEV, M., EXEL, R. and PICCIONE, P. Partial representations and partial group algebras. 32p.

1999-08 MERCURI, F., PICCIONE, P. and TAUSK, D.V. Stability of the focal and geometric index in semi-Riemannian geometry via the Maslov index. 72.

1999-09 BARBANTI, L. Periodic solution for Volterra-Stieltjes integral linear equations of type (K). 9p.

1999-10 GALINDO, P., LOURENÇO, M.L. and MORAES, L.A. Compact and weakly compact homomorphisms on Fréchet algebras of holomorphic functions. 10p.

1999-11 MARCOS, E.N., MERKLEN, H.A. and PLATZECK, M.I. The Grothendieck group of the category of modules of finite projective dimension over certain weakly triangulated algebras. 18p.

1999-12 CHALOM, G. Vectorspace Categories Immersed in Direct Components. 32p.

1999-13 COELHO, F.U. Directing components for quasitilted algebras. 5p.

1999-14 GOODAIRE, E.G. and POLCINO MILIES, C. Alternative Loop Rings with Solvable Unit Loops. 13p.

1999-15 GOODAIRE, E.G. and POLCINO MILIES, C. A Norm Complement for an  $R$  Loop in its Integral Loop Ring. 9p.

1999-16 LOURENÇO, M. L. and MORAES, L.A. A class of polynomials. 9p.

1999-17 GRISHKOV, A. N. The automorphisms group of the multiplicative Cartan decomposition of Lie algebra  $E_8$ . 18p.

1999-19 GRISHKOV, A. N. Representations of Lie Algebras over rings. 14p.

1999-20 FUTORNY, V., KÖNIG, S. and MAZORCHUK, V. & subcategories in  $\mathcal{O}$  16p.

1999-21 BASSO, I., COSTA, R., GUTIÉRREZ, J. C. and GUZZO JR., H. Cubic algebras of exponent 2: basic properties. 14p.

1999-22 GORODSKI, C. Constant curvature 2-spheres in  $CP^2$ . 5p.

1999-23 CARDONA, F.S.P and WONG, P.N.S, On the computation of the relative Nielsen number. 15p

1999-24 GARCÍA, D., LOURENÇO, M.L., MAESTRE, M. and MORAES, L.A. de, The spectrum of analytic mappings of bounded type. 19p.

1999-25 ARAGONA, J. and JURIAANS, S.O. Some structural properties of the topological ring of Colombeau's generalized numbers. 35p.

1999-26 GIULIANI, M.L.M. and POLCINO MILIES, C. The smallest simple Moufang loop. 27p.

1999-27 ASPERTI, A. C. and COSTA, E. A. Vanishing of homology groups, Ricci estimate for submanifolds and applications. 21p.

1999-28 COELHO, F.U., MARTINS, M.I.R. and DE LA PEÑA, J.A. Quasitilted Extensions of Algebras I. 11p.

1999-29 COELHO, F.U., MARTINS, M.I.R. and DE LA PENA, J.A. Quasitilted Extensions of Algebras II. 17p.

1999-30 FARKAS, D. R., GEISS, C. and MARCOS, E. N. Smooth Automorphism Group Schemes. 23p.

1999-31 BOVDI, A. A. and POLCINO MILIES, C. Units in Group Rings of Torsion Groups. 15p.

1999-32 BARDZELL, M. J. and MARCOS, E. N.  $H^1(A)$  and presentations of finite dimensional algebras. 8p.

1999-33 GRISHKOV, A. N. and SHESTAKOV, I. P. Speciality of Lie-Jordan algrbras. 17p.

1999-24 ANGELERI-HÜGEL, L. and COELHO, F. U. Infinitely generated tilting modules of finite projective dimension. 14p.

1999-25 AQUINO, R. M. and MARCOS, E. N. Koszul Tilted Algebras. 19p.

1999-26 CHALOM, G. and MERKLEN, H. Representation Type of One Point Extensions of Tilted Euclidean Algebras. 28p.

2000-01 BARROS, S.R.M., PEREIRA, A.L., POSSANI, C. and SIMONIS, A. Spatially periodic equilibria for a non local evolution equation. 11p.

2000-02 GOODAIRE, E.G. and POLCINO MILIES, C. Moufang unit loops torsion over the centre. 10p.

2000-03 COSTA, R. and MURAKAMI, L.S.I. On idempotents and isomorphisms of multiplication algebras of Bernstein algebras. 12p.

2000-04 KOSZMIDER, P. On strong chains of uncountable functions. 24p.

2000-05 ANGELERI-HÜGEL, L and COELHO, F.U. Infinitely generated complements to partial tilting modules. 11p.

2000-06 GIANNONI, F., MASIELLO, A., PICCIONE, P. and TAUSK, D. V. A Generalized Index Theorem for Morse-Sturm Systems and applications to Semi-Riemannian Geometry. 45p.

2000-07 PICCIONE, P. and TAUSK, D.V. Lagrangian and Hamiltonian formalism for constrained variational problems. 29p.

2000-08 PICCIONE, P. and TAUSK, D.V. An index theorem for non periodic solutions of Hamiltonian Systems. 67p.

2000-09 GIAMBÒ R., GIANNONI, F. and PICCIONE, P. Existence multiplicity and regularity for sub-Riemannian geodesics by variational methods. 25p.

2000-10 PICCIONE, P. and TAUSK, D.V. Variational Aspects of the Geodesic Problem in sub-Riemannian Geometry. 30p.

2000-11 GIANNONE, F. and PICCIONE, P. The Arrival Time Brachistochrones in General Relativity. 58p.

2000-12 GIANNONE, F., PICCIONE, P. and TAUSK, V. D. Morse Theory for the Travel Time Brachistochrones in stationary spacetimes. 70p.

2000-13 PICCIONE, P. Time minimizing trajectories in Lorentzian Geometry. The General-Relativistic Brachistochrone Problem. 23p.

2000-14 GIANNONI, F., PICCIONE, P. and SAMPALMIERI, R. On the geodesical connectedness for a class of semi-Riemannian manifolds. 31p.

2000-15 PICCIONE, P. and TAUSK, D. V. The Maslov Index and a generalized Morse Index Theorem for non positive definite metrics. 7p.

2000-16 PICCIONE, P. and TAUSK, D. V. On the Banach Differential Structure for sets of Maps on Non-Compact Domains. 26p.

2000-17 GONZÁLEZ, S., GUZZO JR, H. and VICENTE, P. Special classes of  $n^{\text{th}}$ -order Bernstein algebras. 16p.

2000-18 VICENTE, P. and GUZZO, H. Classification of the 5-dimensional power-associative 2<sup>nd</sup>-order Bernstein algebras. 23p.

2000-19 KOSZMIDER, P. On Banach Spaces of Large Density but Few Operators. 18p.

2000-20 GONÇALVES, D. L. and GUASCHI, J. About the structure of surface pure braid groups. 12p.

2000-21 ARAGONA, J. and SOARES, M. An existence theorem for an analytic first order PDE in the framework of Colombeau's theory. 11p.

2000-22 MARTIN, P. A. The structure of residue class fields of the Colombeau ring of generalized numbers. 21p.

2000-23 BEKKERT, V. and MERKLEN, H.A. Indecomposables in Derived Categories of Gentle Algebras. 18p.

2000-24 COSTA, R. and MURAKAMI, L.S.I. Two Numerical Invariants for Bernstein Algebras. 17p.

2000-25 COELHO, F.U., ASSEM, I. and TREPODE, S. Simply connected tame quasi-tilted algebras. 26p.

2000-26 CARDONA, F. S. P. and WONG, P. N. S. Addition formulas for Relative Reidemeister Numbers. 25p.

2000-27 MELO, SEVERINO T. and MERKLEN, M.I. On a Conjectured Noncommutative Beals-Cordes-type Characterization. 7p.

2000-28 DOKUCHAEV, M. A., JURIAANS, O. S., POLCINO MILIES, F. C. and SINGER, M. L. S. Finite Conjugacy in Algebras and Orders. 17p.

Nota: Os títulos publicados nos Relatórios Técnicos dos anos de 1980 a 1998 estão à disposição no Departamento de Matemática do IME-USP.  
Cidade Universitária "Armando de Salles Oliveira"  
Rua do Matão, 1010 - Cidade Universitária  
Caixa Postal 66281 - CEP 05315-970