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Abstract: Singular Gelfand–Tsetlin modules of index 2 are modules whose tableaux
bases may have singular pairs but no singular triples of entries on each row. In this paper
we construct singular Gelfand–Tsetlin modules for arbitrary singular character of index
2. Explicit bases of derivative tableaux and the action of the generators of gl(n) are given
for these modules. Our construction leads to new families of irreducible Gelfand–Tsetlin
modules and also provides tableaux bases for some simple Verma modules.

1. Introduction

Gelfand–Tsetlin bases are among the most remarkable discoveries of the representation
theory of classical Lie algebras. Originally introduced in [10], these bases provide a
convenient tableaux realization of every simple finite-dimensional representation of the
Lie algebra gl(n), as well as explicit formulas for the action of the generators of gl(n).
The explicit nature of theGelfand–Tsetlin formulas inevitably raises the question ofwhat
infinite-dimensional modules admit tableaux bases. This question naturally initiated the
theory of Gelfand–Tsetlin modules, a theory that has attracted considerable attention in
the last 30 years and has been studied in [1,2,20–22,26], among others. Gelfand–Tsetlin
bases and modules are also related to Gelfand–Tsetlin integrable systems that were first
introduced for the unitary Lie algebra u(n) by Guillemin and Sternberg in [14], and later
for the general linear Lie algebra gl(n) by Kostant and Wallach in [15,16].

We now define the main object of study in this paper. Consider a chain of embeddings

gl(1) ⊂ gl(2) ⊂ · · · ⊂ gl(n).

The choice of embeddings is not essential but for simplicity we chose embeddings of
principal submatrices. Let U = U (gl(n)) be the universal enveloping algebra of gl(n),
and let � be the Gelfand–Tsetlin subalgebra of U , i.e. the subalgebra generated by the
centers of universal enveloping algebras of all gl(i). Then � is a maximal commutative
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subalgebra of U as well as a polynomial algebra in the
n(n + 1)

2
variables ci j , where ci j

is a degree j element in the center of U (gl(i)) [26].
A Gelfand–Tsetlin module V of gl(n) is a Harish-Chandra (U, �)-module, that is

V =
⊕

m∈Specm�

Vm,

where

Vm = {v ∈ V | mkv = 0 for some k ≥ 0}.
The category of Harish-Chandra modules is a subcategory of the category of all weight
gl(n)-modules, i.e. modules that decompose as direct sum of modules over the standard
Cartan subalgebra of gl(n). Recall that the classification of all simple weight gl(n)-
modules with finite-dimensional weight spaces is already completed [19]. Since the
classification of arbitrary simple weight modules is out of reach for n ≥ 3, the clas-
sification of simple Gelfand–Tsetlin gl(n)-modules seems to be the next fundamental
classification problem one can try to solve. This, in addition to the connections with
integrable systems and Yangians, gives us another motivation to study singular Gelfand–
Tsetlin modules. One should note also that the Gelfand–Tsetlin subalgebras are related
to general hypergeometric functions on the complex Lie group GL(n) [12,13], and to
solutions of the Euler equation [25].

Throughout the paper n ≥ 2 and Tn(C) will stand for the space of the following
Gelfand–Tsetlin tableaux with complex entries:

vn1 vn2 · · · vn,n−1 vnn

vn−1,1 · · · vn−1,n−1

· · · · · · · · ·
v21 v22

v11

We will identify Tn(C) with the set C
n(n+1)

2 in the following way to:

v = (vn1, . . . , vnn|vn−1,1, . . . , vn−1,n−1| · · · |v21, v22|v11) ∈ C
n(n+1)

2

we associate a tableau T (v) ∈ Tn(C) as above. It is important to distinguish v and T (v)

since they are vectors in non-isomorphic vector spaces as explained below.
For a fixed element v = (vi j )

n
j≤i=1 in Tn(C) consider a set

v + Tn−1(Z) = {v + M | M = (mi j )
n
j≤i=1 ∈ Tn(Z), mnk = 0 , k = 1, . . . , n}.

Henceforth we define V (T (v)) to be the complex vector space with basis the set v +
Tn−1(Z), i.e. V (T (v)) = ⊕

w∈v+Tn−1(Z) CT (w). Note that T (v +w) �= T (v) + T (w) in
V (T (v)) (even if w, v + w ∈ v + Tn−1(Z)).

To every w ∈ v + Tn−1(Z) we associate the maximal ideal mw of � generated by
ci j − γi j (w), where γi j (w) are symmetric polynomials defined in (3). Note that the
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correspondence w �→ mw is not one-to-one, but for a given maximal ideal m there are
finitely many w ∈ v + Tn−1(Z) withmw = m (see Remark 3.4 for details). We will call
the set of all such w, the fiber of m in v + Tn−1(Z) and denote it by m̂.

From now on we set G := Sn × · · · × S1. Note that G and Tn−1(Z) act naturally on
Tn(C) (see Sect. 3 for the explicit action formulas). For each w ∈ Tn(C), the fiber m̂w

ofmw coincides with the intersection of V (T (v)) and the orbit Gw of the group action
of G on Tn(C).

In this paper we address the following problem:

Problem: Given v ∈ C
n(n+1)

2 is it possible to define a non-trivial Gelfand–Tsetlin gl(n)-
module structure on V (T (v)), so that V (T (v))m = ⊕

w∈(v+Tn−1(Z))∩m̂ CT (w)?
Note that by fixing v we prescribe a basis of V (T (v))m and the action of gl(n)

on V (T (v)) should match that prescription. Also note that if v − v′ ∈ Tn−1(Z) the
vectors spaces V (T (v)) and V (T (v′)) are isomorphic, but the gl(n)-modules V (T (v))

and V (T (v′)) are not necessarily isomorphic, see Theorem B(ii) below.
The problem above was raised and studied by Gelfand and Graev in [9] and by

Lemire and Patera (for n = 3) in [17,18]. Apparently the main challenge when solving
this problem occurs when two entries in one row of T (v) have integer difference. We
will say that v is singular of index m ≥ 2 if:

(i) there exists a row k, 1 < k < n, and m entries vki1 , . . . , vkim on this row such that
vki j − vkis ∈ Z for all j, s ∈ {1, . . . , m};

(ii) m is maximal with the property (i).

A pair of entries (vki j , vkis ) such that k > 1 and vki j − vkis ∈ Z is called a singular
pair. We say that v (and T (v)) is generic if v has no singular pairs. For a generic v, the
gl(n)-module structure on V (T (v)) was introduced in [2].

In [6] we initiated the study of singular (i.e. non generic) modules V (T (v)). This
study consists of three steps. The first step is to look at singular tableaux T (v) that contain
a unique singular pair. This case, called the 1-singular case, was treated in [6] and is a
particular case of a singularity of index 2. By understanding just the 1-singular case, we
are able to complete the classification of all irreducible Gelfand–Tsetlin gl(3)-modules
[7]. In the present paper we make the next step in the study and address the case of
arbitrary singularity of index 2. That is, any number of singular pairs (but not singular
triples) andmultiple singular pairs in the same row are allowed. The transition of a unique
singular pair to a general singularity of index 2 turned out to be not straightforward and
requires a more sophisticated theory of differential operators and divided differences
of tableaux. The methods developed in this paper will be crucial for completing the
last step in our study—defining singular Gelfand–Tsetlin modules V (T (v)) of arbitrary
index. The last case will be addressed in a subsequent paper. One should note that, as a
straightforward consequence of the results in the present paper, we obtain new tableaux
bases of a large family of irreducible Verma modules of gl(n).

For the rest of the introduction we fix v to be singular of index 2. If w ∈ v + Tn−1(Z)

is such that wki = wk j for some k, i, j, 1 < k < n, i �= j , we say that w lies on the
critical hyperplane xki − xk j = 0 of Tn(C). We also say that w is maximal critical if it
lies on the intersection of all possible critical hyperplanes corresponding to elements in
v + Tn−1(Z).

Now we state our first main result.

Theorem A. Let v ∈ C
n(n+1)

2 be singular of index 2 and let t be the number of sin-
gular pairs of v. Then V (T (v)) has a structure of a Gelfand–Tsetlin gl(n)-module. In
particular,
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dim V (T (v))m = 2t−k,

whenever m̂ lies on the intersection of k critical hyperplanes, 0 ≤ k ≤ t , and dim
V (T (v))m = 1 if m̂ consists of maximal critical points.

Theorem A is proven by constructing a particular gl(n)-action on V (T (v)) such
that V (T (v))m = ⊕

w∈(v+Tn−1(Z))∩m̂ CT (w). The question whether the gl(n)-action on
V (T (v)) with this property is unique remains open.

In the subsequent Theorems B and C, and Conjectures 1–3, it is supposed that
V (T (v)) is the gl(n)-module constructed in the proof of Theorem A.

Theorem B. Let v ∈ C
n(n+1)

2 be singular of index 2.

(i) If v′ ∈ v + Tn−1(Z) has s singular (but non-critical) pairs in row k, then ck2 has an
eigenvalue of geometric multiplicity s + 1 on the subspace V (T (v))mv′ , and this is
the largest geometric multiplicity of all eigenvalues of all elements ck j , 1 ≤ j ≤ k,
on the subspace V (T (v))mv′ .

(ii) V (T (v)) � V (T (v′)) if and only if there exists σ ∈ G such that v − σ(v′) ∈
Tn−1(Z), or equivalently, if v and v′ are in the same orbit under the action of
G � Tn−1(Z) on Tn(C).

(iii) Assume that all singular pairs of v belong to different rows, and vi j − vi−1,k is not
integer for all possible indexes i, j, k. Then V (T (v)) is irreducible.

Conjecture 1. The condition that vi j − vi−1,k is not integer is both necessary and suf-
ficient for the irreducibility of V (T (v)) in Theorem B.

The above conjecture is known to be true for n = 2, n = 3, and for 1-singular
tableaux T (v) [11].

From Theorem B we obtain many explicit examples of new irreducible singular
Gelfand–Tsetlin modules together with information about their structure. In particular,
we can compute an important invariant for these irreducible modules: their Gelfand–
Tsetlin degree, namely the maximum Gelfand–Tsetlin multiplicity that may appear.
Furthermore, the generators ci j of� have a simultaneous canonical formon the subspaces
V (T (v))mwith largest Jordan cells of size s+1where s is themaximal number of singular
pairs in one row. All known examples so far concerned Jordan cells of size at most 2
only.

Our last result addresses theGelfand–Tsetlin theoryproperties of themodulesV (T (v)).
It was shown in [23] that for every maximal ideal m of �, there is an irreducible
Gelfand–Tsetlin module M such that Mm �= 0. Moreover, there exist only finitely
many isomorphism classes of such modules. If m is generic then there is exactly one
such isomorphism class and its Gelfand–Tsetlin degree is 1. On the other hand, if V is
an irreducible Gelfand–Tsetlin module then dim Vm is finite for all m and is bounded
by 1!2! . . . (n − 1)! [4]. The most interesting case certainly is when m is singular. In
[6] we constructed irreducible Gelfand–Tsetlin modules of Gelfand–Tsetlin degree 2,
which is the highest possible degree in the case n = 3. With the aid of Theorem B we
obtain examples of irreducible modules of arbitrarily large degree. More precise upper
bound for the Gelfand–Tsetlin degree of the subquotients of V (T (v)) is listed in the
next theorem, our third main result.

Theorem C. Let v ∈ Tn(C) be singular of index 2 and let t be the number of singular
pairs of L. The following hold for any v′ ∈ v + Tn−1(Z).
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(i) There exists an irreducible subquotient V of V (T (v)) such that Vmv′ �= 0. The
number of all such irreducible subquotients of V is bounded by 2t .

(ii) dim Vmv′ ≤ 2t−k ifmv′ belongs to k critical hyperplanes. In particular, dim Vmv′ =
1 if m̂v′ consists of maximal critical points.

(iii) If each row contains at most one singular pair, then the geometric multiplicities of
all eigenvalues of any ci j are at most 2.

(iv) If v has s singular pairs in the i th row then the geometric multiplicities of all
eigenvalues of any ci j , j = 1, . . . , i , are at most s + 1.

Conjecture 2. Any irreducible Gelfand–Tsetlin module N with Nmv �= 0 for any sin-
gular v of index 2 appears as a subquotient of V (T (v)).

Conjecture 2 is known to be true for n = 2 and n = 3. For the case when there exists
a unique singular pair in v (i.e. v is 1-singular) this conjecture was stated in [6], and
recently proven in [8].

If V is a Gelfand–Tsetlin module then define the Gelfand–Tsetlin character of V as

chGT V =
∑

m

(dim Vm)em.

It is an interesting question whether chGT V determines V . The affirmative answer
is known for generic and 1-singular modules. We conjecture this in general:

Conjecture 3. For any singular v of index 2 and any two irreducible subquotients V and
W of V (T (v)), V � W if and only if chGT V = chGT W .

The organization of the paper is as follows. In Sect. 3, we introduce the notation used
in the paper and collect important results for finite-dimensional and generic Gelfand–
Tsetlin modules. In Sect. 4, we define the derivative tableaux corresponding to a singular
vector v of index 2 and with their aid, define the space V (T (v)). The theorem that
V (T (v)) is a gl(n)-module is stated and proven in Sect. 5. The formulas for the action of
the generators of the Gelfand–Tsetlin subalgebra � on V (T (v)) are included in Sect. 7.
The proofs of the three main results are given in Sect. 8. In Sect. 6, we include examples
of new irreducible Gelfand–Tsetlin gl(n)-modules, and, in particular, provide derivative
tableaux realization of some irreducible Verma gl(n)-modules.

2. Index of Notations

Below we list some notations that are frequently used in the paper under the section
number they are introduced first.
Section 1 Tn(C), Tn−1(Z), T (v), V (T (v)).
Section 3.2. Um, Zm, cmk, �, Mm.
Section 3.3. γmk(v).
Section 3.4. Tn(C)gen, S̃m,�kl , ers(w), εrs .
Section 4. �, R,S0,Vgen, R�, P�(v),�I , τr , τ�,H,H,F ,F ,DI ,Dv

I , v�, ev(v),

DI T (v + z).

Section 7. L(l)
a ,L(l)

≥a,La, �(m), �m,≺D,DJ T (v + z′) g−→ DI T (v + z).
Section 6. GT- deg(M), gmult(γ |Mm ).
Section 4.1. f (v)τ�, f (v)�.
Section 4.2. �kl(u, s),�kl(ir ),�kl( jr ), τ 


�(σ ),�0,�(σ),�σ , �̃(σ ), �̂(σ1, σ2),

�(σ1,σ2).
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3. Preliminaries

3.1. Conventions. The ground field will be C. For a ∈ Z, we write Z≥a for the set of
all integers m such that m ≥ a. By Re(z) we denote the real part of a complex number
z, while 
x� stands for the greatest integer less than or equal to the real number x .

Let {Ei j | 1 ≤ i, j ≤ n} be the standard basis of gl(n) of elementary matrices. We
fix the standard triangular decomposition and the corresponding basis of simple roots of
gl(n). The weights of gl(n) will be written as n-tuples (λ1, . . . , λn).

For a Lie algebra a byU (a)wedenote the universal enveloping algebra of a. Through-
out the paper U = U (gl(n)). For a commutative ring R, by Specm R we denote the set
of maximal ideals of R.

The transposition of the symmetric group SN interchanging i and j will be denoted
by (i, j). We set G := Sn × Sn−1 × · · · × S1 and the i th component of σ ∈ G will be
denoted by σ [i].

3.2. Gelfand–Tsetlin modules. Let for m � n, gl(m) be the Lie subalgebra of gl(n)

spanned by {Ei j | i, j = 1, . . . , m} and let Um = U (gl(m)). Let Zm be the center of
Um . Then Zm is the polynomial algebra in the m variables {cmk | k = 1, . . . , m},

cmk =
∑

(i1,...,ik )∈{1,...,m}k

Ei1i2 Ei2i3 . . . Eiki1 . (1)

The Gelfand–Tsetlin subalgebra � is the subalgebra of U generated by
⋃n

m=1 Zm .
Recall the definition of a Gelfand–Tsetlin module from the introduction. Namely, M is a
Gelfand–Tsetlinmodule if M splits into the direct sumof the�-modules Mm = {v ∈ M‖
mkv = 0 for some k ≥ 0} indexed by themaximal ideals of�. The supportof aGelfand–
Tsetlin module M is the set of all maximal idealsm ∈ Specm � such that Mm �= 0. For
any m in the support of M , the Gelfand–Tsetlin multiplicity of m is dim Mm.

Note that any irreducible Gelfand–Tsetlin module over gl(n) is a weight module with
respect to the standard Cartan subalgebra h spanned by Eii , i = 1, . . . , n. The converse
is not true in general (except for n = 2), i.e. an irreducible weight module M need not
to be Gelfand–Tsetlin. However, it is the case when the weight multiplicities of M are
finite.

We will use the following terminology for a Gelfand–Tsetlin module M, γ ∈ �, and
m ∈ Specm �:

(i) TheGelfand–Tsetlin degree (or, theGT-degree) GT- deg(M) of M is the supremum
of all Gelfand–Tsetlin multiplicities of M , i.e.

GT- deg(M) := sup{dim Mm | m ∈ Specm �}.
(ii) The geometric multiplicity gmult(γ |Mm ) of γ in Mm is the size of the largest Jordan

cell of the endomorphism γ |Mm on Mm.
(iii) The geometric GT-degree of M is the maximum of gmult(γ |Mm ) over all γ ∈ �

and allm ∈ Specm �.

The action of G = Sn × Sn−1 × · · · × S1 on Tn(C) is given by the formula:

σ(v) := (vn,σ−1[n](1), . . . , vn,σ−1[n](n)| . . . |v1,σ−1[1](1)). (2)
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where v ∈ Tn(C) and σ ∈ G. In addition to the G-action, we have another important
action on Tn(C): the action by translations of Tn−1(Z). The two actions can be combined
into one action of the semidirect product G � Tn−1(Z).

For 1 ≤ j ≤ i ≤ n − 1, δi j ∈ Tn−1(Z) is defined by (δi j )i j = 1 and all other (δi j )k�

are zero.
We have the following important types of tableaux, and equivalently, of vectors in

Tn(C).

Definition 3.1. Let v ∈ Tn(C).

(i) We call T (v) a standard tableau if

vki − vk−1,i ∈ Z≥0 and vk−1,i − vk,i+1 ∈ Z>0, for all 1 ≤ i ≤ k ≤ n.

(ii) We call T (v) a regular tableau (and v a regular vector) if vrs − vr−1,t /∈ Z for any
r, s, t .

3.3. Finite-dimensional Gelfand–Tsetlin modules. The standard Gelfand–Tsetlin
tableauxplay akey role in the descriptionof aGelfand–Tsetlin basis of finite-dimensional
representations of gl(n). Below we recall this classical result.

Theorem 3.2 [10]. Let L(λ) be the finite-dimensional irreducible gl(n)-module of high-
est weight λ = (λ1, . . . , λn). Then the set of all standard tableaux T (v) with fixed top
row vni = λi − i + 1, i = 1, . . . , n forms a basis of L(λ). Moreover, the action of the
generators of gl(n) on L(λ) is given by the Gelfand–Tsetlin formulas:

Ek,k+1(T (v)) = −
k∑

i=1

(∏k+1
j=1(vki − vk+1, j )

∏k
j �=i (vki − vk j )

)
T (v + δki ),

Ek+1,k(T (v)) =
k∑

i=1

(∏k−1
j=1(vki − vk−1, j )

∏k
j �=i (vki − vk j )

)
T (v − δki ),

Ekk(T (v)) =
(

k − 1 +
k∑

i=1

vki −
k−1∑

i=1

vk−1,i

)
T (v),

where if the sum of Ek,k+1(T (v)) or Ek+1,k(T (v)) contains a summand with a non-
standard T (v ± δki ), then the summand is assumed to be zero.

Another important result is that a module defined by the Gelfand–Tsetlin formulas
is a Gelfand–Tsetlin module. In particular, we have the following.

Theorem 3.3 [26]. The action of the generators of � on a finite-dimensional module
L(λ) is given by the following formulas:

cmk(T (v)) = γmk(v)T (v),

where

γmk(v) :=
m∑

i=1

(vmi + m − 1)k
∏

j �=i

(
1 − 1

vmi − vmj

)
, (3)
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with the generating function

1 −
∞∑

k=0

γmk(v)u−k−1 =
m∏

i=1

u − vmi − m

u − vmi − m + 1
.

Remark 3.4. There is a natural correspondence between the set �∗ of characters χ :
� → C (and, hence, of maximal ideals of �,m = Ker χ ) and the set of Gelfand–
Tsetlin tableaux. In fact, to obtain a Gelfand–Tsetlin tableau from a character χ we find
a solution v = (vi j ) of the system of equations

{γmk(v) = χ(cmk)}1≤k≤m≤n

Conversely, for every tableau T (v) we associate χ ∈ �∗ by defining χ(cmk) via the
above equations. It is clear that each tableau defines such a character uniquely. On the
other hand, a tableau is defined by a character uniquely up to a permutation in G.

3.4. Generic Gelfand–Tsetlin modules. Since the coefficients in the Gelfand–Tsetlin
formulas in Theorem 3.2 are rational functions on the entries of the tableaux, it is
natural to extend the Gelfand–Tsetlin construction to more general modules. When all
denominators are nonintegers, one can use the same formulas and define a new class of
infinite-dimensional genericGelfand–Tsetlingl(n)-modules (cf. [2, Section 2.3]). Recall
the definition of V (T (v)) from the introduction. Then V (T (v)) is a generic Gelfand–
Tsetlin module with action of the generators of gl(n) given by the Gelfand–Tsetlin
formulas. All Gelfand–Tsetlin multiplicities of V (T (v)) are 1.

Denote by Tn(C)gen the set of all generic vectors in Tn(C). By S̃m we denotes the
subset of Sm consisting of the transpositions (1, i), i = 1, . . . , m. For k < �, set �k� =
S̃�−1 × · · · × S̃k . For k > � we set �k� = ��k . Finally we let ��� = {Id}. Every σ in
�k� will be written as a |k − �|-tuple of transpositions σ [i] (recall that σ [i] is the i th
component of σ ). Also, identify every σ ∈ �k� as an element of G = Sn × · · · × S1 by
letting σ [i] = Id whenever i < min{k, �} or i > max{k, �} − 1.

Remark 3.5. Gelfand–Tsetlin formulas are given for the generators of gl(n) as a Lie
algebra. For convenience we will write explicitly the action of any Ers ∈ gl(n) in terms
of permutations. The corresponding coefficients for the action of Ers can be obtained
by computing the action of [Er,s−1, Es−1,s] and induction on |r − s|.
Definition 3.6. For each generic vector w and any 1 ≤ r, s ≤ n we define

ers(w) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
∏s

j=1(ws−1,1−ws, j )∏s−1
j=2(ws−1,1−ws−1, j )

s−2∏

j=r

(∏ j+1
t=2(w j1 − w j+1,t )

∏ j
t=2(w j1 − w j t )

)
, if r < s,

∏s−1
j=1(ws1−ws−1, j )∏s

j=2(ws1−ws j )

r∏

j=s+2

(∏ j−2
t=2 (w j−1,1 − w j−2,t )

∏ j−1
t=2 (w j−1,1 − w j−1,t )

)
, if r > s,

r − 1 +
r∑

i=1
wri −

r−1∑
i=1

wr−1,i , if r = s,

Let 1 ≤ r < s ≤ n − 1. Set εrs := δr,1 + δr+1,1 + · · · + δs−1,1 ∈ Tn(Z), εrr = 0 and
εsr = −εrs .

Note that for any w ∈ Tn(C) and σ ∈ �k�, we define σ(w) according to (2). We
have the following important result for generic Gelfand–Tsetlin modules.
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Proposition 3.7 [6]. Let v ∈ Tn(C) be generic. Then the gl(n)-module structure on
V (T (v)) is defined by the formulas:

Em�(T (v + z)) =
∑

σ∈�m�

em�(σ (v + z))T (v + z + σ(εm�)), (4)

for z ∈ Tn−1(Z) and 1 ≤ m, � ≤ n. Moreover, V (T (v)) is a Gelfand–Tsetlin module
with action of � given by the formulas in Theorem 3.3.

4. Derivative Tableaux

In this and next sectionswe define an appropriatemodule structure on the space V (T (v)).
To do this we distinguish certain derivative tableaux in the spanning set of V (T (v)).
The action of gl(n) on derivative tableaux will be different from the action on the other
(ordinary) tableaux. One reason for that is the following. Suppose v ∈ Tn(C) is such that
vki −vk j ∈ Z for some 1 < k < n and i �= j . Then the tableaux T (v) and T (v+z) define
the same maximal idealm of � for some z ∈ Tn−1(Z), that is they are indistinguishable
by �. In addition, if vki − vk j ∈ Z the action of gl(n) on some T (v + z) described in (4)
will involve zero denominators.

Definition 4.1. A vector w ∈ Tn(C) is called t-singular of index 2 if there are exactly t
singular pairs and no singular triples, that is, if there are (kr , ir , jr ), r = 1, . . . , t , such
that:

(i) 2 ≤ k1 ≤ · · · ≤ kt ≤ n − 1.
(ii) 1 ≤ ir < jr ≤ kr for each r = 1, . . . , t .
(iii) If kr = ks for some r, s, then {ir , jr } ∩ {is, js} = ∅.
(iv) For any r = 1, . . . , t we have wkr ,ir − wkr , jr ∈ Z and wki − wk j /∈ Z for any

(k, i, j) /∈ {(kr , ir , jr ) | r = 1, . . . , t}.
A maximal ideal n of � is called t-singular of index 2 if v = vn is t-singular of index

2 for one choice (hence for all choices) of v in n̂. A Gelfand–Tsetlin module M will
be called t-singular Gelfand–Tsetlin module of index 2 if any n in the Gelfand–Tsetlin
support of M is t-singular of index 2.

In the following we fix some notation for the rest of the paper.

Definition 4.2. From now on, t and {(kr , ir , jr ) | r = 1, . . . , t} will be fixed. We also
fix a t-singular vector v of index 2 such that vkr ,ir = vkr , jr for every r = 1, . . . , t .
Furthermore, we will denote � := {1, . . . , t} and R := ({(i1, j1)}, . . . , {(it , jt )}).

Note that R is a sequence of one-element sets. We will use this notation throughout
the paper.

Definition 4.3. (i) We will write I ⊆ R if I = (I1, . . . , It ) and Ir ⊆ {(ir , jr )} for each
r ∈ �. In the same way, if I, J ⊆ R we say that J ⊆ I if I = (I1, . . . , It ), J =
(J1, . . . , Jt ) and Jr ⊆ Ir for any r ∈ �.

(ii) For any I, J ⊆ R, we define I ∪ J ⊆ R, I ∩ J ⊆ R by (I ∪ J )r = Ir ∪ Jr and
(I ∩ J )r = Ir ∩ Jr , respectively.

(iii) For each r ∈ �, denote by τr the permutation in Sn × · · · × S1 that interchanges ir
and jr in row kr , and that is identity on all other rows. Also, for any � ⊆ � denote
by τ� the permutation τr1 · · · τr|�| , where � = {r1, . . . , r|�|}.
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The next definition plays central role in the paper.

Definition 4.4. (i) For any subset I = (I1, . . . , It ) of R and for any z ∈ Tn−1(Z) we
introduce new tableau DI T (v + z) which we call I -derivative tableau, or simply
derivative tableau, and set D∅T (v + z) = T (v + z).

(ii) Set Ṽ (T (v)) to be the complex vector space generated by {DI T (v + z) | I ⊆
R and z ∈ Tn−1(Z)} subject to the following relations:

DI T (v + τr (z)) =
{
DI T (v + z), if Ir = ∅
−DI T (v + z), if Ir �= ∅.

(5)

Remark 4.5. Although the spanning set {DI T (v + z) | I ⊆ R and z ∈ Tn−1(Z)} is not a
basis Ṽ (T (v)), it will be convenient to work with the whole spanning set and then verify
the relations separately. A basis of Ṽ (T (v)) is, for instance, the set of all DI T (v + z)
such that zkr ir − zkr jr > 0 if Ir �= ∅, and zkr ir − zkr jr ≤ 0 if Ir = ∅.
Proposition 4.6. There is a natural isomorphism between the spaces V (T (v)) and
Ṽ (T (v)).

Proof. Let us fix the basis of Ṽ (T (v)) defined in Remark 4.5. Let z ∈ Tn−1(Z) and
T (v+z) ∈ V (T (v)). Consider any� = {r1, . . . , r|�|} ⊆ � andT (v+τ�(z)) ∈ V (T (v)),
where τ� = τr1 · · · τr|�| . Recall that T (v + z) and T (v + τ�(z)) define the same maximal
ideal of�. To complete the proof,we need to identify the tableau T (v+τ�(z)) ∈ V (T (v))

with a derivative tableau in Ṽ (T (v)). For each r ∈ � set Ir = {(ir , jr )} if r ∈ � and
Ir = ∅ otherwise. Let I = (I1, . . . , It ). Then DI T (v + z) is the derivative tableau
corresponding to T (v + τ�(z)) that we need. Clearly, this identification extends to a
linear isomorphism between V (T (v)) and Ṽ (T (v)). ��

From now on we will identify the space V (T (v)) and Ṽ (T (v)) and the rest of this
section, as well as the next section, are devoted to defining an appropriate gl(n)-action
on that space.

Denote by Tn(C)reg the set of all regular vectors in Tn(C). Recall that if x ∈ Tn(C)gen
then V (T (v)) is irreducible if and only if x ∈ Tn(C)gen ∩ Tn(C)reg, see Theorem 6.14
in [5].

LetS0 be the set of vectors x in Tn(C)gen∩Tn(C)reg such that 0 ≤ Re(xrs −xr−1,s) <

1 for any r, s.

Lemma 4.7. S0 + Tn−1(Z) = Tn(C)gen ∩ Tn(C)reg. Moreover, for any w �= w′ in S0 we
have (w + Tn−1(Z)) ∩ (

w′ + Tn−1(Z)
) = ∅.

Proof. For any w ∈ Tn(C)gen ∩ Tn(C)reg let x ∈ w + Tn−1(Z) be the vector for which:

xrs =
{

wrs +
∑n

j=r+1
Re(w j,s − w j−1,s)�, if r ≤ n − 1
wns, if r = n.

We have x ∈ S0. Indeed, for any r, s,

xrs − xr−1,s = wrs − wr−1,s − 
Re(wr,s − wr−1,s)�,
which implies 0 ≤ Re(xrs −xr−1,s) < 1. Hence,w ∈ S0+Tn−1(Z) andS0+Tn−1(Z) =
Tn(C)gen ∩ Tn(C)reg. For the second part of the lemma it is enough to prove that
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(w + Tn−1(Z)) ∩ S0 = {w}. Let z ∈ Tn−1(Z) be such that w + z ∈ S0. Then the
conditions 0 ≤ Re((w + z)rs − (w + z)r−1,s) < 1 and 0 ≤ Re(wrs −wr−1,s) < 1 imply
zrs = zr−1,s . In particular, zns = zr,s = 0 for any r ≤ n − 1 and hence z = 0. ��

In view of the last lemmawe introduceVgen := ⊕
x∈S0 V (T (x)). By Proposition 3.7,

Vgen is a Gelfand–Tsetlin module. We call this module the family of generic Gelfand–
Tsetlin modules. Note that Vgen = ⊕

v∈Tn(C)gen∩Tn(C)reg
CT (v) as vector spaces.

Definition 4.8. Let � ⊆ � and I ⊆ R.

(i) Define R� to be the subset of R whose r th component is

(R�)r :=
{

{(ir , jr )}, if r ∈ �

∅, if r /∈ �.

We also write

P�(x) :=
∏

r∈�

(xkr ,ir − xkr , jr ).

(ii) Define �I := {r ∈ � | Ir �= ∅} ⊆ �.

From the above definition we easily obtain that �R = � and R� = R. Also, for any
I, J ⊆ R and �1,�2 ⊆ � we have �I ∪ �J = �I∪J and R�1 ∪ R�2 = R�1∪�2 .

Denote byHk
i j ⊆ Tn(C) the hyperplane xk,i − xk j = 0.We also setH = ⋂

r∈� Hkr
ir jr

and H = ⋂
(k,i, j) �=(kr ,ir , jr )(Hk

i j )
c, where Ac stands for the complement of A in Tn(C).

In other words,H ⊆ Tn(C) is the intersection of the critical hyperplanes xkr ,ir − xkr jr =
0, r ∈ �, while H consists of all x in Tn(C) such that xki �= xk j for all triples (k, i, j)
except for (k, i, j) = (kr , ir , jr ), r ∈ �.

Denote by F the space of rational functions in xk�, 1 ≤ � ≤ k ≤ n, with poles only
on the union of the hyperplanesHkr

ir jr
, r ∈ �. Let F be the subspace of F consisting of

all those functions that are smooth on H. Finally, we will say that f ∈ F is a smooth
function if f ∈ F .

Recall that v is a fixed element in H ∩ H. In order to introduce the operator Dv
I on

F ⊗ Vgen, we first define the operators DI and Dv
I on F .

Definition 4.9. For any subset I = (I1, . . . , It ) of R and for any z ∈ Tn−1(Z) we define
differential operators DI : F → F ,Dv

I : F → C as follows. For a smooth function f
(i.e. f ∈ F),

DI ( f ) = DIt (· · ·DI2(DI1( f )) · · · ), Dv
I ( f ) = DI ( f )(v),

where

DIr (g) =
{

g, if Ir = ∅
1
2

(
∂g

∂xkr ir
− ∂g

∂xkr jr

)
, if Ir �= ∅.

In particular, for any smooth functions f, g we have:

Dv
I ( f g) :=

∑

J⊆I

Dv
I\J ( f )Dv

J (g).
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Definition 4.10. We define the operatorsDv
I : F ⊗Vgen → Ṽ (T (v)) as the linear maps

for which

Dv
I ( f T (x + z)) :=

∑

J⊆I

(
Dv

I\J ( f )DJ T (v + z)
)

,

for x ∈ S0. In particular, Dv
I (T (x + z)) = DI T (v + z). We set ev(v) = Dv

∅ and call it
the evaluation map on F ⊗ Vgen.

Remark 4.11. Note that 2|�I |DI = P�I (∂xn1 , . . . , ∂xnn , . . . , ∂x21 , ∂x22 , ∂x11) as operators
on F .

Definition 4.12. Given x ∈ S0, v ∈ Tn(C) and � � �, we define an element v� ∈
Tn(C) whose (i j)th component is

(v�)i j =
{

xi j , if (i, j) /∈ {(kr , ir ), (kr , jr ) | r ∈ �}
vi j , if (i, j) ∈ {(kr , ir ), (kr , jr ) | r ∈ �}.

Also, set v� := v. Note that v∅ = x and that v� is |�|-singular of index 2 if � �= ∅.
Remark 4.13. By condition (i i i) in Definition 4.1, we have

Dv
I ( f ) = ev(v)DIt (· · ·DI2(DI1( f )) · · · ) = Dv�t

Iσ(t)

(
Dv�t−1

Iσ(t−1)

(
· · ·

(
Dv�1

Iσ(1)
( f )

)
· · ·

))

where σ is any permutation in St and �i = {σ(1), . . . , σ (i)}. In the above identity,
Dv�1

Iσ(1)
( f ) is treated as a function in 2t − 2 variables, Dv�2

Iσ(2)
Dv�1

Iσ(1)
( f ) is treated as a

function in 2t − 4 variables, and so forth.

The following lemma list some useful properties of the operators DI that will later
be formulated and proved for the corresponding derivative tableaux.

Lemma 4.14. For any smooth function f , any I ⊆ R and any � ⊆ � we have:

Dv
I (P�(x) f ) =

{
Dv

I\R�
( f ), if R� ⊆ I

0, if R� � I.

In particular, Dv
R�

(P�(x) f ) = f (v).

Proof. By the definition of Dv
I we have Dv

I (P�(x) f ) = ∑
J⊆I Dv

I\J ( f )Dv
J (P�(x)).

Therefore, the statement of the lemma follows from

Dv
J (P�(x)) =

{
1, if R� = J
0, if R� �= J.

��
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4.1. Identities for divided differences of rational functions. We fix z ∈ Tn−1(Z) and
consider x ∈ S0 as a variable. For any� ⊂ � and any rational function f ∈ C(xi j | ; 1 ≤
j ≤ i ≤ n), by f (x)τ� we denote the corresponding τ�-twisted function, i.e. f (x)τ� =
f (τ�(x)). In this section we deal extensively with functions of x + z, so, for convenience
we set y = x + z. By default, for any rational function f, f (y)will stand for the function
f (x + z). In particular, we have f (y)τ� = f (τ�(x) + z).

Definition 4.15. Let f be a rational function and � ⊆ �. We define the �-divided
difference of f at x , f (x)�, as follows

f (x)� := 1

P�(x)

∑

�̄⊆�

(−1)|�̄| f (x)τ�̄ .

In particular, we write:

f (y)� =
∑

�̄⊆�

(−1)|�̄| f (y)τ�̄

P�(x)
.

Remark 4.16. We often consider divided differences of products f (x)g(y) of functions
of x and y = x + z. In such a case, one should keep in mind that:

( f (x)g(y))� =
∑

�̄⊆�

(−1)|�̄|( f (x)g(y))τ�̄

P�(x)

=
∑

�̄⊆�

(−1)|�̄| f (τ�̄(x))g(τ�̄(x) + z)

P�(x)
.

Lemma 4.17. Let I be any subset of R, f be a rational function, and � ⊆ �.

(i) If f is smooth and f (y) = f (y)τr for some r ∈ �I , then Dv
I ( f (y)) = 0.

(ii) For any s ∈ � we have f (y)� = ( f (y)�\{s}){s}. In particular, f (y)� is τs -
invariant for any s ∈ �, i.e. ( f (y)�)τs = f (y)�.

(iii) If f (y) is smooth then f (y)� is smooth and

Dv
I ( f (y)�) =

{
2|�|Dv

I∪R�
( f (y)), if � ⊆ �\�I

0, if � � �\�I
.

Proof. For all three parts we use crucially that the lemma holds in the case t = 1 (see
Lemma A.1 in [6]).

(i) Let r ∈ �I be such that f (y) = f (y)τr . Then for any permutation σ in St such
that σ(1) = r ,

Dv
I ( f (y)) = Dv�t

Iσ(t)

(
Dv�t−1

Iσ(t−1)

(
· · ·

(
Dv�1

Iσ(1)
( f (y))

)
· · ·

))
= 0,

where we used that Dv�1
Iσ(1)

( f (y)) = 0 by Lemma A.1(i) in [6].
(ii) This part follows by a straightforward verification. Namely, one checks that:

f (y)� = f (y)�\{s} − ( f (y)�\{s})τs

P{s}(x)
.
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(iii) Let first � ⊆ �\�I and let s ∈ �. In particular Is = ∅, and then using part (ii)
and Lemma A.1(ii) in [6], we have

Dv{s}
Is

( f (y)�) = Dv{s}
Is

(( f (y)�\{s}){s})

= 2Dv{s}
R{s}( f (y)�\{s})

Now, for any permutation σ in St , we obtain:

Dv
I ( f (y)�) = Dv�t

Iσ(t)

(
Dv�t−1

Iσ(t−1)

(
· · ·

(
Dv�1

Iσ(1)
( f (y)�)

)
· · ·

))

= 2|�|Dv
I∪R�

( f (y)),

where if �i = {σ(1), . . . , σ (i)} ⊆ �.
Finally, if � � �\�I , then taking r ∈ � ∩ �I , by part (ii), f (y)� is τr -invariant
and then part (i) implies Dv

I ( f (y)�) = 0. ��
Lemma 4.18. Let �0,� ⊆ � be fixed and fm(y), gm(y), m = 1, . . . , s, be rational
functions such that for any �̄ � � and r ∈ �\�̄ we have

∑s
m=1 fm(y)(gm(y)�̄)τr = 0.

Then

P�0(x)

s∑

m=1

fm(y)gm(y) = P�0\�(x)

s∑

m=1

fm(y)(P�(x)P�∩�0(x)gm(y))�

Proof. We prove the identity in three steps.
Step 1. We prove that for any �1 ⊆ � ∩ �0 we have:

P�0(x)

s∑

m=1

fm(y)gm(y) = P�0\�1(x)

s∑

m=1

fm(y)(P2
�1

(x)gm(y))�1 . (6)

By taking �̄ = ∅ in our hypothesiswe see that for any r ∈ �∩�0,
∑s

m=1 fm(y)(gm(y))τr

= 0. Thus:

P�0(x)

s∑

m=1

fm(y)gm(y) = P�0\{r}(x)

s∑

m=1

fm(y)(P2{r}(x)gm(y)){r}.

To prove (6), we apply induction on |�1|.
Step 2. We prove that for any �2 ⊆ �\�0, we have:

s∑

m=1

fm(y)(gm(y))�∩�0 =
s∑

m=1

fm(y)(P�2(x)gm(y))(�∩�0)∪�2 . (7)

By hypothesis, for any r ∈ �\�0, we have
∑s

m=1 fm(y)(gm(y)�∩�0)
τr = 0. Thus:

s∑

m=1

fm(y)(gm(y))�∩�0 =
s∑

m=1

fm(y)(P{r}(x)gm(y))(�∩�0)∪{r}.

To prove (7) we proceed by induction on |�2|.
Step 3. We apply Steps 2 and 3 for �1 = � ∩ �0 and �2 = �\�0.
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More precisely, from (6), we have:

P�0(x)

s∑

m=1

fm(y)gm(y) = P�0\�(x)

s∑

m=1

fm(y)(P2
�∩�0

(x)gm(y))�∩�0

= P�0\�(x)P2
�∩�0

(x)

s∑

m=1

fm(y)(gm(y))�∩�0 .

On the other hand, (7) implies:

s∑

m=1

fm(y)(gm(y))�∩�0 =
s∑

m=1

fm(y)(P�\�0(x)gm(y))(�∩�0)∪(�\�0)

=
s∑

m=1

fm(y)(P�\�0(x)gm(y))�.

Therefore,

P2
�∩�0

(x)

s∑

m=1

fm(y)(gm(y))�∩�0 =
s∑

m=1

fm(y)(P2
�∩�0

(x)P�\�0(x)gm(y))�

=
s∑

m=1

fm(y)(P�(x)P�∩�0(x)gm(y))�.

��
The following lemma gives sufficient conditions for the functions fm(y), gm(y) to

satisfy the identity
∑s

m=1 fm(y)(gm(y)�̄)τr = 0.

Lemma 4.19. Let fm(y), gm(y), m = 1, . . . , s, be any set of rational functions and
� ⊆ �. If

∑s
m=1 fm(y)(gm(y))τ�1 = 0 for any ∅ �= �1 ⊆ �, then for any �̄ � � and

r ∈ �\�̄ we have
∑s

m=1 fm(y)(gm(y)�̄)τr = 0.

Proof. The statement follows directly from the definition of (gm(y)�̄)τr . In fact,

(gm(y)�̄)τr =
∑

�′⊆�̄

(−1)|�′|gm(y)τ�′∪{r}

P�̄(x)

and for any �′
� �̄, the set �1 = �′ ∪ {r} is a nonempty subset of �. ��

Proposition 4.20. Let fm(y), gm(y), m = 1, . . . , s, be rational functions and let � ⊆
�. Assume that fm(y), P�(x)gm(y), and

∑s
m=1 fm(y)gm(y) are smooth functions, and

also that for any ∅ �= �̄ ⊆ � we have
∑s

m=1 fm(y)gm(y)τ�̄ = 0. Then the following
identity holds:

Dv
I

(
s∑

m=1

fm(y)gm(y)

)
=

s∑

m=1

∑

J⊆I
J∩R�=∅

2|�|Dv
(I\J )∪R�

( fm(y))Dv
J∪(R�∩I )(P�(x)gm(y)).
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Proof. First, note that by Lemma 4.19, the hypothesis of Lemma 4.18 is satisfied. Fur-
thermore,

Dv
I

(
s∑

m=1

fm(y)gm(y)

)
= Dv

R

(
P�\�I (x)

s∑

m=1

fm(y)gm(y)

)

= Dv
R

(
s∑

m=1

(P(�\�I )\�(x) fm(y))(P�(x)P�∩(�\�I )(x)gm(y))�

)

=
s∑

m=1

∑

J⊆R

Dv
R\J

(
P(�\�I )\�(x) fm(y)

)Dv
J ((P�(x)P�∩(�\�I )(x)gm(y))�)

=
s∑

m=1

∑

J⊆R
J∩R�=∅

Dv
R\J

(
P(�\�I )\�(x) fm(y)

)Dv
J ((P�(x)P�∩(�\�I )(x)gm(y))�).

The second equality follows from Lemma 4.18(iii), while, the last equality follows from
Lemma 4.17(i) and the fact that (P�(x)P�∩(�\�I )(x)gm(y))� is τr -invariant for any
r ∈ �. Also, by Lemma 4.17(iii) we have

Dv
J ((P�(x)P�∩(�\�I )(x)gm(y))�) = 2|�|Dv

J∪R�
(P�(x)P�∩(�\�I )(x)gm(y)).

Finally, since fm(y) and P�(x)gm(y) are smooth functions, by Lemma 4.14 we have

Dv
R\J

(
P(�\�I )\�(x) fm(y)

) =
{
Dv

(I\J )∪R�
( fm(y)), if J ⊆ I

0, if J � I

and

Dv
J∪R�

((P�(x)P�∩(�\�I )(x)gm(y)) = Dv
J∪(R�∩I )(P�(x)gm(y)).

��

4.2. Identities for ek�(x) and εk�. In this section we prove some useful identities for the
functions ek�(x) and εk� defined in Definition 3.6.

Recall the definition of �k� in Sect. 3.4. For min{�, k} ≤ u ≤ max{�, k} − 1 and
1 ≤ s ≤ k we set �k�(u, s) = {σ ∈ �k� | σ [u] = (1, s)}. For the rest of the section
we will need �k�(u, s) mostly for u = kr , and s = ir or s = jr . We set for convenience
�k�(ir ) = �k�(kr , ir ) and �k�( jr ) = �k�(kr , jr ).

Definition 4.21. For each r ∈ � and σ ∈ �k� we define:

τ 

r (σ ) :=

⎧
⎪⎨

⎪⎩

σ, if σ /∈ �k�(ir ) ∪ �k�( jr );
τrστr = στrσ, if σ ∈ �k�(ir ) ∪ �k�( jr ) and 1 /∈ {ir , jr };
τrσ = στr , if σ ∈ �k�(ir ) ∪ �k�( jr ) and 1 ∈ {ir , jr }.

For any subset � = {r1, . . . , r|�|} of �, by τ 

� we denote the operator on �k� defined

by τ 

�(σ ) = τ 


r1(· · · (τ 

r|�|(σ ))).
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Remark 4.22. One easily shows that τ 

r (σ ) ∈ �k�, and that if σ ∈ �k�(ir ) ∪ �k�( jr ),

then τ 

r (σ ) ∈ �k�(ir ) ∪ �k�( jr ) and τ 


r (σ ) �= σ . Also, note that τ 

� is an operator on

S̃n−1 × · · · × S̃1 that acts as identity on S̃i if i /∈ {kr | r ∈ �} and that interchanges the
transpositions (1, ir ) and (1, jr ) of S̃kr , for all r ∈ �.

Lemma 4.23. Let w′ ∈ Tn(C), σ ∈ S̃n−1 × · · · × S̃1, and � ⊆ �. Then the following
identities hold.

(i) ek�(τ


�(σ )(w′)) = ek�(στ�(w′)).

(ii) τ 

�(σ )(εk�) = τ�σ(εk�).

Proof. The lemma follows by a straightforward verification. ��
Lemma 4.24. Let I ⊆ R and � ⊆ � be such that P�(v)ek�(τ



r (σ )(x + τr (z)) and

P�(x)ek�(σ (x + z)) are smooth functions. Then:

Dv
I

(
P�(v)ek�(τ



r (σ )(x + τr (z)))

) =
{
Dv

I (P�(x)ek�(σ (x + z))) , if (R�)r = Ir

−Dv
I (P�(x)ek�(σ (x + z))) , if (R�)r �= Ir

Proof. Denote for convenience ek� by e. ByLemma4.23wehave that g(x) := e(τ 

r (σ )(x+

τr (z))) + e(σ (x + z)) is τr -invariant. Indeed,

g(τr (x)) = e(τ 

r (σ )(τr (x) + τr (z))) + e(σ (τr (x) + z))

= e((τ 

r (σ ))τr (x + z)) + e(στr (x + τr (z)))

= e(στr (τr (x + z))) + e(τ 

r (σ )(x + τr (z)))

= e(σ (x + z)) + e(τ 

r (σ )(x + τr (z)))

= g(x)

We continue the proof considering four cases.

(i) (R�)r = Ir = {(ir , jr )}. In particular, r ∈ �I and the function g1(x) = P�(x)e
(τ 


r (σ )(x + τr (z))) − P�(x)e(σ (x + z)) is τr -invariant.
(ii) (R�)r = ∅ and Ir = {(ir , jr )}. In particular, r ∈ �I and the function g2(x) =

P�(x)e(τ 

r (σ )(x + τr (z))) + P�(x)e(σ (x + z)) is τr -invariant.

(iii) (R�)r = {(ir , jr )} and Ir = ∅. In particular, r /∈ �I and the function g3(x) =
P{r}(x)P�(x)e(τ 


r (σ )(x + τr (z))) + P{r}(x)P�(x)e(σ (x + z)) is τr -invariant.
(iv) (R�)r = ∅ and Ir = ∅. In particular, r /∈ �I and the function g4(x) = P{r}(x)P�(x)

e(τ 

r (σ )(x + τr (z))) − P{r}(x)P�(x)e(σ (x + z)) is τr -invariant.

In the cases (i) and (ii) we apply the operatorDv
I to the τr -invariant functions g1 and g2.

Then, by Lemma 4.17(iii), we haveDv
I (g1) = 0 andDv

I (g2) = 0. For the cases (iii) and
(iv) we apply the operatorDv

I∪R{r} to g3 and g4. Then, again by Lemma 4.17(iii), we have
Dv

I∪R{r}(g3) = 0 andDv
I∪R{r}(g4) = 0. Finally, sinceDv

I∪R{r}(P{r}(x)P�(x)e(τ 

r (σ )(x +

τr (z)))) = Dv
I (P�(x)e(τ 


r (σ )(x + τr (z)))) and Dv
I∪R{r}(P{r}(x)P�(x)e(σ (x + z))) =

Dv
I (P�(x)e(σ (x + z))), we obtain the desired result. ��

Corollary 4.25. Let I ⊆ R and �,�′ ⊆ � be such that P�(x)ek�(τ


�′(σ )(x + τ�′(z))

and P�(x)ek�(σ (x + z)) are smooth functions. Then:

Dv
I

(
P�(x)ek�(τ



�′(σ )(x + τ�′(z)))

) = (−1)qDv
I (P�(x)ek�(σ (x + z))) ,

where q = |{r ∈ �′ | (R�)r �= Ir }|.
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Proof. The identity follows directly from Lemma 4.24. ��
Lemma 4.26. Let I ⊆ R and � ⊆ �. Then:

DI T (x + τ�(z)) = (−1)pDI T (x + z),

where p = |{r ∈ � | Ir �= ∅}|.
Proof. The identity follows from the relations (5). ��
Definition 4.27. For convenience we introduce the following notation for any I ⊆ R
and (σ1, σ2) ∈ �k� × �rs , where k �= � and r �= s:

ek�(σ1) = ek�(σ1(x + z)),

ek�(σ1, σ2) = ek�(σ1(x + z + σ2(εrs))),

DI T (σ1 + σ2) = DI T (x + z + σ1(εk�) + σ2(εrs))

�0 = {u ∈ � | z is τu-invariant}
�(σ1) = {u ∈ � | min{k, �} ≤ ku

≤ max{k, �} − 1 and z + σ1(εk�) is τu-invariant}
�̃(σ1) = {u ∈ � | min{k, �} ≤ ku

≤ max{k, �} − 1 and σ1 ∈ �k�(iu) ∪ �k�( ju)}
�σ1 = �(σ1) ∩ �̃(σ1)

�̂(σ1, σ2) = �σ1 ∩ �̃(σ2)

�(σ1,σ2) = {(σ ′
1, σ

′
2) ∈ �k� × �rs | σ ′

1(εk�) + σ ′
2(εrs) = σ1(εk�) + σ2(εrs)}.

Remark 4.28. Note that �σ1 ∩ �σ2 ⊆ �̂(σ1, σ2) and �̂(σ1, σ2) ⊆ �σ1 . In particular, if
�̂(σ1, σ2) = �̂(σ2, σ1) = �, then �σ1 ∩ �σ2 = �. Also, if �σ1 = �σ2 = �′, then
�̂(σ1, σ2) = �̂(σ2, σ1) = �′.

Lemma 4.29. Let k �= �, r �= s, and (σ1, σ2) ∈ �k� × �rs . Then for each � ⊆ � and
�̄ ⊆ �(σ2) we have:

(i) ek�(τ


�̄
(σ1), σ2)

τ�̄ = ek�(σ1, σ2).

(ii) Dv
I

(
P�(x)ek�(τ



�̄
(σ1), σ2)

)
= (−1)|{u∈�̄ | (R�)u �=Iu}|Dv

I (P�(x)ek�(σ1, σ2)).

Proof. To prove (i) we use Lemma 4.23(i) and the fact that z + σ2(εrs) is τ�̄-invariant.
Namely, we have:

ek�(τ


�̄
(σ1), σ2)

τ�̄ = ek�(τ


�̄
(σ1)(τ�̄(x) + z + σ2(εrs)))

= ek�(σ1τ�̄(τ�̄(x) + z + σ2(εrs)))

= ek�(σ1(x + τ�̄(z + σ2(εrs))))

= ek�(σ1(x + z + σ2(εrs)))

= ek�(σ1, σ2).

The identity in part (ii) follows from Corollary 4.25. ��
Lemma 4.30. Let k �= �, r �= s and (σ1, σ2) ∈ �k� × �rs . For any (σ ′

1, σ
′
2) ∈ �(σ1,σ2)

we have:
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(i) �(σ ′
1,σ

′
2)

= �(σ1,σ2).
(ii) �(σ ′

1) ∩ �(σ ′
2) = �(σ1) ∩ �(σ2).

(iii) �σ ′
1
∩ �σ ′

2
= �σ1 ∩ �σ2 .

Proof. Part (i) follows from the definition of �(σ1,σ2). We next prove part (ii). Since
(σ ′

1, σ
′
2) ∈ �(σ1,σ2), for any u ∈ �(σ1) ∩ �(σ2), we have {σ ′

1[ku], σ ′
2[ku]} = {σ1[ku],

σ2[ku]}. Thus u ∈ �(σ ′
1) ∩ �(σ ′

2), which implies �(σ1) ∩ �(σ2) ⊆ �(σ ′
1) ∩ �(σ ′

2).
For the reverse inclusion, if we start with u ∈ �(σ ′

1) ∩ �(σ ′
2), and use that (σ1, σ2) ∈

�(σ1,σ2) = �(σ ′
1,σ

′
2)
(by part (i)) we conclude that u ∈ �(σ1) ∩ �(σ2) using the same

reasoning as for the first inclusion. For part (iii), if (σ ′
1, σ

′
2) ∈ �(σ1,σ2) and u ∈ �σ1∩�σ2 ,

then σ ′
1[ku] = σ1[ku] and σ ′

2[ku] = σ2[ku], and then use again the reasoning of part (ii).
��

Lemma 4.31. Let k �= �, r �= s, and (σ1, σ2) ∈ �k� × �rs . Let also

C(σ1, σ2) =
∑

�(σ1,σ2)

(
ers(σ

′
2)ek�(σ

′
1, σ

′
2) − ek�(σ

′
1)ers(σ

′
1, σ

′
2)

)
,

where the sum is taken over all (σ ′
1, σ

′
2) ∈ �(σ1,σ2). Then the following hold.

(i) P�0(x)C(σ1, σ2) is a smooth function.
(ii) If �σ1 ∩ �σ2 �= ∅, then C(σ1, σ2) = 0.

Proof. Part (i) follows by a straightforward verification. For part (ii) we use the same
reasoning as in the case t = 1 (see Lemma A.4 in [6]). Namely, we use the fact that
C(σ1, σ2) is the coefficient of T (σ1 + σ2) in the decomposition of [Ek�, Ers]T (x) as a
linear combination of generic tableaux. ��
Proposition 4.32. Set k �= �, r �= s and (σ1, σ2) ∈ �k� × �rs . If � = �̂(σ1, σ2), then
there exists �̄ ⊆ � such that �τ


�̄
(σ2) = �.

Proof. Let u ∈ �. Since u ∈ �σ1 , we have |zku ,iu − zku , ju | = 1. On the other hand, since
u ∈ �̃(σ2) we have u ∈ �(σ2) or u ∈ �(τ


u (σ2)). Thus, �̄ = {u ∈ � | u ∈ �(τ

u (σ2))}

satisfies the desired property. ��
Corollary 4.33. Set (σ1, σ2) ∈ �k� × �rs and let � = �̂(σ1, σ2) ∪ �̂(σ2, σ1). There
exist �1 ⊆ �̂(σ1, σ2)\(�σ1 ∩ �σ2) ⊆ � and �2 ⊆ �̂(σ2, σ1)\(�σ1 ∩ �σ2) ⊆ � such
that �τ


�1
(σ1) = �τ


�2
(σ2) = �.

Proof. The statement follows directly from Proposition 4.32. ��

5. Module Structure on V (T (v))

Throughout this section we fix x to be an element in S0 and I to be a subset of R.

Proposition 5.1. For any g ∈ gl(n) and s ∈ � we have:

Dv
R

(
P�\�I (x)gT (x + τs(z))

) =
{
Dv

R

(
P�\�I (x)gT (x + z)

)
, if Is = ∅

−Dv
R

(
P�\�I (x)gT (x + z)

)
, if Is �= ∅.
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Proof. By Remark 4.13, for any permutation σ ∈ St we have:

Dv
R

(
P�\�I (x)gT (x + τs(z))

)

= Dv�t
Rσ(t)

(
· · ·

(
Dv�1

Rσ(1)

(
P�\�I (x)gT (x + τs(z))

)) · · ·
)

Let σ be any permutation such that σ(1) = s. Since P(�\�I )\{s}(x) does not depend on
xks ,is and xks , js , the proof of the proposition can be completed similarly to the proof of
Proposition 4.7 in [6]. We have

Dv�1
Rσ(1)

(
P�\�I (x)gT (x + τs(z))

)

=
{

P(�\�I )\{s}(x)Dv�1
Rσ(1)

(
P{s}(x)gT (x + τs(z))

)
, if Is = ∅

P�\�I (x)Dv�1
Rσ(1)

(gT (x + τs(z)))) , if Is �= ∅.

��
Based on Lemma 4.14 and the fact that D∅T (v + z) = T (v + z), for any g ∈ gl(n)

and I ⊆ R, we define

g · DI T (v + z) = Dv
R

(
P�\�I (x)gT (x + z)

)
. (8)

In order to check that g · DI T (v + z) is well-defined in V (T (v)) we need to verify the
independence on the relations (5) and that the right hand side of (8) is in V (T (v)).

Lemma 5.2. For g ∈ gl(n) and z ∈ Tn−1(Z), g · DI T (v + z) is well-defined.

Proof. Note that P�\�I (x)gT (x + z) ∈ F ⊗ Vgen, hence the right hand side of (8) is
well-defined. Also, by Proposition 5.1, we verify that g · DI T (v + τr (z)) = (−1)|Ir |g ·
DI T (v + z) which implies the independence on (5). ��

The following theorem shows that V (T (v)) has a gl(n)-module structure. Recall
that the action of the generators Ers on T (x + z) is defined by the formulas (4) in
Proposition 3.7.

Theorem 5.3. The formulas (8) endow V (T (v)) with a structure of a gl(n)-module.

In order to prove Theorem 5.3 we will show that for any I ⊆ R and any 1 ≤
k, �, r, s ≤ n we have the following relations:

[Ek�, Ers](DI T (v + z)) = Ek�(Ers(DI T (v + z))) − Ers(Ek�(DI T (v + z))) (9)

The cases r = s or k = � follow by a straightforward computation. Assume now that
r �= s and k �= �. Let (σ1, σ2) ∈ �k� × �rs . For convenience we will use the following
convention (see Definition 4.27):

R1(σ1, σ2) = P�\�I (x)ers(σ2)ek�(σ1, σ2)T (σ1 + σ2),

R2(σ1, σ2) = P�\�I (x)ek�(σ1)ers(σ2, σ1)T (σ1 + σ2)

L1(σ1, σ2) =
∑

J⊆R
J∩R�σ2

=∅

Dv
R\J (P�\�I (x)ers(σ2))Dv

R

(
P�\�J (x)ek�(σ1, σ2)T (σ1 + σ2)

)

L2(σ1, σ2) =
∑

J⊆R
J∩R�σ1

=∅

Dv
R\J

(
P�\�I (x)ek�(σ1))Dv

R(P�\�J (x)ers(σ2, σ1)T (σ1 + σ2)
)
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Note that if I ∩ R�0 �= ∅, then DI T (v + z) = 0. Therefore, we will consider I ⊆ R
such that I ∩ R�0 = ∅. By the definition of the gl(n)-action on DI T (v + z) we have:

Ek�(Ers(DI T (v + z))) − Ers(Ek�(DI T (v + z)))

=
∑

(σ1,σ2)∈�k�×�rs

(L1(σ1, σ2) − L2(σ1, σ2)) (10)

and

[Ek�, Ers](DI T (v + z)) = Dv
R(P�\�I (x)[Ek�, Ers]T (x + z))

= Dv
R

⎛

⎝
∑

(σ1,σ2)∈�k�×�rs

(R1(σ1, σ2) − R2(σ1, σ2))

⎞

⎠ . (11)

Therefore, to prove equation (9) we need to prove that the right hand sides of (10)
and (11) coincide. This will be a direct consequence of Propositions 5.4 and 5.5 below.
In fact, by Corollary 4.33, we can assume �̂(σ2, σ1) = �̂(σ1, σ2) = � and consider the
two cases � = ∅ (Proposition 5.4) and � �= ∅ (Proposition 5.5).

Proposition 5.4. Set k �= �, r �= s and (σ1, σ2) ∈ �k� × �rs .

(i) If �̂(σ2, σ1) = ∅, then L1(σ1, σ2) = Dv
R(R1(σ1, σ2)).

(ii) If �̂(σ1, σ2) = ∅, then L2(σ1, σ2) = Dv
R(R2(σ1, σ2)).

Proof. Recall that �̂(σ, σ ′) = �σ ∩ �̃(σ ′) by definition.

(i) The hypothesis �̂(σ2, σ1) = ∅ implies the following:
(a) The vector z + σ1(εk�) + σ2(εrs) is τu-invariant for any u ∈ �(σ2). In particular,

if K ∩ R�(σ2) �= ∅, then DK T (σ1 + σ2) = 0.
(b) ek�(σ1, σ2) is a smooth function.
(c) By Lemma 4.29(i), ek�(σ1, σ2) is τu-invariant for any u ∈ �(σ2). So, DJ

(ek�(σ1, σ2)) = 0 whenever J ∩ R�(σ2) �= ∅.
Now a straightforward computation shows that Dv

R(R1(σ1, σ2)) = L1(σ1, σ2).
(ii) The proof is analogous to the proof of part (i). ��
Proposition 5.5. Let (σ ′

1, σ
′
2) ∈ �k� ×�rs be such that �̂(σ ′

2, σ
′
1) = �̂(σ ′

1, σ
′
2) = � �=

∅. Then L(σ ′
1, σ

′
2) = Dv

R(R(σ ′
1, σ

′
2)), where

L(σ ′
1, σ

′
2) =

∑

�(σ ′
1,σ ′

2)

⎛

⎜⎜⎝
∑

�1,�2⊆�
�1∩�2=∅

L1(τ


�1

(σ1), τ


�2

(σ2)) − L2(τ


�1

(σ1), τ


�2

(σ2))

⎞

⎟⎟⎠ ,

R(σ ′
1, σ

′
2) =

∑

�(σ ′
1,σ ′

2)

⎛

⎜⎜⎝
∑

�1,�2⊆�
�1∩�2=∅

R1(τ


�1

(σ1), τ


�2

(σ2)) − R2(τ


�1

(σ1), τ


�2

(σ2))

⎞

⎟⎟⎠ ,

and the outer sums on the right hand sides are taken over all (σ1, σ2) ∈ �(σ ′
1,σ

′
2)

.

Proof. In order to show that L(σ ′
1, σ

′
2) = Dv

R(R(σ ′
1, σ

′
2)) we will use the followings

facts:
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(a) By Remark 4.28 and Lemma 4.30(ii), for each (σ1, σ2) ∈ �(σ ′
1,σ

′
2)
we have �σ1 ∩

�σ2 = �.
(b) By (a), for each �̄ ⊆ � we have �τ


�̄
(σi ) = �\�̄, for i = 1, 2.

(c) By (b) we have �̂(τ 

�1

(σ1), τ


�2

(σ2)) = �\�1 and �̂(τ 

�2

(σ2), τ


�1

(σ1)) = �\�2.
In particular, by Proposition 5.4 we have L1(σ1, τ



�(σ2)) = Dv

R(R1(σ1, τ


�(σ2)))

and L2(τ


�(σ1), σ2) = Dv

R(R2(τ


�(σ1), σ2)).

(d) Since �τ

�1

(σ1) ∩ �τ

�2

(σ2) = �\(�1 ∪ �2), by Lemma 4.31(ii) we have that for
any �1,�2 such that �1 ∪ �2 �= �:

∑

�(σ ′
1,σ ′

2)

(
R1(τ



�1

(σ1), τ


�2

(σ2)) − R2(τ


�1

(σ1), τ


�2

(σ2))
) = 0.

(e) If �1 ∩ �2 = ∅, then for each (σ1, σ2) ∈ �(σ ′
1,σ

′
2)
we have

z + τ 

�1

(σ1)(εk�) + τ 

�2

(σ2)(εrs) = τ�1∪�2(z + σ1(εk�) + σ2(εrs)).

In particular, for any K ⊆ R we can use Lemma 4.26 to obtain:

DK T (τ 

�1

(σ1) + τ 

�2

(σ2)) = DK T (τ 

�2

(σ1) + τ 

�1

(σ2))

= (−1)|{r∈�1∪�2 | Kr �=∅}|DK T (σ1 + σ2).

(f) If �1 ∩ �2 = ∅, then by Corollary 4.25, for any K ⊆ R and (σ1, σ2) ∈ �(σ ′
1,σ

′
2)

we have:

DR\K (P�̄(x)ek�(τ


�1

(σ1), τ


�2

(σ2)) = (−1)sDR\K (P�̄(x)ek�(σ1, τ


�2

(σ2)),

where s = |{r ∈ �1 | (R�̄)r �= (R\K )r }|.
(g) For any �̄ ⊆ � the condition R�τ


�̄
(σ1)

∩ J = ∅ is equivalent to the condition Jr = ∅
for any r ∈ �\�̄. In particular, if �1 ∩ �2 = ∅, R�τ


�2
(σ2)

∩ J = ∅ implies Jr = ∅
for any r ∈ �1, while R�τ


�1
(σ1)

∩ J = ∅ implies Jr = ∅ for any r ∈ �2.

We finish the proof of Theorem 5.3 in four steps.
Step 1. We use (c), (d) and after reordering the terms of L(σ ′

1, σ
′
2) and R(σ ′

1, σ
′
2), we

verify that in order to prove the identity L(σ ′
1, σ

′
2) = Dv

R(R(σ ′
1, σ

′
2)), it is sufficient to

show L̃(σ ′
1, σ

′
2) = Dv

R(R̃(σ ′
1, σ

′
2)), where

L̃(σ ′
1, σ

′
2) =

∑

�2��

⎛

⎜⎜⎝
∑

�1⊆�
�1∩�2=∅

∑

�(σ ′
1,σ ′

2)

L1(τ


�1

(σ1), τ


�2

(σ2)) − L2(τ


�2

(σ1), τ


�1

(σ2))

⎞

⎟⎟⎠ ,

R̃(σ ′
1, σ

′
2) =

∑

�2��

⎛

⎜⎝
∑

�(σ ′
1,σ ′

2)

R1(τ


�\�2

(σ1), τ


�2

(σ2)) − R2(τ


�2

(σ1), τ


�\�2

(σ2))

⎞

⎟⎠ .

Step 2. We use (e), (f), and (g) to simplify L̃(σ ′
1, σ

′
2). Namely, for any �1 ⊆ � and

�2 � �, we have

L1(τ


�1

(σ1), τ


�2

(σ2)) − L2(τ


�2

(σ1), τ


�1

(σ2))

= L1(τ


�\�2

(σ1), τ


�2

(σ2)) − L2(τ


�2

(σ1), τ


�\�2

(σ2)).
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Therefore, L̃(σ ′
1, σ

′
2) is equal to

∑

�2��

⎛

⎜⎝2|�\�2| ∑

�(σ ′
1,σ ′

2)

L1(τ


�\�2

(σ1), τ


�2

(σ2)) − L2(τ


�2

(σ1), τ


�\�2

(σ2))

⎞

⎟⎠ . (12)

Step 3. We compute Dv
R(R̃(σ ′

1, σ
′
2)). In fact, for each �2 � �, by (d) we obtain:

∑

�(σ ′
1,σ ′

2)

R1(τ


�\�2

(σ1), τ


�2

(σ2)) − R2(τ


�2

(σ1), τ


�\�2

(σ2))

= P�\�I (x)C(τ 

�\�2

(σ ′
1), τ



�2

(σ ′
2))T (x + τ�(z + σ ′

1(εk�) + σ ′
2(εrs))), (13)

where C(τ 

�\�2

(σ ′
1), τ



�2

(σ ′
2)) is equal to

∑

�(σ ′
1,σ ′

2)

(
ers(τ



�2

(σ2))ek�(τ


�\�2

(σ1), τ


�2

(σ2)) − ek�(τ


�2

(σ1))ers(τ


�2

(σ2), τ


�\�2

(σ1))
)
.

By Lemma 4.31(i), P�\�I (x)C(τ 

�\�2

(σ ′
1), τ



�2

(σ ′
2)) is a smooth function (note that

�0 ⊆ �\�I because I ∩ R�0 = ∅).
Now, if {(σ (p)

1 , σ
(p)
2 )}s

p=1 is the set of all pairs of permutations in �(σ ′
1,σ

′
2)
, for each

�2 � � we define the following functions:

f2p = P�\�I (x)ers(τ


�2

(σ
(p)
2 )), f2p−1 = P�\�I (x)ek�(τ



�2

(σ
(p)
1 )),

g2p−1 = ek�(τ


�\�2

(σ
(p)
1 ), τ 


�2
(σ

(p)
2 )), g2p = −ers(τ



�2

(σ
(p)
2 ), τ 


�\�2
(σ

(p)
1 )).

We finally apply Proposition 4.20 to the functions f p, gp, p = 1, . . . , 2s. Note that
the hypotheses of Proposition 4.20 are satisfied by Lemma 4.31 and Lemma 4.29(i).
Step 4. To complete the proof we show that (12) in Step 2 coincides with the expression
obtained by applying Dv

R to (13) in Step 3. ��

6. New Irreducible Gelfand–Tsetlin Modules of Index 2

In this section we give examples of new irreducible Gelfand–Tsetlin modules of index
2 which are certain irreducible Verma modules.

Take ai ∈ C, i = 1, . . . , n − 1 such that ai − a j /∈ Z for any i �= j . Let T (v) be the
Gelfand–Tsetlin tableau with entries vr1 = vr2 = a1 for 1 ≤ r ≤ n and vri = ai−1 for
i = 3, . . . , r ≤ n, namely the tableau:

a1 a1 a2 · · · an−3 an−2 an−1

a1 a1 · · · an−3 an−2

· · · · · · · · ·

a1 a1 a2

a1 a1

a1
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Consider the corresponding module V (T (v)). It is an (n − 2)-singular Gelfand–Tsetlin
module of index 2.

Theorem 6.1. Let T (v) be the tableau defined above, and let m := mT (v).

(i) The module V (T (v)) has a unique irreducible subquotient M such that Mm �= 0.
Moreover, M is a submodule of V (T (v)) and it is isomorphic to the Verma module
with highest weight (a1, a1 + 1, a2 + 2, . . . , an−1 + n − 1).

(ii) GT- deg(M) = GT- deg(V (T (v)) = 2n−2.
(iii) The geometric multiplicities of all eigenvalues of any generator of � on M are

bounded by 2. The geometric multiplicity of ck2 on a Gelfand–Tsetlin subspace of
a maximal dimension is exactly 2, whenever the kth row contains a critical pair. In
particular, the geometric GT-degree of M is 2.

The proof of this theorem will be given in the Sect. 7.1.

Remark 6.2. For n ≥ 4 the geometric GT-degree of the module M(a1, a1 + 1, a2 +
2, . . . , an−1 + n − 1) is strictly smaller than the GT-degree of this module (2 < 2n−2).

6.1. Gelfand–Tsetlin degree conjecture. Let ρ be a half of the sum of positive roots of
gl(n). Then the Verma module M(−ρ) is irreducible and it is a singular Gelfand–Tsetlin
module of highest index, i.e. it has index n − 1. For n = 3 it has singularity of index 2
and hence satisfies the theorem above.

Conjecture 4. Consider the irreducible Verma module M(−ρ) of index n − 1. We
conjecture that this module is a Gelfand–Tsetlin module of maximum possible GT-
degree, i.e. GT-deg(M(−ρ)) = (n − 1)!(n − 2)! . . . 1!

7. Dv-Invariance of the �-Action on V (T (v))

In this section we study the structure of V (T (v)) as a Gelfand–Tsetlin module, and, in
particular, the action of the generators of the Gelfand–Tsetlin subalgebra � on V (T (v)).
The main result of this section is the following

Theorem 7.1. � = �n is Dv-invariant.

The notion ofDv-invariance of� is intuitively clear, but for the sake of completeness,
we define it in more general setting.

Definition 7.2. For each m ≤ n we denote by �m the subalgebra of � generated by the
centers Zi of Ui , 1 ≤ i ≤ m. By �(m) we denote the set {r ∈ � | kr < m}. We say that
�m is Dv-invariant if for any c ∈ �m , any I ⊆ R, and any z ∈ Tn−1(Z),

cDI T (v + z) = Dv
I (cT (x + z)) .

Lemma 7.3. Suppose I ⊆ R and z ∈ Tn−1(Z). If f is any smooth function then

Dv
R

(
P�\�I (x) f T (x + z)

) = Dv
I ( f T (x + z)) .
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Proof. By definition, Dv
R

(
P�\�I (x) f T (x + z)

) = ∑
J⊆R

(
Dv

R\J

(
P�\�I (x) f

)

DJ T (v + z)) . Now, using Lemma 4.14 and the fact that R�\�I = R\I , the right hand

side of the latter identity becomes
∑

J⊆I

(
Dv

I\J ( f )DJ T (v + z)
)

= Dv
I ( f T (x + z)).

��
Recall thatVgen := ⊕

v∈S0 V (T (v)).We define a gl(n)-module structure onF⊗Vgen

by letting gl(n) to act trivially on F .

Proposition 7.4. Let g be any element of gl(n) and suppose that F ∈ F ⊗ Vgen is such
that g(F) ∈ F ⊗ Vgen. Then gDv

I (F) = Dv
I g(F).

Proof. Since Dv
I is linear, it is enough to show the statement for g = Ers and F =

f T (x + z) with generic x and a smooth function f . We have:

ErsDv
I ( f T (x + z)) = Dv

R(P�\�I (x)Ers( f T (x + z)))

= Dv
R

⎛

⎝P�\�I (x) f (x)
∑

σ∈�rs

ers(σ (x + z))T (x + z + σ(εrs))

⎞

⎠

=
∑

σ∈�rs

Dv
R

(
P�\�I (x) f (x)ers(σ (x + z))T (x + z + σ(εrs))

)

=
∑

σ∈�rs

Dv
I ( f (x)ers(σ (x + z))T (x + z + σ(εrs)))

= Dv
I Ers( f T (x + z)),

where the forth equality follows from Lemma 7.3. ��
From now to the end of this section we will denote by l1 < · · · < lt̃ the set of all

distinct elements in {k1, . . . , kt }. We also set l0 := 1.

Definition 7.5. For each a ∈ Z≥0 and any l ∈ {l0, l1, . . . , lt̃ }, we define the following
subsets of Tn−1(Z).

(i) L(l)
a := {z ∈ Tn−1(Z) | |zkr ,ir − zkr , jr | = a for any r such that kr ≤ l}.

(ii) L(l)
≥a := ⋃

k≥a L(l)
k .

(iii) La := L(lt̃ )
a and L≥a := L(lt̃ )≥a

Note that for any a ∈ Z≥0 we have L(l0)
a = L(l0)≥a = Tn−1(Z).

Lemma 7.6. If z ∈ L(l p−1)

≥1 and 1 ≤ r ≤ s ≤ l p, then for any σ ∈ �rs , the coefficient of
DI T (v + z + σ(εrs)) in the decomposition of ErsDI T (v + z) is ers(σ (v + z)).

Proof. The statement follows by a direct computation from the action of Ers onDI T (v+
z) in formulas (8). ��
Proposition 7.7. Suppose crs ∈ � and z ∈ Tn−1(Z). Any of the following two conditions

(i) z ∈ L≥s .
(ii) m ≤ k1 (recall that, 2 ≤ k1 ≤ · · · ≤ kt are fixed).
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implies the identity:
crsDI T (v + z) = Dv

I (crs T (x + z)) . (14)

Proof. Note that for any a ∈ Z≥0, if z ∈ L≥a and σ ∈ �rs for some 1 ≤ r ≤ s ≤ n,
then z + σ(εrs) ∈ L≥a−1. From this observation one can easily show that each of the
conditions (i) and (ii) implies

{T (x + z), Eis i1T (x + z), . . . , Ei1i2 Ei2i3 . . . Eis i1T (x + z)} ⊆ F ⊕ Vgen,

for any (i1, . . . , is) ∈ {1, . . . , r}s . Hence, by Proposition 7.4 we have:

crsDI T (v + z) =
∑

Ei1i2 Ei2i3 . . . Eis i1DI T (v + z)

=
∑

Dv
I

(
Ei1i2 Ei2i3 . . . Eis i1T (x + z)

)

= Dv
I

(∑
Ei1i2 Ei2i3 . . . Eis i1T (x + z)

)

= Dv
I (crs T (x + z)) ,

where the sums are taken over all (i1, . . . , is) ∈ {1, . . . , r}s . ��
Definition 7.8. (i) Let I, J ⊆ R and w1, w2 ∈ Tn−1(Z). We write DI T (v + w1) ≺D

DJ T (v + w2) if I ⊆ J and w1 = τ�(w2) for some � ⊆ �. We will refer to ≺D as
the D-order on V (T (v)).

(ii) A maximal element in a finite subset A of derivative tableaux in V (T (v)) with
respect to the D-order will be called D-maximal in A.

Remark 7.9. Note that ≺D defines a preorder, i.e. ≺D is reflexive and transitive, but it is
not antisymmetric. Hence, by a maximal element of a set A of derivative tableaux, we
mean an element b in A such that for any c ∈ A we have c ≺D b.

Lemma 7.10. Let m ≤ n and assume that �m−1 is Dv-invariant. Let g ∈ Um, I ⊆
R, w ∈ Tn−1(Z), and let gDI T (v + w) = ∑k

j=0 a jDI ( j) T (v + w j ), where S =
{DI ( j) T (v + w j ) | j = 0, . . . , k} is a linearly independent set of vectors in V (T (v)).
Assume also that DI (0) T (v + w0) is D-maximal in S. Then there exists C ∈ �m−1 such
that

(i) CDI ( j) T (v + w j ) = 0, if w j �= τ�(w0) for any � ⊆ �.
(ii) CgDI T (v + w) = DI (0) T (v + w0).

Proof. We first note that since g ∈ Um , we have (I ( j))r = Ir for any r such that kr ≥ m.
Also, for m ≤ i ≤ n, the i th row of the tableau T (v + w j ) coincide with the i th row
of the tableau T (v + w). So, w j �= τ�(w0) for any � ⊆ � implies that the rows of the
tableau T (v +w j ) can not be obtained by a permutation of the entries of the first m − 1
rows of T (v + w0). This implies the existence of c j ∈ �m−1, γ j ∈ C and m j ∈ Z≥0
such that (c j − γ j )

m jDI ( j) T (v + w j ) = 0 and (c j − γ j )
sDI (0) T (v + w0) �= 0 for any

s ∈ Z≥0. We continue with the proof of parts (i) and (ii).

(i) Set A := { j ∈ {1, . . . , k} | w j �= τ�(w0) for any � ⊆ �}. Then
C :=

∏

j∈A

(c j − γ j )
m j ∈ �m−1

satisfies the identity CDI ( j) T (v + w j ) = 0 for any j ∈ A.
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(ii) It is enough to show that DI (0) T (v + w0) appears with nonzero coefficient in the
decomposition of (c j − γ j )gDI T (v + w) for any j ∈ A. In fact, since �m−1 is
Dv-invariant we have:

(c j − γ j )gDI T (v + w) = (c j − γ j )

k∑

i=0

aiDI (i) T (v + wi )

=
k∑

i=0

⎛

⎝ai

∑

J (i)⊆I (i)

Dv
I (i)\J (i) (c j (x + wi ) − γ j )DJ (i) T (v + wi )

⎞

⎠ .

In particular,DI (0) T (v+w0) appears in this decomposition if and only if I (0) ⊆ I (i)

and wi = τ�(w0) for some 0 ≤ i ≤ k and some � ⊆ �. This, combined with the
D-maximality of DI (0) T (v +w0), implies that DI (0) T (v +w0) appears once in this
decomposition and its coefficient is a0(c j (v + w0) − γ j ) �= 0. ��

Definition 7.11. Given I, J ⊆ R, z, z′ ∈ Tn−1(Z), and g ∈ U , we will write DJ T (v +

z′) g−→ DI T (v + z) ifDJ T (v + z′) appears with nonzero coefficient in the decomposition
of g ·DI T (v + z) as linear combination of tableaux. Also, we will writeDJ T (v + z′) →
DI T (v + z) if DJ T (v + z′) g−→ DI T (v + z) for some g ∈ U .

Lemma 7.12. Let m ≤ n be such that �m−1 is Dv-invariant. Let also z1, z2, z3 ∈ L≥1

and I ⊆ R. If g1, g2 ∈ U (gl(m)) are such that DI T (v + z2)
g1−→ DI T (v + z1) and

DI T (v + z3)
g2−→ DI T (v + z2) then DI T (v + z3)

g3−→ DI T (v + z1) for some g3 ∈ Um.

Proof. Note that the action of Um on DI T (v + z1) with z ∈ L≥1 produces tableaux of

the form DJ T (v + w) with J ⊆ I . Since DI T (v + z2)
g1−→ DI T (v + z1), the coefficient

ofDI T (v+ z2) in the decomposition of g1DI T (v+ z1) is nonzero. Then by Lemma 7.10
there exists C1 ∈ �m−1 such that C1g1DI T (v + z1) = DI T (v + z2). For the same
reason, there exists C2 ∈ �m−1 such that C2g2DI T (v + z2) = DI T (v + z3). Therefore
C2g2C1g1DI T (v + z1) = DI T (v + z3). ��

Lemma 7.13. Let p ∈ {1, . . . , t̃} be such that ��p is Dv-invariant and let z ∈ L(l p)
≥m

⋂

L(l p−1)

≥m+2. There exist z′ ∈ L(l p)

≥m+1 and g ∈ Ul p+1 such that DI T (v + z)
g−→ DI T (v + z′) for

any I ⊆ R.

Proof. Suppose l p = kr = · · · = kr+a and let w = v + z. Set also k = l p and k̄ = l p−1.
Assume without loss of generality that zkr ′ ,ir ′ ≥ zkr ′ , jr ′ for any r ′ ∈ � (this can be done

because of the relations (5)). For every 0 ≤ b ≤ a, the condition z ∈ L(k̄)
≥m+2 implies the

existence of tb such that
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

wk,ir+b + 1 = wk−1,sk−1 , for some 1 ≤ sk−1 ≤ k − 1,
wk−1,sk−1 + 1 = wk−2,sk−2 , for some 1 ≤ sk−2 ≤ k − 2,

...
...

wk−tb+1,sk−tb+1
+ 1 = wk−tb,sk−tb

, for some 1 ≤ sk−tb ≤ k − tb,

wk−tb,sk−tb
+ 1 �= wk−tb−1,s, for any 1 ≤ s ≤ k − tb − 1.

For any 0 ≤ j ≤ a set g j = Ek+1,k−t j and z j = z+δk,ir1+ j +
∑t j

r=1 δk− j,sk−r . If b �= a

we have
∑b

j=1 z j ∈ L(k)
≥m

⋂L(k̄)
≥m+1 and z′ = ∑a

j=1 z j ∈ L(k)
≥m+1

⋂L(k̄)
≥m+1 = L(k)

≥m+1.
Now, by Lemma 7.6 and the choice of tb, we have:

DI T (v + z)
g0−→ DI T (v + z0)

g1−→ DI T (v + z0 + z1)
g2−→ · · ·

ga−→ DI T (v + z0 + z1 + · · · + za).

Finally, by Lemma 7.12 we have DI T (v + z) → DI T (v + z0 + z1 + · · · + za). ��
Corollary 7.14. Let p ∈ {1, . . . , t̃} be such that ��p is Dv-invariant and let z ∈
L(l p)

≥m
⋂L(l p−1)

≥m+2M for some M ∈ Z>0. Then there exist z′ ∈ L(l p)

≥m+M and g ∈ Ul p+1

such that DI T (v + z)
g−→ DI T (v + z′) for any I ⊆ R.

Proof. The statement follows directly from Lemma 7.13. ��

Proposition 7.15. Assume that �l p is Dv-invariant and let z ∈ L(l p)
≥m for some m ∈ Z≥0.

Then there exist z′ ∈ L(l p)

≥m+1 and g ∈ Ul p+1 such that DI T (v + z)
g−→ DI T (v + z′) for

any I ⊆ R.

Proof. Wewill prove the existence of gi ∈ Uli+1 and zi ∈ L(li )
≥m+2p−i , i = 1, . . . , p, such

that:

(i) zi ∈ L(li+1)≥m , for any 1 ≤ i ≤ p − 1;

(ii) DI T (v + z)
g1−→ DI T (v + z1)

g2−→ · · · g j−→ DI T (v + z j ).

We first note that z ∈ L(l1)≥m = L(l1)≥m
⋂L(l0)

≥m+N for any N ∈ Z≥0. Set N = 2p.

By Corollary 7.14, there exist z1 ∈ L(l1)
≥m+2p−1 and g1 ∈ Ul1+1 such that DI T (v +

z)
g1−→ DI T (v + z1). Now, assume that for j, 1 ≤ j ≤ p − 1, there exist gi ∈

Uli+1, zi ∈ L(li )
≥m+2p−i , for all i = 1, . . . , j , that satisfy (i) and (ii). In particular,

z j ∈ L(l j )

≥m+2p− j

⋂L(l j+1)
≥m so, we can use Corollary 7.14 and guarantee the existence

of g j+1 ∈ Ul j+1+1 and z j+1 ∈ L(l j+1)

≥m+2s− j−1 such that DI T (v + z j )
g j+1−−→ DI T (v + z j+1).

Note that z j+1 ∈ L(l j+2)
≥m because z ∈ L(l p)

≥m , g j+1 ∈ Ul j+1+1, and DI T (v + z j )
g j+1−−→

DI T (v + z j+1). Finally, the existence of g ∈ Ul p+1 such thatDI T (v + z)
g−→ DI T (v + z′)

is guaranteed by Lemma 7.12. ��
Definition 7.16. Given A1, A2 ∈ V (T (v)) and g ∈ U , we say that g separates A1 and
A2 if g A1 = A1 and g A2 = 0.
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Lemma 7.17. Let m ≤ n and let k = max{kr | kr < m}. If �k is Dv-invariant, then �m
is Dv-invariant.

Proof. By Proposition 7.7(i), if z ∈ L≥m , then the formula (14) holds for any c ∈ �m .
Thus DI T (v + z) is a common eigenvector of all generators of �m and the submod-
ule W (I )

z of V (T (v)) generated by DI T (v + z) is a Gelfand–Tsetlin gl(m)-module by
Lemma 3.4 in [6]. Then for each I ⊆ R, WI = ∑

z∈L≥m
W (I )

z and W = ∑
I⊆R WI are

also Gelfand–Tsetlin gl(m)-modules. Denote by Wk the Gelfand–Tsetlin gl(m)-module∑
|�I ∩�(m)|=k WI .
We next show that W0 contains all tableaux DI T (v + z) such that z ∈ Tn−1(Z)

and �I ∩ �(m) = ∅. Let us first consider z ∈ L(k)
≥m−1. By Proposition 7.15, there exist

z0 ∈ L(k)
≥m and g0 ∈ Uk+1 such thatDI T (v+z)

g0−→ DI T (v+z0) (we assumewithout loss
of generality that the coefficient of DI T (v + z) in the decomposition of g0DI T (v + z0)
is 1). By Proposition 7.7(i), all generators of �m , except for the ones in the center of Um
satisfy the relation (14). Let c ∈ Zm and let (c − γ )DI T (v + z0) = 0 for some γ ∈ C.
Then (c − γ )g0DI T (v + z0) = 0. Since �k is Dv-invariant, we can use Lemma 7.10,
and choose C ∈ �k that separates DI T (v + z) and g0DI T (v + z0) − DI T (v + z) (see
Definition 7.16). SinceC commutes with (c−γ )we have (c−γ )(Cg0DI T (v+z0)) = 0,
which implies that c acts as multiplication by γ on any tableau in the decomposition
of g0DI T (v + z0). Hence, the action of � on any DI T (v + z) for z ∈ L(k)

≥m−1 is given

by (14). Moreover, DI T (v + z) ∈ W for any z ∈ L(k)
≥m−1. Next we consider a tableau

DI T (v + z) with z ∈ L(k)
≥m−2. Again by Proposition 7.15 one finds a nonzero g1 ∈ Uk+1

and z1 ∈ L(k)
≥m−1 such thatDI T (v + z)

g1−→ DI T (v + z1). For the generators of the center
of Ui , i ≤ m − 2 the statement follows from Proposition 7.7(i). If c is in the center of
Um or in the center of Um−1 then it commutes with g1. Choose C ∈ �k that separates
DI T (v + z) and g0DI T (v + z0) −DI T (v + z) and which acts by a scalar on the tableau
DI T (v + z1). By applying the argument above we conclude that the action of � on
any DI T (v + z) with z ∈ L(k)

≥m−2 is determined by (14) and DI T (v + z) ∈ W for any

z ∈ L(k)
≥m−2. Continuing analogously with the sets L(k)

≥m−3, . . . ,L(k)
≥0 we show that any

tableau DI T (v + z) with �I ∩ �(m) = ∅ belongs to W .
Now consider the quotient W≥1 = W/W0 and I such that |�I ∩ �(m)| = 1. The

vectorDI T (v+ z)+W0 of W≥1 is a common eigenvector of �m by Proposition 7.7(i) for
any z ∈ L(k)

≥m . We can repeat the argument above and obtain that any tableauDI T (v + z)
with |�I ∩�(m)| = 1belongs toW . Continuing in the same fashionwhen |�I ∩�(m)| =
2, 3, . . ., we obtain that �m is Dv-invariant. ��

Now we are in the position to prove Theorem 7.1.

Proof of Theorem 7.1. Recall that l1 < · · · < lt̃ are the distinct elements of {k1, . . . , kt }.
By Proposition 7.7(ii), �l1 is Dv-invariant. Now, we apply t̄ times Lemma 7.17 to com-
plete the proof (here (k, m) ∈ {(l1, l2), (l2, l3), . . . , (lt̃ , n)}). ��
Corollary 7.18. Suppose that all singular pairs of T (v) are in different rows (i.e. k1 <

k2 < · · · < kt ). If DJ T (v + z′) g−→ DI T (v + z), then there exists C ∈ � such that
CgDI T (v + z) = DJ T (v + z′).

Proof. Since � is Dv-invariant, tableaux with different Gelfand–Tsetlin characters can
be separated by elements of �. Finally, since all singularities are in different rows, any
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linearly independent set of vectors in V (T (v)) has a D-maximal element. In particular
any linearly independent set of tableaux in the same Gelfand–Tsetlin subspace has a
D-maximal element, so using Lemma 7.10 we finish the proof. ��
Proposition 7.19. The following hold.

(i) The action of � on V (T (v)) is given by the following formulas.

ci jDI T (v + z) =
∑

J⊆I

Dv
J

(
γi j (x + z)

)DI\J T (v + z) (15)

(ii) We have (ci j −γi j (v+ z))|I |+1DI T (v+ z) = 0. In particular, V (T (v)) is a Gelfand–
Tsetlin module.

Proof. The identity (15) follows by Theorem 7.1.
To prove (ii), we apply induction on |I |. Suppose first that |I | = 0. Then from (15)
we obtain ci jD∅T (v + z) = γi j (v + z)D∅T (v + z). Suppose now that |I | = s and that
(ci j − γi j (v + z))|J |+1DJ T (v + z) = 0 for any |J | ≤ s − 1. By (15) we have

(ci j − γi j (v + z))DI T (v + z) =
∑

∅�=J⊆I

Dv
J

(
γi j (x + z)

)DI\J T (v + z).

Since all subsets I\J with J �= ∅ satisfy |I\J | ≤ s − 1, by the induction hypothesis
(ci j − γi j (v + z))sDI\J T (v + z) = 0. Therefore, (ci j − γi j (v + z))s+1DI T (v + z) = 0.

��

7.1. Proof of Theorem 6.1. We use notations from Sect. 6. Consider the module M
generated by the tableauD∅T (v). It is a highestweightmodule of highestweight (a1, a1+
1, a2 + 2, . . . , an−1 + n − 1). Indeed, for any 1 ≤ i ≤ n − 1, Ei,i+1(D∅T (v)) is a linear
combination of derivative tableaux DR\J with coefficients Dv

R(P�\�J (x)ei,i+1(σ (x))),
and that coefficient is zero for any J ⊆ R. ClearlyD∅T (v) is a weight vector with weight
(a1, a1 + 1, a2 + 2, . . . , an−1 + n − 1). Hence, M is isomorphic to the corresponding
irreducible Verma module. Since all singularities of T (v) are in different rows, we can
apply Corollary 7.18 and obtain a basis of M given by

{DI T (v + z) ∈ V (T (v)) | DI T (v + z) → D∅T (v)}.
Checking the coefficients of the formulas in Theorem 5.3, we immediately see that

D∅T (v)
E21−−→ D∅T (v + δ11)

E32−−→ DR{2} T (v + δ11 + δ21).

Also, for any j = 2, . . . , n − 1, we have

DR{2,..., j} T

⎛

⎝v +
j∑

i=1

δi1

⎞

⎠ E j+2, j+1−−−−→ DR{2,..., j+1} T

⎛

⎝v +
j+1∑

i=1

δi1

⎞

⎠ .

This, together with Corollary 7.18, implies that the tableau DR T
(
v +

∑n−1
i=1 δi1

)
is a

basis element of the module M . Finally, if for any I ⊆ R,

CI :=
∏

i∈�\�I

(
ci2 − γi2

(
v +

n−1∑

i=1

δi1

))
,
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then CIDRT
(
v +

∑n−1
i=1 δi1

)
is a nonzero multiple of DI T

(
v +

∑n−1
i=1 δi1

)
. Hence

for any I ⊆ R,DI T
(
v +

∑n−1
i=1 δi1

)
is a basis element of M . Now, if n ∈ Specm �

corresponds to the tableau DRT
(
v +

∑n−1
i=1 δi1

)
, then we have dim Mn = 2n−2. The

remaining statements follow directly from the properties of V (T (v)).

8. Proofs of Main Theorems

Proof of Theorem A. Note that V (T (v)) is a Gelfand–Tsetlin module by Theorem 5.3
and Proposition 7.19. Also, the dimension of V (T (v))m coincides with the number of
tableaux in V (T (v)) having the same Gelfand–Tsetlin character as m. This completes
the proof. ��
Proof of Theorem B. For part (i), let us consider a tableau DI T (v + z) associated with
mL ′ . A straightforward computation shows that (ck j − γk j (v + z))s(DI T (v + z)) equals
the following sum

∑

∅�=Js�Js−1�···�J1�I

Dv
I\J1(γk j (x + z)) · · ·Dv

Js−1\Js
(γk j (x + z))Dv

Js
(γk j (x + z))T (v + z).

Let (ik1 , jk1), . . . , (iks , jks ) be the singular pairs of v + z on row k. If K ⊆ R is such
that Kr �= ∅ for some r ∈ �\{k1, . . . , ks}, thenDv

K (γk j (x + z)) = 0 (note that γk j (v+ z)
depends only of the entries of row k). Hence, there is a nonzero constant C , such that

(ck j − γk j (v + z))s(DI T (v + z)) = CDv
Ik1

(γk j (x + z)) · · ·Dv
Iks

(γk j (x + z))T (v + z).

From the previous equality we obtain (ck j − γk j (v + z))s+1(DI T (v + z)) = 0. Also,
since Dv

Iki
(γk2(x + z)) �= 0 for any i = 1, . . . , s (see [6, Lemma 5.2(ii)]) we have

(ck2 − γk2(v + z))s(DI T (v + z)) �= 0.

We now prove part (ii). Given t-singular vectors v, v′ ∈ C
n(n+1

2 there exist z, z′ ∈
Tn−1(Z) such that D∅T (v + z) and D∅T (v′ + z′) are in the fiber of the maximal ideals
mv and mv′ respectively. We have T (v) − σ(T (v′)) ∈ Tn−1(Z). Hence, V (T (v)) �
V (T (v′)). Conversely, let V (T (v)) � V (T (v′)) for some t-singular vectors v and v′.
Let φ be any isomorphism between V (T (v)) and V (T (v′)). The image of D∅T (v)

under φ need to satisfies (crs − γrs(v))φ(D∅T (v)) = 0 for any 1 ≤ s ≤ r ≤ n. This
implies that φ(D∅T (v)) = aD∅T (σ ′(v)) for some σ ′ ∈ Sn−1 × · · · × S1 and a ∈ C.

Therefore V (T (v′)) � V (T (σ ′(v))) implying v′ − σ ′(v) ∈ C
n(n+1

2 . Now, the image of

T (v′)−σ ′(T (v)) via the identification between Tn−1(Z) and Z
n(n−1)

2 is v′ −σ ′(v). This
completes the proof. ��

Next we prove (iii). Let T (v) be a Gelfand–Tsetlin tableau. By Corollary 7.18, in
order to prove the irreducibility of V (T (v)) it is sufficient to prove that given any two
tableaux DJ T (v + z),DJ ′ T (v +w) in V (T (v)), we have DJ ′ T (v + z) → DJ T (v +w).

We have the following two important observations.

(i) From the proof of Corollary 7.18, we have DJ T (v + w) → DI T (v + w) for any
J ⊆ I and w ∈ Tn−1(Z).

(ii) Since L is regular, we have DJ T (v + w′) → DJ T (v + w) for any J ⊆ R and
w, w′ ∈ Tn−1(Z).
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From (i) and (ii) we conclude that DI T (v + w′′) → DR T (v + w′) for any I ⊆ R and
w′, w′′ ∈ Tn−1(Z). Therefore, to finish the proof we need to prove that for anyDJ T (v+
w) ∈ V (T (v)) there exists w′′ ∈ Tn−1(Z) such that DR T (v + w′′) → DJ T (v + w).

Consider w′ ∈ Tn−1(Z) such that w′
kr ,ir

= w′
kr , jr

for any r ∈ �\�J . By (ii) we have
DJ T (v + w′) → DJ T (v + w). On the other hand,

En1(DJ T (v + w′)) = DR(P�\�J (v)En1(T (v + w′))).

Since all singularities are in different rows, there exist σ ∈ Sn × · · · × S1 such that the
denominator of en1(σ (v + w′)) is a factor of

∏

r∈�\�J

((v + w′)kr ,ir − (v + w′)kr , jr ) =
∏

r∈�\�J

(vkr ,ir − vkr , jr ) = P�\�J (v).

Thus the coefficient ofDR T (v+w′+σ(εn1)) in the expansion ofDR(P�\�J (x)En1(T (x+
w′))) is ev(v)(P�\�J (x)en1(σ (x + w′))) �= 0, so v being regular ensures that the nu-
merator of en1(σ (x + w′)) is nonzero after the evaluation. Hence we have

DRT (v + w′′) → DJ T (v + w′) → DJ T (v + w),

where w′′ = w′ + σ(εn1).

Proof of Theorem C. Since any submodule of aGelfand–Tsetlinmodule is also aGelfand–
Tsetlin module (see Lemma 3.4 in [6]), for any A ∈ V (T (v)) the submodule U · A is a
Gelfand–Tsetlin submodule of V (T (v)).

Let us consider the tableau D∅T (v + z) associated with mv′ and denote by M the
submodule U · D∅T (v + z). Set

W = {A ∈ V (T (v)) | A ∈ M, and D∅T (v + w) /∈ U · A}.

IfW = ∅ then M is irreducible satisfying Mmv′ �= 0. IfW �= ∅ then N = ∑
A∈W U ·A

is a nontrivial maximal proper submodule of M . Therefore, M/N is an irreducible
subquotient of V (T (v)) such that (M/N )mv′ �= 0. We can apply the same reasoning
replacing D∅T (v + z) with DI T (v + z) �= 0. Since the cardinality of the set {I ⊆
R | DI T (v + z) �= 0} is bounded by 2t , we obtain at most 2t irreducible subquotients.
This implies part (i).

To prove part (ii) consider again the tableau D∅T (v + z) associated with mv′ . In
V (T (v)) we have |{J ⊆ R | DJ T (v + z) �= 0}| = 2t−k . If we construct an irreducible
module V as in part (i), as a quotient of U · DI T (v + z), we have:

dim Vmv′ = |{DJ T (v + z) | DJ T (v + z) → DI T (v + z)}| ≤ 2t−k .

Parts (iii) and (iv) follow directly from Theorem B(i). ��
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