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RNA-seq analyses reveal the relevance of RNAs involved in ribosomal complex to
induce mammalian prion protein aggregation and phase separation in vitro
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ABSTRACT

Conformational conversion of cellular prion protein (PrP) into infectious PrP (PrP*) is one of the most
intriguing processes in modern Biology. It is well accepted that this transition is catalysed by one or
more cofactors that lower the energy barrier between the different PrP forms. Among potential
candidates, RNA molecules are strong contenders. Our group has pursued nucleic acids, both DNA
and RNA, capable of inducing PrP misfolding, aggregation, and, more recently, phase separation,
a process proposed to precede aggregation in degenerative disorders. We found that the interaction
between recombinant PrP (rPrP) and total RNA extracted from neuroblastoma cells (N2aRNA) results in
significant structural alterations. Here, we use rPrP:N2aRNA as a model to search for RNAs capable of
inducing full-length murine rPrP phase separation and/or aggregation. N2aRNA was incubated with rPrP
and after that, RNA-seq analysis was conducted with RNAs isolated from the insoluble material using
two different protocols. We analysed thousands of RNA-seq reads, most of which represented ribosomal
RNA molecules. The set of recovered molecules is heterogeneous; nevertheless, three low-complexity
consensus motifs within the sequences of RNAs involved in ribosomal complex were identified as
significantly enriched in the RNAs bound to rPrP, suggesting that a population of RNAs is responsible
for inducing PrP phase transitions. We hypothesize that RNA transcripts enriched in a set of low
complexity motif sequences with predicted structural similarities can be involved in PrP< binding. This
interaction would lead to phase separation and, ultimately, result in aggregation into scrapie-like
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species, in a stoichiometry-dependent manner.

Introduction

Prion diseases or Transmissible Spongiform Encephalopathies
(TSEs) are a group of rare fatal neurodegenerative disorders
that affect humans and other mammals [1]. The characteristic
that distinguishes TSEs from other conformational diseases,
such as Alzheimer’s Disease (AD) and Parkinson’s Disease
(PD) is their proven transmissibility. However, it has been
shown that misfolded proteins involved in other neurodegen-
erative diseases, including AD and PD, can also harbour
prion-like characteristics, i.e. they can be transmitted from
cell to cell and induce native proteins to acquire the abnormal
conformation [2,3]. Progression of TSEs is associated with
misfolding of cellular prion protein (PrP®), a constitutive
protein present in many tissues but primarily expressed in
neurons and in the lymphoid system [1].

The major structural event in prion disorders is the con-
version of PrP€ into its infectious form, PrP scrapie (PrP*°)
[1,4]. In all sporadic manifestations of the disease, both PrP
forms share the same primary structure, but exhibit signifi-
cantly different physicochemical properties. While PrP® is
mostly a-helical, soluble, and fully sensitive to protease diges-
tion, PrP5¢ loses most of the PrPC a-helical content and has
a higher P-sheet content, tends to form aggregates (both
amyloid and non-amyloid species), and is partially resistant
to protease digestion [5,6].

For decades it was believed that PrP% was the only mole-
cular entity needed to trigger PrP“ misfolding and aggrega-
tion, amplifying PrP%¢ formation [1,7]. Later, it became
accepted that other molecules may play a role in the early
stages of prion diseases, by assisting the conversion of PrP® to
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PrP® [8-11]. PrP® can act as a template and refold PrP® into
more PrP*, but a high-energy barrier prevents spontaneous
conversion between the two forms [12]. It has been proposed
that, to overcome this barrier, an additional molecule must be
involved in the process, acting as a catalyst [13]. Accordingly,
most in vitro conversion assays used to induce amplification
of scrapie-like prion species include a polyanionic molecule,
such as RNA, glycosaminoglycan, or an anionic lipid
[9,11,13]. Based on these assays and biophysical studies,
numerous molecules capable of participating in the conver-
sion process have been identified. Among them, nucleic acids
emerge as likely candidates [8,10,13-15].

It has been reported that RNA molecules are needed to
propagate PrP* in vitro and that RNA molecules can be
found associated with infectious prion particles purified
from diseased brains [10,16-19]. The observation that the
ribosome can be a target for anti-prion compounds that do
not bind directly to PrP [20] also strengthens the proposal of
RNA modulation of PrP conversion. Although PrP is not
a classical RNA-binding protein (RBP), bioinformatic analyses
confirm that it has several attributes that qualify it as an RBP
[21]. In addition to its binding with nucleic acids (NA), the
intrinsically disordered nature of PrP positions this protein as
a versatile scaffolding molecule capable of undergoing both
homotypic and heterotypic (e.g.: with nucleic acids) phase
separation.

It has been proposed that aberrant phase transitions may
be the underlying cause of the pathogenesis of neurodegen-
erative diseases [22-24], where the formation of aggregated
species is preceded by liquid-liquid phase separation (LLPS)
[24-26]. LLPS is a phenomenon driven by weak multivalent
interactions between proteins and other biomolecules, leading
to the formation of dynamic, concentrated, membraneless
condensates [21,23,25]. These structures arise through elec-
trostatic interactions, m-m stacking, cation-m interactions,
hydrogen bonding, and hydrophobic forces, facilitating cellu-
lar compartmentalization and the regulation of biochemical
processes [21,25]. LLPS plays essential physiological roles,
including the organization of membraneless organelles such
as the nucleolus and stress granules, the regulation of gene
transcription, cell signalling at the plasma membrane, and the
modulation of cytoskeletal dynamics [23]. While LLPS is
crucial for maintaining cellular homoeostasis, its dysregula-
tion has been linked to pathological transitions associated
with neurodegenerative diseases [21-24].

In the context of heterotypic PrP phase transitions, we
have described that interaction with DNA aptamers drives
the formation of rPrP-NA condensates [27]. Depending on
the aptamer conformation, a liquid-to-solid transition was
observed [27,28], possibly related to the formation of patho-
logical protein aggregates.

In summary, rPrP can bind both DNA and RNA with
(sub)micromolar affinities in vitro [8,14,27,29] and the resul-
tant complexes may be phase-separated condensates [27], or
aggregated species (undergoing a liquid-to-solid transition)
that may induce cell dysfunction. These effects seem to
depend more on NA size and conformation than on its
sequence [8,27,30]. In particular, total RNA extracted from
murine neuroblastoma (N2a) cells produced aggregated rPrP:

RNA species with high toxicity to mammalian cultured
cells [14].

Based on these findings, we asked which RNA molecules
present in the total RNA extract were involved in the interaction
with full-length murine recombinant PrP (rPrP*?*!, from now
on referred to only as rPrP) and responsible for the previously
observed effects [14]. We used total RNA extracted from N2a
cells (N2aRNA) to identify sequences bound to rPrP with high
affinity. N2aRNA was incubated with full-length rPrP, and
insoluble samples were centrifuged. RNA was recovered from
the pellet using different approaches (washing with NaCl at 250
or 350 mM and after treatment with RNase) (Figure 1). The
recovered RNAs induced de novo aggregation/phase separation
of rPrP and were amplified and sequenced using the Illumina
platform. Across different replicates, significantly enriched
rRNA motifs were found, suggesting that these molecules parti-
cipate in PrP misfolding and drive PrP phase separation, which
may precede pathological PrP aggregation.

Materials and methods
Reagents and protein samples

All reagents used were of analytical grade. Protein concentra-
tion was 1.0 pM (0.023 mg/mL), for light scattering (LS) mea-
surements, 10 uM (0.23 mg/mL) for turbidity assays, and
50 uM (1.15mg/mL) for RNA extraction assays. We used
10 mM Tris (tris(hydroxymethyl)aminomethane) buffer con-
taining 100 mM NaCl, pH 7.4 in all experiments performed in
this study. If another buffer or different protein concentration
was used, it was indicated in the figure legend. Recombinant
human a-synuclein was expressed and purified as described
[31]. The single-stranded 25-mer DNA aptamer Al_mut [27]
was synthesized and purified by Integrated DNA
Technologies (Coralville, USA). All materials used were
nuclease-free or previously treated with diethyl pyrocarbonate
(DEPC). All figures presented in this work are representative
of at least three independent experiments.

Expression and purification of recombinant prion protein,
rPrP

Full-length recombinant murine PrP (rPrP*>~**!) was expressed

in Escherichia coli and further purified by high-affinity column
refolding and histidine tag removal using human thrombin
following previously described protocols [8,32].

Cell cultivation

Neuro2a (N2a) cell lines were purchased from the Rio de
Janeiro Cell Bank (BCR]J, RJ, Brazil). Cells were grown in
DMEM/F-12 medium with 10% foetal bovine serum, 0.1%
gentamicin (10 mg/mL) and were maintained at 37 °C in
a humidified atmosphere containing 5% CO,.

Ribonucleic acid samples

Total RNA was extracted from N2a cells (N2aRNA) with
TRIzol (Invitrogen, USA) following the manufacturer’s
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Figure 1. Strategy for RNA recovery from rPrP:N2aRNA aggregates and sequencing. Schematic representation of protocols used for RNA recovery and sequencing.
After extraction from N2a cells (1), total RNA transcripts were incubated with rPrP (2), the resultant aggregate was precipitated (3) and subjected to different
treatments: not treated (4a), washed with NaCl 250 mM (4b), washed with NaCl 350 mM (4c) or treated with RNase A (4d). Then, RNA molecules were re-extracted (5),

and further sequenced (6), and analysed (7).

instructions. N2a cells were centrifuged at 3,200 g for 10 min
and all supernatant was discarded. The obtained pellet was
resuspended in 1 mL of TRIzol and incubated for 10 min.
Subsequently, 0.2 mL of chloroform was added, homogenized,
incubated for an additional 3 min, and then centrifuged for
15min, at 10,000 g. At this step, the aqueous phase was
transferred to a new sterile microtube (RNase free, Axygen),
followed by the addition of 0.5 mL isopropanol, homogenized,
incubated for 10 min, and centrifuged for 10 min, at 10,000 g.
The pellet was washed with 1 mL 75% ethanol, vortexed
vigorously to homogenize, centrifuged for 5min, at 7,500 g.
Subsequently, the entire supernatant was removed, and the
pellet was dried at 37 °C to evaporate the ethanol. Finally, the
extracted RNA was resuspended in ultrapure water treated
with DEPC, incubated for 10 min at 65 °C and then quantified
and stored at —20 °C. To verify the integrity of the extracted
RNA, quality control was performed running the samples on
a 0.8% agarose gel at 100V, 1 h in 4-morpholinepropanesul-
fonic acid (MOPS) buffer and formaldehyde and stained with
GelRed (Biotium, USA).

Turbidity assay

The turbidity of rPrP sample in the presence of re-extracted
RNA was measured at 400 nm in a SpectraMax® Paradigm®
(Molecular Devices) 96-well plate reader. The final concentra-
tion of rPrP was 10 uM (0.23 mg/mL) and the recovered RNA
concentration was 0.115 mg/mL. To further investigate aggre-
gation kinetics, additional turbidity assays were conducted in

quadruplicate using a CLARIOstar (BMG LABTECH) plate
reader at 400 nm, in a 384-well plate. rPrP was tested at
a fixed concentration of 0.115 mg/mL (5 uM) with N2aRNA
(Figure 1, input), RNase-treated N2aRNA (Figure 1 (R)), or
Al_mut aptamer at 2:1 (0.0575mg/mL) and 1:5 (0.575 mg/
mL) ratios. Similarly, a-synuclein at 0.070 mg/mL (5 uM) was
incubated with N2aRNA at 0.035 mg/mL (2:1) or 0.350 mg/
mL (1:5). All samples were prepared in 10 mM Tris buffer at
pH 7.4, containing 100 mM NaClL

Transmission electron microscopy and optical microscopy

Micrographs of rPrP in the presence of N2aRNA (input),
RNase-treated N2aRNA, or Al_mut were acquired using
a FEI Tecnai SPIRIT transmission electron microscope.
Sample grids were prepared by applying 5 uL of each sample
onto formvar/carbon-coated grids, followed by negative stain-
ing with 2.0% uranyl acetate. To assess the presence of liquid-
liquid phase separation (LLPS), bright-field microscopy was
performed using a Nikon Inverted Microscope Eclipse Ti-S
equipped with a 60x water-immersion objective (numerical
aperture 1.2). rPrP was tested at a fixed concentration of
230 ug/mL (10 uM), and a-synuclein at 140 pg/mL (10 uM)
with N2aRNA, RNase-treated N2aRNA, or Al_mut at 2:1
and 1:5 stoichiometries. A total of 20 uL of each sample was
pipetted onto a 24x60mm coverslip. All images were
acquired at room temperature and processed using Fiji
(Image], USA). All samples were prepared in 10 mM Tris
buffer at pH 7.4, containing 100 mM NaCl.
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Droplet quantification

The quantification of images obtained through phase-contrast
microscopy was performed using Fiji software (ImageJ, USA).
The images were converted to 8-bit, and the contrast was
adjusted to enhance droplet visualization. An edge detection
filter (Find Edges) was applied to highlight the edges of sus-
pended droplets. The threshold was adjusted to distinguish
suspended droplets from background droplets (wetting). The
suspended droplets were quantified in terms of area (um®)
and number.

Isolation of RNA molecules bound to rPrP

rPrP (200 pg) was incubated with total RNA extracted from
N2a cells (N2aRNA, input) (100 pg) for 10 min in 10 mM Tris
buffer at pH 7.4, containing 100 mM NaCl. After incubation,
samples were centrifuged for 30 min at 12,000 g to precipitate
the aggregates. The pellet samples were saved and labelled as
‘no treatment’ samples. In parallel, aggregate pellets were
washed with 250 mM or 350 mM NaCl and pelleted again
(twice) or treated with 1 pg (70 units) of RNase A (Product
number R6513, Sigma, USA) in 500 uL of 10 mM Tris buffer
containing 100 mM NaCl at pH 7.4 for 1h at 37 °C and
pelleted again (Figure 1). RNA was recovered from each pellet
using TRIzol (following the manufacturer’s instructions) and
quantified using a Nanodrop ND-1000 spectrophotometer
(NanoDrop Technologies, Inc., USA) (Table S1).

Cytotoxicity assay

Cells were seeded in 96-well plates at 40-50% confluency. On
the following day, cells were treated with the tested samples
which had been prepared 21 hours earlier. The final treatment
volume consisted of 10% of the sample in each well. The
samples were: rPrP:N2aRNA (1:5 ratio), rPrP, and N2aRNA,
with an rPrP concentration of 0.0115mg/mL. After a 72-h
treatment, MTT at 0.5mg/mL in PBS was added, and the
plates were incubated for 2-4 h. The formazan crystals formed
were solubilized in DMSO, and the plates were analysed at
570 and 650 nm using a SpectraMax Paradigm multi-mode
microplate reader (Molecular Devices). As a positive control
for cytotoxicity, 10% DMSO was used, and as a negative
control, 10% PBS was applied.

Cell lysates and dot-blot assay

Cells were cultivated in 25 cm® flasks and treated for 48 hours
with soluble rPrP or aggregated rPrP:N2aRNA (1:5 ratio) at
0.71 uM. After treatment, cells were washed three times with
PBS and lysed using liquid nitrogen in a lysis buffer (10 mM
Tris-HCI pH 7.5, 150 mM NaCl, 1 mM EDTA, and 1% Triton
X-100 supplemented with a protease inhibitor cocktail,
Sigma-Aldrich, USA). Then, samples were centrifuged at 300
g for 5min. The protein content was quantified using the
Lowry assay [33] and stored at—80 °C. For dot-blot assays,
10 ug of protein lysates were applied to a nitrocellulose mem-
brane, which was blocked with 1% casein blocking buffer for
1 hour at 4 °C and incubated overnight at 4 °C with the

primary antibody All (1:5,000 dilution) (Millipore). The
membranes were washed five times with TBS-T, incubated
with goat anti-rabbit secondary antibody (1:10,000) at room
temperature for 1h, washed 3 times with TBS-T and twice
with TBS. The analysis was performed using the Clarity™
Western ECL Substrate kit (Bio-Rad Laboratories, EUA) and
images were obtained in a ChemiDoc MP Basic Imaging
System (Bio-Rad Laboratories, EUA). Densitometry of the
dots was quantified using the Image] software (version 1.43
r, National Institutes of Health) and normalized against the
control, which was set to 1 [34].

Sequencing of RNA molecules isolated from rPrP:RNA
aggregates

RNA sequencing was performed at LaCTAD (Central
Laboratory of High-Performance Technologies, UNICAMP,
Campinas, Brazil) using a HiSeq2000 (Illumina, paired-end,
2 x 100bp) with three replicates for each condition, as follows:
i, input total N2aRNA; ii, RNA extracted from aggregates with
no treatment; iii, RNA extracted from aggregates and washed
with 250 mM NaCl; iv, RNA extracted from aggregates and
washed with 350 mM NaCl; v, RNA extracted from aggregates
and treated with RNase A (see Figure 1); for a total of 15
samples. The Illumina kit TruSeq RNA Library Prep Kit v2
was used to generate the RNA-seq libraries for sequencing,
omitting the poly-A tail capture step, to assess the entire
transcriptome. Table S2 presents the total number of reads
obtained from each sample and the number of high-quality
reads passing the standard Illumina quality filters.

Bioinformatic analysis

Quality control of reads was performed using FastQC
(v.0.11.7) [35]. To filter low-quality reads and trimming adap-
ters we used Fastp (v0.20.0) [36]. Mycoplasma contamination
was assessed using 12 different mycoplasma genomes
retrieved from the NCBI repository. Bowtie2 (v2.2.9) [37]
was used with default parameters to align the reads to 12
different mycoplasma genomes. These organisms were
selected based on MycoStrip™ (Mycoplasma Detection Kit,
InvivoGen) which includes six species of mycoplasma repre-
senting about 95% of cell culture contamination. The reads
were aligned as unpaired, thus any mapped read R1 or R2 that
mapped to any mycoplasma organisms had its pair discarded
from further analyses. SeqKit (v 2.2.0) [38] was used to filter
out reads that mapped to any mycoplasma organisms using
the grep -vf option (see Fig. S1 and S2, Table S3 and supple-
mentary file for details).

The remaining reads were mapped to the mouse genome
using mm39 primary assembly (Mus_musculus. GRCm39.dna.
primary_assembly.fa) and the reference transcriptome from
Ensembl version 106 (Mus_musculus.GRCmm39.106.chr.gtf)
using STAR (v2.7.0c) [39] with 2-step mode and ENCODE
parameters. DNA contamination was checked using the
QualiMap (v2.2.1) algorithm [40]. To identify RNAs enriched
in each assay, we performed two different analyses, one using
an RNA-seq-like analysis pipeline, and the other using ChIP-
seq-like enrichment analysis methods, as follows. In the RNA-



seq-like analysis, quantification was performed using RSEM
(v1.3.0) [41] and the significant differential abundance analy-
sis was conducted with voom + weights [42], using batch as
covariable in the model, comparing each group to control
(input). For the ChIP-seq-like analysis, we mapped the reads
against the mm39 transcriptome from Ensembl version 106
using STAR with the output option - quantMode
TranscriptomeSAM. Quality mapping was checked using
QualiMap (v.2.2.1) *°. To keep the properly paired reads, we
used SAMtools (v1.8) [43] with flags -f 0 x 2and -F 4, and the
fixmate and markdup options were used to exclude PCR
duplication reads from further analyses. MACS2 (v 2.1.0)
[44,45] was used to call significantly enriched peaks in broad
mode, with the input of each batch serving as a control.

Enrichment analysis

Gene Ontology (GO) enrichment was performed using
WebGestalt [46], using ensembl geneid as the identifier
type. The Over-Representation Analysis (ORA) was selected
with functional non-redundant databases of Biological
Process (BP), Cellular Component (CC) and Molecular
Function (MF). In the advanced parameters, we set the mini-
mum number of genes per category to 2 and applied a false
discovery rate (FDR) threshold of < 0.05.

Genome browser tracks

The tracks are available at https://verjol01.butantan.gov.br/
users/papers/yraima/ in BigWig format. To upload tracks,
use My Data > Custom Tracks in the UCSC Genome
Browser [47] using the mm39 assembly. To merge uploaded
tracks, use My Data > Track Collection Builder.

Motif enrichment analysis

Motif enrichment analysis was performed using MEME (v. 5.
4.1) [48,49]. First, the Markov background model was built
using the mouse transcriptome, considering only transcripts
expressed in N2aRNA with the option -m 1. The enrichment
analysis was performed using the FASTA file from 53 regions
of 36 transcripts, with the background file represented by the
Markov background model. The following parameters were
used: -rna -minwidth 5 -maxwidth 20 -mod anr -evt 0.05.

RNA structure analysis

The RNA structure analysis was performed with the mxfold2
algorithm [50], using the ‘predict’ function with default para-
meters, previously trained by the authors. The similarity score
(SS) was calculated with RNAsmc (v. 0.8.0, R package) [51], and
the range of values is 0 to 10, indicating the lowest to the highest
similarity. The set of miRNAs was randomly selected from the
ENCODE annotation (60 sequences), and the 5S_rRNA set was
filtered to 100-120 nt and selected from the ENCODE annota-
tion (31 sequences). The 400 highly confident tRNA coordinates
(Mus musculus) were downloaded from GtRNAdb [52], and
then 60 sequences were randomly chosen.
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Statistical analysis

The analysis was performed using GraphPad Prism 8.1.1. For
the aggregation assay, a one-way ANOVA Bonferroni multi-
ple comparisons test was used to determine significant differ-
ences between the input (rPrP+N2aRNA before re-
extraction) and the rPrP+N2aRNA re-extracted (*p-value
<0.05 and **p-value <0.01). Data are presented as means of
replicates, and the error bars represent the standard deviation.
For the turbidity assays, one-way ANOVA followed by
Tukey’s post-hoc test was used for statistical analysis
(***p-value <0.0001). Data are presented as mean + SD.
Additionally, quantification of droplets and measurement of
their area (um®) were performed under the conditions rPrP:
N2aRNA (2:1) and rPrP:N2aRNA (1:5). Statistical analysis
was conducted using an unpaired parametric t-test
(***p-value <0.0001, **p-value <0.001). Data are presented
as the mean of replicates, with error bars representing the
standard deviation.

Results

rPrP phase separation and aggregation induced by
N2aRNA are dependent on the rPrP:RNA stoichiometry

As previously described, the N2aRNA extract can induce rPrP
aggregation, altering its secondary structure content and
yielding species that are partially resistant to proteinase
K digestion and toxic to cultured neuroblastoma cells [14].
To confirm this data, rPrP was incubated with the total RNA
extract (N2aRNA), and both turbidity (400 nm) (Fig. S3A)
and light scattering (320 nm) (Fig. S3B) values were collected.
As expected, the addition of the N2aRNA extract at a 2:1
rPrP:RNA ratio (ug/mL) induced a significant increase in
turbidity and light scattering (Fig. S3).

The protein:NA stoichiometry is crucial in determining
whether phase separation or aggregation occurs, with higher
protein to NA ratios facilitating LLPS [26,27,53]. Thus, we
conducted turbidity assays at different rPrP:RNA stoichiome-
tries (2:1 and 1:5) and characterized the final species by
optical and transmission electron microscopy (Figure 2). We
found that at the higher rPrP:RNA ratio (2:1) (Figure 2(A)),
LLPS occurred without the formation of insoluble aggregates
(Figure 2(C), top row); in contrast, when the N2aRNA con-
centration was increased (1:5 rPrP:RNA ratio) (Figure 2(B)),
aggregation was observed with negligible LLPS (Figure 2(C),
bottom row). These data corroborate the re-entrant behaviour
of NA-induced LLPS in PrP [27,54]. The quantification of
droplets (Figure 2(D)) revealed a significant difference in their
number, with a substantial increase in the 2:1 condition com-
pared to the 1:5 condition, where condensates were drastically
reduced. Analysis of droplet area (Figure 2(E)) did not indi-
cate significant differences between conditions; however, in
the 2:1 condition, variability in droplet size was more pro-
nounced, likely due to dynamic coalescence, a characteristic
feature of LLPS systems [23]. Droplets exhibited dynamic
behaviour, as expected in liquid-liquid phase separation sys-
tems [23], reinforcing the fluidity and fusion of condensates
observed in the 2:1 condition.
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Figure 2. N2aRNA induces LLPS and aggregation of rPrP at different stoichiometries. (A) Turbidity of rPrP alone (blue circles) and in the presence of N2aRNA at a 2:1
stoichiometry (orange circles) measured over 21 hours. (B) Turbidity of rPrP alone (blue circles) and with N2aRNA at a 1:5 stoichiometry (orange circles) measured
over 21 hours. (C) Optical microscopy images and transmission electron microscopy (TEM) images of rPrP + N2aRNA at 2:1 (top row) and 1:5 (bottom row)
stoichiometries, showing LLPS droplets at t=0h and the formation of aggregates at t=21h. The images are representative of 10 independent fields. (D)
Quantification of the number of liquid droplets in rPrP + N2aRNA samples at 2:1 and 1:5 stoichiometries. A significant increase in the number of droplets was
observed in the 2:1 condition compared to 1:5, where condensates were drastically reduced. (E) Droplet area distribution in rPrP + N2aRNA samples at 2:1 and 1:5
stoichiometries. Statistical analysis was conducted using an unpaired parametric t-test for D and E panels (****p-value <0.0001, N = 8). Data are presented as means
of replicates, with error bars representing the standard deviation. rPrP concentration in turbidimetry assays was 115 pg/mL, and in microscopy images, 230 pg/mL.

Transmission electron microscopy revealed the formation
of organized branched aggregates upon incubation with the
RNA input at the 1:5 rPrP:RNA ratio (Figure 2(C), bottom
row). To verify whether these aggregates were cytotoxic, a cell
viability assay (MTT reduction) was employed. There was
a significant increase in the cytotoxic effect of the N2aRNA-
induced rPrP aggregates on N2a cells when compared to rPrP
at the same concentration (2.5 uM) (Figure 3(A)). Cells were
treated with the samples for 72 hours and we observed that
this effect was concentration-dependent (Fig. S4).

To verify whether the RNA-induced rPrP aggregates
could convert native PrP€ into misfolded, aggregated spe-
cies, as occurs in prion diseases, we performed a dot-blot
assay with All, an antibody that is specific for prefibrillar
oligomeric species [55]. We selected a concentration for
the rPrP:N2aRNA (1:5 ratio) samples where cytotoxicity
was ~50% (0.7 uM) (Fig. S4) and treated cells with either
rPrP:N2aRNA or unbound rPrP for 48 h. Then, 75% of the
cells were collected for lysate preparation and fresh med-
ium was added to the flask. When ~ 80% confluency was
reached again, cells were harvested for another lysate
(Figure 3(B), second passage). These lysates were analysed
for their amyloid nature with A1l antibody, and a tenfold
increase was observed for the cells treated with the rPrP:

N2aRNA (1:5) aggregates when compared to the control
N2a cell lysate (Figure 3(B)). Another interesting feature is
that when cells were harvested and grown to confluence
again, the amyloid oligomer pattern observed in the first
passage was retained, indicating the seeding capacity of
PrP aggregates and leading to their amplification in the
growing cells (Figure 3(B)). These results suggest that
upon incubation with N2aRNA, rPrP acquires scrapie-
like properties, becoming able to catalyse the aggregation
of PrPC from the host (in this case, from the N2a cells).
These findings, however, warrant future investigation.

To investigate the specificity of the RNA interaction with
PrP and its resulting effects, we performed turbidity assays
using a-synuclein and a 25-mer DNA aptamer (Al_mut) as
controls. a-synuclein, which forms amyloid aggregates in
Parkinson’s disease [56], did not undergo phase separation
or form aggregates upon incubation with N2aRNA at the two
protein:NA ratios (2:1 and 1:5) (Fig. S5A). In contrast, a DNA
aptamer (Al_mut), previously shown to induce liquid-to-
solid transition of the globular domain of PrP (PrP%**')
[27], induced formation of liquid droplets under both condi-
tions but did not induce rPrP aggregation (Fig. S5B). These
results suggest that the RNA-rPrP interaction exhibits speci-
ficity, as LLPS was observed at a 2:1 stoichiometry, whereas
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Figure 3. N2aRNA-induced rPrP aggregates are cytotoxic and exhibit amyloid
characteristics. (A) MTT assay showing that rPrP +RNA (1:5) aggregates are
cytotoxic to Neuro2a cells. Final concentrations in the wells: 0.0115 mg/mL
rPrP and 0.0575 mg/mL N2aRNA. As a positive control for cytotoxicity, 10%
DMSO was used, while 10% PBS served as the negative control. Statistical
analysis was performed using one-way ANOVA with pairwise multiple compar-
isons using the holm-sidak method (***p-value <0.001). (B) Dot blot assay with
A11 antibody. N2a cells were treated with 0.7 uM of either the soluble rPrP or
the rPrP+RNA (1:5) aggregates. Cells were grown to 80% confluency. Then, cells
were harvested and lysed. The remaining rPrP:N2aRNA-treated cells were sub-
cultivated and lysed after reaching the same confluency. Cell lysates were
quantified, and 10 pug of each lysate was submitted to dot blot with the anti-
amyloid oligomers antibody A11. The number below each dot-blot indicates the
increase in A11 labelling when compared to the control N2a cells lysate.

a 1:5 ratio led to aggregation without phase separation
(Figure 2). This behaviour was not replicated by the tested
controls, indicating that the interaction of PrP with RNA
follows a distinct mechanistic pathway that depends on
RNA concentration and differs from interactions with other
nucleic acids.

Recovered RNA preserves the effects on rPrP phase
separation and aggregation

We next asked which molecules in the RNA extract would
preferentially interact with rPrP and be responsible for aggre-
gation and/or phase separation.

Two strategies were developed to recover rPrP-bound RNA
and identify which RNA molecules from the N2aRNA extract
bind rPrP with high affinity. Figure 1 illustrates the two
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different protocols used in this work. In the first protocol,
we washed the aggregates with 250 mM NaCl (step 4b in
Figure 1) or 350 mM NaCl (step 4c in Figure 1) to remove
weakly bound RNA (non-specific binding). In the second
protocol, we treated the aggregates with RNase A for 1h at
37 °C (step 4d in Figure 1) to isolate the sequences that
interacted most tightly with rPrP, thus being retained within
the insoluble species and protected from RNase A digestion.
After the treatments, the RNAs that remained bound to rPrP
were recovered with TRIzol extraction. Three batches of RNA
samples for each protocol were prepared using the strategy
described above. The size distribution of the RNAs recovered
from these treatments in all batches was evaluated by agarose
gel electrophoresis. In all samples, it was possible to visualize
bands corresponding to ribosomal RNA subunits (Fig. S6).
Recovered RNA after the different treatments was able to
increase turbidity in an rPrP solution (Fig. S7), indicating
formation of PrP condensates.

As the rPrP-bound RNA recovered after digestion with
RNase A (Figure 1) yielded a significant increase in turbidity
(Fig. S7), we performed the subsequent experiments with the
RNase-treated sample only and compared with the input
(N2aRNA). The RNAs present in the RNase-treated sample
triggered rPrP phase separation at the 2:1 (rPrP:RNA) ratio,
but no aggregated species were observed (Figure 4).
Additionally, the addition of 500 mM NaCl led to the dissolu-
tion of LLPS droplets (Figure 4(B)), indicating that electro-
static interactions play a key role in the phase separation
process, as commonly observed in LLPS systems [24].
Consistently, the droplets exhibited dynamic behaviour,
further reinforcing the reversible nature of this phase separa-
tion. It is interesting to note that the analysis of droplet
number showed a significant increase in the rPrP + RNase-
treated RNA condition compared to the untreated condition
(2:1) (Figure 4(C)), and the droplet area also increased sig-
nificantly (Figure 4(D)). We can conclude that at least part of
the RNAs responsible for PrP phase separation was preserved
after treatment with RNase A, suggesting that an RNA popu-
lation with high affinity for PrP was indeed selected.

Recovered RNA sequencing and analysis

rPrP aggregation was conducted in the presence of RNA
molecules in biological triplicate. We wused either (A)
250 mM NaCl or (B) 350 mM NaCl to purify the sequences
more avidly bound to PrP, or (C) RNase A to perform a more
stringent purification of RNAs bound to PrP. Recovered RNA
quantification is summarized in Table S1.

For each experiment, RNAs that remained bound to
aggregated rPrP after washes were paired-end sequenced
in an Illumina HiSeq2000 instrument to produce 12 RNA-
seq datasets. These datasets consist of 3 replicates for each
of four different conditions (Figure 1; 4a, RNA extracted
from aggregates with no treatment; 4b, RNA extracted from
aggregates washed with 250 mM NaCl; 4c, RNA extracted
from aggregates washed with 350 mM NaCl; and 4d, RNA
extracted from aggregates treated with RNase A). In addi-
tion, input total N2aRNA (three replicates before incuba-
tion with rPrP) was also sequenced, resulting in a total of
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treatment to isolate the N2aRNA. The re-extracted N2aRNA was then incubated with rPrP at the same stoichiometry (2:1), and turbidity was monitored over time. (A)
Turbidity of rPrP alone (blue circles) and in the presence of re-extracted N2aRNA at 2:1 stoichiometry (orange circles) measured over 21 hours. The re-extracted
N2aRNA induced a ~ 133% increase in turbidity compared to rPrP alone. Turbidity values were normalized by dividing all measurements by the mean absorbance of
rPrP alone at the first time point. (B) Left: optical microscopy of rPrP + re-extracted N2aRNA (2:1), revealing the formation of LLPS droplets. Middle: addition of
500 mM NaCl disrupted the LLPS droplets, demonstrating the salt sensitivity of the system. Right: transmission electron microscopy (TEM) image of rPrP + re-
extracted N2aRNA (2:1) highlighting the absence of aggregates. (C) Quantification of the number of droplets formed in rPrP + RNA samples (2:1 stoichiometry)
treated with RNase compared to untreated samples. A significant increase in droplet formation was observed in the RNase-treated condition compared to the
untreated condition. (D) Droplet area distribution under the same experimental conditions. Droplets formed in the RNase-treated condition exhibited significantly
larger areas than those in the untreated condition. (C and D), statistical analysis was conducted using an unpaired parametric t-test (***p-value <0.001, N = 8). Data
are presented as means of replicates, with error bars representing the standard deviation. The images are representative of 10 independent fields. rPrP concentration
in turbidimetry assays was 115 pg/mL, and in microscopy images, 230 ug/mL.

15 RNA-seq datasets. All sequenced reads were aligned to
the mm39 version of the mouse genome using STAR [39].
The total number of sequences obtained and the number of
sequences that mapped to the mouse genome in each of the
samples is shown in Table S2. Since genomic DNA can
interfere in rPrP aggregation, we investigated whether
genomic DNA possibly present in our samples was asso-
ciated with protein aggregation. For this, we used the
quantification of reads mapping to intergenic regions in
the mouse genome as a proxy of DNA contamination;
intronic regions were not accounted for because sequencing
of total RNA without poly-A selection tends to capture
unprocessed RNAs as well as processed spliced ones [57].

No significant association was found between genomic
DNA and protein aggregation (see supplementary file).
Notably, most of the reads were mapped to ribosomal
RNAs (about 62.67%) due to the strategy of sequencing
total RNA, which was implemented by the library construc-
tion approach that was used.

rPrP-bound sequences matching different RNA molecules
related to the ribosomal complex

To investigate RNA molecules bound to rPrP, we used four
subsample datasets, each composed of 3,000,456 reads ran-
domly picked from each of the 15 samples, and for each



subsample dataset we performed enrichment analyses using
two different approaches, one based on RNA-seq and the
other on ChIP-seq pipelines (Fig. S8). The RNA-seq pipe-
line aimed to identify and characterize quantitative differ-
ences in RNA abundance between biological samples from
two or more groups, an RNA-seq-like approach [58]. While
the nucleotide binding protein motif-enrichment identifica-
tion pipeline, adapted from the ChIP-seq method, was used
to identify DNA binding sites for a protein of interest
[58,59], and this was a ChIP-seq-like approach. We focused
on the RNase A assay due to the higher percentage of rPrP
aggregation. For the RNA-seq-like analysis pipeline, nine
RNA molecules were identified as enriched after RNase
A treatment compared with total N2aRNA. We applied
differential expression analysis to the four subsampled
datasets, resulting in a mean value of 36 differentially
expressed transcripts (Table 1, FDR<5%). As our interest
was in the enriched RNA molecules, we selected only
‘upregulated’ genes, resulting in 37 transcripts, and only
10 (27%) were identified in at least three subsampled data-
sets analyses or more (Figure 5). Applying the same ratio-
nale, we conducted the ChIP-seq-like analyses on the four
subsampled datasets, utilizing total N2aRNA as input for
each group comparison. It is noteworthy that RNase
A treatment yielded a higher number of peaks compared
to any other group (Figure 6A and Table 2, g-value <5%),
and exhibited the highest degree of overlapping peaks

Table 1. Differentially expressed RNAs (DEGs) with FDR < 5% comparing RNase
a assay versus input N2aRNA.

DEGs
Analysis (FDR <5%) Up Down
Dataset-1 34 15 19
Dataset-2 37 18 19
Dataset-3 33 17 16
Dataset-4 40 17 23
A
dataset-3 dataset-4
dataset-2

dataset-1 6 6
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among replicates (Figure 6B and Table 2). Therefore, our
focus was directed towards the RNase A assay results.
Peaks identified in at least two replicates were considered
for further analysis and resulted in 77 peaks on average
(belonging to 26 transcripts). Transcripts that were identi-
fied in at least two different datasets were selected and
resulted in 36 transcripts representing 34 genes
(Figure 6C) summarized in 53 non-redundant merged
regions. The GO enrichment analysis (FDR <5%, Cellular
Component) showed the Ribosome (GO:0005840) category
as overrepresented with 17 genes (Rps20, Rpsl7, Rpslb5a,
Rps12, Rplp0, Rpll13, Rplll, Eeflal, Rps27a, Rps23, Rpl7,
Rpl5, Rpl32, Rps4x, Rps15, Rpl31, Rpl23a) along with other

4 GOs named preribosome (GO:0030684), polysome
(GO:0005844), protein folding chaperone complex
(GO:0101031) and myelin  sheath  (GO:0043209)

(Figure 6D, Table S4). Comparing the results obtained
with the RNA-seq-like and ChIP-seq-like approaches,
both analyses identified eight genes in common whose
RNAs were bound to rPrP: Rn7SI (7S RNA 1), Rn7S2 (7S
RNA 2), Rps4x (ribosomal protein S4, X-linked), Rpsl5a
(ribosomal protein S15A), Rps27a (ribosomal protein
S27A), Rplll (ribosomal protein L11), Rpli3 (ribosomal
protein L13) and Hspa8 (heat shock protein 8). The abun-
dance of reads mapped along the locus of each of the three
selected genes is shown by snapshot images of the genome
browser (Figure 7A-C). Curiously, the density of mapped
reads along the entire locus of the Rps4x gene indicates that
the unspliced immature mRNA of Rps4x was bound to PrP
(Figure 7C). 7S RNAs are abundant non-coding cytosolic/
mitochondrial polyadenylated RNAs predicted to regulate
transcription initiation in mammalian mitochondria [60].

Rn781 and Rn7S2 (Figure 7A,B) are composed of 300
nucleotides, with >60% GC content. Rps4x (Figure 7C)
encodes ribosomal protein S4, X-linked, a structural constitu-
ent of the ribosome predicted to enable RNA binding activity.
B
. Rps15a I
Rn7s1 1.4
Rn7s2 5
Hspa8 '
v Rps18-ps6 1
Rps27a
N Rpi3 °?
Rpl13 I 06

SRR Rpl 11

I Rps4x

L-}esejep
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g-lesejep
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Figure 5. RNA molecules identified in rPrP aggregates/condensates. (A) Venn diagram of differentially expressed genes (DEGs) in each dataset analysis. (B) Heatmap
of DEG analyses in each dataset. Columns represent each dataset analysis, and genes are shown in each row. Colors are scaled according to log2 Fold change (RNase

A/N2aRNA total RNA).
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rPrP-bound RNAs are enriched in low complexity
sequence motifs

To investigate the sequence motifs enriched in the rPrP-
bound RNAs, we used 53 non-redundant regions from 36
transcripts that were identified in common in at least two
different datasets from the ChIP-seq-like analysis. Among
them, we found 3 enriched consensus motifs (E-value <0.05,
Table 3). Among the motifs identified in different transcripts
there were low complexity sequences (i.e. poly-U, poly-GA,
Figure 8(A)). We predicted the RNA secondary structure
encompassing these motifs (motif length + 10 nt up/down-
stream) using mxfold2 as described in the Methods and cal-
culated the structure similarities among them wusing the
RNAsmc tool [51] and generated similarity scores (SS).
A clustering analysis using the SS values showed that there

were 3 main clusters of RNA structures (Figure 8(B)).
Looking at the MEME motif types among the 3 clusters
(Figure 8(B)) one can see that they are distributed along the
RNA structural groups, indicating that the clusters are not
entirely correlated with the sequence context since all MEME
motifs are found in all 3 structural clusters (Figure 8(B)). To
investigate the strength of these structural similarities, we
compared them with the similarities found in 3 groups of
highly structured RNAs: tRNA, miRNA and 5S_rRNA. The
median of SS in intragroup comparison follows the order:
tRNA (8.22), miRNA (7.03), MEME (6.98) and 5S_rRNA
(6.19) (Figure 8(C)). The median of SS in intragroup compar-
isons are in general higher than when comparing SS between
two different classes of RNAs (Figure 8(C)). To ensure that
the SS value in MEME intragroup comparisons is not only
due to its size (~40 nt), since the other classes show larger
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Table 2. Number of peaks significantly identified in each group compared to the input N2aRNA (g-value <5%).

repl repl rep2
n n n

Groups repl rep2 rep3 rep2 rep3 rep3 Dataset No. of Genes
No treat. 62 43 56 6 7 8 1 13

50 42 46 4 4 6 2

65 34 49 3 6 4 3

69 48 47 5 9 2 4
250 mM 47 5 101 0 7 0 1 9

79 8 72 2 6 3 2

59 3 78 0 7 2 3

50 5 62 1 6 3 4
350 mM 66 6 84 0 5 0 1 4

66 2 77 0 3 0 2

57 8 63 0 3 1 3

76 2 62 0 8 0 4
RNaseA 84 84 57 14 14 9 1 34

92 84 65 16 17 1 2

91 87 53 14 9 8 3

88 76 61 1 15 7 4
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Figure 7. RNA molecules identified in both analyses. Genome browser visualization of three genes, shown in panels A to C, which were identified in common in both
analyses’ pipelines (RNA-seq-like and ChIP-seqg-like). Genomic coordinates of each locus are shown at the top of each panel. GENCODE annotations of genes mapped
to the locus are shown in the green tracks, and RefSeq annotations in the blue tracks. The ‘Prion-RNA’ track shows the abundance of RNA reads bound to rPrP in the
RNase A-treated sample that mapped to this genomic region, indicated by light purple colour peaks. For comparison, reads from the total N2aRNA sample that
mapped to this region are indicated by dark purple peaks.
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Table 3. Enriched motifs among 36 transcripts bound to rPrP insoluble species (E-value <0.05).

Motif ID Consensus motif sequence Motif width (nt) Enrichment E-values # of unique motif sequences # of target transcripts
MEME-1 YUYSYCAUWUUYCAYGUYYU 20 2.3e-072 24 2
MEME-2 GAGGAAGANRA 1 2.3e-010 57 23
MEME-3 UCMAUGUGCKDMCCUCCCG 19 6.4e-008 7 4
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Figure 8. Enrichment motif analysis of RNA molecule regions bound to rPrP insoluble species. (A) Sequence motifs enriched in RNA molecules bound to rPrP. (B)
Heatmap of similarity scores (SS); each row and column represent a sequence encompassing the motif (motif length + 10 nt upstream/downstream). The blue-to-red
color scale reflects the low to high SS, respectively. (C) Boxplot of SS values among groups. The comparisons within and between groups are shown on the x-axis; the
y-axis shows SS values. Significance is indicated by *** (p-value <1E-05) and was calculated between the MEME_MEME group vs each of the other groups. (D)
Schematic representation of the representative structures formed by RNAs of the three structural clusters. Each cluster is outlined by a rectangle, and each short
structural motif is represented by a different colour: hairpin loop (blue), stem (green), external loop (salmon), bulge loop and internal loops (gold).



RNAs with ~ 70 to 120 nt, we compared these MEME struc-
tures with other random sequences of the same length (40 nt)
originated from the transcriptome and once again the SS of
MEME intragroup was higher than the SS of random
sequences (Fig. S9). The first structural cluster (Cluster-1)
(Figure 8(D)) was composed of 23 sequences mainly formed
by a hairpin loop (blue), stem (green) and external loop
(salmon). Cluster-2 (Figure 8(D)) with 7 sequences had
a similar structure, however with the presence of a bulge
loop (gold) and Cluster-3 with 34 sequences showed
a similar structure with an internal loop (gold) instead of
a bulge loop (Figure 8(D)).

Discussion

Here, we identified a pool of RNA molecules involved in the
ribosomal RNA complex preferentially bound to rPrP, using
two different analysis approaches (RNA-seq-like and ChIP-
Seq-like). Some RNAs were already reported to bind to rPrP
to form aggregates, and a notable one is the 235/28S rRNA
[29]. In fact, rRNA is the most abundant type of RNA inside
a living cell [61]. Based on this, it is no surprise that enriched
rRNA-derived sequences would be found bound to rPrP. This
finding is also supported by the fact that some molecules with
high anti-prion activity in vitro and in vivo, such as guanabenz
(GA) and 6-aminophenantridine (6AP), target rRNA [62,63].
These two compounds have no direct interaction with PrP
and are not able to reduce PrP>® formation in cell free con-
version assays but bind directly to rRNA [20].

Our findings are in line with the known fact that mamma-
lian PrP interacts with ribonucleic acids and that these mole-
cules could be involved in the early stages of prion diseases
[30,64]. RNA molecules can stimulate PrP conversion into
aggregates and induce formation of PrP®* (PrP forms that
are partially resistant to proteinase K digestion) in vitro
[13,14,65]. Aggregates generated upon this interaction can
be toxic to cultured mammalian cells [14] and have also
been shown to induce prion disease in experimental animals
[16]. Importantly, nucleic acids co-purify with scrapie-
associated fibrils (SAF); RNA molecules extracted from SAF
induced rPrP aggregation and caused prion-like disease in
wild-type hamsters [16]. Recently, through an in-depth ana-
lysis of electron cryo-microscopy (cryo-EM) maps of brain-
derived SAF, non-protein extra densities were observed
within each fibril, attributed to RNA [19]. This evidence
supports an in vivo interaction between PrP and biological
polyanionic molecules, such as RNA.

Due to a partially efficient N-terminal signal peptide, part
of the expressed PrP® can be retained in the cytosol
(reviewed in [66]; interestingly, it has been described that
cytosolic PrP can participate in large ribonucleoprotein com-
plexes, possibly stress granules, in the same cell line used
here, N2a [67]. Stress granules are formed through liquid-
liquid phase separation [68], which supports the role of
specific RNAs to induce PrP phase separation in vivo.
Among the components present in such granules, one can
find RNA-binding proteins, and different types of RNA
(mRNA, snU1RNA, 5S rRNA, miRNAs, and tRNAs) [69].
Here, we identified RNAs that encode several proteins
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involved in ribosomal complex; considering that cytosolic
PrP is also engaged in aggresome formation, which includes
RNA [69], it is valuable to further investigate the participa-
tion of nucleic acids in prion biology in diseased and healthy
states (reviewed in [21,64,66].

Deregulation of RNAs encoding proteins involved in ribo-
somal complex was observed in ovine microglia with different
permissive scrapie prion propagation [70] and siRNA assay of
Hspal3 in mouse neuroblastoma-derived cells reduced PrP*
positive cells [71]. Although these findings support that RNAs
involved in ribosome complex can alter prion aggregation, at
this point, it is not possible to determine whether these
differences in prion aggregation and phase separation result
from interactions occurring at different mRNA or protein
levels.

Whether the length, conformation, or base composition of
the RNA molecule is important to binding and induction of
effects such as aggregation and toxicity is still a question to be
answered. Here, we identified a set of RNAs with enriched
motifs of widths from 11 up to 20 nucleotides, which suggest
that these RNA motifs should be prioritized in future aggre-
gation and phase separation experimental validation assays. In
this context, analysis of RNAs extracted from brain infected
material points to small fragments up to 55 nucleotides [16],
but further investigation of the sequences is needed. The
motifs identified here are mainly composed of low complexity
sequences; interestingly, low concentrations of poly(U)
formed complex with mutated human PrP (Y145Stop) [26],
and poly(A) or poly(G) synthetic sequences restored PrP*°
murine conversion [72], reinforcing the role of RNAs in
prion replication.

Moreover, to investigate the potential of the identified
motifs, we explored their secondary structure. Notably, the
structures among the motif sequences were more similar to
each other than to random sequences. Interestingly, our
Cluster-1 structures resemble the secondary structure of
nucleic acid aptamers screened against rPrP [27,73], SAF-93
(1-60), and Al. SAF-93 is an RNA aptamer selected as the
minimal conformationally selective structure for PrP binding
[73] and Al is a single-stranded DNA aptamer that triggers
rPrP LLPS [27]. This may lead to a putative mechanism by
which RNAs could act and should be further investigated in
the future.

In addition to protein aggregation modulated by nucleic
acids (reviewed in [15,21,64], recent data highlight the role of
NAs in liquid-liquid phase separation (LLPS) and liquid-to-
solid transitions of proteins related to degenerative diseases,
including PrP [27,53,64]. It has become clear that LLPS can
precede non-functional protein aggregation [24,74] and we
hypothesize that some of the identified RNA sequences
might participate in vivo in PrP phase transitions. Here, we
have observed that RNA-induced phase separation is depen-
dent on the protein:NA ratio, in a re-entrant phase behaviour
also seen for other neurodegenerative disease-related proteins
[26,53]. We have previously characterized phase transitions of
rPrP modulated by DNA aptamers in vitro [27], and showed
that depending on the NA conformation, either formation of
liquid droplets or solid species (aggregates) occurred. Now, we
observe RNA-modulated LLPS and aggregation in a (patho)
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physiological relevant context that deserves further in-cell
validation.

Finally, we speculate on potential in-cell PrP-NA roles.
PrP may interact with the exosome complex, which is
involved in the degradation of ribosomal RNAs. This
could be a site for the catalytic action of rRNA in convert-
ing PrP€ to PrP>° [21], likely within a biomolecular con-
densate. This scenario would support a model where: i) the
exosome complex and PrP are co-localized within
a condensate/liquid droplet; i) rRNA, possibly released
from the degradation process, would act as a scaffold or
catalytic entity facilitating the structural conversion of PrP;
and iii) the concentrated environment of the condensate
might enhance the interaction between PrP molecules,
thereby promoting the formation of the pathogenic PrP*°.
All these hypotheses should be interpreted with caution
and undergo rigorous experimental validation.
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