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Abstract 

I.N. Berstein showed that the conjugacy class of a noncentral ele­
ment in the multiplicative group of a division ring is infinite. We prove 
similar results for units in algebras and orders and give applications to 
group rings. 

1 Introduction 

For a given group G, we denote by .6.(G) the FC-centerof G, that is: 

.6.(G) = {g E GI [G: Ca(g)l < oo}. 

Also, for a ring R we shall denote by UR the group of units of R; i.e., the 
set of invertible elements of R. I.N. Berstein showed in [5] that if D is a 
division ring then .6.(UD) coincides with Z(UD), the centre ofUD. 
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The study of the FC-center of groups of units of group rings started with 
papers by S.K.Sehgal and H.J. Zassenhaus [14], C. Polcino Milies [8] and G. 
Cliff and S.K. Sehgal [2]. Also, A. Williamson [16}, studied elements of a 
periodic group G which have finite conjugacy class in the group of units ofits 
integral group ring. A more general approach was given by S.K. Sehgal and 
H.J. Zassenhaus in [15]. This work was followed by several papers studying 
group rings over fields {9J, (3). 

Theorem 2.2 below shows that a result similar to that of Herstein holds 
for finite dimensional algebras over infinite fields and this fact is extended to 

algebraic algebras in Corollary 2.3. However, it follows from [3, Example 1] 
that it cannot be extended to all infinite dimensional algebras. In Section 3 
we consider orders in finite dimensional algebras where the situation is more 

complicated. In particular, a theorem of Williamson for integral group rings 
[16] shows that an analogue of Herstein 's result does not hold for orders. 
However, we are able to obtain general positive results for large classes of 
orders and we give a partial extension of a theorem of Sehgal and Zassenhaus 
[15, Theorem 1]. In Section 4 we consider some applications to group rings 
and, in particular, we obtain a short proof of the theorem of Williamson. 

2 Algebras 

The following fact should be known, however we include an argument for 
the sake of completeness. 

Proposition 2.1 Let G be a connected algebraic group over an in.finite field. 
Then evef"JI FC-element of G is central. 

Proof. Let G be a connected algebraic group and z e Gan FC-element. 
Then, the centralizer Ca(z) is a closed subgroup of finite index of G. For a 
fixed y E G the map z➔yz E G is polynomial and, therefore, continuous. 
Since the same holds for its inverse, it is a homeomorphism. Hence, each 
coset 1,'Ca(z) is closed in G and G is a union of a finite number of them. 
Since G is connected (even irreducible), it follows that z E Z(G). □ 

For a group G let TG denote the torsion part of G. 

Theorem 2.2 Let A be an algebra with unity over an in.finite field K. 
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{i) If A is finite dimensional, then UA is a connected linear algebraic 

group and, consequently, 

A(UA) = Z(UA). 

Moreover, A is generated b11 its units, as a vector space over K and, there­

fore, U A is FC if and onl11 if A is commutative. 

{ii) Every torsion unit of A(UA) commutes with each algebraic unit of 

A and, consequently, A(UA) is solvable of length at most 2. 

{iii) Every element of A(UA) commutes with each nilpotent element of 

A. 

Proof. (i) Let n = dimKA and r: A➔Mn(K) be the regular represen­

tation of A. Then z E A is invertible if and only if det(r(z)) -::/: 0. Indeed, 

if det(r(z))-::/: 0 then r(z) is invertible in Mn(K), thus it can not be a zero 

divisor in r(A). Since an element in a finite dimensional algebra is either a. 
zero divisor or invertible, the statement follows. 

Taking a ha.sis in A, det(r(z)) can be considered a.s a polynomial / in 

coordinates zi, ••·,Zn of z. Hence 

So, with respect to the Zariski topology on A, we have that U A is 
a principal open subset in A = K ... Therefore, UA is a.n irreducible (= 

connected) algebraic group. Therefore, by Proposition 2.1, we have that 

A(UA) = Z(UA). 
Note that UA is a linear algebraic group a.s both r : A➔f(A) and its 

inverse are polynomial maps. Since UA is an open subset of A, we have that 

U A = A. Let Ai be the linear span of U A. Since every linear subspace is 

closed under Zariski's topology, we have that UA C Ai; hence Ai= A. 

Item (ii) is an easy consequence of (i), indeed, let z E TA(UA), y E UA 

be algebraic and n be the dimension of the subalgebra generated by y. Then 

by Dietzmann's Lemma (see (11, 15.1.111) the conjugates of z in H = (z, y} 
generate a finite normal subgroup N, and every element of H can be writ­

ten a.s a K-linear combination of elements of the form hy1 with h E N and 

0 $ i $ n - 1. Hence the K-linear span of H is a finite dimensional algebra 

and by item (i), zy = yz, as desired. In particular, TA(UA) is abelian 

and, since A(UA)' c TA(UA), by Neuman's Theorem [11, 15.1.7], A(UA) 
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is solvable of length a.t most 2. 

(iii) Let JI E A be a nilpotent element and let n be a positive integer 
such that y" ,f, 0 and y"+i = 0. For each o EK we consider Za = 1 + oy, 
which is a unit whose inverse is z;;1 = E?::0(-l)i(oy)i and we have that: 

n 

z;1zza = z + L(Vi(i), 
i=l 

where v, = (-l)'(y•z -y•-1zy), 1::; i::; n. 
Since z E ~(UA), there exists an infinite set S of K such that the set 

{z;;1zza I a ES} consists of a single element. 
Let 8 be a K-~is of A and set o,/J ES, with /J fixed. Write 

v, = L v;(b)b 
6E8 

and 
z'j1zz13 - z = L w(b)b. 

bEB 

As -1 -1 t z"' zza = zfJ zz13, we ge : 

L w(b)b = o(E v1(b)b) + o1(E v2(b)b) + • • •· 
bEB l>EB •es 

Assume that V1 = zy - yz ,f, 0. Then, there exists an element bo E B 
such that v1 (bo) ,f, O. Consequently, the polynomial -w(bo) + av1 (bo) + 
0 2112(60) +·••is non zero and has infinitely many roots, since it is zero for 
every a ES, a contradiction. · D 

We note that the proof of ( iii) also works in the case of orders, as we 
show in the beginning of the next section. 

Notice that if K is a finite field, results similar to those of the previous 
theorem need not hold. In fa.ct, let A be a. direct sum of infinitely many 
copies of a full matrix ring M,.(K), n > 2. Then every unit in A is FC so 

UA = ~(UA) ,f, Z(UA). 

Moreover, U A is not solvable and clearly units need not commute with nilpo­
tent elements so none of the statements of the theorem above holds. 
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Throughout this section we shall always assume that the algebras con­
sidered are ta.ken over a.n infinite field K. 

Corollary 2.3 If UA and ~(UA) are generated by algebraic units then 

~(UA) = Z(UA). 

In particular, this happens if A is an algebraic algebra. In this case A is 
generated by units as a vector space, and U A is FC if and only if A is 
commutative. 

Proof. Let x E ~(UA),y E UA be algebraic, H = (x,y) and x1 , ... ,x, 
be the conjugates of x in H. Each commutator of (x1, ... , x,) is torsion 
and, therefore, central by (ii) of Theorem 2.2. Hence each h E H can 
be written ash= y0 xf1 

... x~•I][xi,x;)'Yii, with a,{31, ... /3.,'Yi; E 7l. Now, 
let ni (respectively n) be the dimension of the subalgebra generated by Xi 

(respectively y). Then h is a K-linear combination of elements of the form 
lfxi' ... x:• I][xi, x;]"'ii with OS 6 S n, 0 :S ~i :S ni, 0 :S '41ij S o([xi, x;]). We 
have finitely many such elements and, consequently, the K-linear span of H 
is a finite dimensional algebra. It follows from (i) of Theorem 2.2 that x and 
y commute, as desired. The last statement also follows from part (i) of that 
theorem. □ 

Now, we wish to consider algebras with many units; more precisely, al­
gebras that are generated, aa a. vector space, by their units. These include 
large classes of algebras, such as group rings, crossed products, finite di­
mensional algebras, algebraic algebras and algebras unitally generated by 
nilpotent elements such as considered in [1]. 

The following lemma is an extension of [3, Lemma 2.1] to the general 
case. 

Lemma 2.4 Let x E A be an element such that xl = bx for some b E K. 
Then xy = yz for ally E ~(UA). 

Proof. Let k be an arbitrary element in K. If b '# 0 we set u1c = 
1-b-1z + b-1kz. Then u1c is a unit of A whose inverse is u;1 = 1- b-1x + 
b-1k-1x. Given an element y E UA1 , we compute: 

Ylc = u1cyu;1 = (1- b-1z + b-1kz)y(l - b-1z + b-1k-1z) = 
y - b-1xy - b-1yx + b-1kzy + b-1k-1yx + (2b-l - b-lk - b-lk-1)xyz. 

5 



If we denote c = yxy-1, we have that yx = cy and we can write: 

y1, = (1 + b-1kx - b-1z - b-1c+ b-1k-1c+ 2b-2xc- b-2kxc - b-2k-1zc)y. 

Hence 

zy1c = z(k + b-1c - b-1kc)y = k(z - b-1zc)y + b-1zcy. 

Thus, if z - b-1zc :/= 0, as K is infinite, we would have infinitely many 
conjugates for y. So we must have that z = b-1zc and, back in the expression 
of 1/lc we obtain: 

Ylc = (1-b-1c+ b-1z+ b-1k-1 (c- z))y. 

Once again, if c :/= z we would have infinitely many conjugates for y, a 
contra.diction. Hence, z = 1r1zy, as desired. 

The case where b = 0 ca.n be obtained by a similar argument, consid­
ering the unit u0 = 1 +az. It also follows immediately from Theorem 2.2. D 

Let A1 denote the linear span of A(UA) in A. Since A(UA) is a group, 
it follows immediately that A1 is a suba.lgebra of A. 

Corollary 2.5 Every idempotent of Ai is centml in A. 

Proof. Let e E A1 be an idempotent and let z be an arbitrary element of 
A. The elements a= ez(l-e) and fl= (1-e)ze are such that a 2 = {12 = O. 

Write e as a linear combination e = Ei li'-'i of elements '-'i E A(UA) with 
coefficients Ii E K. By the previous lemma, both a and fJ commute with 
every '-'i and thus, with e. Hence: 

ea = ae = 0, 

efJ = {le= O. 

Now, ea= ez(l-e) and thus ez = eze. In a similar way we obtain that 
ze = eze and thus ze = ez, as claimed. □ 

Theorem 2.6 Let A be an algebra genemted by its units, as a linear space 
over an infinite field K such that U A is FC. Then, every idempotent and 
every nilpotent element are centml in A. 

Moreover, if A is genemted by its torsion units, as a linear space over 
K, then U A is FC if and only if A is commutative. 
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Proof. The first part of the statement follows immediately from Corol­
lary 2.5 and item ( iii) of Theorem 2.2 while the second is a consequence of 
item (ii) of the same theorem. o 

3 Orders 

Let D be a domain, K its field of fractions and let A be a. K -algebra.. By a D­
o rd er A in A we mean a D-suba.lgebra. of A such that A= KA. Notice that 
this implies that A contains a K-ba.sis of A. Of course, 6-(UA) c 6-(UA)nA 
but, in genera.I, equality does not hold. To see this take, for example, K8 = 
(a, b I a4 = 1, a2 = b2

, bab-1 = a-1
) and set A = 7.lKs and A = QKs. Then 

the element z = 1 + a + a3 lives in A, is central and invertible in A, with 
inverse z-1 = 1/3(1 + a - 2a2 + a3 ), but z ¢ UA. 

Proposition 3.1 Let D be an infinite domain and let K be its field of 
fmctions. Let A be a K-algebra and A a D-order in A. If z E 6-(UA) 
and y E A is nilpotent then zy = yz. 

Proof. Let y E A be a nilpotent element. Since A is a D-order in A, there 
exists an element d E D such that y1 = dy E A. 

For ea.ch o E D set Za = 1 + 01/1. Then Za is a unit in A whose inverse 
n . . 

is z;1 = E (-l)'(ay1)'. 
i=O 

AB in item ( iii) of Theorem 2.2 we can conclude that there exists an 
infinite set S of D such that the set {z;1zza I o E S} consists of a single 
element. If zy1 -::/: y1x taking a K-ba.sis B of A contained in A and a fixed 
scalar f3 E S we can obtain, as before, a nonzero polynomial -w(bo) + 
av1 (bo)+a2v2(bo)+· ··which has infinitely many roots in S, a contradiction. 

Hence, zy1 = y1z and thus also zy = yz. D 

AB a consequence of Proposition 3.1 we obtain the following theorem. 

Theorem 3.2 Let D be an infinite domain, K its field of fractions, A a 
finite dimensional K-algebm, A a D-order in A, .1 = .1(A) the Jacobson 
Radical of A and A= A/.1. Assume that Hom,4.(P;,P;) = 0 for every pair 
of non-isomorphic principal modules P;, P; of multiplicity 1 in A. If every 
minimal ideal of A which is a division ring is isomorphic to K, then 

li(UA) C Z(A), 
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Proof. Let A= M,.1 (V1) x · · · x M,.,(V.) be the Wedderburn decom­
position of A, let V, be the i-th irreducible A-module and 1', the principal 
A-module corresponding to V1• Then we have an A-module isomorphism 

(1) 

and by the Peirce decomposition (see [4, p.26]) we obtain that A is isomor­

phic to the algebra of matrices of the form 

[ 

au a12 · ·· ai. l 
a:21 a22 · · · a2. 
: : . . . : 

a.1 a.2 • • · au 

where ai; E Hom..4.(n;1';, n.1'i)- Notice that End..4.(n.1',) ~ M,..(End..4.(1'i)). 
We shall denote by e;; (a;;) a. matrix whose entry in position ( i, j) is equal 

to a;; and all other entries are equal to zero. 
Let :,; E A(UA). By Proposition 3.1, we have that :,; commutes with 

all nilpotent elements of A. In pa.rticular, if i-:/: j, it commutes with every 
matrix e,;(a;;), Thus it remains to show that :,; centralizes the diagonal 
subalgebra End..4.(n11'1) x • • • x End..4.(n.1'.). 

Let z,; EA be the entry of:,; belonging to Hom..4.(n;1';, n.1'i)- We wish 
to show that :,; is a diagonal matrix. Assume that, in the decomposition 
of A given in (1) above, we have that n; > 1 if 1 :;; i ::5 t and n; = 1 if 
t + 1 :5 i ::5 s. It follows directly, from our assumption on the principal 
modules of multiplicity 1 in A, that :,; is of the form: 

z1,1 z1,2 Z1,t Zt,t+l :i:1,1+2 :i:1,. 

:i-2,1 z2,2 Z2,t Z2,t+l Z2,f+2 z2,. 

z = Zt,1 Zt,2 Zt,t Zt,t+l Zt,t+2 Zt,. 

Zt+l,1 Zt+t,2 Zt+t,t Zt+l,t+l 0 0 
Zt+2,1 Zt+2,2 Zt+2,t 0 Zt+2,t+2 0 

z.,1 z.,2 z.,1 0 0 z ••• 

For an index i ::5 t and every nilpotent element a E End..4.(ni.f'i), by 
Proposition 3.1 we have that eii(a)z = ze11(a). A straightforward computa­
tion shows that 

a:z1; = 0 = z1;a for allj -:/: i. (2) 
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We claim that this implies Xij = x;i = O, for all j :/: i, 1 :5 i :5 s. 

In fact, recall that EndA(ni~) = Mn;(EndA(Pi)) and set a = e1r1(l) E 

Mn; (EndA(~)) with k =f:. l. For a.n arbitrary element y E n;P; we compute 

Zi;(y) E ni~ so, if we consider ni~ as column matrices with entries in Pi, 
we can write z,;(Y) in the form: 

Then: 

where x:;(Y) is the kth, entry of the column. 

This implies that zi;(Y) = 0 for l =f:. k. Since k and l are arbitrary 

distinct, we have that x,;(Y) = 0, for all y E n;P; and thus Zij = O. A 

similar argument shows that also z ;i = 0. Consequently, z is diagonal. 
Fix an index i with 1 ::S i :S £ (and, thus, n. > 1). Com1ider the element. 

y = eii(emn(l)) of the diagonal subalgebra where k :/: m and the elementary 

matrix emn(l) belongs to M,.,(EndA(P,)). Then y3 = 0 and the equality 

xy = yz implies that Xii commutes with emn(l). Since k and mare arbitrary, 

it follows that Xii must be scalar, Xii= a[,· a E EndA(P,). Moreover, for all 

b E EndA(Pi) and emn(b) E EndA(Pi), we have that 

ale1rm(b) = abe1rm(I) = ei;(b)al = baemn(l). 

Consequently, a E Z(EndA(P,)). Thus Xii centralizes EA(rli1'i) with 

rli>l. 

Now assume i > t and thus ni = 1. 
In this case, M.., (Di) = D, is a division ring so, by our hypothesis 

Di !:a!! EndA(V,) !::! K. Therefore, EndA(Pi)/.7(EndA(Pi)) is also isomorphic 

to K. Hence, 
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a direct sum of K -vector spaces. Since we have shown that z is dia.gona.1, 
it follows immediately that it commutes with the elements of K ei and, as z 
centralizes .1(EndA(1'i)), we conclude that z E CA(EndA('Pi)), which com­
pletes the proof. □ 

Remark. Notice that the restriction that HomA(~,P;) = 0 for every 
pair of non-isomorphic principal modules ~. P; of multiplicity 1 in A is 
always verified in the case of semisimple algebras, by Schur's Lemma. On 
the other hand, we observe that it is essential in the nonsemisimple case, as 
shown by the following example. 

Take 

a.nd set 

It is easy to see that the conjugacy class of z in UA is of order 2, so z is 
noncentral but z E A(UA). 

Corollary 3.3 Let D and K be as above, A be a finite dimensional K -algebra 
and A an order in A. Assume that HomA(~.~) = 0 for every pair of non­
isomorphic principal modules~.~ of multiplicity 1 in A. If K is a splitting 
field for A, then 

A(UA) C Z(A). 

Corollary 3.4 Let D and K be as above, A be a semisimple finite dimen­
sional K -algebra and A a D-order in A. If A has no minimal ideal tohich 
is a non-commutative diuision ring then 

A(UA) C Z(A). 

Proof. The proof of the theorem shows that z E A{UA) centralizes 
each Wedderburn component Mn, (1>i) of A with ni > 1. On the other hand, 
by our assumption, n. = 1 implies that 1>i is a field. Hence :r; E Z(A). □ 

Theorem 3.5 Let D be an infinite domain and R a D-algebru. 

{i) If R ia torsion fre.e as a D-module then 

6.(GLn(R)) = A(UR)I, 
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where I is the identit71 matriz of Mn ( R). 

(ii) If char(D) = 0 and n > 1 then 

Proof. Let { ei; : 1 ~ i, j :5 n} be the basis of elementary matrices of 
Mn(R) and let 

i,j 

Fix 1 ~ io,io :5 n with io ::/; io and for each r ED set 

Since D is infinite and the conjugacy class of a is finite, there exist 
r,s E D, r ::f; s, such that a,. = a •. This implies that a commutes with 
I+ (r - s)eic,;o and hence with e,0 ; 0 , as R is torsion free over D. It follows 
that a;u; = ~io = 0 for all j ::f; io and i :/: io and that aioio = 4joj0 • Since 
this holds for all 1 :5 io,io :5 n, io '::/: io, we conclude that a = a11 1 and 
au e A(R) and (i) follows. 

Now suppose that char(D) = 0. For i ::f; j set u,; =I+ ei;• Then u,; is 
a unit. If a E A(GLn(R)) then there exists a positive integer k such that ut 
centralizes a. Note that ut; =I+ ke.;• Since char(D) = 0 1 it follows easily 
that ae;; = ei;a if i ::f; j and, as l!ii = e,; • e;,, we conclude that a commutes 
with all the matrices of the basis of M,. ( R) and thus a is a scalar matrix; 
i.e. of the form a= N,l, where I is the identity matrix and .\a ER. Finally, 
set u = I+ .\e12 with ,\ e R. Since u" = I+ k.\e12, an argument similar to 
the one above shows that NJ E Z ( R). □ 

Notice that the arguments in the proof above do not depend on the fact 
that the given matrix. a is invertible. Hence, if for a given ring R we denote 
by A(R) the set of elements in R who have finitely many conjugates under 
the action of UR, we actually have the following. 

Corollary 3.6 Let D be an infinite domain and R a D-algebra. 

{i) If R is torsion free as a D-module then 
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where I is the identity matriz of M,.(R). 

(ii) If char(D) = 0 and n > 1 then 

~(M,.(R)) = Z(Mn(R)). 

4 Group Rings 

In this section, we shall apply our previous results to the case of group rings. 

First, we notice that if G is a. finite group such tha.t the group algebra QG 

bas no minimal ideal which is a. non-commutative division ring, then Corol­

lary 3.4 shows that A(U(ZG)) C Z(QG). We remark that there are many 

important classes of groups which satisfy this condition, as all finite sim­

ple groups, nilpotent groups of odd order ([13, Corollary 20.7]) and groups 

which have no nonabelian homomorphic image which is fixed point free as 

considered in [10]. 
We begin with some technical lemmas. 

Lemma 4.1 Let K be a field and let G be a subgroup of GL(2, K). Then 

(i) if a E GL(2, K) is noncentrol, its centralizer in GL(2, K) is abelian 

and 
(ii) either ~(G) = Z(G) or G is abelian-by-finite. 

Proof. To prove ( i) we may assume, without loss of generality, that K 

is algebraically closed. Then the statement follows directly, considering the 

Jordan normal form of a. 
To prove (ii), notice that if ~(G) #: Z(G), taking a E ~(G) noncentral, 

we have that [G: Ca(a)] is finite and the argument above showed that Co(a) 

is abelian so G is abelian-by-finite, as desired. □ 

Notice that, if Ks is the quaternion group of order 8, it is well-known 

that U('llKs) = ±Ks and thus an analogue of Herstein's result does not 

hold for the order 'llKs in QKs, However, we have the following. 

Proposition 4.2 Let G = Ks x {c), where c is an element of order p, an 

odd prime, and Ks = {a, b) is the quaternion group of order 8. Then 

a(U(7lG)) = Z(U(7lG)). 
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Proof. Let Ka= (a, b: a• = 1, a2 = b2, 1,-1ab = a-1 ). Consider the ring 
representation T/J: 'HJG ~ M2(C) given by 

( i o ) ( o -1 ) ( E o ) a ➔ 0 -i ' b ➔ 1 0 ' c ➔ 0 { ' 

where ~ is a primitive pth-root of unity. 
If we write u = zo + z1 a+ z2b + zsab E 'll,G with z, = oo, + a 1,c + • • • + 

ap-1,c"-1 E 'll,( < c >) then 

with 1h = ao, + 01,{ + · · · + o,,-1JP-l E 7l[{] and K er,p = cU,G. 
If we restrict tJ, to U('ll,G) we have a group homomorphism: 

T/JI: U('ll,G) ~ GL(2, C), 

whose kernel is K ert/JI = {l + c'll,G) n U('ll,G}, where c = 1 + c + • •. + cP-1. 
We will show that there are no units of 'll,G of this form, other than 1, that 
is, the restriction of t/J is an injection of U('ll,G) into GL(2, C). For this let 
cp : G ➔ Ka be a group homomorphism defined by a ➔ a, b ➔ b and c ➔ 1. 
Extend it linearly to ({' : 'O,G ➔ 'B.K8 • Now let :z: = 1 + cy E U('B.G), and 
observe that we may assume that y E '7LK8 • So cp(z) = 1 + py is a unit in 
'll,Ka and then it must be trivial. Hence y = 0. 

Suppoee now that .6(U('ll,G)) is not contained in the center of U('ll,G). 
Let u E .6(U(?ZG)), u ¢ Z(U(?ZG)). Then tJ,(u) ¢ Z(GL(2, C)) and by 
Lemma 4.1, tJ,(U(?ZG)) is abelian-by-finite. 

On the other hand, by a Theorem of Hartley and Pickel, (see [13, The­
orem 5.11), we have that U('ll,G) contains a noncyclic free group, therefore 
,p(U('ll,G)) ~ U(7lG) cannot be abelian-by-finite, a contra.diction. Hence 
.6(U(7ZG)) = Z(U(7lG)}. o 

Lemma 4.3 Let G be a group and let uo E T.6(U(7lG)) and g E G. Then 
the commutator [go, gJ is an element of (go) n(g). 

Proof. Since T.6(U(ZlG)) is a periodic normal subgroup of U('ll,G), 
it follows from (12, Theorem 11.5.1] that T.6.(U(7lG)) CG and that all its 
subgroups are a.lso normal. In particular, g normalizes the group {uo) so we 
only need to prove that also go normalizes the group (JJ). 

13 



Let a = ( 1 - g) g0g. If a is zero then the claim follows easily. If not, since 

a is nilpotent, Proposition 3.1 tells us that ago= goa so it also follows that 

go normalizes (g} as desired. □ 

Proposition 4.4 Let G be a finite group and suppose that TA(U(7lG)) is 

non-abelian. Then G i8 a 2-group. 

Proof. Since TA(U(7lG}) is a. torsion normal subgroup, it follows again 

from [12, Theorem 11.5.1] that it is contained in G and that every subgroup 

of TA(U(7lG)) is normal. As we are assuming that it is not a.belian, it 

must be a Hamiltonian group and thus contains a subgroup H isomorphic 

to K8• Suppose that there exists a prime p ~ 3 dividing the order of G 

and let z E G be a.n element of order p. As H n (z} = 1, it follows from 

Lemma 4.3 that z centralizes H. Hence, G1 = H x {z} is a. subgroup of 

G. Thus H C TA(U(ZG1)) which, according to Proposition 4.2 should be 

central, a. contradiction. □ 

Our next result first appeared in [16, Theorem l] and alternative proofs 

were given in [15). The proof we offer is shorter than the previous ones. 

Theorem 4.5 Let G be a periodic group. If TA(U(7lG)) has a noncentral 

element go then there uist an element z e G of order 4 and an abelian 

subgroup A such that G = (A, z I z2 = gi and z-1az = a-1Va E A}. 

Proof. Assume that there exist elements go E TA (U (7lG)), g E G such 

that gag 'I- ggo. Then, Lemma 4.3 shows that (uo} and (g} are both normal 

in (g, go}, so every cyclic subgroup of this group is normal a.nd thus, the 

group is Hamiltonian. As it has only two genera.tors, it must be isomorphic 

to Ka. Since the only element of order 2 in Ka is central, it follows that 

o(g) = o(go) = 4 and also that g2 = gi and g-1gog = g01• 

Let A denote the centralizer of g0 in G. If g E G is not in A then, for 

ea.ch element a E A we have that ag ¢ A, 80 (ag)go 'I- g0(ag) and, by the 

argument in the above paragraph, we have that (ag)RO = g-1a-1 . On the 

other hand, (ag)90 = ag90 = ag-1, so we a.lso conclude that gag-1 = a-1 for 

a.11 a E A. This implies that A is abelian. 

Finally, let us observe that, if z, y are two elements that do not commute 

with !lo, we have that z-1y-1gozy = z-1g'o1z = 90 80 y E zA and thus 

G = (A, z}, as claimed. a 
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We can also use Proposition 4.1 to give an example in the case of infinite 
groups. 

Example Consider the infinite dihedral group D = (a, b I 62 = 1, 
bab = a-1

} and let R be an integral domain of characteristic O. We claim 
that ~(U(RD)) = Z(U(RD)). 

In fact, it is well known that, if N is a subgroup of a group G with 
[G : NJ = n, then RG can be imbedded in the full matrix ring Mn(RN). 
So, as (a) is torsion free, abelian, we have that R(a) is an integral doma.in 
and it follows that RD can be imbedded in M2(K}, where K denotes the 
field of fractions of R(a}. 

Once aga.in, a result of Hartley and Pickel [13, Theorem 5.1) shows tha.t 
U(RD) conta.ins a free group on two generators. Hence, Proposition 4.1 
implies tha.t ~(U(RD)) = Z(U(RD)), as claimed. 

Proposition 4.6 Let G be a finite group such that QG has no Wedderburn 
component which is a noncommutative division ring and let H be a free 
abelian group. Then, 

~(U(1l[G x H])) = Z(U(1l[G x H])). 

Proof. Set G1 = G x H. Then QG1 = QG ® QH and, if QG ~ 
©iMn;(Di) is the Wedderburn decomposition of QG, we have that: 

QG1 ~ QH ® (EDiMn;(D,)) ~ EDiMn.(QH ® Di)• 

Notice that Proposition 3.1 implies that an element z E ~(U(1l[GxH])) 
commutes with every nilpotent element in each component. This shows that 
the components of z a.re scalar matrices. Also, since they commute with 
every matrix of the form t:i;(d), for all d E D, we have that ea.ch component 
of z is central, so the result follows. □ 

We conclude this section showing that our main theorem allows us to 
obtain some results also in the case of positive characteristic. 

Corollary 4. T Let R be an infinite domain of positive characteriatic and let 
G be a finite group. If char(R) d0€.s not divide IGI then ~(RG) = Z(RG). 

Proof. Let K be the field of fractions of R and suppose that p does not 
divide IGI. Then KG is semisimple. 
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Assume that a Wedderburn component of KG is a division ring D. Then 

Dis generated, as a K-vector space by the image G1 of Gunder the projec­

tion to D. But G1 is a finite subgroup of D and a theorem of Herstein [6) 

shows that G1 is cyclic so D is commutative. The result now follows from 

Corollary 3.4. □ 
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