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Abstract: Singular Gelfand-Tsetlin modules of index 2 are modules whose tableaux
bases may have singular pairs but no singular triples of entries on each row. In this paper
we construct singular Gelfand-Tsetlin modules for arbitrary singular character of index
2. Explicit bases of derivative tableaux and the action of the generators of gl(n) are given
for these modules. Our construction leads to new families of irreducible Gelfand—Tsetlin
modules and also provides tableaux bases for some simple Verma modules.

1. Introduction

Gelfand-Tsetlin bases are among the most remarkable discoveries of the representation
theory of classical Lie algebras. Originally introduced in [10], these bases provide a
convenient tableaux realization of every simple finite-dimensional representation of the
Lie algebra gl(n), as well as explicit formulas for the action of the generators of gl(n).
The explicit nature of the Gelfand—Tsetlin formulas inevitably raises the question of what
infinite-dimensional modules admit tableaux bases. This question naturally initiated the
theory of Gelfand-Tsetlin modules, a theory that has attracted considerable attention in
the last 30 years and has been studied in [1,2,20-22,26], among others. Gelfand—Tsetlin
bases and modules are also related to Gelfand—Tsetlin integrable systems that were first
introduced for the unitary Lie algebra u(n) by Guillemin and Sternberg in [14], and later
for the general linear Lie algebra gl(n) by Kostant and Wallach in [15,16].

We now define the main object of study in this paper. Consider a chain of embeddings

gl(l) C gl(2) C --- C gl(n).
The choice of embeddings is not essential but for simplicity we chose embeddings of
principal submatrices. Let U = U (gl(n)) be the universal enveloping algebra of gl(n),

and let I" be the Gelfand-Tsetlin subalgebra of U, i.e. the subalgebra generated by the
centers of universal enveloping algebras of all gl(i). Then I is a maximal commutative
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nn+1

subalgebra of U as well as a polynomial algebra in the ) variables c;;, where c;;

is a degree j element in the center of U (gl(i)) [26].
A Gelfand-Tsetlin module V of gl(n) is a Harish-Chandra (U, I")-module, that is

V= EB Vin,

meSpecm I’

where
Vm={veV| mfv = 0 for some k > 0}.

The category of Harish-Chandra modules is a subcategory of the category of all weight
gl(n)-modules, i.e. modules that decompose as direct sum of modules over the standard
Cartan subalgebra of gl(n). Recall that the classification of all simple weight gl(n)-
modules with finite-dimensional weight spaces is already completed [19]. Since the
classification of arbitrary simple weight modules is out of reach for n > 3, the clas-
sification of simple Gelfand-Tsetlin gl(n)-modules seems to be the next fundamental
classification problem one can try to solve. This, in addition to the connections with
integrable systems and Yangians, gives us another motivation to study singular Gelfand—
Tsetlin modules. One should note also that the Gelfand—Tsetlin subalgebras are related
to general hypergeometric functions on the complex Lie group GL(n) [12,13], and to
solutions of the Euler equation [25].

Throughout the paper n > 2 and 7,,(C) will stand for the space of the following
Gelfand-Tsetlin tableaux with complex entries:

Unl Un2 ce Un,n—1 Unn

Un—1,1 te Un—1,n—1

o ]

V11

We will identify T,,(C) with the set (Cn(nzﬂ) in the following way to:

nn+1)
V= (Unls s UnnlUn—1,1, - -, Vn—ln—1] - - - [V21, U22|v11) € C 2

we associate a tableau T (v) € T, (C) as above. It is important to distinguish v and 7 (v)
since they are vectors in non-isomorphic vector spaces as explained below.
For a fixed element v = (v; j)l;<i:1 in T,,(C) consider a set

v+ 1,1 (Z)={v+ M | M = (m,:/)?fizl eT,(Z),muy, =0,k=1,...,n}

Henceforth we define V(T (v)) to be the complex vector space with basis the set v +
Tuw_1(Z),ie. V(T (v)) = @wean,l(Z) CT (w). Note that T (v +w) # T(v) + T (w) in
V(T (v)) (evenif w,v+w € v+ T,,—1(Z)).

To every w € v + T,,_1(Z) we associate the maximal ideal m,, of I generated by
c¢ij — vij(w), where y;;(w) are symmetric polynomials defined in (3). Note that the
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correspondence w — My, is not one-to-one, but for a given maximal ideal m there are
finitely many w € v + T,,_{(Z) with m,, = m (see Remark 3.4 for details). We will call
the set of all such w, the fiber of M in v + T, (Z) and denote it by m.

From now on we set G := S, x --- x S1. Note that G and T, (Z) act naturally on
T,,(C) (see Sect. 3 for the explicit action formulas). For each w € T, (C), the fiber M,
of m,, coincides with the intersection of V(7' (v)) and the orbit Gw of the group action
of G on T,,(C).

In this paper we address the following problem:

Problem: Given v € C@ is it possible to define a non-trivial Gelfand-Tsetlin gl(n)-
module structure on V(T (v)), so that V(T (v))m = @we(an,l(Z))mrﬁ CT(w)?

Note that by fixing v we prescribe a basis of V(T (v))m and the action of gl(n)
on V(T (v)) should match that prescription. Also note that if v — v’ € T,,_;(Z) the
vectors spaces V(T (v)) and V(T (v')) are isomorphic, but the gl(n)-modules V (T (v))
and V(T (v")) are not necessarily isomorphic, see Theorem B(ii) below.

The problem above was raised and studied by Gelfand and Graev in [9] and by
Lemire and Patera (for n = 3) in [17,18]. Apparently the main challenge when solving
this problem occurs when two entries in one row of 7 (v) have integer difference. We
will say that v is singular of index m > 2 if:

(i) there exists arow k, 1 < k < n, and m entries vg;,, ..., Uk, on this row such that
Uki; — Vkiy, € Zforall j,s € {1,...,m};
(i) m 1s maximal with the property (i).

A pair of entries (Vki;, Uki,) such that k > 1 and vk;; — vk, € Z is called a singular
pair. We say that v (and T (v)) is generic if v has no singular pairs. For a generic v, the
gl(n)-module structure on V(7 (v)) was introduced in [2].

In [6] we initiated the study of singular (i.e. non generic) modules V(T (v)). This
study consists of three steps. The first step is to look at singular tableaux 7 (v) that contain
a unique singular pair. This case, called the 1-singular case, was treated in [6] and is a
particular case of a singularity of index 2. By understanding just the 1-singular case, we
are able to complete the classification of all irreducible Gelfand—Tsetlin gl(3)-modules
[7]. In the present paper we make the next step in the study and address the case of
arbitrary singularity of index 2. That is, any number of singular pairs (but not singular
triples) and multiple singular pairs in the same row are allowed. The transition of a unique
singular pair to a general singularity of index 2 turned out to be not straightforward and
requires a more sophisticated theory of differential operators and divided differences
of tableaux. The methods developed in this paper will be crucial for completing the
last step in our study—defining singular Gelfand—Tsetlin modules V (T (v)) of arbitrary
index. The last case will be addressed in a subsequent paper. One should note that, as a
straightforward consequence of the results in the present paper, we obtain new tableaux
bases of a large family of irreducible Verma modules of gl(n).

For the rest of the introduction we fix v to be singular of index 2. If w € v+ T;,—1(Z)
is such that wy; = wy; for some k, i, j,1 < k < n,i # j, we say that w lies on the
critical hyperplane x; — xi; = 0 of T,,(C). We also say that w is maximal critical if it
lies on the intersection of all possible critical hyperplanes corresponding to elements in
v+ Th_1(Z).

Now we state our first main result.

n(n+l)
Theorem A. Let v € C* 2 be singular of index 2 and let t be the number of sin-

gular pairs of v. Then V(T (v)) has a structure of a Gelfand-Tsetlin gl(n)-module. In
particular,
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dim V(T (v))m = 21 7%,

whenever M lies on the intersection of k critical hyperplanes, 0 < k < t, and dim
V(T (v))m = 1 if m consists of maximal critical points.

Theorem A is proven by constructing a particular gl(n)-action on V(7 (v)) such
that V(T (v))m = @ ews1,_, 2)nm CT (w). The question whether the gl(n)-action on
V(T (v)) with this property is unique remains open.

In the subsequent Theorems B and C, and Conjectures 1-3, it is supposed that
V(T (v)) is the gl(n)-module constructed in the proof of Theorem A.

n(n+l)

Theorem B. Let v € C™ 2 be singular of index 2.

(1) If v/ € v+ T,,_1(Z) has s singular (but non-critical) pairs in row k, then cy has an
eigenvalue of geometric multiplicity s + 1 on the subspace V (T (v))m ,, and this is
the largest geometric multiplicity of all eigenvalues of all elements cj, 1 < j <k,
on the subspace V(T (v))m,,-

(i1) V(T (v)) =~ V(T (V")) if and only if there exists 0 € G such that v — o (V') €
T,_1(Z), or equivalently, if v and v' are in the same orbit under the action of
G X T,,_1(Z) on T,,(C).

(iii) Assume that all singular pairs of v belong to different rows, and v;j — v;_1 j is not
integer for all possible indexes i, j, k. Then V(T (v)) is irreducible.

Conjecture 1. The condition that v;; — v;_1 x is not integer is both necessary and suf-
ficient for the irreducibility of V(T (v)) in Theorem B.

The above conjecture is known to be true for n = 2,n = 3, and for 1-singular
tableaux T (v) [11].

From Theorem B we obtain many explicit examples of new irreducible singular
Gelfand-Tsetlin modules together with information about their structure. In particular,
we can compute an important invariant for these irreducible modules: their Gelfand—
Tsetlin degree, namely the maximum Gelfand-Tsetlin multiplicity that may appear.
Furthermore, the generators ¢;; of I" have a simultaneous canonical form on the subspaces
V(T (v))m with largest Jordan cells of size s+1 where s is the maximal number of singular
pairs in one row. All known examples so far concerned Jordan cells of size at most 2
only.

Our last result addresses the Gelfand—Tsetlin theory properties of the modules V (T (v)).
It was shown in [23] that for every maximal ideal m of I', there is an irreducible
Gelfand-Tsetlin module M such that My # 0. Moreover, there exist only finitely
many isomorphism classes of such modules. If m is generic then there is exactly one
such isomorphism class and its Gelfand-Tsetlin degree is 1. On the other hand, if V is
an irreducible Gelfand-Tsetlin module then dim Vi, is finite for all m and is bounded
by 112!...(n — 1)! [4]. The most interesting case certainly is when m is singular. In
[6] we constructed irreducible Gelfand—Tsetlin modules of Gelfand-Tsetlin degree 2,
which is the highest possible degree in the case n = 3. With the aid of Theorem B we
obtain examples of irreducible modules of arbitrarily large degree. More precise upper
bound for the Gelfand—Tsetlin degree of the subquotients of V(7T (v)) is listed in the
next theorem, our third main result.

Theorem C. Let v € T,(C) be singular of index 2 and let t be the number of singular
pairs of L. The following hold for any v' € v + T,,_|(7Z).
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(i) There exists an irreducible subquotient V of V(T (v)) such that Vi, # 0. The

number of all such irreducible subquotients of V is bounded by 2'.

(i) dim Vi, < 2!=k ifmy belongs to k critical hyperplanes. In particular, dim Vi, =
1 if My consists of maximal critical points.

(>iii) If each row contains at most one singular pair, then the geometric multiplicities of
all eigenvalues of any c;j are at most 2.

(iv) If v has s singular pairs in the ith row then the geometric multiplicities of all
eigenvalues of any c;j, j = 1,...,1i, are at most s + 1.

Conjecture 2. Any irreducible Gelfand—Tsetlin module N with Ny, # 0 for any sin-
gular v of index 2 appears as a subquotient of V (T (v)).

Conjecture 2 is known to be true for n = 2 and n = 3. For the case when there exists
a unique singular pair in v (i.e. v is 1-singular) this conjecture was stated in [6], and
recently proven in [8].

If V is a Gelfand—Tsetlin module then define the Gelfand—Tsetlin character of V as

chgr V = Z(dim Vin)e™.
m

It is an interesting question whether chgr V determines V. The affirmative answer
is known for generic and 1-singular modules. We conjecture this in general:

Conjecture 3. For any singular v of index 2 and any two irreducible subquotients V and
W of V(T (v)), V =~ W if and only if chgr V = chgr W.

The organization of the paper is as follows. In Sect. 3, we introduce the notation used
in the paper and collect important results for finite-dimensional and generic Gelfand—
Tsetlin modules. In Sect. 4, we define the derivative tableaux corresponding to a singular
vector v of index 2 and with their aid, define the space V(7T (v)). The theorem that
V(T (v)) is a gl(n)-module is stated and proven in Sect. 5. The formulas for the action of
the generators of the Gelfand—-Tsetlin subalgebra I" on V(T (v)) are included in Sect. 7.
The proofs of the three main results are given in Sect. 8. In Sect. 6, we include examples
of new irreducible Gelfand—Tsetlin gl(n)-modules, and, in particular, provide derivative
tableaux realization of some irreducible Verma gl(n)-modules.

2. Index of Notations

Below we list some notations that are frequently used in the paper under the section
number they are introduced first.

Section 1 T,,(C), T,,—1(Z), T (v), V(T (v)).

Section 3.2. Uy, Zin, Conie, I', M.

Section 3.3. Y (v).

Section 3.4. T, (C)gen, Sim» Pur, ers(w), &s.

Section 4. %, R,S°, Veen» Ra, PA(V), 21, T, Ta, H, H, F,F,Dy, Dy, va,ev(v),
D;T(v+2).

Section 7. L, £L . L4, ©(m), T, <p, DT +2) S DT (v +2).

Section 6. GT-deg(M), gmult(y |, )-

Section 4.1. f(v)™, f(V)A. ~ R

Section 4.2, ®yu,s), Puy), Pujr), Th(0), Qo, 2(0), L0, Q(0), 2(01, 02),
P 6).02)-
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3. Preliminaries

3.1. Conventions. The ground field will be C. For a € Z, we write Z>, for the set of
all integers m such that m > a. By Re(z) we denote the real part of a complex number
z, while | x ] stands for the greatest integer less than or equal to the real number x.

Let {E;; | 1 < i, j < n} be the standard basis of gl(n) of elementary matrices. We
fix the standard triangular decomposition and the corresponding basis of simple roots of
gl(n). The weights of gl(n) will be written as n-tuples (A1, ..., A;).

For aLie algebra a by U (a) we denote the universal enveloping algebra of a. Through-
out the paper U = U (gl(n)). For a commutative ring R, by Specm R we denote the set
of maximal ideals of R.

The transposition of the symmetric group Sy interchanging i and j will be denoted
by (i, j). We set G := S, x Sy—1 X --- x S and the ith component of ¢ € G will be
denoted by o[i].

3.2. Gelfand-Tsetlin modules. Let for m < n, gl(m) be the Lie subalgebra of gl(n)
spanned by {E;; | i,j = 1,...,m} and let U,, = U(gl(m)). Let Z,, be the center of
Up,. Then Z,, is the polynomial algebra in the m variables {c,,x | k =1, ..., m},

Cmk = Z Eiliin2i3 ~'-Eiki1- (1)

The Gelfand-Tsetlin subalgebra T is the subalgebra of U generated by | J _, Z,.
Recall the definition of a Gelfand—Tsetlin module from the introduction. Namely, M is a
Gelfand-Tsetlin module if M splits into the direct sum of the I'-modules My, = {v € M||
mKy = 0 for some k > 0} indexed by the maximal ideals of I". The support of a Gelfand—
Tsetlin module M is the set of all maximal ideals m € Specm I" such that My, # 0. For
any m in the support of M, the Gelfand—Tsetlin multiplicity of m is dim Mp,.

Note that any irreducible Gelfand—Tsetlin module over gl(n) is a weight module with
respect to the standard Cartan subalgebra h spanned by E;;,i = 1, ..., n. The converse
is not true in general (except for n = 2), i.e. an irreducible weight module M need not
to be Gelfand-Tsetlin. However, it is the case when the weight multiplicities of M are
finite.

We will use the following terminology for a Gelfand—Tsetlin module M, y € T", and
m € Specm I':

(i) The Gelfand—Tsetlin degree (or, the GT-degree) GT- deg(M) of M is the supremum
of all Gelfand-Tsetlin multiplicities of M, i.e.

GT-deg(M) := sup{dim My, | m € Specm I'}.

(i1) The geometric multiplicity gmult(y |m,,) of v in M is the size of the largest Jordan
cell of the endomorphism y |, on Mm.

(iii) The geometric GT-degree of M is the maximum of gmult(y |y,,) overall y € I’
and all m € Specm I'.

The actionof G = S, X S,—1 x --- x S; on T,,(C) is given by the formula:

G(U) = (vn,afl[n](l)7 ey Un,o.—l[n](n)l ‘e |U1’o.—1[1](1)). (2)
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where v € T,(C) and o0 € G. In addition to the G-action, we have another important
action on 7,,(C): the action by translations of 7,,_ (Z). The two actions can be combined
into one action of the semidirect product G x T,,_1(Z).

Forl < j <i<n—1,8 € T,_1(Z) is defined by (§'/);; = 1 and all other (8" )z,
are zero.

We have the following important types of tableaux, and equivalently, of vectors in

T, (C).

Definition 3.1. Let v € T,,(C).
(1) We call T (v) a standard tableau if

Vki — Vk—1,i € Zz0 and Vk—1,; — Vk,i+1 € Z=g, foralll <i <k <n.

(i1) We call T (v) a regular tableau (and v a regular vector) if v,y — v,_1,, ¢ Z for any
r, s, t.

3.3. Finite-dimensional Gelfand—Tsetlin modules. The standard Gelfand—Tsetlin
tableaux play a key role in the description of a Gelfand—Tsetlin basis of finite-dimensional
representations of gl(n). Below we recall this classical result.

Theorem 3.2 [10]. Let L(X) be the finite-dimensional irreducible gl(n)-module of high-
est weight A = (M1, ..., An). Then the set of all standard tableaux T (v) with fixed top
row vy = A —i+1,i = 1,...,n forms a basis of L()). Moreover, the action of the
generators of gl(n) on L()) is given by the Gelfand-Tsetlin formulas:

k k+1
szl(vk,' = Uk+1,j)
Ex k1 (T (v)) = — .
k,k+1 ; ( Hl;#i(vki - Ukj)
k k-1

i ('U i — Vk—1, )
Er1.6(T(v)) = Z (l—[]i[k:é (kvk' —kvkl')j

j i 14 J

i=1

k k—1
Ep (T (v) = (k —1+Y wi— Y vk_l,l-> T (),
i=1

i=1

) T (v + 8k,

)T(v — 81,

where if the sum of Ej x+1(T (v)) or Exq1 (T (v)) contains a summand with a non-
standard T (v £ 8, then the summand is assumed to be zero.

Another important result is that a module defined by the Gelfand—Tsetlin formulas
is a Gelfand-Tsetlin module. In particular, we have the following.

Theorem 3.3 [26]. The action of the generators of I' on a finite-dimensional module
L(A) is given by the following formulas:

ek (T (V) = Ymr (VT (v),
where

Yk (V) 1= Y (vpi +m — D
i=1

N0-ate) o

i mi — Umj
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with the generating function

m

00
1 — —k— AT i T
kX—:()ymk(v)u 1_[ U—VUpi —mMm +1

i=1

Remark 3.4. There is a natural correspondence between the set I'* of characters yx :
I' — C (and, hence, of maximal ideals of I', m = Ker yx) and the set of Gelfand—
Tsetlin tableaux. In fact, to obtain a Gelfand—Tsetlin tableau from a character x we find
a solution v = (v;;) of the system of equations

{yme(v) = x (ka)}lgkfmfn

Conversely, for every tableau T (v) we associate x € I'* by defining x (c;ux) via the
above equations. It is clear that each tableau defines such a character uniquely. On the
other hand, a tableau is defined by a character uniquely up to a permutation in G.

3.4. Generic Gelfand-Tsetlin modules. Since the coefficients in the Gelfand-Tsetlin
formulas in Theorem 3.2 are rational functions on the entries of the tableaux, it is
natural to extend the Gelfand—Tsetlin construction to more general modules. When all
denominators are nonintegers, one can use the same formulas and define a new class of
infinite-dimensional generic Gelfand—Tsetlin gl(n)-modules (cf. [2, Section 2.3]). Recall
the definition of V(7' (v)) from the introduction. Then V(T (v)) is a generic Gelfand—
Tsetlin module with action of the generators of gl(n) given by the Gelfand-Tsetlin
formulas. All Gelfand-Tsetlin multiplicities of V(T (v)) are 1.

Denote by T;,(C)gen the set of all generic vectors in 7, (C). By Sm we denotes the
subset of S, consisting of the transpositions (1,7),i =1, ..., m. Fork < £, set Oz =
Se—1 X +-- x Sg. For k > £ we set &y = Dyi. Finally we let ®yp = {Id}. Every o in
@ will be written as a |k — £|-tuple of transpositions o [i] (recall that o [i] is the ith
component of o). Also, identify every o € @4y as anelementof G = §, x --- x S1 by
letting o [i] = Id whenever i < min{k, £} ori > max{k, £} — 1.

Remark 3.5. Gelfand-Tsetlin formulas are given for the generators of gl(n) as a Lie
algebra. For convenience we will write explicitly the action of any E,s € gl(n) in terms
of permutations. The corresponding coefficients for the action of E,; can be obtained
by computing the action of [E} s—1, Es—1 ] and induction on |r — s].

Definition 3.6. For each generic vector w and any 1 < r, s < n we define

s—=2 j+l
wip —w
[T (ws—1,1—ws, ) H(H _y(wj1 j+l, t))’ i ro<s,

]_[j_z(ws 1L1—Ws—1,}) ; H;:z(wjl —wj)

s—1 r ]_2 . — ;
ersu) 1= 1 Tk i) 7 (H;:z(wj—l,l wj-z,»), e

[T 2o (w1 —wyj) =1, )
! j=s2 M lim (Wi —wj—1.)

r r—
r=14> wyi— > w1, if r=s,
i=1 i
Letl <r<s<n-—1Seteg,:=58"'+8*"1+...48 L € T,(Z), e, =0and
Esr = —&rs-
Note that for any w € T,(C) and 0 € Py, we define o (w) according to (2). We
have the following important result for generic Gelfand—Tsetlin modules.
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Proposition 3.7 [6]. Let v € T,(C) be generic. Then the gl(n)-module structure on
V(T (v)) is defined by the formulas:

Ene(T0+2) = Y emt(0+2)T(+2+0(Eme)), “)

oD,y

forz € T,_1(Z) and 1 < m, £ < n. Moreover, V(T (v)) is a Gelfand-Tsetlin module
with action of I given by the formulas in Theorem 3.3.

4. Derivative Tableaux

In this and next sections we define an appropriate module structure on the space V (T (v)).
To do this we distinguish certain derivative tableaux in the spanning set of V (T (v)).
The action of gl(n) on derivative tableaux will be different from the action on the other
(ordinary) tableaux. One reason for that is the following. Suppose v € T,,(C) is such that
vk —Vkj € Zforsomel < k < nandi # j.Then the tableaux T'(v) and T (v+z) define
the same maximal ideal m of I" for some z € T;,—1(Z), that is they are indistinguishable
by I'. In addition, if vi; — vx; € Z the action of gl(n) on some 7 (v + z) described in (4)
will involve zero denominators.

Definition 4.1. A vector w € T, (C) is called ¢-singular of index 2 if there are exactly ¢

singular pairs and no singular triples, that is, if there are (k,, i, j-),r = 1,...,¢, such
that:
N2<k<---<k=<n-—1
(i) 1 <i, < j, <k foreachr=1,...,1.
(iii) If k, = kg for some 7, s, then {i,, j-} N {is, js} = 0.
(iv) For any r = 1,...,t we have wy, ;, — wy,,j, € Z and wy; — wg; ¢ Z for any

(kaivj)¢{(krsir7jr)|r=17"'7t}'

A maximal ideal n of T is called ¢-singular of index 2 if v = vp is ¢-singular of index
2 for one choice (hence for all choices) of v in N. A Gelfand-Tsetlin module M will
be called ¢-singular Gelfand-Tsetlin module of index 2 if any n in the Gelfand-Tsetlin
support of M is ¢-singular of index 2.

In the following we fix some notation for the rest of the paper.

Definition 4.2. From now on, ¢ and {(k,, i,, j,) | ¥ = 1, ..., t} will be fixed. We also
fix a t-singular vector v of index 2 such that v, ;, = v, j, forevery r = 1,...,1.
Furthermore, we will denote ¥ := {1, ...,t} and R := ({(i1, j1)}, ..., {(s, JOD.

Note that R is a sequence of one-element sets. We will use this notation throughout
the paper.

Definition 4.3. (i) We will write I € Rif I = (Iy, ..., I;) and I, < {(i;, j,)} for each
r € X. In the same way, if I,/ € Rwesaythat J C [if [ = (Iy,...,[;),J =
(J1,...,Jp)and J, C I, forany r € X.

(i) Forany I,J € R,wedefine/UJ C R, INJ C Rby({UJ), =1, U J. and
(INJ) = 1IN J., respectively.

(iii) For each r € X, denote by 7, the permutation in S, X - - - x S that interchanges i,
and j, in row k,, and that is identity on all other rows. Also, for any A € ¥ denote
by ta the permutation 7, - - NG where A = {ry,...,ra|}.
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The next definition plays central role in the paper.

Definition 4.4. (i) For any subset I = (Iy, ..., I;) of R and for any z € T,,_1(Z) we
introduce new tableau D;T (v + z) which we call /-derivative tableau, or simply
derivative tableau, and set DyT (v +2z) = T (v + 2).

(i1) Set V(T (v)) to be the complex vector space generated by {D;T(v+2z) | I C
R and z € T,,_1(Z)} subject to the following relations:

D;T(v+72), if I, =0
DT (v + = 5
1T(v+7(2)) !—DIT(v+z), it 1, £, )]
Remark 4.5. Although the spanning set {D;T(v+z) | I € Randz € T,,_1(Z)}isnota
basis V(T (v)), it will be convenient to work with the whole spanning set and then verify
the relations separately. A basis of V(T (v)) is, for instance, the set of all D;T (v + z)
such that z,;, — zk,j, > 0if I, # @, and zy,, — zk,j, < 0if [, = 0.

Proposition 4.6. There is a natural isomorphism between the spaces V(T (v)) and
V(T (v)).

Proof. Let us fix the basis of V(T(v)) defined in Remark 4.5. Let z € T,,_1(Z) and
T (v+z) € V(T (v)).Considerany A = {r, ..., ra)} € Zand T (v+7a(2)) € V(T (v)),
where A = 7, -+ - 7. Recall that T (v + z) and T (v + 7a(z)) define the same maximal
ideal of ". To complete the proof, we need to identify the tableau T (v+74 (z)) € V(T (v))
with a derivative tableau in V(T(v)). For each r € ¥ set I, = {(iy, j-)}if r € A and
I, = ¥ otherwise. Let I = (Iy,...,I;). Then D;T (v + z) is the derivative tableau
corresponding to 7' (v + ta(z)) that we need. Clearly, this identification extends to a
linear isomorphism between V (T (v)) and V(T(v)). O

From now on we will identify the space V(7' (v)) and V(T (v)) and the rest of this
section, as well as the next section, are devoted to defining an appropriate gl(n)-action
on that space.

Denote by 7, (C) g the set of all regular vectors in 7,,(C). Recall thatif x € T;,(C)gen
then V(T (v)) is irreducible if and only if x € T,,(C)gen N T,(C)yeg, see Theorem 6.14
in [5].

Let S¥ be the set of vectors x in 7, (©)genNT(C)reg such that 0 < Re(x,s—x,—1,5) <
1 for any r, s.

Lemma 4.7. S°+7,_1(Z) = T, (©)gen N T (C)reg. Moreover, for any w # w' in 8% we
have (w + T,,—1(Z)) N (w' +Th—1 (Z)) =0

Proof. Forany w € T;,(C)gen N T, (C)reg let x € w + T;,_1(Z) be the vector for which:

Wys +Z?=r+1 [Re(wjs —wj—14)], if r<n-—1

Xrs = .
Wy, if r=n.

We have x € S°. Indeed, for any r, s,
Xrs — Xr—1,s = Wrs — Wr—1,5s — LRe(wr,s - wrfl,s)_],

which implies 0 < Re(x,s —x,_1.5) < 1.Hence,w € S°+7T,_1(Z) and S°+T,,_1(Z) =
T (C)gen N T (C)reg. For the second part of the lemma it is enough to prove that
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(w+T,—1(Z)) N S* = {w). Let z € T,_1(Z) be such that w + z € S°. Then the
conditions 0 < Re((w+2),s — (W+2),—1,5) < land 0 < Re(w,s —w,—1,5) < 1 imply
Zrs = Zr—1,s- In particular, z,; = 7,y = Oforany r <n — landhence z =0. O

In view of the last lemma we introduce Veen := @, .50 V(T (x)). By Proposition 3.7,
Veen is a Gelfand-Tsetlin module. We call this module the family of generic Gelfand—

Tsetlin modules. Note that Veen = D,c7, (C)genT(C)re CT (V) @5 vector spaces.

Definition 4.8. Let A € ¥ and I C R.

(i) Define R to be the subset of R whose rth component is

{Gr. )}, i reA

(Ra)r =1y if r¢A.

We also write

Pa() == [ [ Coiy = i)

reA
(ii) Define X; :={re X | I, #0} C X.

From the above definition we easily obtain that ¥z = X and Ry = R. Also, for any
I,J CRand Ay, A € ¥ wehave £; U X; = Zjyy and Ra; U Ra, = Ra,ua,-
Hr

Denote by Hk C T,(C) the hyperplane x; ; —x;; = 0. We alsoset H =),z H i
and H = m(k»lsl)?é(krvlrvjr)(Hlj) , where A° stands for the complement of A in 7, (C).
In other words, H C T,(C) is the intersection of the critical hyperplanes xi, ;, — Xz, j, =

0,r € ¥, while H consists of all x in T, (C) such that xi; # xi; for all triples (k, i, j)
except for (k, i, j) = (kr, iy, jr), 7 € Z.

Denote by F the space of rational functions in xx¢, | < £ < k < n, with poles only
on the union of the hyperplanes Hl T € ¥. Let F be the subspace of F consisting of
all those functions that are smooth on 7. Finally, we will say that f € F is a smooth
function if f € F. o

Recall that v is a fixed element in £ N . In order to introduce the operator D} on
F® Vgen, we first define the operators D; and D} on F.

Definition 4.9. For any subs_et I=(, ... 1) of R and for any z € T,,_1(Z) we define
differential operators Dy : F — F, D’[’ : F — C as follows. For a smooth function f

(e feF),
Di(f) =Dy, (--- D, (D, (f)--). DY(f) =Dr(f)(v),
where
Dy (g) = {ﬁ' y y if 1, =0
2 (imr,-, - axk”-r)» if I, #0.

In particular, for any smooth functions f, g we have:

Dj(fg) ==Y _Dj ,(/HDY(2).

JCI
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Definition 4.10. We define the operators Dj : F® Voen — \7( T (v)) as the linear maps
for which

Di(fT(x+2) =Y (D, (HDIT@+2)),

JCI

for x € SO. In particular, Dy(T(x +z)) = DT (v +z). We setev(v) = Dy and call it
the evaluation map on F® Veen.

Remark 4.11. Note that 2/*11D; = Ps, (3,
on .7:

1> o5 Oxps « o5 Oxaps Oxgy, Oxyy ) @S OpETators

Definition 4.12. Given x € S%, v € T7,(C) and A C X, we define an element vp €
T,,(C) whose (ij)th component is

(U )_ 'xij’ lf (l’f)¢{(kralr)v(kr,Jr)|r€A}
AT Vg, it G, J) € (e, in), Ghey j) |7 € A

Also, set vy := v. Note that vy = x and that v, is |Al|-singular of index 2 if A # @.

Remark 4.13. By condition (iii) in Definition 4.1, we have

Di(f) = ev@)Dy, -+ Dpp (D1, (f)) -++) = D} (DUZH (...(D}’f('])(f))...))

- Tl I (1)

where o is any permutation in S; and ¥; = {o(1),...,0(i)}. In the above identity,
D;{i‘l )( f) is treated as a function in 2t — 2 variables, DZYE(ZZ) DII):‘('] )( f) is treated as a
function in 2¢ — 4 variables, and so forth.

The following lemma list some useful properties of the operators D; that will later
be formulated and proved for the corresponding derivative tableaux.

Lemma 4.14. For any smooth function f, any I C R and any A C ¥ we have:

DY (). if Ra 1

Dy (Pa(x)f) = {0 if Ra g1

In particular, Dy (PA(x) f) = f(v).

Proof. By the definition of D} we have D} (Pa(x) f) = ng D}’\J(f)Dj(PA (x)).
Therefore, the statement of the lemma follows from

I, if Ra=1J

DB(PMx»:[O i R £ J
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4.1. Identities for divided differences of rational functions. We fix z € T,_1(Z) and
consider x € S” asavariable. Forany A C ¥ and any rational function f € C(x; 1<
J <1i <n),by f(x)™ we denote the corresponding t-twisted function, i.e. f(x)™ =
f(ta(x)). In this section we deal extensively with functions of x +z, so, for convenience
we set y = x +z. By default, for any rational function f, f(y) will stand for the function
f(x + z). In particular, we have f(y)™ = f(ta(x) +2).

Definition 4.15. Let f be a rational function and A C X. We define the A-divided
difference of f at x, f(x)a, as follows

f@a =5 ( ) Z( 1A £ (x)7.

In particular, we write:

(DA f (7
y TR

fOMa = o)

ACA

Remark 4.16. We often consider divided differences of products f(x)g(y) of functions
of x and y = x + z. In such a case, one should keep in mind that:

(—DIA(F(x)g(y))Ta
Pa(x)

(f@ENa= Y

ACA

¥ (DA f (25 (1)) (75 (1) +2)
h Pa(x) ’
ACA
Lemma 4.17. Let I be any subset of R, f be a rational function, and A C X.
() If f is smooth and f(y) = f(y)* for somer € Xy, then D} (f(y)) = 0.
(ii) For any s € A we have f(y)a = (f(V)a\is)(s)- In particular, f(y)a is Ts-

invariant forany s € A, i.e. (f())aA)™ = f(¥)a.
(iii) If f (y) is smooth then f(y)a is smooth and

2D R (F)), if ACE\E;

Di(f(y)a) = {0’ FAgS\E

Proof. For all three parts we use crucially that the lemma holds in the case t = 1 (see
Lemma A.1 in [6]).

(1) Let r € Xj be such that f(y) = f(y)™. Then for any permutation o in S; such
thato (1) =r,

i o =Dy (P, (- (Pl rom) ) =0

rr(t) (r(])

where we used that DI 0 (f(y)) = 0by Lemma A.1() in [6].
(i1) This part follows by a straightforward verification. Namely, one checks that:

f(Y)A\{v} — (fDMaysP®
Py (x)

SOa
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(iii) Let first A € X\X; and let s € A. In particular I; = ¢J, and then using part (ii)
and Lemma A.1(ii) in [6], we have

DM (fF(a) = D" (fF D avs)is)
—ZD (f(Y)A\ 5))

Now, for any permutation o in S;, we obtain:

Di(fma) =D} (D (- (P2 F ) )
= 281D} p (O,

where if ¥; = {o(1),...,0@()} C Z.
Finally, if A g Y\ Xy, then taking r € AN Xy, by part (ii), f(y)a is 7--invariant
and then part (i) implies D} (f(y)a) =0. O

Lemma 4.18. Let Ao, A € X be fixed and fu,(y), gn(y),m = 1,...,s, be rational
functions such that for any A C Aandr € A\A we have Zm 1 Jm (y) (gm M) =0.
Then

Pag() Y fn(0Em () = Papa(®) Y fin(3)(Pa () Panag(x)gm(1))a
m=1

m=1

Proof. We prove the identity in three steps.
Step 1. We prove that for any A; € A N Ap we have:

Pay@®) Y fn(0)Em () = Paga, () D fu(PZ, ()gm (). (6)

m=1 m=1

By taking A = @in our hypothesis we see that forany » € ANA, Yo SO (@ ONT
= 0. Thus:

Ppy@®) Y fn(0)8m () = Pag\ir}(¥) D (P (X)gm () (r)-

m=1 m=1

To prove (6), we apply induction on |Aq].

Step 2. We prove that for any Ay, € A\ Ay, we have:

Z Fn ) (@n()ana, = Z Fn ) (Pay (1) gm (M) (anagUA,- @)

m=1 m=1

By hypothesis, for any r € A\Ag, we have Y ) fin(3)(gm(¥)anay)™ = 0. Thus:

S @M anae = D Fun )Py ) gm (M) anapuir)-

To prove (7) we proceed by induction on |A»|.
Step 3. We apply Steps 2 and 3 for A} = AN Agp and Ay = A\ Ayp.
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More precisely, from (6), we have:

Ppg() D fn(gm() = Pag\a @) D fin () (PRnay ()&m(3)) anag

m=1 m=1
= Pag\ A PEap, () D fin(3)(8n (1)) ana,-
m=1

On the other hand, (7) implies:

D @m0 anag = Y Fn()(Payag(¥)gm (1)) (anagUa) Ag)

m=1 m=1
=3 ) (Parsg(@)gm ()
m=1

Therefore,

Pang@) D 0 @nONanag = Y 0 (PRan, () Payag(¥)gm(3)a

m=1 m=1
= fn((Pa@) Panay(X)gm())a-
m=1

O

The following lemma gives sufficient conditions for the functions f,,(y), g, (y) to
satisfy the identity > 5 _; fu (") (gn(»)z)™ = 0.

Lemma 4.19. Let f,,(y), gu(y),m = 1,...,s, be any set of rational functions and
ACEIY 1 fn(D)(@m())™1 =0 forany @ # Ay C A, then for any A C A and
r € A\A we have Y 5 _y fu()(gm ()™ = 0.

Proof. The statement follows directly from the definition of (g,,(y)z) . In fact,

(=) g ()20t
Pj (x)

EmMRT = Y

A'CA
and for any A’ C A, the set A| = A’ U {r} is a nonempty subset of A. O

Proposition 4.20. Let f,,,(y), gn(y),m = 1,...,s, be rational functions and let A C
3. Assume that fi,(y), PA(x)gm (), and Y, _| fm(¥)&m(y) are smooth functions, and
also that for any % # A C A we have Yot Sn()&n(¥)™A = 0. Then the following
identity holds:

Dj (Z fm(y)gm(y>) =Y Y 2BIDY iR FnONDYranny (Pa@)gm ().

m=1 m=1 JCI
JORA=0
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Proof. First, note that by Lemma 4.19, the hypothesis of Lemma 4.18 is satisfied. Fur-
thermore,

Dy (Z Jm (y)gm(y)) =Dy <Pz\z, @)D fn (y)gm(y)>

m=1 m=1

=D} <Z (Ps\zpna (X)) frn ) (PA(X) Pancs\s;) (X) gm ()’))A)

m=1

=YY Diy (Pozya @) fn(3) DY ((Pa(x) Pancsys)) (X)gm (3))a)
m=1JCR

=Z Z D}JQ\J(P(Z\EI)\A(x)fm(y))D};((PA(X)PAO(E\Z‘])(X)gm(y))A)'

m=1 JCR
JORA=0

The second equality follows from Lemma 4.18(iii), while, the last equality follows from
Lemma 4.17(i) and the fact that (Pa (x) Pancz\z;)(X)€m(Y))a is Tr-invariant for any
r € A. Also, by Lemma 4.17(iii) we have

Dy ((PA(x)Pancz\s) (X0)gn(¥))A) = Z‘AlpzuRA (PA(x) Pancs\sp) () gm ().

Finally, since f;,(y) and Pa (x)g;; (y) are smooth functions, by Lemma 4.14 we have

Dipsyurs Sm (), it J ST

'D}JQ\J (P():\Z‘])\A(x)fm(Y)) = 0 if J ,¢_ 1

and

Djur, (Pax) Pancs\s) () &m (1) = Dyyrann (Pa)gm ().

4.2. Identities for exy(x) and . In this section we prove some useful identities for the
functions ex¢(x) and gi¢ defined in Definition 3.6.

Recall the definition of ®;, in Sect. 3.4. For min{¢, k} < u < max{{, k} — 1 and
1 <s <kwesetDy(u,s) ={o € Py | ou] = (1, s)}. For the rest of the section
we will need ®yy(u, s) mostly for u = k,, and s = i, or s = j.. We set for convenience
Dy (i) = Ope(ky, i) and Oyy(ji) = ek, jr)-

Definition 4.21. For each r € X and 0 € ®yy we define:

o, if o ¢ Ope(iy) U DPpe(jir);
T:(G) =450t =00, if o€ Pr(iy) U Ppe(jr) and 1 ¢ {iy, jr};
.0 =0T, if 0 € Ope(iy) U Ppe(jr) and 1 € {iy, ji ).
For any subset A = {ry,..., 7} of X, by ‘L'Z we denote the operator on &, defined

by T4 (@) = T4 (- (57, (0)))-
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Remark 4.22. One easily shows that 7(c) € @y, and that if 0 € Pe (i) U ie(jir),
then 77 (o) € Ppe(iy) U Ppe(jr) and 77(0) # o. Also, note that 7 is an operator on

Sn I XX S1 that acts as 1dent1ty on Sl if i ¢ {k, | r € A} and that interchanges the
transpositions (1, i) and (1, j,) of Sk forall r € A.

Lemma 4.23. Let w’ € T,(C), 0 € S’,,_l X -+ X S’l, and A C X. Then the following
identities hold.

() exe(tx (o) (W) = exe(oTa(W)).
(ii) Tx (o) (exe) = TAO (Eke)-

Proof. The lemma follows by a straightforward verification. O

Lemma 4.24. Let I € R and A C X be such that Pp(v)eke(t)(0)(x + 7,(2)) and
Pa (x)ege (o (x + 2)) are smooth functions. Then:

D} (Pa(X)exe(o(x +2))),  if (RA)r =1,

Dj (Pa@)exe (v (@) (x +7:(2))) = —D} (Pa(x)exe(o(x +2))), if (Ra), #1r

Proof. Denote for convenience ex¢ by e. By Lemma4.23 we have that g (x) := e(7 (o) (x+
7,(2))) + e(o (x + 7)) is T,-invariant. Indeed,

8(tr(x)) = e(7)/ (o) (z(x) + 7,(2))) + (0 (7 (x) + 2))
= e((r/ ()T (x +2)) +e(0 T (x +7,(2)))
= e(o7 (7 (x +2))) +e(r)(0) (x + 7,(2)))
=e(loc(x+2)+ E(T:(O')(x +7-(2)))
=g()
We continue the proof considering four cases.
(i) (Ra)r = I, = {(r, jr)}. In particular, r € X; and the function g1(x) = Pa(x)e
(t}(0)(x + 7,(2))) — Pa(x)e(o (x + 2)) is t-invariant.
(i) (RA)r = @ and I, = {(ir, jr)}. In particular, r € ¥ and the function g, (x) =
Pr(x)e(t}(0)(x + 7-(2))) + Pa(x)e(o (x + 7)) is T,-invariant.
>iii) (Ra)r = {(y, j»)} and I, = @. In particular, r ¢ 3; and the function g3(x) =
Pyy(x) Pa(x)e(tr (o) (x + 7,(2))) + Pyry(x) Pa(x)e(o (x + 2)) is t-invariant.
(iv) (Ra)r =Wand I, = @.Inparticular,r ¢ X; and the function g4(x) = Pj;j(x) Pa(x)
e(t)(0)(x + 7,(2))) — Pyry(x) Pa(x)e(o (x + 2)) is 7,-invariant.

In the cases (i) and (ii) we apply the operator D; to the 7,-invariant functions g; and g.
Then, by Lemma 4.17(iii), we have D} (g1) = 0 and Dj (g2) = 0. For the cases (iii) and
(1v) we apply the operator Dy, | Ry 083 and g4. Then, again by Lemma 4.17(iii), we have

,UR (g3) = 0 and D,UR (g4) = 0. Finally, since D';UR (Pry(x)Pa(x)e(z) (o) (x +
Tr(Z)))) = D”(PA(X)E(T*(G)(X +17,(2)))) and Dy (P{r}(X)PA(X)e(G(x +2) =
D} (Pa(x)e(o(x +z))), we obtain the desired result. O

Corollary 4.25. Let I € R and A, A’ C X be such that Px(x)eys (‘L’Z, (0)(x + A (2))
and Pa(x)ego (o (x + 2)) are smooth functions. Then:

Dy (Pa()exe(Th/(0)(x +Ta(2)))) = (=D} (Pa(x)eke(o (x +2)))
where g = |{r € A" | (Ra)r # I+}I.
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Proof. The identity follows directly from Lemma 4.24. O
Lemma 4.26. Let I € R and A C X. Then:

DiT(x +7a(2) = (=)D T(x +2),
where p = |{r € A | I, # 0}].
Proof. The identity follows from the relations (5). O

Definition 4.27. For convenience we introduce the following notation for any / € R
and (01, 02) € @y x 5, where k #= £ and r # s:

exe(o1) = e (o1 (x +2)),
eke(o1,02) = epe(01(x + 2 +02(8r5))),
DT (o1 +02) = DT (x + 2+ 01(8ke) + 02(rs))
Qo = {u € ¥ | zis t,-invariant}
Qo) ={u € ¥ | min{k, £} <k,
< max{k, £} — 1 and z + o (&x¢) is T,-invariant}
Q(o1) = {u € = | minfk, £} < k,
< max{k, £} — I and o1 € Py (iy) U Pre(ju)}
Qo) = Q(01) N Q(01)
Q(o1,02) = 2, N R(02)
q)(al,ag) = {(01/» O‘2/) € Opp X Oy | U{(Ski) +62/(8rs) = 01 (eke) + 02(8r5)}.

Remark4 28. Note that Q4 N Ry, € Q(al, o») and Q(al, 02) € Qg,. In particular, if
Q(Jl o) = 9(02,01) = A then Q5 N Ry, = A. Also, if Q5 = Q4, = A/, then
Q(o1, ) = Qo2,01) =

Lemma 4.29. Letk # £,r # s, and (01, 02) € ®yp X Pp5. Then for each A C X and
A C Q(op) we have:

(i) exe(t3 (01), 02)"8 = ex(01, 02).

(i) Dj (Pa(¥)exe (v} (1), 02)) = (=) Wed | R ALIDY (Py(x)ere (o1, 02).

Proof. To prove (i) we use Lemma 4.23(i) and the fact that z + 02(¢,) is T -invariant.
Namely, we have:

exe (T3 (1) (T3 (X) + 2+ 02(8r5)))
ere(01TR (T () + 2+ 02(8rs)))
ere(01(x + T (2 + 02(8r5))))

= e (o1(x + 2+ 02(&r5)))

= ek (01, 02).

eke(t} (01), 02)"A

The identity in part (ii) follows from Corollary 4.25. O

Lemma 4.30. Let k # €, r # s and (01, 02) € g X P, For any (o{, 0}) € P(o,,0y)
we have:
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M P10 = Plo1.02):
(i) 2(a]) N (o)) = Q(o1) N R(02).
(iii) Q7 N Qyy = Loy N Loy

Proof. Part (i) follows from the definition of @4, ,). We next prove part (ii). Since
(01,03) € P5,09), fOor any u € Q(o1) N Q(02), we have {o][k,], o5[k,]} = {o1[ku],
o2k, 1}. Thus u € Q(o() N Q(03), which implies Q2 (o1) N Q2(02) S Q2(o]) N Q2(0)).
For the reverse inclusion, if we start with u € Q (cr]/ )yNQ (oé), and use that (01, 07) €
D(51,00) = CD(UI/’UZ/) (by part (i)) we conclude that u € Q(o7) N 2(02) using the same
reasoning as for the first inclusion. For part (iii), if (o], 0) € ®(5,,4,) andu € Q4 N2, ,
then al’ lky]1 = o1lk,] and az’[ku] = o»[k,], and then use again the reasoning of part (ii).

O

Lemma 4.31. Let k # £,r # s, and (01, 02) € Oy X Dyy. Let also

Clor,0) = Y (ers(0ere(of.03) — exe(o])ers (o], 03)),
q)(ﬂl-ﬂz)
where the sum is taken over all (01’, O'é) € ®(gy,0,)- Then the following hold.

(i) Pq,(x)C (01, 02) is a smooth function.
(ii) If Q4 N g, # U, then C(o1, 02) = 0.

Proof. Part (i) follows by a straightforward verification. For part (ii) we use the same
reasoning as in the case t = 1 (see Lemma A.4 in [6]). Namely, we use the fact that
C(o1, o) is the coefficient of T (o7 + 02) in the decomposition of [Ey¢, E,s]T (x) as a
linear combination of generic tableaux. O

Proposition 4.32. Set k # £,r # s and (01,02) € Ppg X 5. If A = ﬁ(ol, 07), then
there exists A C A such that th o2 = A

Proof. Letu € A.Sinceu € Q4,, we have |zx, i, — 2k,,j,| = 1. On the other hand, since
u € Q(oy) wehaveu € Q(oz) oru € Q(t;(02)). Thus, A = {u € A |u € Q(t;(02))}
satisfies the desired property. O

Corollary433 Set (o1, 02) € Dy x O, and let A= Q(Ul o) U Q(O'Q, o1). There

exist A1 C Q(al, 02)\(Qo; N R,) S Aand Ay C Q(crz, o)\ (s, N Ry,) S A such
that Q Zl(gl) = er ((72) = A.

Proof. The statement follows directly from Proposition 4.32. O

5. Module Structure on V(T (v))

Throughout this section we fix x to be an element in S” and 7 to be a subset of R.

Proposition 5.1. For any g € gl(n) and s € ¥ we have:

v DY (Ps\s, (0T (x+2)),  if ;=10
Dy (PE\E1 (x)gT (x + ‘Cs(Z))) - :_D}}? (PE\EI (x)gT (x + Z)) . if Iy £ 0.
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Proof. By Remark 4.13, for any permutation o € S; we have:
’D% (Pz\zl x)gT (x + ‘L'S(Z)))
=D (- (PR, (Povs (08T (x +7,(20)) -+ )

Let o be any permutation such that o (1) = s. Since P(x\x,)\{s}(x) does not depend on
Xg,,i, and xg ;. , the proof of the proposition can be completed similarly to the proof of
Proposition 4.7 in [6]. We have

2 (Poys, (0T (x + 74(2)))

Ry (1)
[ Pemns DR (Pr(0gT(x +5,(2), if I, =9
- ; ,

Pyyx, ()Pl (8T (x +75(2))) if I # 0.

O

Based on Lemma 4.14 and the fact that DyT (v +z) = T (v + z), for any g € gl(n)
and I € R, we define

g DiT(v+2z) =Dy (Po\x,(x)gT (x +2)). (8)
In order to check that g - D;T (v + z) is well-defined in V (T (v)) we need to verify the
independence on the relations (5) and that the right hand side of (8) is in V(T (v)).
Lemma 5.2. For g € gl(n) and z € T,—1(Z), g - D;T (v + 2) is well-defined.

Proof. Note that Py\x, (x)gT (x +2) € F® Veen» hence the right hand side of (8) is
well-defined. Also, by Proposition 5.1, we verify that g - D; T (v + 7, (2)) = (—=Dlrlg .
DT (v + z) which implies the independence on (5). O

The following theorem shows that V(7' (v)) has a gl(n)-module structure. Recall
that the action of the generators E,s on T (x + z) is defined by the formulas (4) in
Proposition 3.7.

Theorem 5.3. The formulas (8) endow V (T (v)) with a structure of a gl(n)-module.

In order to prove Theorem 5.3 we will show that for any / € R and any 1 <
k, €, r, s < n we have the following relations:

[Eke, ErsI(DrT (v +2)) = Exe(Ers(DiT (v+2)) — Er(Exe(DiT(v+2)))  (9)

The cases r = s or k = ¢ follow by a straightforward computation. Assume now that
r # s and k # £. Let (01, 02) € Pgp X D,5. For convenience we will use the following
convention (see Definition 4.27):
Ri(01,02) = Py\x,(x)ers(02)exe (01, 02)T (01 + 02),
Ry(01,02) = Ps\x,(x)ere(o1)ers(02,01)T (01 +02)

Li(o1,02) = Y Diy,(Pr\5,(0)ers(02)Dg (Pr\s, (e (01, 02)T (01 +02))
JCR
ng%,,z:w
Ly(o1,02) = Z Diyy (Px\5, (®)exe(01)DR(Psy\x, (X)ers (02, o) T (01 + 02))
JCR

JﬁRQol =0
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Note that if / N Rg, # ¥, then D;T (v + z) = 0. Therefore, we will consider / € R
such that I N Rg, = ¥. By the definition of the gl(n)-action on D; T (v + z) we have:

Exe(Ers(DiT(v+2))) — Ers(Exe(DrT (v +2)))
= Y  (Li(o1,02) — La(o1,02)) (10)

(01,02)€Ppe X Drs

and

[Exe, Ers1(DiT (v +2)) = Dy (Ps\x, () Eke, Ers1T (x +2))

= Dj Y (Rio1.00) — Ra(or.o0)) | . (11)

(01,02)€Ppe X Drs

Therefore, to prove equation (9) we need to prove that the right hand sides of (10)
and (11) coincide. This will be a direct consequence of Propositions 5.4 and 5.5 below.
In fact, by Corollary 4.33, we can assume Q(oz, o1) = Q(al, 02) = A and consider the
two cases A = @ (Proposition 5.4) and A # ¢ (Proposition 5.5).

Proposition 5.4. Set k # €, r # s and (01, 02) € g X Dy

() If @02, 01) = 0, then L1 (01, 02) = Di(R1 (01, 02)).
(i) If Q(o1, 02) = ¥, then Ly (o1, 02) = DR (R2(01, 02)).

Proof. Recall that Q(o, ') = Q4 N §(c”’) by definition.

(1) The hypothesis Q(oy,01) =0 implies the following:
(a) The vector z + o1 (ex¢) + 02(&rs5) 1S T,-invariant for any u € Q2 (07). In particular,
if K N RQ(s,) # ¥, then Dk T (01 +02) =0.
(b) ere(o1, 02) is a smooth function.
(c) By Lemma 4.29(1), ex¢(o1, 02) is t,-invariant for any u € 2(o02). So, Dy
(exe(o1, 02)) = 0 whenever J N Rq(s,) # 9.
Now a straightforward computation shows that D} (R (01, 02)) = L1(01, 02).
(ii) The proof is analogous to the proof of part (i). O

Proposition 5.5. Let (0{, 05) € ®pp x g be such that ﬁ(az’, o)) = ﬁ(al’, o) =A#
(. Then L(o{, 0}) = 'DZ(R(G{, 0})), where

L(o{.op) = Y _ Y Li(t},(01). 14, (02)) — La(z}, (01). T4, (02)) | -
[} A1,A2CA

’ ’
e1.7) A1NA=0

R(of,05) = Y _ Y R}, (1), 1A, (02) — Ra(x, (1), T4, (02)) | .
[} A1, A2CA
A1NAL=0

(01.0%)
and the outer sums on the right hand sides are taken over all (o1, 03) € CID(O{’ o)

Proof. In order to show that L(o{,05) = D%(R(0{, 05)) we will use the followings
facts:
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(a) By Remark 4.28 and Lemma 4.30(ii), for each (o1, 02) € Q(U{’oé) we have Q4, N
Qy, = A

(b) By (a), foreach A € A we have Qur (o) = A\A, fori =1, 2.

(c) By (b) we have Q(1} (01). 74, (02)) = A\A; and (1% (02). T4, (01)) = A\A,.
In particular, by Proposition 5.4 we have L (o1, 75 (02)) = Di(R1(01, 71 (02)))
and La(t}(01), 02) = DRp(Ra(tx(01), 02)).

(d) Since szl("‘) N QTZZ (63) = A\(A1 U Az), by Lemma 4.31(ii) we have that for
any A1, Az such that Aj U Ay # A:

> (R}, (01). T4, (02) — Ra(T, (01), T4, (02))) = 0.
(b(o/ 0/)

12
(e) If A; N Ay = @, then for each (o1, 07) € Q(U{Jﬁ) we have

2+ 13, (01)(eke) + T3, (02) (6r5) = TaUA, (2 + 01 (8ke) +02(81)).
In particular, for any K € R we can use Lemma 4.26 to obtain:
Dk T (e}, (01) + T4, (02)) = Dg (x4, (01) + T4, (62))
— (_I)WGAlUAz \ Kr#””DKT(ol +0).

(f) If Ay N Ay = ¢, then by Corollary 4.25, for any K € R and (o1, 02) € q)(ﬂfﬂz’)
we have:

Dpr\k (Px (x)eke (T}, (01), TX,(02)) = (=1)*Dp\k (Px (x)ere (01, T4, (02)),

where s = [{r € Ay | (R3)r # (R\K),}I.
(g) Forany A C A the condition Rg, , D NJ = @ is equivalent to the condition J, =
A

for any r € A\A. In particular, if A} N Ay = 0, Rq , @) NJ =@ implies J, = @
A2

for any r € Ay, while R, 5 N J = ¢ implies J, = @ for any r € A».
TA o

¢

We finish the proof of Theorem 5.3 in four steps.

Step 1. We use (c), (d) and after reordering the terms of L(o7, 03) and R(o{, 0}), we
verify that in order to prove the identity L(o7, 05) = D}(R(o{, 03)), it is sufficient to
show I:(Ul’, 0y) = D}’e(ﬁ(al’, 03)), where

Lel.op= > | Y > L@ 1. 14,02) — La(th,(01). 74, (02)) | .
A CA AICA @

;o
A1NAL=0 1.7

Rof.o9) = > | D Ri(tkia,(01). 74, (02)) = Ra(t},(01). TX\ A, (02))
A CA\ @

(01,9)

Step 2. We use (e), (), and (g) to simplify I:(crl’, 03). Namely, for any A; € A and
Ay C A, we have

Li(z}, (01). T4, (02)) — La(24, (@1), T4, (02))

= Li(th\a,(01). T4,(02) — La(74, (01), TA\ 4, (02))-
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Therefore, f,(o{ , 05) is equal to

Do 28 YT Lirha, (01). T4, (02) — Loz}, (01), Thia, (02)) | - (12)

Ang d>(ol/ ,oé)

Step 3. We compute D}’e(ﬁ(ol’ ,03)). In fact, for each Ay C A, by (d) we obtain:
> Ri(thia,(01). T4, (02)) — Ra(T4,(01). Th\ 4, (02))
(0].03)

= Py\5, (D) C (A4, 0], TA, (@) T (x + Ta (2 + 01 (ek0) + 05 (8r5))),  (13)

P

where C(‘L’Z\ Ay (o)), A, (0)) is equal to

37 (ers Tk, (@2))ere (Thy a, (01). Ta, (02) — ee(Th, (01)ers (Th, (02). Th\ 5, (@1))).

cD(tf{.frﬁ)

By Lemma 4.31(i), Py\x, (x)C (T}, (o)), A, (03)) is a smooth function (note that
Qo € X\X; because I N R, = 9).

Now, if { (01(17 ), 02(11 ))}‘;’:1 is the set of all pairs of permutations in <1>((,1/y02/), for each
Ay € A we define the following functions:

fop = Pe\x, @ers (T4, (03™)), frp—1 = Ps\z, (Wexe(th, (o)),
82p-1 = et (Thya, @), TA, (037)), g2p = —ers (14,037, Th\a, (0,7)).

We finally apply Proposition 4.20 to the functions f,, g, p = 1, ..., 2s. Note that
the hypotheses of Proposition 4.20 are satisfied by Lemma 4.31 and Lemma 4.29(i).
Step 4. To complete the proof we show that (12) in Step 2 coincides with the expression
obtained by applying D}, to (13) in Step 3. O

6. New Irreducible Gelfand—Tsetlin Modules of Index 2

In this section we give examples of new irreducible Gelfand—Tsetlin modules of index
2 which are certain irreducible Verma modules.

Takea; € C,i =1,...,n— 1 suchthata; —a; ¢ Zforanyi # j.Let T (v) be the
Gelfand-Tsetlin tableau with entries v, = v, = a; for 1 <r <n and v,; = a;_; for
i =3,...,r <n,namely the tableau:

a1 ay a2 ap—3 Ap—2 Ap—1

a1 a1 ap—3 Ap—2

ai
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Consider the corresponding module V (T (v)). Itis an (n — 2)-singular Gelfand—Tsetlin
module of index 2.

Theorem 6.1. Let T (v) be the tableau defined above, and let M := M7 ().

(i) The module V (T (v)) has a unique irreducible subquotient M such that My # 0.
Moreover, M is a submodule of V(T (v)) and it is isomorphic to the Verma module
with highest weight (a1,a1+1,a2+2,...,a,—1+n —1).

(i) GT-deg(M) = GT-deg(V (T (v)) = =2,

(iii) The geometric multiplicities of all eigenvalues of any generator of I' on M are
bounded by 2. The geometric multiplicity of ck» on a Gelfand-Tsetlin subspace of
a maximal dimension is exactly 2, whenever the kth row contains a critical pair. In
particular, the geometric GT-degree of M is 2.

The proof of this theorem will be given in the Sect. 7.1.

Remark 6.2. For n > 4 the geometric GT-degree of the module M (aj,a; + 1,a +
2,...,a,—1 +n — 1) is strictly smaller than the GT-degree of this module (2 < 212y,

6.1. Gelfand-Tsetlin degree conjecture. Let p be a half of the sum of positive roots of
gl(n). Then the Verma module M (—p) is irreducible and it is a singular Gelfand-Tsetlin
module of highest index, i.e. it has index n — 1. For n = 3 it has singularity of index 2
and hence satisfies the theorem above.

Conjecture 4. Consider the irreducible Verma module M(—p) of index n — 1. We
conjecture that this module is a Gelfand-Tsetlin module of maximum possible GT-
degree, i.e. GT-deg(M(—p)) = (n — D!(n —2)!... 1!

7. DV-Invariance of the I'-Action on V (T (v))

In this section we study the structure of V(7T (v)) as a Gelfand—Tsetlin module, and, in
particular, the action of the generators of the Gelfand—Tsetlin subalgebra I" on V(T (v)).
The main result of this section is the following

Theorem 7.1. I' = I';, is DV-invariant.

The notion of DV-invariance of I" is intuitively clear, but for the sake of completeness,
we define it in more general setting.

Definition 7.2. For each m < n we denote by I';, the subalgebra of I" generated by the
centers Z; of U;, 1 <i < m.By X(m) we denote the set {r € X | k, < m}. We say that
[y, is DV-invariant if for any ¢ € I',, any I € R, and any z € T,,_1(Z),

cDiT(w+2) =Dj (cT(x+2)).
Lemma 7.3. Suppose I € R and z € T,,_1(Z). If f is any smooth function then

Dy (Psyx, () fT(x +2)) = DY (fT(x +2)).
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Proof. By definition, DY (Pg\x, () fT(x+2) = Y,cx (D;\ S (P, (0 f)

D,T(v+z)). Now, using Lemma 4.14 and the fact that Ry\x, = R\/, the right hand

side of the latter identity becomes ng (D}’\J (HDyT(v+ z)) =Dj(fT(x +2)).
O

Recall that Veen := P, c50 V(T (v)). We define a gl(n)-module structure on FQ Veen
by letting gl(n) to act trivially on F.

Proposition 7.4. Let g be any element of gl(n) and suppose that F € F ® Vgen IS such
that g(F) € F ® Vgen. Then gDY(F) = DYg(F).

Proof. Since D? is linear, it is enough to show the statement for g = E,; and F =
ST (x + z) with generic x and a smooth function f. We have:

ExDj(fT(x +2)) = Dp(Pe\x, () Ers (fT (x +2)))

=Dy | Poiz, () f () Y er(0(x+2)T(x +2+0(er))

oed,g

= > Dy (Psys, (1) f()ers (0 + )T (x +2+0(er)))

oed,

= Y D (fWers(@(x+ )T (x +2+0(er5))

ced,

=D Er(fT(x +2),

where the forth equality follows from Lemma 7.3. O

From now to the end of this section we will denote by [; < --- < I; the set of all
distinct elements in {ky, ..., k;}. We also set [y := 1.
Definition 7.5. For each a € Z>o and any [ € {lp, 1, ..., [;}, we define the following

subsets of T;,_1(Z).
() L :={z € T,_1(Z) | |z4,.i, — 2,.;,| = a for any r such that k, < I}.
.. I} 1

(i1) E(EL = UkZu KIE).

(iii) £, == £47” and Lo, := £

Note that for any a € Zso we have £l - ﬁg%) =T,_1(Z).

Lemma 7.6. If z € LZ’;*‘) and 1 <r < s <, then for any o € Py, the coefficient of
DiT (v +z+0(gry)) in the decomposition of E,sDiT (v +2) is e,4(0 (v +2)).

Proof. The statement follows by a direct computation from the action of E,; on D; T (v+
z) in formulas (8). O
Proposition 7.7. Suppose c,s € T and z € T,—1(Z). Any of the following two conditions

() z € Lss.
(i) m < ky (recall that, 2 < k1 < --- < k; are fixed).
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implies the identity:
crsDiT (v +2) =Dy (crsT(x +2)) . (14)

Proof. Note that for any a € Z=¢,ifz € L=, and o € &, forsome 1 <r < s < n,
then z + o (¢,5) € L>,4—1. From this observation one can easily show that each of the
conditions (i) and (ii) implies

{T(X +Z), EisilT(x + Z)a ceey Eiliin2i3 s Ei;ilT(-x +Z)} - ?@ Vgen»
for any (i1, ...,i5) € {1,..., r}*. Hence, by Proposition 7.4 we have:
¢rsDIT(w+2) = ZEiliin2i3 o Ei i DiT(v+72)
= ZD? (EiligEi2i3 - EisilT(x + Z))

= 'D}) (Z Eiliin2i3 Ce Eixil T(x+ Z))
= D}} (crsT(x + Z)) s
where the sums are taken over all (i, ...,i5) € {l,...,r}’. O

Definition 7.8. (i) Let I, J € R and wy, wy € T,,—1(Z). We write D;T (v + w1) <p
DyT(w+wyp)if I € J and wy = ta(wy) for some A C 3. We will refer to <p as
the D-order on V(T (v)).

(i) A maximal element in a finite subset A of derivative tableaux in V(T (v)) with
respect to the D-order will be called D-maximal in A.

Remark 7.9. Note that <p defines a preorder, i.e. <p is reflexive and transitive, but it is
not antisymmetric. Hence, by a maximal element of a set A of derivative tableaux, we
mean an element b in A such that for any ¢ € A we have ¢ <p b.

Lemma 7.10. Let m < n and assume that T'y,_ is DV-invariant. Let g € Uy, C
R,w € T,-1(Z), and let gD;T (v + w) = lezodjpl(j)T(U + w;j), where § =
{(D;hT(w+w;j) | j =0,...,k} is a linearly independent set of vectors in V(T (v)).
Assume also that D;0) T (v + wo) is D-maximal in S. Then there exists C € I'y,—1 such
that

(1) CD;(HT(w+wj) =0, ifwj # ta(wo) forany A € Z.
(ii) CgDIT(U +w) = DI(O)T(U + wp).

Proof. We first note that since g € U,,,, we have (/ G ))r = [, for any r such thatk, > m.
Also, for m < i < n, the ith row of the tableau T'(v + w;) coincide with the ith row
of the tableau T (v + w). So, w; # ta(wp) for any A C ¥ implies that the rows of the
tableau 7' (v + w;) can not be obtained by a permutation of the entries of the first m — 1
rows of T'(v + wp). This implies the existence of ¢; € I',_1, y; € Cand m; € Zxg
such that (¢c; — y))"ID;(pT(v+w;) =0and (¢; — ¥;)*D;o T (v+ wp) # 0 for any
s € Z>¢. We continue with the proof of parts (i) and (ii).

(i) SetA:={je{l,...,k} | w; # ta(wp) for any A € X}. Then
C:= [t =)™ €Tn
JjeEA

satisfies the identity CD;» T (v + w;) = 0 forany j € A.
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(ii) It is enough to show that D;«) T (v + wp) appears with nonzero coefficient in the
decomposition of (¢; — y;)gD;T (v + w) for any j € A. In fact, since I';, | is
DV-invariant we have:

k

(cj —y)eDITw+w) = (c; — v) Y aDyoy T (v +w;)
i=0

k
= Z a; Z D?(i)\](i)(cj (x+wi) = y)DyoT(+w;)
i=0 JOHc®

In particular, Do) T (v+wq) appears in this decomposition if and only if / ®cr®
and w; = tA(wg) for some 0 < i < k and some A C X. This, combined with the
D-maximality of Do) T (v + wq), implies that D;) T (v + wo) appears once in this
decomposition and its coefficient is ag(c; (v + wo) — ;) #0. O

Definition 7.11. Given I, J C R, z,7 € T,_1(Z), and g € U, we will write D; T (v +

7)) LN D;T(v+z)if D;T (v+7') appears with nonzero coefficient in the decomposition
of g - D; T (v +2z) as linear combination of tableaux. Also, we will write D; T (v+z7') —

DiT(w+2)if DyT(w+7) S DT (v+2) for some g € U.

Lemma 7.12. Let m < n be such that I',,,_1 is DV-invariant. Let also 71, 72, 23 € L>]
and I € R. If g1, g € U(gl(m)) are such that D;T (v + z2) LN DiT (v + z1) and
DiT(v+z3) SN DiT(v+2z2) then DT (v +23) LN DT (v + z1) for some g3 € Uy,.

Proof. Note that the action of Uy, on D;T (v + z1) with z € L= produces tableaux of

the form D; T (v + w) with J C I. Since D;T (v + z3) LN D;T(v+z1), the coefficient
of D; T (v+z2) in the decomposition of g;D; T (v +z1) is nonzero. Then by Lemma 7.10
there exists C; € I'j,,—1 such that C1g1D;T (v + z1) = D;T (v + z2). For the same
reason, there exists C € I'y,— such that C22oD; T (v + z2) = D;T (v + z3). Therefore
C282C1g21DiT(w+z1) =D;T(v+z3). O

Lemma 7.13. Let p € {1, ..., 1} be such that ['¢, is D-invariant and let z € Eg‘,’; N
1y . 1

E(Z‘;ni; There exist 7' € l:(z’;,zﬂ and g € Uj,+1 such that D;T (v +z) LN DT (v+7) for

any I C R.

Proof. Suppose [, =k, = --- =kyy,and let w = v +2z. Setalso k =1, and k = Ip-1.
Assume without loss of generality that z , ; , > zk, ;,, for any r’ € X (this can be done
because of the relations (5)). For every 0 < b < a, the condition z € Egl +

existence of #;, such that

, implies the
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Wiy + 1= Wik—1,5_,> forsome 1 <s,_1 <k-—1,
Wi—1,5_; + 1 = W25, forsome 1 <s;» <k—2,

wk*lh*’lvsk—tbﬂ +1= wkftb,sk,,b , forsome 1< Sk—t, = k—tp,
Whk—ty, 55—y, + 1 # wi—g—1.5, forany 1 <s<k-—1—1.
Forany0 < j < asetg; = Exy14—;; andzj = Z+ 80 4 Y gk=isier Ifb #£ a
k k k k) (k)
we have Z i=12j € ‘C(>r)n Nl )+1 and 2 =75, zj € € L )+1 ﬂ£(>m+1 L3 st
Now, by Lemma 7.6 and the choice of t,, we have:
80 81 82
DiT(w+z) > DiT(v+z0) = DiT(w+zp+21) = -+

g
B DiTw+zo+z1 4 +24).

Finally, by Lemma 7.12 we have D;T(v+z) - D;T(v+z0+21+---+24). O

Corollary 7.14. Let p € {1,...,t} be such that Iy, is D'-invariant and let z €
Lg’,’n) ﬂcﬁ’;;ng for some M € Z~q. Then there exist 7' € £>m+M and g € U,

such that DyT (v + ) LN D;T(w+7) forany I C R.

Proof. The statement follows directly from Lemma 7.13. O

Proposition 7.15. Assume that I';, is D"-invariant and let z € ngn) Sfor some m € Zxy.
Then there exist 7/ € £>m+1 and g € Uj,+1 such that DT (v + 2) LN DiT (v +7) for
any I € R.

Proof. We will prove the existence of g; € Uy, and z; € Lgn)1+2p i=1,..., p,such
that:

() zi € L8 forany 1 <i < p —1;
(i) DiTw+2) 25 D;Tw+2) % - 25 D Tw+2)).

We first note that z € Eg:,), = ﬁg',,i Nct

>m+N

for any N € Zxo. Set N = 2P,
By Corollary 7.14, there exist z; € £(11)+2p , and g1 € Uj41 such that D;T (v +

Z) LN DIT(v + z1). Now, assume that for j,1 < j < p — 1, there exist g; €

Ui+1,2i € [,>’ wop—i? for all i = 1,...,j, that satisfy (i) and (ii). In particular,
i 1 .
Zj € £(>W)l+2p N Ciﬁ;l) so, we can use Corollary 7.14 and guarantee the existence

(/+1)

Sma2s—i-1 such that D;T (v + z;) LZMN DiT (v +zj41).

of gj+1 € Uy, +1 and zj41 € £

1
Note that z;4; € L2 ”2) because z € E>m, gj+1 € Ui, 41, and D,T(v +2;) B,

D;T(v+2zj41). Finally, the existence of g € U1p+1 such that D; T (v+2) LN DiT(w+7)
is guaranteed by Lemma 7.12. O

Definition 7.16. Given A|, A; € V(T (v)) and g € U, we say that g separates A and
Az ingl = A] and gA2 =0.
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Lemma 7.17. Let m < n and let k = max{k, | k, < m}. If Ty is D'-invariant, then Ty,
is DV-invariant.

Proof. By Proposition 7.7(i), if z € L=, then the formula (14) holds for any ¢ € I',.
Thus D;T (v + z) is a common eigenvector of all generators of I';,, and the submod-

ule WZ(I) of V(T (v)) generated by D;T (v + z) is a Gelfand-Tsetlin gl(m)-module by
Lemma 3.4 in [6]. Then foreach I € R, Wy =Y., W and W = 3, Wy are
also Gelfand-Tsetlin gl(m)-modules. Denote by Wj the Gelfand—Tsetlin gl(mm)-module

Z|>:,m2(m)|:k Wi. )
We next show that Wy contains all tableaux D;T (v + z) such that z € T,,_1(Z)

and X; N X (m) = (. Let us first consider z € £® By Proposition 7.15, there exist

>m—1*
z0 € LQ‘,L and go € Ug41 suchthat DT (v+2) LLY D; T (v+zp) (we assume without loss
of gene_rality that the coefficient of D;T (v + z) in the decomposition of goD; T (v + z¢)
is 1). By Proposition 7.7(i), all generators of I',, except for the ones in the center of U,,
satisfy the relation (14). Let ¢ € Z,,, and let (¢ — y)D;T (v + zo9) = 0 for some y € C.
Then (¢ — y)goD;T (v + z9) = 0. Since 'y is DV-invariant, we can use Lemma 7.10,
and choose C € I’y that separates D;T (v + z) and goD;T (v + z0) — DT (v + z) (see
Definition 7.16). Since C commutes with (c —y) we have (c—y)(CgoD; T (v+z0)) = 0,
which implies that ¢ acts as multiplication by y on any tableau in the decomposition

of goD;T (v + zo). Hence, the action of I on any D;T (v + z) for z € L:g?n_l is given
by (14). Moreover, D;T (v +z) € W for any z € £® Next we consider a tableau

>m—1-

D;T(v+z)withz € Eg‘;_z. Again by Proposition 7.15 one finds a nonzero g; € Uy
(k)

andzy; € L, ,suchthatD;T (v+z) LN D; T (v+z1). For the generators of the center
of Uj,i < m — 2 the statement follows from Proposition 7.7(i). If ¢ is in the center of
U, or in the center of U,,_; then it commutes with g;. Choose C € I'y that separates
DiT(v+z)and goD;T (v+2z09) — DT (v +z) and which acts by a scalar on the tableau
DiT (v + z1). By applying the argument above we conclude that the action of I on

any D;T (v +z) with z € Lg‘) _, is determined by (14) and D; T (v + z) € W for any

m

z € z:ﬁ‘)nfz. Continuing analogously with the sets £® c ng we show that any

>m—3
tableau D; T (v + z) with X; N X (m) = ¥ belongs to _VE/n
Now consider the quotient W>1 = W /Wy and [ such that |[X; N X (m)| = 1. The

vector Dy T (v+2z) + Wp of W is acommon eigenvector of ', by Proposition 7.7(i) for

any z € Egc,)n We can repeat the argument above and obtain that any tableau D; T (v +z)
with |Z;NX (m)| = 1 belongsto W. Continuing in the same fashion when | X;NX (m)| =
2,3, ..., we obtain that I';,, is DV-invariant. 0O

Now we are in the position to prove Theorem 7.1.

Proof of Theorem 7.1. Recallthat/| < --- < [;are the distinct elements of {ky, ..., k}.
By Proposition 7.7(ii), I';, is D-invariant. Now, we apply 7 times Lemma 7.17 to com-
plete the proof (here (k, m) € {(l1, ), (I2,13), ...,z n)}). O

Corollary 7.18. Suppose that all singular pairs of T (v) are in different rows (i.e. ky <
ky < -+ < k). If DT (v +2) LN DT (v + z), then there exists C € I such that
CgDiT(v+z)=D;T(w+7).

Proof. Since I' is DV-invariant, tableaux with different Gelfand—Tsetlin characters can
be separated by elements of I". Finally, since all singularities are in different rows, any
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linearly independent set of vectors in V(T (v)) has a D-maximal element. In particular
any linearly independent set of tableaux in the same Gelfand—Tsetlin subspace has a
D-maximal element, so using Lemma 7.10 we finish the proof. O

Proposition 7.19. The following hold.
(1) The action of T on V(T (v)) is given by the following formulas.

cijDITW+2) =Y DY (yij(x +2)) DT W +2) (15)
JCI

(i) We have (ci; —vij w+2)/!MD; T (v+2) = 0. In particular, V (T (v)) is a Gelfand—
Tsetlin module.

Proof. The identity (15) follows by Theorem 7.1.

To prove (ii), we apply induction on |I|. Suppose first that |/| = 0. Then from (15)
we obtain ¢;; DygT (v +z) = ¥;j (v + 2)DyT (v + z). Suppose now that [/| = s and that
(cij — vijw+2)VHD; T (v +z) = 0 forany |[J| <s — 1. By (15) we have

(cij —vijw+2)DT(w+2z) = Z DY (yij(x +2)) DT (v +2).
g£ICl

Since all subsets 7\J with J # ¢ satisfy |I\J| < s — 1, by the induction hypothesis
(cij = vij(w+2)* Dy T (v +2) = 0. Therefore, (cij — yij (v +2)**' DT (v +2) = 0.
[}

7.1. Proof of Theorem 6.1. We use notations from Sect. 6. Consider the module M
generated by the tableau Dy T (v). Itis ahighest weight module of highest weight (a1, a1+
l,ax+2,...,ay,—1+n—1).Indeed, forany 1 <i <n —1, E; i+1(DyT (v)) is a linear
combination of derivative tableaux Dg\; with coefficients D, (Px\x; (x)e;,i+1(0 (x))),
and that coefficient is zero for any J C R. Clearly DyT (v) is a weight vector with weight
(ar,a1+1,a2 +2,...,a,—1 +n — 1). Hence, M is isomorphic to the corresponding
irreducible Verma module. Since all singularities of 7'(v) are in different rows, we can
apply Corollary 7.18 and obtain a basis of M given by

{(DiT(v+2z) e V(T () | D;T(v+2z) — DygT (v)}.

Checking the coefficients of the formulas in Theorem 5.3, we immediately see that

DyT (v) 22 DyT (v +6'") 25 Dy, T(w +8" +57).
Also, forany j =2,...,n — 1, we have

J o j+1
il J+2.j+ il
..... a7 v+§:3 > Do, jun T ”+§:8
i=1 i=l1

This, together with Corollary 7.18, implies that the tableau DT (v + Z'?_ll 8”) isa

=

basis element of the module M. Finally, if for any / C R,

n—1
C:= l_[ (Ciz —Yi2 (U+Z5”)) ,
i=1

ieT\%;
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then C;DgT (v +y] 8“) is a nonzero multiple of D;T (v +y] 8“). Hence

1=

forany I C R, D;T (v + 2’7711 8“) is a basis element of M. Now, if n € Specm I

corresponds to the tableau DT (v + Z;’ _11 8”), then we have dim M,, = 2"~2. The

remaining statements follow directly from the properties of V (T (v)).

8. Proofs of Main Theorems

Proof of Theorem A. Note that V(T (v)) is a Gelfand-Tsetlin module by Theorem 5.3
and Proposition 7.19. Also, the dimension of V(7 (v))m coincides with the number of
tableaux in V(T (v)) having the same Gelfand—Tsetlin character as m. This completes
the proof. O

Proof of Theorem B. For part (i), let us consider a tableau D; T (v + z) associated with
my. A straightforward computation shows that (cx; — yxj (v +2))*(D; T (v +z)) equals
the following sum

S DU (a2 DY (g (2 + DD (i (x + T (0 +2),
WEI Iy 1 & CICI

Let (ix,, jk,), - - - » (ik, Jk,) be the singular pairs of v + z onrow k. If K C R is such
that K, # @ forsome r € L\{ky, ..., ky}, then D}, (yy; (x +2)) = 0 (note that y;; (v+2z)
depends only of the entries of row k). Hence, there is a nonzero constant C, such that

(ckj = vij(w+2)) (DT (v +2)) = CDp (j(x +2)) - Dy (i (x + 2T (W +2).

From the previous equality we obtain (cx;j — ykj(v + 20)TND;T (v +2)) = 0. Also,
since D?ki (Yk2o(x +2)) # 0 foranyi = 1,...,s (see [6, Lemma 5.2(ii)]) we have
(cr2 — Y2 +2))* (DT (v +2)) # 0.

We now prove part (ii). Given ¢-singular vectors v, v' € C™%™ there exist z, 7 €
T,,—1(Z) such that DyT (v + z) and DgT (v’ + ') are in the fiber of the maximal ideals
m, and m,, respectively. We have T (v) — o (T (V")) € T,_1(Z). Hence, V(T (v)) =~
V(T (v")). Conversely, let V(T (v)) ~ V(T (v')) for some ¢-singular vectors v and v’.
Let ¢ be any isomorphism between V(T (v)) and V(T (v)). The image of DyT (v)
under ¢ need to satisfies (c,y — Yrs (V)P (DyT (v)) = Oforany 1 < s < r < n. This
implies that ¢ (DyT (v)) = aDyT (o' (v)) for some 6’ € S, x --- x Sy and a € C.

Therefore V(T (v')) >~ V(T (¢’ (v))) implying v’ — o’(v) € c. Now, the image of

T (v") — o/(T (v)) via the identification between T,,_ (Z) and 7" s v — o’(v). This
completes the proof. O

Next we prove (iii). Let 7 (v) be a Gelfand—Tsetlin tableau. By Corollary 7.18, in
order to prove the irreducibility of V(T (v)) it is sufficient to prove that given any two
tableaux D;T(v+2z), Dy T(v+w)in V(T (v)), wehave Dy T(v+2z) — DT (v+w).

We have the following two important observations.

(i) From the proof of Corollary 7.18, we have D;T (v + w) — D;T (v + w) for any
JCIlandw e T,—1(Z).

(ii) Since L is regular, we have D;T (v + w') — D,;T (v + w) for any J € R and
w, w € T,_1(2).
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From (i) and (ii) we conclude that D; T (v + w”) — DgT (v + w’) for any I C R and
w’, w” € T,_1(Z). Therefore, to finish the proof we need to prove that for any D; T (v +
w) € V(T (v)) there exists w” € T,_1(Z) such that DT (v + w”) — D;T (v + w).

Consider w’ € T,,_1(Z) such that w,’w.r = w,’cr,jr forany r € \X;. By (ii) we have
DyT(v+w') — DyT(v+ w). On the other hand,

Eu(DyT(v+w) = Dr(Ps\x, () Eg1 (T (v +w')).

Since all singularities are in different rows, there exist o € S, x - -+ x Sy such that the
denominator of e,,1 (o (v + w’)) is a factor of

[T @+wh —@+wi )= [] ki —vk.) = Pois, ).

reX\3, rex\z;

Thus the coefficient of Dg T (v+w'+0 (&,1)) in the expansion of Dg (Px\x, (x) En1 (T (x+
w’))) is ev(v)(Px\x, (X)en1 (o (x + w))) # 0, so v being regular ensures that the nu-
merator of e, (o (x + w’)) is nonzero after the evaluation. Hence we have

DrTw+w") = DyTw+w') = DyT(v+w),
where w”’ = w' + o (g,1).

Proof of Theorem C. Since any submodule of a Gelfand—Tsetlin module is also a Gelfand—
Tsetlin module (see Lemma 3.4 in [6]), for any A € V(T (v)) the submodule U - A is a
Gelfand-Tsetlin submodule of V(T (v)).

Let us consider the tableau DyT (v + z) associated with m,, and denote by M the
submodule U - DyT (v + 7). Set

W={AeVTWw)|AeM, and DyT(v+w) ¢ U - A}.

If W = (then M isirreducible satisfying M , # 0.If W # @then N =3,y U-A
is a nontrivial maximal proper submodule of M. Therefore, M /N is an irreducible
subquotient of V(T (v)) such that (M /N )mv, # (0. We can apply the same reasoning
replacing DygT (v + z) with D;T (v + z) # 0. Since the cardinality of the set {I <
R | D;T (v +z) # 0} is bounded by 2’, we obtain at most 2 irreducible subquotients.
This implies part (i).

To prove part (ii) consider again the tableau DyT (v + z) associated with m,/. In
V(T (v)) wehave |{J C R | D;T(v+z) #0}| = 2!=k If we construct an irreducible
module V as in part (i), as a quotient of U - D; T (v + z), we have:

dim Vi, = {D; T(w+2) | DyT(v+2) - D;T(v+2)} < 2%,

Parts (iii) and (iv) follow directly from Theorem B(i). O
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