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Abstract A Bose-Einstein condensation (BEC) has
been observed in magnetic insulators in the last decade.
The condensed bosons are magnons associated with an
ordered magnetic phase induced by a magnetic field.
We review the experiments in the spin-gap compound
NiCl,-4SC(NH3),, in which the formation of BEC oc-
curs by applying a magnetic field at low temperatures.
This is a contribution to the celebration of the 50th
anniversary of the Solid State and Low Temperature
Laboratory of the University of Sdo Paulo, where this
compound was first magnetically characterized.
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1 Introduction

Macroscopic systems governed by quantum mechanics
of interacting particles attract a great deal of interest.
Cold atoms and quantum magnets, whose total spin
is an integer, have interesting similarities that show
the common physics of these two seemingly different
realizations [1-11]. All atoms with an even number
of neutrons satisfy Bose statistics, which accounts for
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about 75% of the atoms in the periodic table. Based
on the Bose-Einstein statistics a gas of non-interacting
massive bosons condenses below a certain temperature
TgEc, in which the Bose-Einstein condensation (BEC)
occurs. This is a macroscopic quantum phenomenon
characterized by spontaneous quantum coherence per-
sisting over macroscopic length and time scales. In di-
lute atomic gases this phenomenon was realized exper-
imentally for cold atoms. Several quantum spin systems
in solids, which show a magnetic-field induced tran-
sition, are expected to also show condensation above
or below a certain critical field [2, 7, 12]. Studies have
shown that the magnetic system can be mapped non-
locally onto a set of weakly interacting bosons on a
lattice.

The sorting phase can be described as a BEC of
bosonic quasi-particles, in which the magnetic field acts
to preserve the number of bosons. Therefore, the tun-
ing parameter to induce condensation in spin-ordered
systems is not the temperature, but the magnetic field.
For particles as well as magnons, a macroscopic num-
ber of bosons condense into a single quantum state—
the state of lowest energy. The quantum coherence of
Bose-Einstein condensation dates back to the predic-
tion of Einstein, based on Bose’s work, in 1924.

In the diluted BEC the macroscopic wave function is
directly connected with the microscopic energy levels,
providing a complete description of these phenomena
in terms of the Gross-Pitaevskii equation. The concept
of a coherent macroscopic matter wave in interacting
many-body systems is independent of a detailed micro-
scopic understanding of particles. The intricacies of the
many-body problem with interactions that lead to non-
separable Hamiltonians are solved by this equation,
which introduces effective potentials that are simpler
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than the original interactions, which in turn renders the
physical problem more tractable.

Experimental evidence of the BEC in confined
weakly interacting gases was produced by E. A.
Cornell, W. Ketterle, and C. E. Wieman in 1995, lead-
ing to a Nobel Prize in 2001. That BEC would occur
in quantum magnets was first predicted in 1991, and
several reports describing real systems were published
after 2000 [7, 13, 14]. The possibility of experimental
investigation of the BEC in quantum magnets has led to
a deeper understanding of the ground states in strongly
correlated systems. Recent studies concerning the BEC
of bosons in magnetic systems ranged from a 3D weakly
coupled S = 1/2 dimer compound, TICuCls [7] (the first
system in which an identification was attempted with
BEC), a quasi-2D spin system, BaCuSi;O¢ [13], to a
quasi-1D § =1 chain with single-ion anisotropy, NiCl,-
4SC(NH,), (DTN) [14]. In addition to these three
compounds, other gapped spin systems share the same
physical picture of the BEC, most of which comprise Cu
dimers.

The focus of this article is to review systematic con-
cepts and experimental realizations of a transition to a
BEC phase in DTN, where bosons are quanta of mag-
netic excitations in a magnetically ordered ensemble of
magnetic moments. Although there is no consensus on
a specific name for the magnetic excitations, we will use
the word magnon for the excitations in insulating sys-
tems generated by the application of a magnetic field.
This denomination follows the nomenclature used by
the first papers on BEC in magnetic insulators, since el-
ementary excitations in antiferromagnetic systems are
called magnons [2, 7].

We hope that the experimental evidence for BEC
in DTN will stimulate new research in this fascinating
quantum phenomenon.

The outline of this paper is as follows. Section 2
reviews the concepts of the ideal BEC at finite tem-
perature and the nature of BEC when magnons are
induced by the application of a magnetic field. Section
3 presents the magnetic properties of DTN, introduc-
ing the Hartree—-Fock—Popov analysis of the hard-core
boson Hamiltonian. Section 4 presents experimental
works that lead to the interpretation of the induced
phase diagram as a BEC. Section 5 summarizes the
results obtained for DTN in the framework of the BEC
of magnons.

2 Bose-Einstein Condensation

According to the Heisenberg uncertainly principle
the position of a particle is smeared out over a dis-

tance given by the thermal de Broglie wavelength A =
h/(mmkgT)'/? , where kg is the Boltzmann constant,
m is the particle mass, and T is the system temperature
[5, 11]. At room temperature % is typically one hun-
dred thousand times smaller than the average spacing
between the particles, a. This means that the mat-
ter waves of the individual particles are uncorrelated,
and the system can therefore be described by classical
Boltzmann statistics. As the system is cooled, eventu-
ally the distance between two particles becomes the
same as the de Broglie wavelength, a ~ A [1, 11]. The
packet-functions of adjacent particles overlap, causing
the atoms to lose their identity, and the behavior of
the system becomes strongly correlated. The system
is now governed by quantum statistics. The density
distribution of the condensate is represented by a single
macroscopic wave function with a well-defined ampli-
tude and phase, which are the order parameters of
the system, and a Bose Einstein condensate is formed.
Figure 1 shows illustrates this.

The Bose-Einstein condensation is associated with
bosonic particles at low temperatures that condensate
into a quantum state at a temperature Tppc. At low
temperatures, the density of bosons with mass m may

a) Classical behavior

b) Wavelike behavior
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Fig. 1 (Color online) a Classical representation of a solid. a is
the average distance between the particles. b In the wavelike
representation the position of the particles is given by the thermal
de Broglie wavelength A. For decreasing temperatures the wave-
packet becomes correlated for A &~ a. For particles in the same
quantum state, such as bosons at very low temperatures, the
system is represented by a single macroscopic wave-function

@ Springer



294

Braz J Phys (2012) 42:292-305

be expressed by the power-law dependence equation
within the BEC picture as

n\3/2
p=§6ﬂb(g#§> Ty (1)

where ¢ is the Riemann zeta function, and ¢(3/2) =
2.612[1,7,9].

For diluted bosons with small interaction, mean-
ing that the two-particle scattering length x is much
shorter than the interatomic distance, the observed
Tsrc agrees well with the theoretical expectation for
free particles. For less diluted systems, the interaction
between bosons gives rise to a small shift of Tggc [4, 5]:

A(Tgec)/ Tpec = cp'Px. )

Various authors have attempted to determine the
value of ¢, which was found to be in the range 1-2,
although all authors agree on the functional form.

2.1 Candidates for BEC

There are several candidates for BEC. A first attempt
to experimentally observe BEC was made with su-
perfluidity. When “He is cooled to a critical tempera-
ture of 2.17K, the liquid density drops, and fractions
of the liquid become superfluid. The strong interaction
of “He in liquid form prevents perfect condensation.
The formation of Cooper pairs of electrons, which act
like bosons, is also evidence of the condensation effect,
which produces superconductivity [1, 15]. However, in
these systems, a macroscopic wave function provides
only a phenomenological description of the superfluid
state.

By contrast, the macroscopic wave function of pure
condensates is directly connected with the microscopic
degrees of freedom, providing a complete and quantita-
tive description of both static and dynamic phenomena.
This description should cover systems showing a true
BEC phase. Some systems were cited, such as excitons-
polaritons, which are light-mass quasi-particles usu-
ally produced by optical excitations in semiconduc-
tors, and photons confined in a cavity [1, 11, 15-17].
However, excitons have a very short lifetime and the
photons are absorbed by the walls. Because the BEC
requires a thermalization time to condense in which
the number of particles is conserved, their charac-
teristics almost prevent these systems from becoming
BECs. All these systems are believed to be defective
condensates.

Recently it has been reported that a gas of magnons
at room temperature can be continuously overpopulat-
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ing the lowest energy level, which shows characteris-
tics of BEC, when it is driven by microwave pumping
[18,19].

On the other hand, diluted magnons in equilibrium
can be pure condensates at low temperatures, just like
cold gas.

2.2 BEC of Magnons

Magnetic insulators with magnetic ions are character-
ized by a gap separating the singlet ground state from
the lowest-energy excited state. If the gap is closed
by the Zeeman effect, the resulting quasiparticles can
undergo the Bose—FEinstein condensation transition.

The BEC phase in quantum magnets is an XY an-
tiferromagnetic state in which the spins spontaneously
choose a particular orientation in the XY plane. The
number of bosons is proportional to the net magnetiza-
tion, i.e., the S component of the spins. On the other
hand, the number of condensed bosons is proportional
to the antiferromagnetically ordered $* component of
the spins. Thus the XY antiferromagnetic order pa-
rameter maps directly onto the order parameter for
Bose—FEinstein condensation. It has a magnitude (size
of the spins in the spin language, or number of bosons
in the boson language) as well as a phase (direction of
the spins). In the particle language, the boson number
can be tuned by the magnetic field. For this to occur,
the system must be an XY magnet, i.e., must have
uniaxial symmetry in the plane perpendicular to the
applied magnetic field. Therefore only certain quantum
magnets can be treated as BECs. We note that in real
systems there will always be terms that break the uni-
axial symmetry, such as dipole-dipole interactions and
spin-orbit interactions. Consequently the theory is valid
only when these terms are significantly smaller than
the temperature. At very low temperatures any real
quantum magnet will cross over to the Ising universality
class.

Bosons can be achieved by creating and maintaining
a large number of quasi-particles in a system. One
special case is the creation of magnons at the induced
magnetic-ordering phase. Figure 2 shows the phase
diagram in the temperature-versus field plane of an
induced antiferromagnetic ordering in a field whose
magnetic ions are strongly correlated. Magnons can be
created and, under special conditions, condensed into
the ordered phase [2, 8, 14].

A procedure for studying the properties of the phase
diagram is to understand the transitions that appear
when the boundaries separating the phases are crossed
([7, 20, 21], V.S. Zapf, unpublished). When a border is
crossed vertically to enter the ordered phase a thermal
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Fig. 2 (Color online) The phase diagram from the normal to
the BEC state can be studied via thermodynamic properties
such as magnetization, temperature and specific heat, which are
measured when the phase boundary is crossed by sweeping the
field or the temperature, as indicated by the arrows

phase transition results, driven by thermal fluctuations.
The magnetic and thermal energies compete. At tem-
peratures near zero, by contrast, there are no thermal
fluctuations and a quantum transition results, driven
by quantum fluctuations. The magnetic energy and the
zero-point energies compete. This second-order quan-
tum transition to the BEC phase is free of interactions.
However, including even week interactions into the
description of the condensation has proven to be a
great challenge, which was overcome by introducting
effective interactions [7, 10, 20, 21]. These interactions,
well-approximated by a contact pseudo-potential, are
central to arriving at the Gross-Pitaevskii equation.
Understanding the behavior of the phase transition
near zero temperature is understanding the quantum
behavior of the system. The transition to the BEC
state is characterized by specific characteristics of the
thermodynamic properties.

We studied BEC in magnons because condensation
occurs at temperatures that are much more accessible
than the condensation of particles.

Since according to (1) Tppc is proportional to
p*3/m, we would like to maximize p to observe the
BEC at easily accessible temperatures. However, that
equation assumes that the bosons are free particles
and is therefore only valid in the limit of low density.
We can overcome this problem by considering that
TsEc is also dependent on the boson mass 7. By min-
imizing m, we can observe the BEC at relatively high
temperatures without sacrificing the condition of low
boson density. In quantum magnets, the boson mass
is sufficiently small, so that the BEC can be realized
at temperatures of a few Kelvin, in contrast to cold
atoms, in which temperatures in the nano-Kelvin range
are needed to observe the BEC in magnetic optical
traps [19, 21].

3 Magnetic Properties of DTN-BEC

In addition to the properties of NiCl,-4SC(NH,),,
one needs well-prepared samples for studies un-
der laboratory conditions. Single crystals of dichloro-
tetrakisthiourea-nickel (DTN) were grown by dissolv-
ing a large excess of nickel chloride in a saturated
solution of thiourea [22]. The crystals grow after about
two weeks in a solution maintained at a temperature of
35 degrees centigrade. Yellow-brown single crystals are
tetragonal prisms along the c-axis (Fig. 3a). The space
group of DTN is 74, with two molecules in the unit
cell, whose dimensions are a = b = 9.558 A and ¢ =
8.981 A. The S = 1 Ni atoms form two interpenetrating
tetragonal lattices. The thioureas are bounded to the
nickel by means of the sulfur atoms in a square array.
The spin must be in an environment of approximate
uniaxial symmetry (Fig. 3b). The metal is in a non-
centrosymmetric environment of fourfold symmetry.
All molecules are oriented in the same way and held
together by CI-N hydrogen bonds. The CI-Ni-Cl axes
all lie parallel to the crystal c-axis. The samples were
always chemically analyzed for their main constituents.
Polarized light allowed us to verify the excellent quality
of the samples and to check the orientation of the
crystallographic axes for the measurements, as deter-
mined by X-ray. The sample masses in our experiments
ranged from a few milligrams to 2 g.

Initially, to provide magnetic characterization, the
magnetic susceptibitilies of a single crystal were mea-
sured in the directions parallel and perpendicular to the
c-axis, and temperatures ranging from 0.4 to 300K.

Fig. 3 (Color online) a Sample of DTN grown in water solution.
b Schematic crystal structure of the compound. The positions of
the Ni and Cl atoms are shown
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From these data the parameters applicable to
the following S = 1 spin-Hamiltonian with single-ion
anisotropy were determined:

H=3 18 Sive, + 3 [ D(S)? — gusHS; | (3)

v i

The obtained parameters are g = 2.30 and D ~ 9K.
Molecular field correction gives the exchange inter-
action parameter J ~ —2.2K (antiferromagnetic). The
high D value and the anisotropy in the exchange sug-
gest a quasi 1D behavior. These data were used to an-
ticipate an induced ordered phase at low temperature
in an applied magnetic field below ~ 11 T.

3.1 Magnetic Induced Phase Diagram—BEC

The field-induced phase by level crossing is permitted
in compounds that follow stringent requirements: in
addition to having a multiplet above the non-magnetic
singlet, the metal ion must reside in a site of uniaxial
symmetry, so that the magnetic field can be applied
simultaneously parallel to the anisotropic z axis for all
magnetic ions. The parameters for DTN and its crystal
symmetry then yield magnetic properties that can be
studied within this picture.

In DTN the high single-ion anisotropy (energy gap)
is responsible for the splitting of the § = 1 spin triplet
of the Ni?* in a $% = 0 ground state and an §% = +1
excited doublet considerably higher in energy. The
excited doublet can hop to a neighboring doublet via
the transverse component of the magnetic exchange
interaction J, resulting in delocalized states analogous
to the delocalized electronic states in crystals. At zero
field the small exchange interaction between the spins
is not enough to induce long-range ordering, even at
zero temperature. The application of a magnetic field
H leads to a splitting of the doublet, which brings down
the component parallel to the field linearly with H until
the gap between the excited and ground states closes at
H = H,. At this point magnetic excitations, i.e., bosons,
are created (Fig. 4a).

The more realistic view of the energy levels that
takes the interaction into account is shown in Fig. 4b.
The exchange interaction produces a dispersion of the
energy levels, and there is now a field range, from H
to H., where the §¢ = 41 level becomes degenerate
with the ground state and bosons are created. This
gapless phase extends throughout this field range. The
coupling to the magnetic field, which is proportional
to the magnetization, controls the boson density. The
BEC that appears in this intermediate field range cor-
responds to the coherent superposition of the S = +1

@ Springer
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Fig. 4 (Color online) Schematic diagram (7 = 0) of the levels of
energy. a The lowest energy levels of Nit™ in an axial crystalline
field as a function of the external magnetic field. b The broad
band indicates dispersion of the lowest excited level due to
exchange coupling. Condensation occurs in the range between
the fields H.; and H, in which the magnetization M increases
almost linearly up to the saturation

doublet and the S = 0 singlet at each site ([14, 22, 23],
V.S. Zapf, unpublished).

The transition to the magnetic phase can be ade-
quately described as a condensation of bosons. Three
are the basic conditions for BEC induced by a mag-
netic field: (1) the excited state becoming degenerate
with the ground state, (2) strong correlation inducing
3D long-range ordering, and (3) a uniaxial symmetry
leading to number conservation of bosons.

3.2 Hard-Core Boson Model

The first attempt to interpret a field-induced phase
ordering in a BEC was made by Nikuni [7]. In his
work the induced phase diagram of TICuCl; was stud-
ied by applying the Hartree-Fock—Popov (HFP) mean
field analysis to the hard-core boson Hamiltonian. For
a diluted gas of particles the interatomic interaction
is sufficiently weak, therefore the mean field Gross—
Pitaevskii theory is a logical tool to study this system.
In this model the particle scattering is dominated by the
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two-body contact interactions, which are described by
the s-wave scattering length. The physical implication
of this condition is that it is highly improbable for more
particles to interact with each other simultaneously. In
hard-sphere gas, the scattering length is equal to the
diameter of the atoms. In the low-density limit only
the two particles interactions are important. The low-
energy Hamiltonian (3) can be transformed into boson
language via identifying S* = a', where a' is the boson
creation operator, in

)
H = Z (e — ,u))a,':ak + 70 Za,:rqa,t_qakak 4)
k

where € = hk?/2m is the kinetic energy, v is the short-
range repulsion between two magnons that occupy the
same site and V is the unit-cell volume of the sample.

In this hard-core model applied to the Ni** ions the
density of the magnetization along the field direction,
S$? = +1, is mapped onto the boson density. Here the
S$? = —1 component is neglected, because we are inter-
ested in low-field and low-temperatures regions, where
this level does not contribute. An analysis taking this
level into account is discussed in Section 4.17 ([14], V.S.
Zapf, unpublished).

The physics of the magnons depends on the relative
strengths of the repulsive interaction vy and kinetic en-
ergy. When the interaction is attractive, vy < 0, the sys-
tem collapses. If the repulsion interaction dominates,
the system evolves into a state where the bosons form
a large lattice that gives rise to a magnetization plateau
in the M vs. H curve. If the kinetic term dominates,
the system, which corresponds to a Mott insulator in
the low-field region, undergoes a condensation at the
first critical field H.. Above this field the density
of bosons increases proportionally to the longitudinal
component of the magnetization M up to the satura-
tion value, M, at the second critical field H.. The
result is an antiferromagnetic state characterized by
the presence of a staggered transverse moment, Mgy,
perpendicular to the applied magnetic field, forming
a BEC state. The absolute value and relative angle of
My, are related to the amplitude and the phase of the
condensate wave function, respectively. In this phase
the condensate shows a macroscopic order parameter
that spontaneously breaks global phase symmetry by
the emerging antiferromagnetic longe-range order. In
these conditions, there must exist a gapless mode called
Nambu-Goldstone in the new phase, which is necessary
to keep the original invariance of the Hamiltonian. At
H,, all sites are occupied by bosons and the system
enters a second Mott insulating phase [24-27].

3.3 Boson Number Conservation

At the induced phase the Ni magnetic spins do not have
any preferred orientation in the plane perpendicular
to the magnetic field, and the antiferromagnetic order
is XY-like. The tetragonal crystal structure provides
a uniaxial crystal-field symmetry about the direction
of the applied field. It is this symmetry that enforces
number conservation among the bosons. This forces the
bosons to remain in the system and macroscopically
occupy the ground state at low temperatures. Boson-
number conservation is a key condition that separates
bosonic systems that condense from those that do not.
Formally, the phenomenon of BEC requires the con-
servation of particle number. The boson number must
be set by some external constraint or else bosons will be
excitations of the system and vanish as the temperature
is lowered to zero, as is the case, e.g., for phonons.
In the Hamiltonian (4) every creation operator a' is
multiplied by a destruction operator a. If the Hamil-
tonian is rotated by an angle ¢ in the plane perpendic-
ular to the field, then at — a'¢’® and a — ae %, such
that (a"e)(ae®) = ata. Because this Hamiltonian is
independent of ¢ the number of bosons is conserved.
Thus, the uniaxial symmetry of the Hamiltonian creates
a number conservation law for the bosons [28]. In real
situations, the square lattice of the crystal can introduce
a small anisotropy in the ab plane along with dipole-
dipole interactions or Dzyaloshinskii-Moriya (DM)
interactions. These effects generally occur at lower
energy scales and can therefore be neglected at the
temperatures at which DTN was studied. [21] However,
experimental studies should be conducted to discard
effects of this possible anisotropy in the formation of
BECGs.

3.4 Low-Temperature Limit and Critical Behavior

The self-consistent HFP approximation leads to the
following effective Hamiltonian for the magnon system:

H= Z (€ — u + von) aZak, 5)
k

where 7 is the density of bosons per magnetic ion, given
by n= M/Msy.
The chemical potential

1= gup(H - H) (6)

determining the number of bosons in the ground state
characterizes an additional direct contribution to the
magnon energy from the external field H.
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Bosons condense when the renormalized effective
chemical potential is zero [3, 7, 29] (Fig. 5):

Meff = —2von = 0; (7)

the factor of two comes from exchange.

At this “point of condensation”, where the gap is
closed, the applied magnetic field is responsible for
driving the system to the BEC phase in which bosons
are created at (H.i, T¢1). At H,. the magnetization ac-
quires the value M (T) and n.(T) = M (T)/ My, gives
the number of bosons created at the transition. Using
(6) and (7), the low-field boundary of the phase dia-
gram H vs. T can be written as [3, 20, 21, 24, 25]

H.(T) — He(0) = [2vo/gus] ne(T). ®)

On the other hand, the density of created bosons is
given by Bose-FEinstein statistics

p(T) = (1/V) Y [1/ [exp(ex/T) — 1] )
K
That is, at the low-temperature limit [1, 7,9, 31] and
letting the chemical potential be ji.f:

mkgT 3/2
2mh? ’

p(T) ~ £(3/2) < (10)

since the density of bosons per magnetic ion is n.(7) =
p(T)V,where V is the unit cell volume, (8) becomes

kaT>3/2 v

H(T) — H.(0) ~ [2v0/gug] ¢ (3/2) ( =

(11)

4 Classical

/

Fig. 5 (Color online) Effective chemical potential as a function
of temperature for fermions, bosons and classical particles. For
decreasing temperatures, u for bosons reaches the zero limit at
the temperature Tiritical. As T becomes lower than Tritical, M4 1S
pinned at zero [30]
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3.5 Signature of the BEC

Based on this analysis, the phase boundary can be
interpreted as a BEC of magnons. At low temperatures
only the lowest excited energy level is considered, so
that the interaction can be replaced by the constant
vo. In this case, introducing a hard-core constraint as-
suming an infinite on-site repulsion, only one boson
occupies each site. Certain properties of the induced
magnetic phase in TICuCl; can be explained by the
concept of a BEC. Plotted as a function of the field,
the magnetization shows the cusplike dip at the tran-
sition predicted by HFP theory [7, 20, 25]. However,
disagreements are found with other experiments, wich
were later attributed to the lack of uniaxial symmetry.

One of the few compounds entering the BEC phase
under magnetic fields sufficiently low to be reached
using standard superconducting magnets is DTN. Most
other candidates require pulsed fields and yield much
less accurate experimental results. To condensate at
T # 0, magnons should be able to propagate in three
dimensions. For BEC to occur in quasi-1D system,
such as DTN, there must be weak interaction between
the 1D chains, which permits full mobility of magnons
in3D.

One of the experimental features of the BEC of
magnons can be found by analyzing the experimental
data at the boundary H,.(T), where part of the excita-
tions condense.

The signature of the BEC universality class at low
temperature is given by the power-law [3, 7, 12, 20, 21,
24, 25]

Hcl(T) - Hcl(o) ~ AT¢7 (12)

where A is fully determined by the coefficient of (11)
as a function of vy and the mass of magnons.

DTN behaves in 3D below 1.2K as a BEC, which is
where the long-range order sets in, although the univer-
sal behavior with ¢ = 3/2 is observed only below T <
0.2K. This is because the ¢ = 3/2 power-law behavior
is a low-temperature approximation to the full boson
distribution function.

4 Experimental Determination of the BEC Phase

A wealth of useful information about the nature of
the transition to the ordered phase can be obtained
from several thermodynamics properties in the tem-
perature vs. field plane (Fig. 2). The first thermody-
namic property used to study the transitions is the
magnetization, one of the most fundamental quantities
observed in experiments, followed by specific heat and
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magnetocaloric effect. More properties such as magne-
tostriction, thermal transport, EPR, inelastic neutron
scattering, and other techniques are used to identify the
induced magnetic phase as BEC.

4.1 Magnetization

The boundary of the induced phase diagram of DTN
can be experimentally determined by curves of mag-
netization vs. temperature at fixed H, with a cusp-like
minimum at 7., or by H, at the inflexion in scans of
magnetization at fixed temperature 7. These critical
points originate from the competition of two behaviors
of the magnetization, which correspond to the number
of magnons: above 7., magnetization is determined
by the number of thermally excited magnons, which
decreases with decreasing 7T; below 7, the number of
condensed magnons increases with decreasing temper-
ature, overcoming the decrease of thermally excited
magnons. As a result of this competition on the origin
of the magnons, M has a minimum at 7., with the
value M, (Fig. 6a). For the same reason, when the
phase boundary is crossed by sweeping H at a fixed
temperature, the condensation occurs at the inflexion
field H,. (Fig. 6b). It has been proved that at H.(T,)
a discontinuity of the magnetization is provided by the
sudden vanishing of the chemical potential  [7, 20, 24,
25,27].

The magnetization was measured using a vibrating
sample magnetometer, VSM, in temperatures above
0.4K at the High Magnetic Field Laboratory facility of
the University of Sdo Paulo. The sample was immersed
in a *He bath, and the temperature was measured by
vapor pressure and carbon-glass or Cernox thermome-
ter. The magnetic field was supplied by a Nb3Sn su-
perconductor. Measurement at 7= 0.019K was made
using the gradient field method in the dilution refriger-
ator. The transitions were determined in the magneti-

~
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Fig. 6 (Color online) a Curves of magnetization taken at several
fields. The minimum indicates the transition temperature 7.
b Representative curve of dM/dH. The sharp bending indicates
the transition field H,

zation versus field curves by locating anomalies in the
second derivative of the magnetization [32].

4.2 Specific Heat

All measurements were made on crystals with the ex-
ternal field H provided by the 17-20 T superconducting
magnet in a dilution refrigerator system at the National
High Magnetic Field Laboratory in Los Alamos. The
magnetic field was always applied along the tetragonal
c-axis of the sample. Specific heat was measured with
two methods, as shown in Fig. 7.

Measurements at quasi-constant temperature were
made using a developed ac technique, Fig. 7a. A
small sample, ~1 mg, was mounted onto a home-made
calorimeter consisting of a Si platform furbished with
an amorphous-metal thin film heater and a bare Cernox
thermometer. The calorimeter was attached to the tem-
perature regulation block and was held in a cryogenic
vacuum system inside a refrigerator. The sample heater
is driven by one lock-in amplifier running at frequency
f, and the temperature is detected with a second lock-
in locked to the frequency of 2 f. In both cases a peak
is observed at the transitions. The observed anomalies
in C, map the known phase boundaries in DTN quite
well. In the C, versus H curves a double peak is ap-
parent, with the peak near H, far larger than the peak
near H,;. A comprehensive theory of the specific heat
has been developed. Quantum fluctuations present
near H,., but not near H,, reduce the kinetic energy
of the magnons, causing a strong mass renormaliza-
tion near the two transitions, m(H,)/m(H,) ~ 3. This
effect, closely described by analytical and quantum
Monte Carlo calculations, explains similar asymmetries
observed in other properties of DTN, such as magneti-
zation, electron spin resonance, magnetostriction, and
thermal conductivity [33].
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Fig. 7 (Color online) a Specific heat as a function of the mag-
netic field for fixed temperatures of 0.40K (triangles) and 0.75K
(squares). b Specific heat in an applied field of 10 T
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At constant field the method used was the quasia-
diabatic heat pulse relaxation technique (Fig. 7b). The
sample was mounted onto a sapphire plate and its
temperature wa s monitored by a RuO, field-calibrated
thermometer [14].

4.3 Magnetocaloric Effect

This effect was measured by sweeping the field up and
down while monitoring the sample temperature with
the bath temperature held fixed. The device was the
same that was described in measurements of C, by the
relaxation technique [14]. In the magnetocaloric effect,
whose data we show in Fig. 8a, heating is observed as
the magnetic field is swept through the boundary of the
phase diagram, surrounded by regions of cooling before
and after the transition. The peak in the first derivative
of T(H), Fig. 8b, corresponding to the maximum heat-
ing of the sample, was identified as the phase transition.

4.4 Phase Diagram

The induced ordered phase in the field range H. <
H < H., extends to a finite temperature 7.(H) in
which the maximum temperature for DTN is Tyax =
1.2K. The thermal and quantum phase transitions are
qualitatively different. In the field-induced quantum
critical point, the magnetic order is suppressed by both
the phase and the amplitude fluctuations. Figure 9
shows the constructed phase diagram.

The measured thermodynamic properties of DTN
C,(H,T), M(H, T), AT(H), used to characterize the
transitions, were analyzed in regions near the phase
boundaries, the critical regions, to confirm that this is
a phase transition to a BEC. Very few quantum magnet
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Fig. 8 (Color online) a Magnetocaloric effect determined by
monitoring 7" while sweeping H up and down. b Derivative
dT/dH for several temperatures, where the transition is iden-
tified as the peak
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Fig. 9 (Color online) Magnetic phase diagram determined from
specific heat, magnetocaloric effect, and quantum Monte Carlo
simulations (QMC). The magnetization vs. field measured at
19 mK and calculated from QMC simulations are overlaid on the
phase diagram [14]

candidates to BEC have been studied at temperatures
in which the power-law dependence can be confirmed.
If the temperature range in which the power-law fit is
performed is far from zero temperature, it is difficult to
accurately identify the power-law behavior with correct
parameters. For example, the first determination of the
exponent in DTN yielded ¢ & 2, very different from
the expected value [23]. This problem can be circum-
vented by the windowing method, in which the inter-
cept and the exponent are determined independently
by performing fits over different temperature ranges
and extrapolating the values to zero temperature. The
results show that the field-temperature phase bound-
ary approaches a power law near the quantum critical
point, with an exponent value ¢ ~ 1.5, as expected for
3D BEC [14].

Using the theoretical prediction obtained for the
scaling form of the field- and temperature-dependent
magnetization close to H(T), an analysis of the mag-
netization shows a good agreement between the theo-
retical and experimental results. This clearly shows that
the transition at H,(7T) is a BEC of magnons [34].

4.5 Neutron Scattering

A microscopic understanding of the ground state was
reached through inelastic neutron measurements. Low-
energy magnetic excitations were performed using
the cold neutron triple-axis spectrometer at the Paul
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Scherrer Institute, Switzerland. Using an Oxford in-
struments dilution insert in a VARIOX cryostat, a
sample of three co-aligned deuterated single crystals of
DTN with a combined mass of 3g were cooled to T =
80 mK. The analysis of the resulting dispersion of the
magnetic excitation was adjusted to the Hamiltonian
with interaction. The observed scattering was analyzed
using a single-mode cross section with dispersion ob-
tained from a generalized spin-wave approach for the
disordered phase. The obtained parameters agree with
a model of spins of Ni ions strongly coupled along the
tetragonal axis, but only weakly perpendicular to it,
making DTN a weakly coupled chain system with an
anisotropy higher than the exchange interactions [14].

4.6 Electron Spin Resonance

We availed ourselves of the high-field approach exact
theoretical expressions for the spin-polarized phase.
Investigating magnon excitations in fields up to 25 T
allowed us to obtain a reliable set of spin-Hamiltonian
parameters. Part of this work was performed at the
National High Magnetic Field Laboratory, Tallahassee.
The parameters agree very well with those obtained
from fitting the experimentally induced phase bound-
ary and low-temperature magnetization of DTN with
results of quantum Monte Carlo simulation. The pa-
rameters were used to calculate the frequency-field
dependence of two magnon bound-state excitations
predicted by theory, and observed in DTN for the first
time [35-37].

4.7 Four Sublattice Model

We present the low-energy excitation spectrum in the
magnetically ordered phase obtained from spin reso-
nance measurements down to 0.45 K. The EPR mea-
surements were made at the Kapitza Institute using a
transmission-type spectrometer equipped with a cylin-
drical multimode resonator and a 3He cryostat. The
observed modes can be interpreted within a four-
sublattice antiferromagnetic model with a finite interac-
tion between two tetragonal subsystems, Vingra—sub [35]-

4.8 Crossover from the 1D Fermionic to the 3D
Bosonic Character in DTN

Magnetoacoustic studies in the vicinity of the quantum
critical points in DTN show that the behavior of the
observed properties outside the ordered phase bound-
ary can be well described by an effective 1D fermionic
model of low-lying spin excitons. This, together with
previous results showing the bosonic behavior inside

the boundary, suggests a crossover from the bosonic
to the fermionic character of the magnetic excitations
close to the quantum critical points. One fascinating
aspect of this crossover is continuous tuning from the
bosonic to the fermionic statistics. This research was
conducted in Dresden [38].

4.9 Critical Behavior at the Low Field Transition

Interpretating the low-field phase boundary as a transi-
tion to the BEC phase allows one to obtain information
about the boson interaction in DTN.

The critical field H., plotted as a function of n,
in Fig. 10a, follows the linear relation in (8). The
interaction strength constant vy in that equation can
be obtained from the derivative of the fitted curve
dH./dn. =9.52 =2vy/gup = Basvy =0.61 meV. The
zero temperature transition field is obtained as H.(0) =
2.15 T, in close agreement with Ref. [14]. This confirms
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Fig. 10 (Color online) a Critical transition field as a function
of critical magnetization density #n.. The filled squares represent
the measurements. The dashed line denotes the linear fitting of
the data. The Quantum Monte Carlo data are shown as red
circles. b n. as a function of 73/2, The straight line is the plot
of dn./dT3* = A/B = 0.073, obtained from (8) and (12) from
different experiments. The continuity of this derivative with the
experimental points is very high [39]
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the behavior is linear over the entire temperature
range. Using the value of A ~ 0.70(T/K>*?), as ob-
tained from the phase diagram at low temperature,
and B =9.52, (8) and (12) simultaneously yield the
derivative dn./dT?? = A/B = 0.073, which is plotted
in Fig. 10b as a straight line. The continuity of this
line at low temperature, with the experimental points at
high temperature, is a robust indication that the theory
is sufficiently coherent to allow us to combine results
from different sets of experimental data [21, 39].

4.10 Boson Number Conservation

The derivative d M/d H in Fig. 6b shows a sharp kink at
H.. In a recent report, a Dzyaloshinskii-Moriya (DM)
interaction in DTN was proposed to explain the extra
lines in ESR experiments. This anisotropic interaction
between corner-center coupling spins at sites i, j in the
body-centered tetragonal lattice of DTN is given by
~d - (S; x §)), where d is a specific vector coefficient.
For any possible DM interaction, the vector d would
have to point along the tetragonal axis. Otherwise a
nonuniform field distribution would exist in the sample,
which would induce a staggered moment perpendicu-
lar to the applied field, which in turn would broaden
the magnetization at the transition. This configuration
characterizes a broken axial symmetry, as is observed in
TICuCls. Traces of M vs. H are the best for analyzing
the configuration of the vector d in DTN. From the
sharp peak in d> M/d H? at the transition, we conclude
that any possible U(1) symmetry-breaking terms are
small at these temperatures, and the number of bosons
is conserved, as required for BEC [21].

4.11 Magnetostriction

Magnetostriction taken at dilution refrigerator temper-
atures, performed in a titanium dilatometer, shows sig-
nificant magnetoelastic coupling and a magneto-order-
induced modification of the lattice parameters in DTN.
Length changes were monitored capacitatively with a
Be-Cu spring-mounted titanium tip in a plastic rotator.
The top-load dilution refrigerator was mounted in a
20 T superconductor magnet system at the National
High Magnetic Field Laboratory in Tallahasse. A sim-
ple theory relates the magnetostriction to the spin-spin
correlation function and describes the data remark-
ably well. From this, was possible extract the spatial
dependence of the magnetic exchange coupling. The
measured data agree excellently with those obtained
from quantum Monte-Carlo simulations and with the
phase diagram determined from C, and magnetostric-
tion [40].
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4.12 Direct Measurement of the BEC Universality
Class

Although the windowing method yields the critical
exponent at zero temperature by an efficient extrap-
olation procedure, the physics that can appear be-
low the studied temperatures can be hidden by this
method. This was clearly demonstrated for BaCuSi,Og,
in which a reduction in dimensionality of the spin
system changed the exponent, as was observed at the
lowest temperature. In DTN new measurements were
performed at temperatures down to 1 mK, which is
two orders of magnitude below the lowest tempera-
ture scale for magnetic coupling in this system, J,, =
0.18K, and the lowest ever used to investigate BEC in
a quantum magnet. Thus, with this new experiment,
no extrapolation was needed to determine the power-
law exponent. Measurements of the transition were
carried out using ac susceptibility. The experiments
were performed using a PrNis nuclear refrigerator and
a 15 T magnet at the National High Magnetic Field
Laboratory Facility at the University of Florida. The
sample was immersed in liquid *He in a polycarbonate
cell, rather than being glued to a cold finger, and ther-
mal contact to the refrigerator was assured via sintered
silver. The temperature was calibrated using a *He
melting-pressure curve thermometer. The device used
for operation at ultra-low temperatures is the mutual
inductance bridge assembly. The transitions were de-
termined by the derivative of the susceptibility curve.
The power-law temperature dependence of the phase
transition line, with ¢ = 3/2, was found to be consistent
with the 3D BEC universality class, which confirms the
conclusion obtained by the windowing method [41].

4.13 Disorder in the Doped System DTN/Br

When disorder is introduced in a magnet with inter-
acting bosons, the condensate disrupts and interferes
with phase coherence. The result is the creation of a
peculiar state, the Bose-glass phase (BG), with only
short-range correlation. In the presence of disorder the
transition to BEC is argued to occur only from the
BG, and never from the Mott insulator. The transitions
to BEC should be governed by physical parameters
characteristic for BG — BEC for the low-field transi-
tion and for BEC — BG for the high-field transition.
Experimental and theoretical studies were realized in
the disorder quantum magnet DTN/Br, Ni(Cl,_,Br,),-
4SC(NH;),. The remarkable agreement between the-
ory and experiment shows a well-controlled realiza-
tion of a disordered Bose fluid with a new seemingly
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universal exponent governing the scaling of the critical
temperature from BG to BEC [42, 43].

4.14 Mass of Magnons

From the linear behavior of n, at low temperatures in
Fig. 10b, the effective mass of the bosons in DTN, m1;,,
can be calculated with the coefficient dn./dT>/?> from
(8) and (11):

mpy kB

3/2
dn./dT*? = £ (3/2) <—> V =0.073.

27 h? (13)

The obtained value is m, = 5.4 x 1072 g, which is
approximately 1/3 of the proton mass. The value for
my, can be compared with that obtained from neutron
dispersion data, m = 3.7 x 107> g ([44], A. Paduan-
Filho, unpublished).

4.15 Quantum Depletion of Magnons

Although the repulsive interaction between bosons are
essential to avoid the collapse of particles, vy depletes
the number of condensed bosons by the quantity of
non-condensed bosons. This was described by Nikuni,
who obtained the density of bosons in the BEC phase
from the sum of the condensed and the non-condensed
densities. To determine the fraction of condensed
bosons, we analyzed the n vs. H curve at T = 0.019K
in Fig. 11, which is reasonable approximation to the
T — 0 limit. The relation between the total density of
particles n and the density of condensed bosons 7.4,
as an effect of v, is given at zero temperature by the
equality

n(O) = ncond(o) + W 72 (14)

1 <mUOncond(0))3/2

The second term on the right-hand side of this equa-
tion represents the number of condensed bosons that
are scattered out of the ground state due to interaction
vo. The non-condensed fraction at 7 = 0, called quan-
tum depletion, §n, is caused by quantum fluctuations
around the true condensate. Applying (14) to the ex-
perimental data we determined the dependence of the
condensed bosons with the magnetic field. The open
circles in Fig. 11 show the calculated density of con-
densed bosons. The depletion of condensed bosons just
above the critical field H.(0) = 2.09 T increases almost
linearly up to ~ 10% at the field of 3.0 T (A. Paduan-
Filho, unpublished).

Depletion is an important matter in BEC because
the dissipation effects of non-condensed bosons leads
to the creation of solitons and vortices in diluted BECs.
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Fig. 11 (Color online) Magnetization density at 7' = 0.019K as
a funtion of the field. The filled squares represent the measured
densities. The open symbols, representing the condensed bosons,
are obtained from (14)

In DTN, an insulating system, this effect has not been
observed.

4.16 Theoretical Methods

Almost throughout, the measurements are compared
with quantum Monte Carlo data. The simulations agree
exceptionally well with the experiments. Some mea-
surements also are correctly fitted by analytic expres-
sions. The values for the DTN parameters refined via
OMC and ESR are D =89 K, J. =22 K and J,, =
0.18 K [37].

With an alternative approach using the diagram tech-
nique, one finds an expression for the magnetic phase
boundary. Taking into account the coupling constant
between the two different tetragonal sublattices, the
following set of parameters fit the experimental data
very well: D =772 K, J. =1.86 K, J,, =0.2 K, and
Vintra—sub ~0.1K [45]

4.17 Semi-Hard-Core Boson Model

Both TICuCl; and BaCuSi,O¢ have a strong antifer-
romagnetic coupling between the two S = 1/2 spins in
each Cu dimer, forming an S = 0 singlet ground state
separated by a gap J from the § = 1 excited triplet. The
hard-core model describes the experimental symmetry-
induced phase diagram of these systems very well. In
DTN this model describes the behavior of the tran-
sitions only at low temperatures, 7' < 0.2K, and low
fields, H < H.;. An alternative approach can be used
to describe the asymmetry of the phase diagram at high
fields mapping the S =1 system onto a gas of semi-
hard-core bosons. This asymmetry is attributed to the
influence of the highest energy level and is not expected
for the effective model with S = 1/2. In this model the
maximum boson population is limited to two per lattice
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site. More studies focus on the analysis of the upper
critical field and a self-consistent theory [46, 47].

4.18 Two-Magnon Bound States

Theoretical and experimental systematic high-field
ESR studies of DTN have been presented with special
emphasis on single-ion two-magnon bound states. To
clarify some remaining discrepancies between theory
and experiment, we analyzed the frequency-field de-
pendence of the magnetic excitations in this material.
In particular, a more comprehensive interpretation of
the experimental signature of single-ion two-magnon
bound states is shown to be fully consistent with the-
oretical results. Moreover, we have clarified the struc-
ture of the ESR spectrum in the so-called intermediate
phase. The experimental part was performed at the
National High Magnetic Field Laboratory, Tallahassee
[48].

5 Summary

We presented an experimental review of the recently
observed behavior of DTN associated with BEC phe-
nomena. These experiments provide opportunities for
an introductory study of the BEC of magnons in in-
sulating compounds when bosons are induced by an
applied magnetic field. The simple magnetic structure
of DTN enables experiments in field and temperature
regions that are easily accessible in the laboratory. As
shown in the theoretical outline presented here, the
many-body aspects of BEC are reduced to an effective
single-particle description, where interactions give rise
to an additional potential proportional to the local
particle density. This model allows characterizing the
condensation of magnons at low temperatures through
parameters such as critical exponents, analysis of the
boson density, boson interaction strength, boson mass,
depletion, etc. Although this hard-core model describes
the low-field behavior of DTN very well, the whole
phase diagram can be exactly explained by quantum
Monte Carlo simulations with a semi-hard-core model.

The purpose of this review was to describe experi-
ments that go beyond the mean-field theory and ex-
plore effects that modify the transition to the field-
induced magnetic phase.

Finally, we note that the research in this field has not
been limited to condensed matter, but was extended
to the applications in nuclear physics, astrophysics, and
particle physics.
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