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ABSTRACT

We introduce a class of baric algebras containing all Bernstein and train algebras of rank 3

satisfying a given train polynomial and establish its basic properties: existence of idempo-
tents, Peirce decomposition, etc.

1 Bernstein and train algebras

Let A be a commutative, not necessarily associative, algebra over an infinite field F with char-

acteristic not 2 and 3. If w : A = F is a nonzero homomorphism, the ordered pair (4,w)

is called a baric algebra over F and w is its weight function. For every a € A, w(a) is the
weight of a. The set N of elements of weight zero is an ideal of codimension 1 in A. The set
H = {z € A:w(z) = 1} is an affine hyperplane and if a € H, we have a direct sum decomposi-

tion A = Fa®N. Given a € A, we denote by L, the linear operator of N defined by L,(z) = az,
forall z € N.
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We review two classes of baric algebras which have been extensively studied in the last years.

If (A, w) satisfies the identity
(2%)? = w(z?)2? (1)

it is called a Bernstein algebra. It follows from (1) that w is the unique nonzero homomorphism
from A to the field. The set of idempotent elements of a Bernstein algebra (A4,w) is given by
I(A) = {z?: 2 € H} and hence every Bernstein algebra has at least one idempotent. For each
idempotent e the linear operator L,: N — N satisfies the equation 2L2 — 3L2 + L. = 0 and
hence we get the Peirce decomposition A = Fe @ U @ Z where U = {z € N : 2ez = z} and
Z ={z € N :ex =0}. The inclusions U? C Z ,UZ C U, 22 C U, UZ? = (0) hold in A.

Moreover, we have the identities

u = 0 = u(uz) = uz? = u?22? = (u2)? = (v?)? (2)
forall w € U and z € Z. If e € H is an idempotent, then every idempotent e’ in H is described
by e = e+ u+ @? where % € U. Bernstein algebras are closely related to the Bernstein problem
stated in [1]. Recent developments in this theory can be found, for example, in [6, 7, 8]. In [15]
the reader will find the foundations of the theory.

The second class of baric algebras that we consider consists of train algebras. If the baric

algebra (A, w) satisfies identically some equation of the form
2"+ nw(@)s" - (@) e = 0 (3)

for some elements 71, ...,9,_; in the field F, it is called a principal train algebra (for simplicity
train algebra). The formal expression p(z) = 2™ + yyw(z)z™ ! 4+ ... + Yn—1w(z)* 1z is a train
polynomial with coefficients 74, ... ,7,—1 and degree n. In equation (3) the powers z* are defined
by 2! = z and ' = 2'~'z for i > 2. When the identity (3) has minimal degree, p(z) is uniquely
defined and is called the train equation of A, where the integer n is the rank of A. The ideal
N = {z € A:w(z) = 0} satisfies the monomial identity z" = 0.

We now will assume that (A,w) is a train algebra of rank < 3, that is, A satisfies the train
equation

2% - (1 + 7)w(2)z? + yw(z)% = 0. (4)

If v # %, then the set of idempotent elements is given by

1(A)={1_127(12—27z):zéH}. (5)

Given an idempotent e € A, the linear operator L, : N — N satisfies the equation 2L3 -
(1+2y)L. + vidy = 0 and so we obtain the Peirce decomposition A = Fe & U @& V where
U={zeN:2z=z}and V = {z € N : ez = yz}. The following relations hold: U2 C V,
UV CU, V%= (0) and

u? =0 =u(uv) = v(ve) = v? = (uv)? (6)
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forall u € U and v e V. If e € H is an idempotent, every other idempotent €’ has the form

3 _1 P . (7)
where @ € U. For more information about train algebras, see [2],[3],[5],[11].

We close this section recalling some well known connections between the theory of train and
Bernstein algebras (see [12], [14], [16] and [17]). A Bernstein algebra is Jordan if and only if
satisfies the train equation 2°—w(z)z? = 0. Every Bernstein algebra A such that A = A? satisfies
the equation #* — 3w(x)2® + Jw(z)?e? = 0. It has been proved that if a Bernstein algebra is also
train of rank r, it must satisfy P(a) = 0 for all a € H where P(X) = X3(X - 1)(2X - 1)"3% ¢
F[X]. In this paper, we establish a new connection between the two theories.

We denote by F[Xj,...,X,] the algebra of all polynomials in m associative commutative
indeterminates over the infinite field F and F(X1, ..., X,,) denotes the algebra of all polynomials

in m nonassociative commutative indeterminates. For a polynomial T'(X) € F(X) we denote
its degree by 0T

e=et+u+

2 Train algebras of degree n and exponent k

Let p(z) = 2" + 1w (z)z" ! + ... + Tn—1w(2)" "'z be a train polynomial of degree n. Consider
the class of all baric algebras (A,w) such that, for some fixed integer k > 1, the principal powers
zF of every element z in A satisfy p(z¥) = 0. Explicitly, we have the identity

(@) + 70 @)+ s (@h) et = 0 ®)

for all z € A. Equivalently
@) + @) ot azF =0

for all z € H. Such algebras will be called (principal) train algebras of degree n and exponent
k, when n is minimal. For all these algebras the ideal N = kerw satisfies the monomial identity
(%)™ = 0 and this ensures that the weight function w is the unique nonzero homomorphism
from A to F. As an example, baric algebras of degree 2 and exponent 2 satisfy (z?)? = w(z)%z?
so they are exactly the Bernstein algebras. When k = 1 we have the usual concept of train
algebra.

Let (A,w) be a baric algebra with an idempotent e € H. Choose an element z € N, a

polynomial T'(X) € F(X) (or F[X]) such that T(0) = 0, and consider all the elements of the
form T'(e + Az), A € F. We collect terms with equal powers of A and we obtain

oT
T(e+Ax)=T(l)e+ Y NDiT(e).
=)

For simplicity, denote D1T'(e) by D,T(e). It was proved in [9], as a reformulation of a result
in [10], that for every T'(X) € F[X] satisfying T'(0) = T(1) = 0, the vector DT (e) is equal to
T(L.)(z) where T'(X) := (2X - 1) X~ }Y(X - 1)7IT

(X). On the other hand, we can prove, using
induction on k, that if T(X) = X*, then D,T(e) = (2L¥' + L¥-2 4 ... 4 L% 4 L.)(z). These
two facts prove the following
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Lemma 1. If P(X) € F[X] satisfies P(0) = P(1) = 0, and T(X) = P(X¥), then D,T (e)
P(Le)o (2L + LE2 4 + L2+ L) (2).
Consider the polynomial P(X) := X"+ X" ! +---+7,-1X € F[X]. In view of the above

lemma we have

Theorem 1. Let (A,w) be a train algebra satisfying (8). If e is an idempotent, then for all
z € N we have P(L.)o (2LF-' + LF-2 4 ...+ L2+ L.) (z) = 0.

Corollary 1. Let (A,w) be a train algebra satisfying (8) for k = 2. Then for every idempotent
e and every vector z € N we have that L. o P(L.)(z) = 0.

We will be concerned only with the case n = 3 and k = 2, that is, we study the class of baric

algebras satisfying the equation
(2%)° - (1+ Y)w(z®)(2®)® + yw(z?)?2® = 0 (9)

For simplicity, they will be called cubic of ezponent 2. This class obviously contains all train
algebras satisfying (10). Moreover, if we rewrite equation (9) as

2* ((2%)? - w(z)?) = 1w(2)’ ((2°)? - w(z)’a?)

it becomes clear that all Bernstein algebras also belong to this class, for all 4. Apart from these
subclasses, there are many other examples. For instance, according to [4], Theorem 2, the join
of a Bernstein and a train algebra satisfying (4) will belong to this class. The following example
is neither Bernstein nor train of rank 3. Let A be a 4-dimensional commutative algebra with
basis {e, u, z, v} and multiplication table given by e? = e, eu = fu, ev = yv, 22 = §v and other
products are equal to zero, where 6 € F. If we define w by w(e) =1, w(u) = w(z) = w(v) = 0,
then (4,w) satisfies (9).
Observe that the first linearization of (9) is

(2)*(zy) + 2(2*(2y))2” — (1 4+ 7)[2w(2?)2?(2y) + w(zy) (2%)?] (10)
+y[w(z)izy + 2w(z3y)z?) = 0

and the second linearization is

(z%)%(y2) + 4(2*(22)) (2y) + 4(2*(xy)) (22) + 2(z2(y2))2? + 4((zy) (2))2?
= (14 7)[20(2?)2%(y2) + dw(2?) (zy) (z2) + dw(z2)22(2y) + 4w (zy)z?(22)
+w(yz)(22)?] - yw(z)tyz + 4w(2°2) (zy) + dw(zy) (22) + 6w (22yz)z?).

In particular, for z, Y,z € H and y = 2, we obtain

(«%)%y? + 8(2(zy)) (zy) + 22%(c2y?) + 42 (zy)?
= (v + 1)[22%y* + 4(zxy)® + 82%(zy) + (z%)?] (11)
+7[y* + 8zy + 62%) = 0

As baric algebras satisfying (1) or (4) with 2y # 1 always have idempotents of weight 1, it is
natural to expect that the same holds for equation (9). For this, we need the following lemmas.
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Lemma 2. Let B be a commutative algebra that satisfies the identity (z%)°> = 0 for all z € B.
If dim B? < 2, then dim(B?)? < 1 and ((B?)?)? = (0).

Proof. First we assume that B satisfies the identity 22z = 0. Linearizing this identity we obtain
z?(zy) =0,  2’y* +2(xy)’=0. (12)

If dim B? < 1, then the result is clear. In the other case there exist a,b € B such that a2, b2
is a basis of B2. Obviously, (a?)? = (%) = 0. In view of the first identity of (12) a*(ab) = 0
and b?(ab) = 0. Then, because ab € (a?,b%), we get that (ab)? = 0. Now the second identity
of (12) implies that a?6? = —2(ab)? = 0. Finally, we assume that there exists a € B such
that a®a® # 0. Then u := a? and v := a%a® are linearly independent and hence form a
basis of B%. Therefore, u> = v, wv = 0 and v? = ou + fv with o, 3 € F. We now have
that 0 = (u?)® = v® = v(au + fv) = Bv? = ﬂ(au-}- Bv), so B = 0. On the other hand,
0= ((u+v)?*?° = (au+v)? = (au + v)(au + o?v) = o®u + a?v, which implies that a =0. [

Corollary 2. Let B be a commutative algebra satisfying the identity (%) = 0. If dim B < 2,
then dim B2 < 1 and (B?)? = (0).

In the following we denote by @Q the set {z? :z € H}.

Lemma 3. If A satisfies (9) with v # 0, then for all z € Q we have the identity

(%)% = —(1+7)(2%)* + (4v* + 47 + 2)2? — y(dy + 3)z.
Proof. Replacing y = z? in (11), we obtain:

0 = (2)%2% + 22%(2%2°) — (v + 1)[22%2% + (22)2) + 4[2® + 222] = (7 4+ 1)(22)? - 7(2?)?
2(7+1)(2?)° = 2v222® - 2(y + 1) (2?2 + 27 (v + 1)2® - (v + 1) (22)2 4+ v (v + 1) 22 — 42z + 2722
—7(2?)%2 + 3(y + 1)(2%)® - 292°%2° — (v + 1)(27 4 3)(z®)2 + 2v(v + 1)r +7(y+3)22 -2z =
—7(2?)%z + 3(7 + 1)%(2?)? = 37(y + 1)2? = 27(y + 1)(22)? + 29223 — (v + 1)(27 + 3)(22)?
+27(y 4+ 1)%2? — 29%(y + Dz 4+ 7(y + 3)2? — 7%z = —(2?)%z — y(y + 1)(z?)? + 29223 +
29(V? + v+ 1)2? - (27 + 3)z = —7(e) % — (v + 1)(=H)? + 292(y + 1)2? - 243z + 29(+2 +
1+ 1)2? — 122y 4+ 3)z = —7(2%)%z - v(v+ 1)(29)? + 27(27% + 27 + 1)z - *(4y + 3)z. So
(z%)%z = —(v 4+ 1)(2?)? + (49? + 47 + 2)2? — v(47 + 3)2, as desired. O

-

Lemma 4. If A satisfies (9), then for every x € Q we have:
a) If y =0, then ((2)%)* = (2%)%;
) If v #0, ((£3))? = (1+ 27 - 47%)(2?)? + 27(47% + 27 - 1)2? - 89%2.

Proof. If 4 = 0, replacing y by z? in (11) we obta’m
0= ((z)%)? + 8(22%)2® + 2(2?)* + 422 (2%)? - [2(2?)° + 4(2%)? + 82223 + (22)?2)
= ((£%)%)? + 8(2?)® + 2(2?)? + 4(2?)? - 2(2?)? - 4( ) - 8(z%)? - ()2
= ((=%)? - (&
Substituting y = 2% in (11) and using Lemma 3 we prove (b). O

Now, we assume that ¥ # 0. For 2 €  we consider the elements e := z, f:=22 -2z and
h:= (2%)? — z2. Then we have:
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e = e+ f

ef = 3-22=(y+1)22-yz—-2?=~f

eh = (222 -2%=(2?)%z - (v+ 1) + vz - (v +1)(z%)? + (47 + 37 + 1)2?
=272y + 1)z — (y+ Do+ @2+ 27)f =2y(2y+ 1)f - (v+ DA

2= (@-a)t=-z(a®-2)+ (2?2 - 2P = —y(e? - 2) + (2?)? - (v + 1)’ + 72 =

(2?2 = (2y+ )22+ 2yz =-2vf+h
fh = (2% - 2)((2?)? - 2?) = 2%((2?)? - 2%) - (2?)%2 + 2° = 7((=?)* - 2?)
—(@)’z+ (v+ D2’ - vz = 27+ 1)(2?)? - (42 + 4y + 1)2? + 2y(2y + 1)z =
(27 +1)(=2vf+h)
h* = ((2%)? -2 = —2?((2?)* - 2%) + ((27)?)? - (2?)® = —7((z?)? - 2?)
+((#*)?)? = (r+ 1)(2)? + 12° = —47%(2?)? + 47*[27 + 1]2? - 87’z =
—47[(2%)? - 2] + 87%(2? — @) = —472(h - 2vf)
These relations show that the subspace B generated by e, f and A is a baric subalgebra with
dim B < 3. Taking g := h — 27 f, we have the multiplication table:

e=e+f ef=7f eg=—-(v+1)g, fP=9, fo=9g, ¢° = —4v(1 + 27)g.

Therefore, {e, f, g} is a generator system of the subalgebra B and we remark that f and g¢
span the subalgebra ker(w) N B. By Corollary 2, 0 = (f?)? = —4v(1+ 2v)g and so for 7 # -1,
we have that ¢ = 0. Finally we assume that v = —%. Then

1 1
e=e+f ef =~5/f eg=~3g, fP=g, fg=9,6*=0

Let a = e+ Af with A € F. Since B is a cubic algebras of exponent 2, we have that 0 =
2(a®)® - ((¢%)? 4+ a®) = —2X3(1 - A)g and hence g = 0. Thus, we have proved that g =0 for all
cubic algebra of exponent 2 with v different from zero.

One consequence of the above relation and (a) of Lemma 4 is the following relevant fact,
which establishes that if 4 is a cubic algebra of exponent 2, then A is train for the plenary
powers.

Theorem 2. If (A, w) is cubic of ezponent 2 then ((z2)?)%— (1427)w(z)*(z%) 2+ 2yw(z)822 = 0,
forallz € A.

The following Theorem generalizes the form of the idempotents of a Bernstein algebra and
of a train algebra of rank < 3.

Theorem 3. If (A,w) is a cubic algebra of ezponent 2 with v # 1, then A has idempotent
elements. Moreover, the set of idempotent elements is given by

1(4) = {1 _127 ((x2)2 = m?) L z€ H}.

Proof. If v = 0, from (a) of Lemma 4, (2?)? is an idempotent. Let v # 0. Now, for z € H, if 2?2
is an idempotent then the result is obvious. Otherwise, ¢ = 2 and f = (2%)? — 22 are linearly
independent and span a subspace B which is a subalgebra with multiplication table:

e=e+f, ef=vf fl=u.
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Finally, one element a = e + Af is an idempotent if and only if (1 —2y)A -1 = 0, and so
a = ((z%)? - 272%)/(1 - 27). O

Example 1. For the case v = % we show an example without idempotent elements. Let A be
an algebra with basis {e, f} and multiplication table

e?=e+f, ef=%f» F* =l

For the weight function w(ae + 8f) = o, A is a cubic algebra of exponent 2 with y = %, but A
has not idempotent elements, as it is easily verified.

In the next, we will assume vy # % and also that v # 0.

Proposition 1. Let (A,w) be a cubic algebra of exponent 2 satisfying (9) and let e be an idem-
potent of weight 1 in A. Then for every x € N, we have the following identities:

(a) 2e(e(ex)) = (14 27)e(ex) — yex

(b) 2e(ex? + 2(ex)?) + 8(ex)(e(ex)) = (1 + 2y)ezx? + 4(1 +v) (ex)? — ya?

(c) e((ex)a?) + (e2)(e2?) + 2(ex)? + (ele))a? = (1 + 7)(ex)a?

(d) e(z?)? + 8(ex)((ex)z?) + 2(ex?)z? + 4(ex)?2? = (1 +v)(2?)?

(e) (ex)(z%)? + 2((ez)z?)z? =0 )

(f) &P = 0.

Conversely if (A,w) is any baric algebra with an idempotent e of weight 1, decomposed as
A = Fe® N such that the above conditions (a), ...,(f) hold for every z € N, then (A,w) is
cubic of exponent 2 satisfying (9).

Proof. (sketch) Take a = ae+z, o € F and z € N. When z is replaced in (9) and if we compare

the coefficients of a®,al,...,a°, we get equations (a),...,(f). The converse is carried in the
same way. O

Let e be an idempbtent of the cubic algebra A of expoent 2. In view of Corollary 1 we have
the Peirce decomposition A= Fe® U ® Z @V where
Ui=lzeN:2ex=30}, 2:={2€ Niex=0},Vi={z€ N rex =7z].

Theorem 4. Let (A,w) be a cubic algebra of exponent 2 satisfying (9). Then the dimensions

of Ue, Z. and V, are invariant on the algebra, that is, their dimensions are independent of the
idempotent e chosen in H.

Proof. Suppose that a € H is a nonzero idempotent and {ay,as,...,a,_1} is a basis of N =
kerw. Consider the mapping f of F"~! onto I(A) defined by the following expression. We take
an—l-uple (A1,...,Anc1) € F*71, define b= 3"32] Akax and then define f by

PO doct) = 1 (a4 07) -2yl 07)

and the endomorphism of N into itself defined by Ly(z) := f(Ay,...,Ap—y)z for all z € N.
Obviously, the characteristic polynomial of Ly can be written as follows

n—1

> 0. Anc) X

t=0
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where 6;(Ar, ..., A1) € F[A1,...,An_1)- On the other hand, by Corollary 1, the minimal
polynomial of the left multiplication by an idempotent, restricted to N, divides X (X —3)(X —v).
Therefore, for each A;,...,A,_; € F the characteristic polynomial of L(y,, . x,_,) belongs to
the finite set {(X — 1)) (X — )2 X"G) : n(1) 4+ n(2) +n(3) = n—1}. This implies that Im(6;)
is finite. Then, as the image of a polynomial function is either infinite or an unique point, the

, An—1) are constant. This proves that the characteristic polynomial of L,

polynomials 6;(Ay, ...
[i]

must be independent of e.

Now we can associate with each cubic algebra of exponent 2 with y # 0,1, A = FedU®ZaV ,

the type (m,r, s) of the algebra where m — 1 :=dim U, r := dim Z and s := dim V.. Clearly the
sum of the three integers of the type of A equals the dimension of A.
A generalization of the multiplicative structure of a Bernstein and train algebra of rank < 3,

is given by the following result.

Theorem 5. Let (A,w) be a cubic algebra of exponent 2 satisfying (9) and let A = FeqUdZ&V
be its Peirce decomposition relative to the idempotent e. The following relations hold:

U*CZoV, UVCU®Z NZCU@aV, VI=(0).

Proof. We consider the second linearization of (9). Replacing 2 —» e and z —» z and assuming
that z,y € N, we have the identity

e(yz) + 4(e(ez))(ey) + 4(e(ey)) (ex) + 2e(e(yz)) + 4e((ey)(ex)) (13)
=2(1+7)[e(yz) + 2(ez) (ey)] — vy

In particular, if z € Z, this equation reduces to y(yz) = (1 + 2v)e(yz) — 2e(e(yz)), all y € N.
Now express yz as yz = ug + 29 + vo, where ug € U, z0 € Z and vg € V. Then 7(uo+ 20+ vp) =
(1 + 2y)e(uo + 2o + vo) — 2e(e(uo + 20 + v0)) = (1 + 27)(1/2u0 + Yvo) — 2e(1/2up + yvo) =
(14 29)(1/2u0 + yvo) — 1/2ug — 272y = ¥(uo + vo). By comparison of components we have
20=0. Then yr=up+ vy € U@V forall y e N. In particular, we have NZ C U g V.

Again from (13), taking y € U we have e(yz) +2y(e(ex)) + y(ey) + 2(e(e(yz)) + 2e(y(ey)) =
2(1+ 7)[e(yz) + y(ez)] = yyz. For z € U, this equation becomes e(e(yz)) = ye(yz). Calling
Yz = uo + 20 + vo with ug € U, 29 € Z and v € V, we have, as above, uy = 0 so that
U?C Z&V. Again from (13),if z € V, we have e(yz) = 2e(e(yz)) and calling yz = o+ 20+ vp
as above, we get vy = 0 so that UV C U® Z. Finally, replace y,z € V in (13) to get
Y(4v? - 4y + Dz =(142y- 472)e(yz) — 2e(e(yz)) and again from yz = ug + zo + vy we get
u0=30:v0:050thatyz=03ndV2=(0). O

Replacing « by u 4 2 + v in (c), (d) and (e) of Proposition 1 we obtain, among others, the
following identities:
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eud + (eu?)u = yu? (14)
2e(u(uz)) + 2(e(uz))u = (2y + 1)u(uz) (15)
2e(uz?) + 2(ez¥)u = (2y + 1) uz? (16)

de(uz)? + 2e(u?2?) + 2u(uz?) + 2(eu?)2? 4 8(e(uz))(uz)
+2(e2?)u? 4+ u%2? = 2(1 4 7)(2(uz)? + u?2?) (17)
2e(u(uv)) + 2(e(uv))u+ 2ye(u?v) = u(uv) + yulv (18)
e((w)o) + (e(uv))v = (1 - ) (wv)o (19)
e(uwv)? + 2(e(uu))2(u121) (20)

= =2y((uwv)v)u — 2y((uwv)u)v — 29*(v?v)v + (1 = v)(uv)?
2u(u?(uv)) + 2u? (u(uv)) + 2(uv)u® + v(2u?(u?v) + v(u?)?) = 0 (21)
e(z%v) + (e2?)v = z%v (22)
e((zv)v) + (e(zv))v = (2v)v (23)
((uwv)v)v =0 (24)
((zv)v)v=0 (25)
u(u?(uz)) + u?(u(uz)) + (uz)u® =0 (26)
u(u?2?) + u?(uz?) 4+ u2? + 2(u(uz)? + 2(uz)(w(uz))) = 0 (27)

We can also use equations (e) and (f) to get more complicated identities of degree 5 and 6
in u, v, z but we do not pursue in this direction. Some of the identities will be used now.

At this point a natural question is to ask under which conditions a cubic baric algebra of
exponent 2 is Bernstein or train.

Proposition 2. The cubic baric algebra A = Fe®@U ®Z @V is Bernstein if and only if V = (0).

Proof. We assume that V = (0). In view of Theorem 5 we have that U2 C Z and UZ@® Z2 C U.
We note that A is Bernstein if and only if satisfies the relations (2). From (14), (15) and (16)
we obtain u® = 0, u(uz) = 0 and uz? = 0 respectively. Next, because z° = 0 for all z € U
and z? € U, we have that u?z? = —2u(uz?) = 0 since we proved above that uz? = 0. Using
the identity u%2? = 0 and (17) we get (uz)? = 0. Finally, from (d) of Proposition primpro for
¢ — u we have that (u?)? = 0. The converse is trivial. O

Proposition 3. The cubic baric algebra A = Fe U & Z @V is train if and only if Z = (0).

Proof. We now assume that Z = (0). In view of Theorem 5 we have that U? C V and UV C U
and V2 = (0). We note that A is train if and only if it satisfies the relations (6). By (14) we

have that u® = 0. Next, from (18), (19) and (20) we obtain that u(uv) = 0, v(vu) = 0 and
(uv)? = 0 respectively. The converse is trivial. O
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Proposition 4. A 3-dimensional baric algebra satisfying (9) with v # 0, % s Bernstein or train

of rank < 3 or isomorphic,to one of the form A = Fe @ Fz & Fv from the following list:

Al): e*=e, ez=0, ev=nv,

A2): e=¢, ez=0, ev=7y, 2=

AB): e*=e e2=0, ev=9v, zv=r,

A4): =€ ez=0, ev=9v, 2’=v, zv=ov,

and the rest of the products are equal to zero.

3 A particular case

We have already remarked that the join of a train algebra A; = Fe, @ U, & V satisfying (4)
and a Bernstein algebra Ay, = Fey, @ U, @ Z, is cubic of exponent 2. In this case, 4; x A, =
Fe® (Ui ®Uz)®Z @V and, for instance, (Uy @ Uz)Z C Uy, ZV = 0, etc. In this case, the

inclusions in Theorem 5 are simplified.
In this section we present some results for a cubic algebra of exponent 2 when we know the

existence of one idempotent element e for which the following multiplicative structure holds:

UPCZ@V, UZ+UV+Z*CU, 2ZV=(0), V2=(0). (28)

The above relations include all Bernstein and all train algebras of rank < 3. The join of a
Bernstein and a train algebra of rank < 3 is also a cubic algebra of exponent 2 with this
multiplicative structure.

We know that relations (14) to (27) hold in this case, but we have also:

Proposition 5. Suppose A is a cubic algebra of ezponent 2, e an idempotent for which (28)
holds. Then we have the following identities foreveryue U, 2€ Z andv e V:

(wv)v = v?v = (uv)? = v = (u?)2 =0

u(u(u(w)) = u(u(u(uz)) = u(u(us?)) = 0 (30)
2(eu®)u+ (1 -2y)u=0 (31)

u(u?2?) +ud2? =0 (32)

)

)

(29)

u(uz)? + 2(u(uz))(uz) =0 (33
u(ww) € Z and wu(uz), uz? u(u?z) € V. (34

Proof. The identities (29) and (31) are obtained from (19), (28), (20), (??) and (14) together
with (28). For example, from (??) and (28) we get that 2u’+ (1-27)(u?)? = 0. Since u € ZgV
and (u?)? € U we obtain that u* = 0 and (u?)? = 0. The linearizations of u* = 0 and (u?)2 =0

are given by
u’u’ 4 (v*u')u + 2u(u(uu’)) = 0, u?(uu') = 0. (35)

Taking v’ = uv, we obtain u3(uv) + u(u?(uv)) + 2u(u(u(uv))) = 0 and looking now to (21) and
considering that u?y = (u2)2 = u?(u(uv)) = 0 by (28) and (29), we have u3(uv) +u(u?(uv)) = 0.
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This proves u(u(u(uv))) = 0. Next, replacing v’ = uz in identities of (35) we obtain u®(uz) +
u(u?(uz))+2u(u(u(uz))) = 0 and u?(u(uz)) = 0. Now, from (26) we have u®(uz)+u(u?(uz)) =0
since we have proved that u?(u(uz)) = 0. Therefore we have u(u(u(uz))) = 0.

We know that u?(u2?) = 0 because uz? € U and hence from (27) we obtain u(u?z?)+u3z% =
—2u(uz)? — 4(u(uz))(uz) € (Z® V)NU = (0). Considering this fact and taking u’' = 2? in the
first identity of (35) we prove that u(u(uz?)) = 0. O

Theorem 6. Let (A,w) be a cubic algebra of exponent 2 and e an idempotent for which (28)
holds. The set of idempotent elements of A is given by:

2
I(A):{e+u+u2+1_276u2 3 uEU}. (36)

e + u + z + v with uniquely determined v € U, z € Z and v € V; furthermore (28) implies
e'? = e+ (u+ 2uz + 2uv + 22) + (u? 4 2yv) with v+ 2uz+2uv+22 € U and u? + 2yv € Z V.
Therefore the idempotent condition €2 = €’ is equivalent to

Proof. Let ¢’ be another idempotent element of A. Then its decomposition is given by e’ =

u42uz+2uv+22=u and u?42yv=2z+v. (37)

The first identity implies 2uz 4+ 2uv 4 22 = 0 and the second identity implies eu? 4+ 2v%v = v,
that is, eu? = (1 — 2y)v. Therefore z = u? — (1 — 2y)v = u? — y~leu?.

For z = u? — y7leu? and v = 471(1 = 2y)~leu?, equations (28), (29) and (31) say that
2uz+2uv + 2% = 0 and hence (37) is satisfied. Therefore the set of idempotent elements is given
by (36). O

If ¢’ is another idempotent of A, we denote as A = Fe' @ Uy @ Z. & V. the Peirce de-

composition of A relative to ¢’. The following Proposition gives the relation between the two
decompositions.

Proposition 6. Suppose A is a cubic algebra of exponent 2 and e an idempotent for which (28)
holds. Ife' = e+ u+ u® +2(1 — 2y)~Leu?, @ € U, is another idempotent of A, then:

E 4 .
Uy = {u+2uu+ 1_27e(uu).u€U}

Zy = {z = xR bt [ 2 £ B0 2)]
[Y=297 [ ]

Ve = {v - (—1%7);&[71;4- v — 2u(ww)] v € V}

Proof. Let = u+ z+ v be an element in NV = kerw. Then (28) implies that €'z is equal to

u > = _2 =9 2 =9 =
§+uz+uv+u w4 u z+1_27(eu Ju | & | wu+yv (38)

where the first summand is in U and the second belongs to Z @ V.

255



256 Ivo Basso, et al.

L. The condition z € U,/, that is, 2¢’z = z is equivalent to

wz + v + @tu+ @’z + (ea®)u=0, z+(1-2y)v=_2au. (39)

1 -2y

Multiplying the last expression by e, we obtain v = 1_2_;78(17,11,). Now, replacing vin z4(1-2y)v =

2uu we get that z = 2qu — %e(ﬁu). Conversely, if z = u+ 2au+ 1—_42—7e(17u), then (39) is satisfied
since by the first linearization of (31) we have

2(ea’)u + 4(e(au))@ + (1 - 29)au + 2(1 — 2v)a(aw) = 0. (40)

IL In view of (38) the condition z € Zer, that is, €'z = 0 is equivalent to

u+2[ﬁz+ﬁv+ﬁ2u+ﬁ2z+ (eﬂz)uJ =0, @u+yv=0. (41)

1-2y

Therefore, we obtain v = —y~17u. Using this identity and (40) we have that

-2—(61‘12)u = —QL—ﬁv — @t
1-2y 1-2y

and replacing this expression in the first identity of (41) we have

u+ 24z + 2a%z + iy =0, (42)

1- 2y
Multiplying by % we obtain wu+2u(uz)+2u(i?2)+2(1-2y) " 'a(av) = 0. But au, u(uz), u(u?z) €
V and 4(av) € Z, so 4u = =2[u(a@z) + 4(a%z)] = —yv and v = 2u(uz) + u(a2z)). Replacing
vin (42) we get u = —2az — 242z — 4(1 = 29)~ Yy au(a(az)) + a(a(a?z))). Conversely, if z =
[—2122—21222—4(1—27)‘17'1[ﬂ(ﬁ(ﬂz))+ﬁ(ﬁ(ﬁzz))]] +z+%[z’t(ﬁz)+12(ﬁ2z)] then the identities of
(30) show that uu+yv = 0. Now it is easily proved that u+2[ﬂz+ﬂv+ﬂ2u+ﬁzz+# (ew®)u] =0
using (4())_
IIL. Finally, in view of (38), the condition z € V,/ is equivalent to

| . =
27u+ﬁz+ﬂv+ﬁ2u+ﬁzz+1_27(eu2)u=0, du—vyz=0. (43)
From (40) and considering that 4u € Z, we obtain
: (et)u = —uu — 2u(au) = —@’u — 2yiz.
1-2y

Using this fact together with 4%z = @?(2u) = 0 we obtain from the first identity of (43) that
1-2y
2
Then vz = g4 = ~2a[az + (1 - 2y)~lay] = —2u(@z) — 2(1 — 2y)~a(@v). On the other hand,
U, U(v) € Z and %(@z) € V. This implies that

u+ (1-2y)az+av=0.

s 4 . 2
B Tt vt PR

Conversely, if 4 and z are as above, then @u = 4(1-2y) "y ta(a(a(aw))) - 2(1 - 2y)~la(uw) =
—2(1- 2’7)"11—1(1’111) = 7z. Now it is easy to prove the first relation of (43). a
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We remark that if A is Bernstein in Proposition 6, e(@u) = 0 because @u € Z, and so
Ue = {u+2tu :u € U}, which coincides with the expression of U/ in a Bernstein algebra. On
the other hand, if A is a train algebra of rank 3, e(@u) = yuu and Uy = {u+ 2(1 — 2y)tau :
u € U}, which agrees with U, in A. Also we may observe that if A is a train algebra of rank
3 in Proposition 6, @(@v) = 0, and so Vy = { v — 2(1 — 2y)"'4v : v € V}, an expression which
coincides with Vs in this algebra. Now, if A is Bernstein, then #(2z) = @(2z) = 0 and so
Zo={z-2uz-2uz:2€Z}.

Corollary 3. dim U? is invariant (under change of idempotents in A).

Proof. Let e be an idempotent such that its Peirce decomposition satisfies (28). Suppose that
¢’ is another idempotent. Consider Fe @ U @& Z @V and Fe' @ Uy @ Zo & Vo the Peirce
decompositions of A relative to the idempotent elements e and €' = e +u+ u? +2(1 — 27) teu?,
with @ € U. Now, let v}, u, be two elements of Uy, with u} = uy + 2auy + 4(1 — 2v)~e(tu;)
and u}, = uy + 2tus + 4(1 — 2y)~e(@uz). Using (28) we have

ujuhy = upug + 2ug (dug) + i _427u1[e(ﬁu2)] + 2ug(duy) + 4(uuy ) (Guz)

+ g lelma)] (i) +

5 tale(i)] + ) (aua).

Then, because U2 C Z @V, [(Fe)(Z® V)](Z@® V) = (0) and from the second linearization of
(31) we have

uyuy = uyug — 2u(ugug) —

1= 271_‘[3("1“2)] - 2% (uyup)

an element of UZ. Now the linear mapping ¢ : U2 — U7 defined by ¢(z) = z—2uz—2u?z—4(1—
2v)~'a(ez) is an isomorphism since ¢ € U2 C Z®V and 2(uz+u*z+2(1-2y) ‘u(er)) e U. O

Since N=U®Z&®V and N2= (224 UZ +UV) @ U? we have

Corollary 4. The dimension of Z> + UZ + UV is an invariant of A.
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