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ABSTRACT 

We introduce a class of baric algebras containing all Bernstein and train algebras of rank 3 
satisfying a given train polynomial and establish its basic properties: existence of idempo­ 

tents, Peirce decomposition, etc. 

1 Bernstein and train algebras 

Let A be a comrnutative, not necessarily associative, algebra over an infinite field F with char­ 
acteristic not 2 and 3. If w : A --t F is a nonzero homomorphism, the ordered pair (A,w) 
is called a baric algebra over F and w is its weight function. For every a E A, w(a) is the 
weight of a. The set N of elements of weight zero is an ideal of codimension 1 in A. The set 
H = {x E A: w(x) = l} is an affine hyperplane and if a E H, we have a direct sum decomposi­ 
tion A= Fa©N. Given a E A, we denote by L0 the linear operator of N defined by L0(x) = ax, 
for all x E N. 
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We review two classes of baric algebras which have been extensively studied in the last years. 
If (A, w) satisfies the identity 

(1) 

it is called a Bernstein algebra. It follows from (1) that w is the unique nonzero homomorphism 
from A to the field. The set of idempotent elements of a Bernstein algebra (A,w) is given by 
l(A) = {x2: x E H} and hence every Bernstein algebra has at least one idempotent. For each 
idempotent e the linear operator Le: N --+ N satisfies the equation 2LJ - 3L~ + L; = 0 and 
hence we get the Peirce decom position A = Fe EfJ U EfJ Z where U = { x E N : 2ex = x} and 
Z = {x E N: ex = 0}. The inclusions U2 <;: Z, UZ <;; U, Z2 <;; U, UZ2 = (0) hold in A. 
Moreover, we have the identities 

u3 = 0 = u(uz) = uz2 = u2z2 = (uz)2 = (u2)2 (2) 

for all u E U and z E Z. If e E H is an idempotent, then every idempotent e' in H is described 
by e' = e + u + u2 where ii, E U. Bernstein algebras are closely related to the Bernstein problem 
stated in [1]. Recent developments in this theory can be found, for example, in [6, 7, 8]. In [15] 
the reader will find the foundations of the theory. 

The second class of baric algebras that we consider consists of train algebras. If the baric 
algebra (A, w) satisfies identically some equation of the form 

(3) 

for some elements 11, ... , ,n-l in the field F, it is called a principal train algebra (for simplicity 
train algebra). The formal expression p(x) = xn + ,1w(x)xn-l + · · · + ,n_1w(xt-1x is a train 
polynomial with coefficients 11, ... , ,n-l and degree n. In equation (3) the powers z ' are defined 
by x1 = x and xi = xi-lx for i~ 2. When the identity (3) has minimal degree, p(x) is uniquely 
defined and is called the train equation of A, where the integer n is the rank of A. The ideal 
N= {x E A: w(x) = O} satisfies the monomial identity z" = O. 

We now will assurne that (A,w) is a train algebra of rank ::; 3, that is, A satisfies the train 
equation 

x3 - (1 + 1)w(x)x2 + 1w(x)2x = 0. 
If,=/=- ½, then the set of idempotent elements is given by 

l(A) = { l _1 21 (x
2 
- 2v) : x E H}. 

(4) 

(5) 

Given an idempotent e E A, the linear operator Le : N -+ N satisfies the equation 2L~ - 
(1 + 2,)Le + ,idN = 0 and so we obtain the Peirce decomposition A = Fe EfJ U EfJ V where 
U = {x E N: 2ex = x} and V= {x E N: ex = 1x}. The following relations hold: U2 C V, 
uv <;; u, V2 = (0) and - 

u3 = 0 = u(uv) = v(vu) = v2 = (uv)2 (6) 
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for all u E U and v E V. If e E H is an idempotent, every other idempotent e' has the form 

1 e' = e + ii+ --ii2. (7) 1- 2, 

where ii E U. For more information about train algebras, see [2],[3],[5],[11]. 
We close this section recalling some well known connections between the theory of train and 

Bernstein algebras (see [12), [14), [16] and [17]). A Bernstein algebra is Jordan if and only if 
satisfies the train equation x3-w(x)x2 = 0. Every Bernstein algebra A such that A= A2 satisfies 
the equation x4 -1w(x)x3+ ½w(x)2x2 = 0. It has been proved that if a Bernstein algebra is also 
train of rank r, it must satisfy P(a) = 0 for all a E H where P(X) = X2(X - 1)(2X - 1t-3 E 
F[X]. In this paper, we establish a new connection between the two theories. 

We denote by F[X1, ... , Xm] the algebra of all polynomials in m associative commutative 
indeterminates over the infinite field F and F(X 1, ... , Xm) denotes the algebra of all polynomials 
in m nonassociative commutative indeterminates. For a polynomial T(X) E F(X) we denote 
its degree by 8T. 

2 Train algebras of degree n and exponent k 

Let p(x) = z" + ,1w(x)xn-I + ... + 1n-1w(xr-1x be a train polynomial of degree n. Consider 
the class of all baric algebras (A,w) such that, for some fixed integer k ~ 1, the principal powers 
xk of every element x in A satisfy p(xk) = 0. Explicitly, we have the identity 

(8) 

for all x E A. Equivalently 

(xkt + ,1(xkt-l + · · · + 1n-1Xk = 0 
for all x E H. Such algebras will be called (principa0 train algebras of degree n and exponent 
k, when n is minimal. For all these algebras the ideal N= kerw satisfies the monomial identity 
(xkt = O and this ensures that the weight function w is the unique nonzero homomorphism 
from A to F. As an example, baric algebras of degree 2 and exponent 2 satisfy (x2)2 = w(x)2x2 
so they are exactly the Bernstein algebras. When k = 1 we have the usual concept of train 
algebra. 

Let (A,w) be a baric algebra with an idempotent e E H. Choose an element x E N, a 
polynomial T(X) E F(X) (or F[X]) such that T(O) = 0, and consider all the elements of the 
form T(e +>.x),>. E F. We collect terms with equal powers of>. and we obtain 

aT 
T(e +>.x) = T(l )e + I:>-i D~T(e). 

i=l 

For simplicity, denote D~T(e) by DxT(e). It was proved in [9], as a reformulation of a result 
in [10], that for every T(X) E F[X] satisfying T(O) = T(l) = 0, the vector DxT(e) is equal to 
r(Le)(x) where I(X) := (2X - l)X-1(X - 1)-1T(X). On the other hand, we can prove, using 
induction on k, that if T(X) = x», then DxT(e) = (2L~-l + L~-2 + · · · + L; + Le)(x). These 
two facts prove the following 
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Lemma 1. If P(X) E F[X] satisfies P(0) = P(l) = 0, and T(X) = P(Xk), then DxT(e) = 
P(Le) o (2L!-1 + L!-2 + · · · + L; + Le) (x). 

Consider the polynomial P(X) := xn +11xn-I + · · ·+ 'Yn-1X E F[X]. In view of the above 
lemma we have 

Theorem 1. Let (A,w) be a train algebra satisfying (8). If e is an idempotent, then for all 
x E N we have P(Le) o (2L:-1 + L!-2 + · · · + L~ + Le) (x)= 0. 
Corollary 1. Let (A,w) be a train algebra satisfying (8) for k = 2. Then for every idempotent 
e and every vector x E N we have that Le o P(Le)(x) = 0. 

We will be concerned only with the case n = 3 and k = 2, that is, we study the class of baric 
algebras satisfying the equation 

(9) 

For sirnplicity, they will be called cubic of exponent 2. This class obviously contains all train 
algebras satisfying (10). Moreover, if we rewrite equation (9) as 

it becomes clear that all Bernstein algebras also belong to this class, for all 1. Apart from these 
subclasses, there are many other examples. For instance, according to [4], Theorem 2, the join 
of a Bernstein and a train algebra satisfying ( 4) will belong to this class. The following example 
is neither Bernstein nor train of rank 3. Let A be a 4-dimensional commutative algebra with 
basis { e, u, z, v} and multiplication table given by e2 = e, eu = ½u, ev = 1v, z2 = ov and other 
products are equal to zero, where c5 E F. If we define w by w(e) = 1, w(u) = w(z) = w(v) = 0, 
then (A,w) satisfies (9). 

Observe that the first linearization of (9) is 

(x2)2(xy) + 2(x2(xy))x2 - (1 + 1)[2w(x2)x2(xy) + w(xy)(x2)2] 
+1[w(x)4xy + 2w(x3y)x2] = 0 

and the second linearization is 

(x2)2(yz) + 4(x2(xz))(xy) + 4(x2(xy))(xz) + 2(x2(yz))x2 + 4((xy)(xz))x2 
= (1 + 1)[2w(x2)x2(yz) + 4w(x2)(xy)(xz) + 4w(xz)x2(xy) + 4w(xy)x2(xz) 
+w(yz)(x2)2] -1[w(x)4yz + 4w(x3z)(xy) + 4w(x3y)(xz) + 6w(x2yz)x2]. 

In particular, for x, y, z E H and y = z, we obtain 
(x2)2y2 + 8(x2(xy))(xy) + 2x2(x2y2) + 4x2(xy)2 
-(1' + 1)[2x2y2 + 4(xy)2 + 8x2(xy) + (x2)2] 

+1[Y2 + 8xy + 6x2] = 0 

(10) 

(11) 

As baric algebras satisfying (1) or (4) with 21 i l always have idempotents of weight 1, it is 
natural to expect that the same holds for equation (9). For this, we need the following lemmas. 
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Lemma 2. Let B be a commutative algebra that satisfies the identity (x2)3 = 0 for all x E B. 
IfdimB2 '.S 2, thendim(B2)2 '.S 1 and ((B2)2)2 = (0). 
Proof. First we assurne that B satisfies the identity x2x2 = 0. Linearizing this identity we obtain 

x2(xy) = 0, x2y2 + 2(xy)2 = 0. (12) 

If dim B2 '.S 1, then the result is clear. In the other case there exist a, b E B such that a2, b2 
is a basis of B2• Obviously, (a2)2 = (b2)2 = 0. In view of the first identity of (12) a2(ab) = O 
and b2(ab) = 0. Then, because ab E (a2,b2), we get that (ab)2 = 0. Now the second identity 
of (12) implies that a2b2 = -2(ab)2 = 0. Finally, we assurne that there exists a E B such 
that a2a2 =/- 0. Then u := a2 and v := a2a2 are linearly independent and hence form a 
basis of B2

• Therefore, u2 = v, uv = 0 and v2 = au + {3v with a, f3 E F. We now have 
that O = (u2)3 = v3 = v(au + {3v) = {3v2 = {3(au + {3v), so f3 = 0. On the other hand, 
O = ((u + v)2)3 = (au + v)3 = (au + v)(au + a2v) = a3u + a,2v, which implies that a,= 0. D 

Corollary 2. Let B be a commutative algebra satisfying the identity (x2)3 = 0. If dim B '.S 2, 
then dim B2 '.S 1 and (B2)2 = (0). 

In the following we denote by Q the set { x2 : x E H}. 

Lemma 3. If A satisfies (9) with I j 0, then for all x E Q we have the identity 

Proo]. Replacing y = x2 in (11), we obtain: 
0 = (x2)2x3 + 2x2(x2x3) - (1' + 1)[2x2x3 + (x2)2} + ,[x3 + 2x2) = (, + l)(x2)3 - i(x2)2 + 

2(,+ l)(x2)3 - 21x2x3 - 2(1 + 1)2(x2)2 + 21(1+ l)x3 - (, + l)(x2)2 + 1(, + l)x2 - 12x + 21x2 = 
-1(x2)2x + 3(, + l)(x2)3 - 21x2x3 - (, + 1)(21 + 3) (x2)2 + 21(, + l)x3 + 1(1 + 3)x2 - 12x = 
-1(x2)2x + 3(1 + 1)2(x2)2 - 31(1 + l)x2 - 21(1' + l)(x2)2 + 212x3 - (1 + 1)(21 + 3)(x2)2 
+ 21(, + 1)2x2 - 212(1' + l)x + 1(, + 3)x2 - 12x = -1(x2)2x - 1(, + l)(x2)2 + 212x3 + 
2,(1'2 + 1 + l)x2 - 12(21 + 3)x = -1(x2)2x - 1(1' + l)(x2)2 + 212(1' + l)x2 - 213x + 21(,2 + 
1 + l)x2 - 12(21 + 3)x = -1(x2)2x - 1(1' + l)(x2)2 + 21(212 + 21 + l)x2 - 12(41 + 3)x. So 
(x2)2x = -(1 + l)(x2)2 + (412 + 41 + 2)x2 -1(41 + 3)x, as desired. D 

Lemma 4. If A satisfies (9), then for every x E Q we have: 
a) If,= 0, then ((x2)2)2 = (x2)2,· 
b) If, j 0, ((x2)2)2 = (1 + 21- 412)(x2)2 + 21(412 + 21 - l)x2 - 813x. 

Proof. If 1 = 0, replacing y by x2 in (11) we obtain: 
0 = ((x2)2)2 + 8(x2x3)x3 + 2(x2)4 + 4x2(x3)2 _ [2(x2)3 + 4(x3)2 + Sx2x3 + (x2)2} 
= ((x2)2)2 + 8(x2)2 + 2(x2)2 + 4(x2)2 _ 2(x2)2 _ 4(x2)2 _ 8(x2)2 _ (x2)2 
= ((x2)2)2 _ (x2)2 

Substituting y = x2 in (11) and using Lemma 3 we prove (b). D 

Now, we assurne that 1 =/- 0. For x E Q we consider the elements e := x, J := x2 - x and 
h := (x2)2 - x2• Then we have: 
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= e+f 
x3 - x2 = (, + l)x2 - 1x - x2 = 1 f 
(x2)2x - x3 = (x2)2x - (, + l)x2 + 1x - (1 + l)(x2)2 + (412 + 31 + l)x2 
-21(21 + l)x - (1 + l)h + (412 + 21)f = 21(21 + l)f - (, + l)h 
(x2 - x)2 = -x(x2 - x)+ (x2)2 - x3 = -1(x2 - x)+ (x2)2 - (, + l)x2 + 1x = 
(x2)2 - (21 + l)x2 + 21x = -21 f + h 
(x2 _ x)((x2)2 _ x2) = x2((x2)2 _ xz) _ (x2)2x + x3 = i((x2)2 _ x2) 
-(x2)2x + (1 + l)x2 - 1x = (21 + l)(x2)2 - (412 + 41 + l)x2 + 21(21 + l)x = 
(21 + l)(-21f + h) 
((x2)2 _ x2)2 = -x2((x2)2 _ x2) + ((x2)2)2 _ (x2)3 = -i((x2)2 _ xz) 
+((x2)2)2 - (1 + l)(x2)2 + iX2 = -412(x2)2 + 412[21 + l]x2 - 813X = 
-412[(x2)2 - x2] + 813(x2 - x)= -412(h - 21!) 

These relations show that the subspace B generated by e, f and h is a baric subalgebra with 
dim B ~ 3. Taking g := h - 21 f, we have the multiplication table: 

e2 

ef 
eh 

fh 

Therefore, { e, f, g} is a generator system of the subalgebra B and we remark that f and g 
span the subalgebra ker(w) n B. By Corollary 2, 0 = (!2)2 = -41(1 + 21)g and so for 1 =f -½, 
we have that g = 0. Finally we assume that 1 = -½- Then 

• 
e
2 = e + f, ef = -½f, eg = -½g, f2 = g, fg = g, g2 = 0 

Let a = e + >..f with >.. E F. Since B is a cubic algebras of exponent 2, we have that O = 
2(a2)3 - ((a2)2 + a2) = -2>..3(1- >..)g and hence g = 0. Thus, we have proved that g = 0 for all 
cubic algebra of exponent 2 with I different from zero. 

One consequence of the above relation and (a) of Lemma 4 is the following relevant fact, 
which establishes that if A is a cubic algebra of exponent 2, then A is train for the plenary 
powers. 

Theorem 2. If (A,w) is cubic of exponent 2 then ((x2)2)2-(1+21)w(x)4(x2)2+21w(x)6x2 = 0, 
for all x E A. 

The following Theorem generalizes the form of the idempotents of a Bernstein algebra and 
of a train algebra of rank ~ 3. 

Theorem 3. If (A,w) is a cubic algebra of exponent 2 with 1 =f ½, then A has idempotent 
elements. Moreooer, the set of idempotent elemerits is given by 

Proo]. If 1 = 0, from (a) of Lemma 4, (x2)2 is an idempotent. Let 1 =f 0. Now, for x E H, if x2 
is an idempotent then the result is obvious. Otherwise, e = x2 and f = (x2)2 - x2 are linearly 
independent and span a subspace B which is a subalgebra with multiplication table: 

e
2 = e + f, ef = 1f, f2 = 0. 
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Finally, one element a = e + >.f is an idempotent if and only if (1 - 2,)>. - 1 = 0, and so 
a= ((x2)2 - 21x2)/(l - 21). D 

Example 1. For the case 1 = ½ we show an example without idempotent elements. Let A be 
an algebra with basis { e, J} and multiplication table 

e2 = e + f, 1 
ef = 2f, J2=0. 

For the weight function w(ae + (3!) = a, A is a cubic algebra of exponent 2 with 1 = ½, but A 
has not idempotent elements, as it is easily verified. 

In the next, we will assume I i- ½ and also that I i- 0. 
Proposition 1. Let (A,w) be a cubic algebra of exponent 2 satisfying (9) and let e be an idem­ 
potent of weight 1 in A. Then for every x E N, we have the following identities: 

(a) 2e(e(ex)) = (1 + 2,)e(ex) - 1ex 
(b) 2e(ex2 + 2(ex)2) + 8(ex)(e(ex)) = (1 + 21)ex2 + 4(1 + ,)(ex)2 - 1x2 
(c) e((ex)x2) + (ex)(ex2) + 2(ex)3 + (e(ex))x2 = (1 + 1)(ex)x2 
(d) e(x2)2 + 8(ex)((ex)x2) + 2(ex2)x2 + 4(ex)2x2 = (1 + 1)(x2)2 
(e) (ex)(x2)2 + 2((ex)x2)x2 = 0 
(J) (x2)3 = 0. 
Conversely if (A,w) is any baric algebra with an idempotent e of weight 1, decomposed as 

A= Fe Efl N such that the above conditions (a), ... , (J) hold for every x E N, then (A,w) is 
cubic of exponent 2 satisfying (9 ). 

Proof. (sketch) Take a= ae+x, a E F and x E N. When x is replaced in (9) and if we compare 
the coefficients of a0, a1, ... , a5, we get equations (a), ... , (J). The converse is carried in the 
same way. D 

Let e be an idempotent of the cubic algebra A of expoent 2. In view of Corollary 1 we have 
the Peirce decomposition A= Fe Efl U EB Z EB V where 

U := {x E N: 2ex = x}, Z := {x E N: ex = 0}, V:= {x E N: ex = 1x}. 
Theorem 4. Let (A,w) be a cubic algebra of exponent 2 satisfying (9). Then the dimensions 
of Ue, Ze and Ve are invariant on the algebra, that is, their dimensions are independent of the 
idempotent e chosen in H. 

Proof. Suppose that a E H is a nonzero idempotent and {a1, a2, ... , an-d is a basis of N = 
kerw. Consider the mapping f of pn-l onto I(A) defined by the following expression. We take 
a n - 1-uple (>.1, ... , An-d E pn-l, define b= I:k:;~ >.kak and then define f by 

f ( >. 1, · · · , x.. i) = 1 ! 21 ( ( ( a + b) 2 )2 - 21 ( a + b) 2) . 
and the endomorphism of N into itself defined by L1(x) := f(>.1, ... , An-i)x for all x E N. 
Obviously, the characteristic polynornial of L J can be written as follows 

n-1 L 01(>.1, ... , An-1)Xt 
t=O 



252 Ivo Basso, et al. 

where 0t(.\1, .•. , An-I) E F[.\1, ... , An-I]- On the other hand, by Corollary 1, the minimal 
polynomial of the left multiplication by an idempotent, restricted to N, divides X(X -½)(X-,). 
Therefore, for each .\1, ... , An-I E F the characteristic polynomial of L J(>.,, ... ,>-n-il belongs to 
the finite set { (X - ½ r(t) (X - ,r(2) xn(3) : n(l) + n(2) + n(3) = n -1 }. This implies that lm (01) 
is finite. Then, as the image of a polynomial function is either infinite or an unique point, the 
polynomials 0t(.\1, ••• , An-I) are constant. This proves that the characteristic polynomial of L; 
must be independent of e. D 

Now we can associate with each cubic algebra of exponent 2 with If 0, ½,A= Fe$UEBZEBV, 
the type (m, r, s) of the algebra where m - 1 := dim U, r := dim Z and s := dim V. Clearly the 
sum of the three integers of the type of A equals the dimension of A. 

A generalization of the multiplicative structure of a Bernstein and train algebra of rank ~ 3, 
is given by the following result. 

Theorem 5. Let (A, w) be a cubic algebra of exponent 2 satisfying (9) and let A = FeEBUEBZEB V 
be its Peirce decomposition relative to the idempotent e. The following relations hold: 

U2~ZEPV, UV~UEBZ, NZ~UEBV, V2=(0). 

Proo]. We consider the second linearization of (9). Replacing x --+ e and z --+ x and assuming 
that x, y E N, we have the identity 

e(yx) + 4(e(ex))(ey) + 4(e(ey))(ex) + 2e(e(yx)) + 4e((ey)(ex)) 
= 2(1 + 1)[e(yx) + 2(ex)(ey)] -1yx (13) 

In particular, if x E Z, this equation reduces to 1(yx) = (1 + 21)e(yx) - 2e(e(yx)), all y E N. 
Now express yx as yx = u0 + z0 + v0, where u0 E U, z0 E Z and v0 E V. Then 1(u0 + z0 + v0) = 
(1 + 2,)e(uo + zo + vo) - 2e(e(uo + z0 + v0)) = (l + 21)(1/2uo + 1vo) - 2e(l/2u0 + 1v0) = 
(1 + 2,)(1/2uo + ,vo) - l/2u0 - 212v0 = 1(u0 + v0). By comparison of components we have 
zo = 0. Then yx = uo + Vo E U EB V for all y E N. In particular, we have N Z ~ U EB V. 

Again from (13), taking y E U we have e(yx) + 2y(e(ex)) + y(ey) + 2(e(e(yx)) + 2e(y(ey)) = 
2(1 + -y)[e(yx) + y(ex)] - 1yx. For x E U, this equation becomes e(e(yx)) = 1e(yx). Calling 
yx = uo + zo + vo with uo E U, z0 E Z and v0 E V, we have, as above, uo = 0 so that 
U
2 
~ ZEBV. Again from (13), if x E V, we have e(yx) = 2e(e(yx)) and calling yx = u0+zo+vo 

as above, we get Vo = 0 so that UV ~ U EB z. Finally, replace y, x E V in (13) to get 
,(4-y

2 
- 4-y + l)x = (1 + 21- 412)e(yx) - 2e(e(yx)) and again from yx = uo + zo + v0 we get 

Uo = zo = Vo = 0 so that yx = 0 and V2 = (0). D 

Replacing x by u + z + v in (c), (d) and (e) of Proposition 1 we obtain, among others, the 
following identities: 
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eu3 + (eu2)u = 1u3 
2e(u(uz)) + 2(e(uz))u = (21 + l)u(uz) 

2e(uz2) + 2(ez2)u = (21 + l)uz2 
4e(uz)2 + 2e(u2z2) + 2u(uz2) + 2(eu2)z2 + 8(e(uz))(uz) 

+2(ez2)u2 + u2z2 = 2(1 + 1)(2(uz)2 + u2z2) 
2e(u(uv)) + 2(e(uv))u + 21e(u2v) = u(uv) + 1u2v 

e((uv)v) + (e(uv))v = (1 - 1)(uv)v 
e(uv)2 + 2(e(uv))(uv) 

= -21((uv)v)u - 21((uv)u)v- 212(u2v)v + (1- 1)(uv)2 
2u(u2(uv)) + 2u2(u(uv)) + 2(uv)u3 + 1(2u2(u2v) + v(u2)2) = O 

e(z2v) + (ez2)v = z2v 
e((zv)v) + (e(zv))v = (zv)v 

((uv)v)v = 0 
((zv)v)v = 0 

u(u2(uz)) + u2(u(uz)) + (uz)u3 = O 

u(u2z2) + u2(uz2) + u3z2 + 2(u(uz)2 + 2(uz)(u(uz))) = 0 
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(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

We can also use equations (e) and (f) to get more complicated identities of degree 5 and 6 
in u, v, z but we do not pursue in this direction. Some of the identities will be used now. 

At this point a natural question is to ask under which conditions a cubic baric algebra of 
exponent 2 is Bernstein or train. 

Proposition 2. The cubic baric algebra A= FeEf)U EF>ZEBV is Bernstein if and only if V= (0). 

Proof. We assume that V = (0). In view of Theorem 5 we have that U2 ~ Z and U Z EB Z2 ~ U. 
We note that A is Bernstein if and only if satisfies the relations (2). From (14), (15) and (16) 
we obtain u3 = 0, u(uz) = 0 and uz2 = 0 respectively, Next, because x3 = O for all x E U 
and z2 E U, we have that u2z2 = -2u(uz2) = 0 since we proved above that uz2 = 0. Using 
the identity u2z2 = O and (17) we get (uz)2 = 0. Finally, from (d) of Proposition primpro for 
x --+ u we have that ( u2)2 = 0. The converse is trivial. D 

Proposition 3. The cubic baric algebra A = Fe Ef) U EB Z EB V is train if and only if Z = (0). 
Proof. We now assume that Z = (0). In view of Theorem 5 we have that U2 ~ V and UV ~ U 
and V2 = (0). We note that A is train if and only if it satisfies the relations (6). By (14) we 
have that u3 = 0. Next, from (18), (19) and (20) we obtain that u(uv) = 0, v(vu) = O and 
(uv)2 = 0 respectively. The converse is trivial. D 
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Proposition 4. A 3-dimensional baric algebra satisfying (9) with 1-::/= 0, ½ is Bernstein or train 
of rank $ 3 or isomorphic,to one of the form A = Fe EB Fz EB Fv from the following list: 

A(l) : e2 = e, ez = 0, ev = 1v, 
A(2): e2 = e, ez = 0, ev = 1v, 
A(3): e2 = e, ez = 0, ev = 1v, 
A(4): e2 = e, ez = 0, ev = 1v, 

and the rest of the products are equal to zero. 

z2 = v 
zv = v, 
z2 = v, zv = v, 

3 A particular case 

We have already remarked that the join of a train algebra A1 = Fe1 EB U1 EB V satisfying (4) 
and a Bernstein algebra A2 = Fe2 EB U2 EB Z, is cubic of exponent 2. In this case, A1 x A2 = 
Fe EB (U1 EB U2) EB Z EB V and, for instance, (U1 EB U2)Z ~ Uz, ZV = 0, etc. In this case, the 
inclusions in Theorem 5 are simplified. 

In this section we present some results for a cu bic algebra of exponent 2 when we know the 
existence of one idempotent element e for which the following multiplicative structure holds: 

U2~ZEBV, UZ+UV+Z2~U, ZV=(0), V2=(0). (28) 

The above relations include all Bernstein and all train algebras of rank $ 3. The join of a 
Bernstein and a train algebra of rank $ 3 is also a cubic algebra of exponent 2 with this 
multiplicative structure. 

We know that relations (14) to (27) hold in this case, but we have also: 

Proposition 5. Suppose A is a cubic algebra of exponent 2, e an idempotent for which (28} 
holds. Then we have the following identities for every u E U, z E Z and v E V: 

(uv)v = u2v = (uv)2 = u4 = (u2)2 = O 

u(u(u(uv))) = u(u(u(uz))) = u(u(uz2)) = 0 
2(eu2)u + (1 - 21)u3 = 0 

u(u2z2) + u3z2 = 0 
u(uz)2 + 2(u(uz))(uz) = 0 

u(uv) E Z and u(uz), uz2, u(u2z) E V. 

(29) 

(30) 
(31) 

(32) 
(33) 
(34) 

Proof. The identities {29) and (31) are obtained from (19), (28), (20), (??) and {14) together 
with (28). For example, from (??) and (28) we get that 2u4+ (1-21 )( u2)2 = 0. Since u4 E z EB V 
and (u

2
)
2 

E U we obtain that u4 = O and (u2)2 = 0. The linearizations of u4 = 0 and (u2)2 = O 
are given by 

u3u' + ( u2u')u + 2u( u( uu')) = 0, u2 ( uu') = 0. (35) 

Taking u' = uv, we obtain u3(uv) + u(u2(uv)) + 2u(u(u(uv))) = O and looking now to (21) and 
considering that u2v = (u2)2 == u2(u(uv)) = O by (28) and (29), we have u3(uv)+u(u2(uv)) = O. 
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This proves u(u(u(uv))) = 0. Next, replacing u' = uz in identities of (35) we obtain u3(uz) + 
u(u2(uz))+2u(u(u(uz))) = 0 and u2(u(uz)) = 0. Now, from (26) we have u3(uz)+u(u2(uz)) = 0 
since we have proved that u2(u(uz)) = 0. Therefore we have u(u(u(uz))) = 0. 

We know that u2 ( uz2) = 0 because uz2 E U and hence from (27) we obtain u( u2 z2) + u3 z2 = 
-2u(uz)2 - 4(u(uz))(uz) E (Z EB V) n U = (0). Considering this fact and taking u' = z2 in the 
first identity of (35) we prove that u( u( uz2)) = 0. D 

Theorem 6. Let (A, w) be a cubic algebra of exponent 2 and e an idempotent for which (28) 
holds. The set of idempotent elements of A is given by: 

I(A)={e+u+u2+-
2
-eu2: uEU}. 1 - 2, (36) 

Proof. Let e' be another idempotent element of A. Then its decomposition is given by e' = 
e + u + z + v with uniquely determined u E U, z E Z and v E V; furthermore (28) implies 
e'2 = e + ( u + 2uz + 2uv + z2) + ( u2 + 21v) with u + 2uz + 2uv + z2 E U and u2 + 21v E Z EB V. 
Therefore the idempotent condition e'2 = e' is equivalent to 

u + 2uz + 2uv + z2 = u and u2 + 21v = z + v. (37) 

The first identity implies 2uz + 2uv + z2 = 0 and the second identity implies eu2 + 212v = 1v, 
that is, eu2 = 1(1 - 21)v. Therefore z = u2 - (1 - 21)v = u2 - ,-1eu2. 

For z = u2 - ,-1eu2 and v = ,-1(1 - 2,)-1eu2, equations (28), (29) and (31) say that 
2uz + 2uv + z2 = 0 and hence (37) is satisfied. Therefore the set of idempotent elements is given 
by (36). D 

If e' is another idempotent of A, we denote as A = Fe' EB Ue, EB Ze, EB Ye, the Peirce de­ 
composition of A relative to e'. The following Proposition gives the relation between the two 
decompositions. 

Proposition 6. Suppose A is a cubic algebra of exponent 2 and e an idempotent for which (28) 
holds. If e' = e + u + u2 + 2(1- 2,)-1eu2, u E U, is another idempotent of A, then: 

u, = { u + 2uu + 1 _\/(uu): u E U} 
Ze, = {z - 2uz - 2u2z - ( 4 

) u[u(uz + iiz)) + ~u(uz + u2z): z E z} 
1- 21 1 r 

Ve,={v-( 
2
) u[,v+uv-2u(uv)]:vEV} 1- 211 

Proof. Let x = u + z + v be an element in N = ker w. Then (28) implies that e' x is equal to 

(38) 

where the first summand is in U and the second belongs to Z EB V. 
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I. The condition x E Ui), that is, 2e' x = x is equivalent to 
2 

uz + uv + u2u + u2z + --2-(eu
2)u = 0, z + (l - 2,)v = 2uu. 1 - 1' (39) 

Multiplying the last expression by e, we obtain v= 1~;'Ye(uu). Now, replacing v in z+(l-21)v = 
2uu we get that z = 2uu- ¾e(uu). Conversely, if x= u+2uu+ 1_:21'e(uu), then (39) is satisfied 
since by the first linearization of (31) we have 

2(eu2)u + 4(e(uu))u + (1 - 21)u2u + 2(1 - 21)u(uu) = 0. 
II. In view of (38) the condition x E Ze', that is, e' x = 0 is equivalent to 

u + 2 [uz + uv + u2u + u2z + -2
-(eu2)u] = 0, uu +,v= 0. 

1- 2, 

Therefore, we obtain v= -,-1uu. Using this identity and (40) we have that 

2 -2 2, - -2 --(eu )u = --uv - u u 
1 - 2, 1 - 2, 

and replacing this expression in the first identity of (41) we have 

2 
u + 2uz + 2u2 z + --uv = o. 

1- 2, 

( 40) 

( 41) 

( 42) 

Multiplying by u weobtain uu+2u(uz)+2u(u2z)+2(l-21)-1u(uv) = 0. But iiu, u(uz), u(u2z) E 
V and u(uv) E Z, so uu = -2[u(uz) + u(u2z)] = -,v and v= f[u(uz) + u(u2z)]. Replacing 
v in (42) we get u = -2uz - 2u2z - 4(1 - 2,)-1,-1[u(u(uz)) + u(u(u2z))]. Conversely, if x= 
[-2uz-2u

2 
z-4(1-21 J-11-1 [u( u( uz) )+u(ii( u2 z) )]] +z+ f [u( iiz)+u( u2 z)] then the identities of 

(30) show that uu+,v = 0. Now it is easily proved that u+2[uz+uv+u2u+u2 z+ 
1
_2

2
1' (eu2)u] = O 

using (40). 

111. Finally, in view of (38), the condition x E Ve, is equivalent to 

1 - 2, _ _ -2 -2 2 ( -2) 0 --u + uz + uv + u u + u z + -- eu u = , 
2 1- 2, 

From ( 40) and considering that uu E Z, we obtain 

uu - ,z = 0. (43) 

1 ( -) -2 2-(- ) -2 2 - . -- eu u = -u u - u uu = -u u - ,uz. 1- 2, 

Using this fact together with u2 z = u2 ( iiu) = O we obtain from the first identity of ( 43) that 

1 
- 21 u + (1 - 2,)uz + uv = O. 2 

Then 1'Z = uu = -2u[uz + (l - 2,)-1uv] = -2u(uz) - 2(1 - 2,)-1u(uv). On the other hand, 
uu, u(uv) E Z and u(uz) E V. This implies that 

2 
z = - (l _ 2,h u(uv), 

Conversely, if u and z are as above, then uu = 4(1- 2,)-1,-1u(u(u(uv))) - 2(1- 2,)-1u(uv) = 
-2(1 - 2,)-

1
u(uv) = 1z. Now it is easy to prove the first relation of (43). D 

4 -(-(-)) 2 _ U = ----c--U U UV - --uv. 
(1 - 2,h 1 - 2, 
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We remark that if A is Bernstein in Proposition 6, e( ilu) = 0 because ilu E Z, and so 
Ue, = { u + 2uu : u E U}, which coincides with the expression of Ue, in a Bernstein algebra. On 
the other hand, if A is a train algebra of rank 3, e(uu) = ,ilu and Ue, = {u + 2(1- 2,)-1uu : 
u E U}, which agrees with Ue, in A. Also we may observe that if A is a train algebra of rank 
3 in Proposition 6, u(uv) = 0, and so Ve, = { v - 2(1 - 2,)-1ilv: v E V}, an expression which 
coincides with Ve, in this algebra. Now, if A is Bernstein, then u(uz) = u(uz) = O and so 
Ze, = { z - 2uz - 2uz : z E Z}. 
Corollary 3. dim U2 is invariant (under change of idempotents in A). 

Proof. Let e be an idempotent such that its Peirce decomposition satisfies (28). Suppose that 
e' is another idempotent. Consider Fe Ef) U E& Z Ef) V and Fe' EB Ue, EB Ze, Ef) Ve' the Peirce 
decompositions of A relative to the idempotent elements e and e' = e +ii,+ u2 + 2(1- 2,)-1eu2, 
with ii, E U. Now, let u;, u~ be two elements of Ue,, with u~ = u1 + 2ilu1 + 4(1- 2,)-1e(uu1) 
and u; = u2 + 2uu2 + 4(1 - 2,)-1e(uu2). Using (28) we have 

4 
u;u; = u1u2 + 2u1(ilu2) + --u1[e(uu2)] + 2u2(ilui) + 4(ilu1)(ilu2) 1- 2, 

4 4 4 
+ -

1 2 
[e(uu2)](uui) + --

2
-u2[e(ilu1)] + --

2
-[e(uu1)](uu2). - , 1-, 1-, 

Then, because U2 ~ Z Ef) V, [(Fe)(Z Ef) V)](Z Ef) V) = (0) and from the second linearization of 
(31) we have 

an element of U;,. Now the linear mapping sp : U2-+ U;, defined by rp(x) = x-2ux-2u2x-4(l- 
21)-1u(ex) is an isomorphism since x E U2 ~ ZE&V and 2(ux+u2x+2(1-21)-1u(ex)) E U. D 

Since N= U E& Z EB V and N2 = (Z2 + U Z + UV) EB U2 we have 

Corollary 4. The dimension of Z2 + UZ + UV is an invariant of A. 

References 

[l] Bernstein, S.: Principe de stationarite et generalisation de !a loi de Mendel, C.R. Acad. 
Sci. Paris 177, 528-531, 1923. 

[2] Costa, R.: Principal train algebras of rank 3 and dimension ~ 5, Proc. Edinb. Math. Soc. 
33, 61-70, 1990. 

[3] Costa, R.: On train algebras of rank 3, Linear Alg. Appl. 149, 1-12, 1991. 

[4] Costa, R. and Guzzo Jr. H.: lndecomposable baric algebras II, Linear Alg. Appl. 196, 
233-242, 1994. 

[5] Etherington, l.M.H.: Commutative train algebras of ranks 2 and 3, J. Lotulon Math. Soc. 
15, 136-149, 1940. Corrigendum, ibid 20, 238, 1945. 



258 Ivo Basso, et al. 

[6] Gonzalez S., Gutierrez J. Carlos, Martinez C.: Classification of Bernstein algebras of type 
(3, n - 3), Comm. Alg. 23(1), 201-213, 1995. 

[7] Gutierrez, J. Carlos: The Bernstein problem in dimension 6, J. of Algebra 185, 420-439, 
1996. 

[8] Gutierrez, J. Carlos: The Bernstein problem for the type (3, n - 3), Linear Alg. Appl. 269, 
17-32, 1998. 

[9] Gutierrez, J. Carlos: Principal and plenary train algebras, submitted. 

[10] Guzzo Jr, H.: The Peirce decomposition for commutative train algebras, Comm. Alg. 
22(14), 5745-5757, 1994. 

[11] Guzzo Jr. H. and Vicente P.: Some properties of commutative train algebras of rank 3. 
Comm. Alg. (to appear). 

[12] Guzzo Jr. H. and Vicente P.: Train algebras of rank n which are Bernstein or power 
associative algebras. Nova Journal of Mathematics, Game Theory and Algebra (to appear). 

[13] Lelis M.L.: Formas p-invariantes em algebras de Bernstein, PhD thesis, Instituto de 
Maternatica e Estatfstica da Universidade de Sao Paulo, 1996. 

[14] Lyubich, Yu.l.: Bernstein algebras, Uspekhi Mat. Nauk 32(6), 261-263, 1977. 

[15] Lyubich, Yu.l.: Mathematical Structures in Population Genetics, Biomathematics 22, 
Springer, Berlin-Heidelberg-New York, 1992. 

[16] Ouattara, M.: Sur les algebres de Bernstein qui sont des T<algebres, Linear Alg. Appl.,148, 
171-178, 1991. 

[17] Walcher, S.: On Bernstein algebras which are train algebras, Proc. Edinb. Math. Soc., 35 
(2), 159-166, 1992. 

[18] Walcher, S.: Algebras with satisfy a train equation for the first three plenary powers, Arch. 
Math. (Basel) 56, 547-551, 1991. 

[19] Worz, A.: Algebras in Genetics, Lecture Notes in Biomathematics, Vol. 36, Springer, 1980. 


