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Abstract
In this work, corrections for the Weyl law andWeyl conjecture in d dimensions
are obtained and effects related to the polarization and area term are analyzed.
The derived formalism is applied on the quasithermodynamics of the electro-
magnetic field in a finite d-dimensional box within a semi-classical treatment.
In this context, corrections to the Stefan–Boltzmann law are obtained. Special
attention is given to the two-dimensional scenario, since it can be used in the
characterization of experimental setups. Another application concerns acous-
tic perturbations in a quasithermodynamic generalization of Debye model for
a finite solid in d dimensions. Extensions and corrections for known results
and usual formulas, such as the Debye frequency and Dulong–Petit law, are
calculated.

Keywords: Weyl law, Weyl conjecture, quasithermodynamics of the
electromagnetic field, quasithermodynamics of acoustic perturbations,
generalized Debye model

1. Introduction

The analysis of thermal radiation is widespread in a large variety of finite-temperature systems.
Theoretical research includes treatments based on fluid dynamics and/or quantum field theory.
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Laboratory and observational applications involve particle phenomenology in colliders, prop-
erties of solids in laboratories, characteristics of the cosmic microwave background in ded-
icated observatories, among many more setups. From lower-dimensional settings to models
with arbitrary number of dimensions, thermal radiation frequently plays a significant role.

A common procedure for the investigation of thermal phenomena is based on the definition
of a suitable thermodynamic limit within a statistical mechanics model. Usually, the transition
from statistical mechanics to thermodynamics implies that the boundary conditions are neg-
lected. In this way, the dependence of the obtained results with the actual volume and shape
of the physical system is not considered. Although this approach is useful for many purposes,
the strict thermodynamic limit disregards many interesting insights about the actual system
of interest. One way to mitigate this problem is to define an intermediary regime between the
pure statistical-mechanic treatment and the strict thermodynamic regime, where the volume
of the system is large, but finite. This is the so-called quasithermodynamic limit [1].

On a very general level, the characteristics of thermal radiation in a given setup are directly
linked to the asymptotic distribution of eigenvalues of a suitable wave equation. One of the
first investigators to explore this connection was Rayleigh, studying the problem of stationary
acoustic waves in a cubic room [2, 3]. Rayleigh’s analysis showed the importance of a term
proportional to the volume of the room and to the cube of the mode frequency (the V · ν3
term). This result appeared in the (incorrect) description of the thermal radiation with the
Rayleigh–Jeans law. Eventually Planck improved this purely classical analysis, but evenwithin
the quantum description the eigenvalue distribution remains unaltered. The same problem, and
hence with the same V · ν3 term as the result, emerges in the investigation of the vibration
modes in a solid, with the so-called Debye model. In this treatment, Debye proposed that the
asymptotic behavior of the eigenvalues do not depend on the shape of the solid. This proposal
was rigorously proved by Weyl, and today it is known as the Weyl law. An overview of this
development can be seen in [4, 5].

A central question considering the strict thermodynamic regime is when the approximation
of infinite volume adequately describes a real physical system. For the treatment of this issue,
it is necessary an estimate of the terms that are being dropped in the thermodynamic limit.
A first step in this direction is given by Weyl conjecture, which predicts corrections propor-
tional to the area of the body. This conjecture has been proven in a variety of domains and in
this process, several methods can be applied. For instance, asymptotically expanding the solu-
tions of the Helmholtz equation, using the Neumann–Poincaré construction for the Brownell
Green’s function and considering the decomposition of the mode density via multiple reflec-
tion expansion [6, 7].

For many important problems, involving for example the electromagnetic field, vector solu-
tions and polarization effects must be considered. For this purpose, a possible approach is to
decompose the vector fields into solutions of the suitable scalar wave equation [6, 8–10]. Fol-
lowing this program, many works in the pertinent literature indicate that the area term (i.e. the
term of Weyl conjecture) does not participate in describing the behavior of the thermal elec-
tromagnetic radiation.

Previous comments refer mainly to usual scenarios with three dimensions. But the relevance
of the proposed treatment appears in models with different dimensionalities. For instance, the
thermodynamic and quasithermodynamic analyses of two-dimensional systems have practical
applications in the so-called single-layer materials [11], with highlights to the graphene [12].
As a more theoretical application, we can mention the thermodynamic properties of photon
spheres [13], thermal radiation of the two-dimensional bosonic and fermionic modes of black
holes [14], as well the description of thermodynamics properties of BTZ black holes [15]. Con-
sidering three-dimensional systems, corrections in thermal radiation play an important role in
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the analysis of the background microwave radiation [16]. The development is also relevant
in the thermodynamic description of the phenomenon of sonoluminescence (hot spot theory),
in which pulses of light are created by means of the insertion of sound waves into liquids or
gases [17]. Systems with more than three spatial dimensions are also explored. For instance,
Hawking emission of a black hole is altered in brane-world scenarios [18–20]. Thermal radi-
ation phenomena associated with gravitational emission in brane-world models could be sig-
nificant in the early Universe. Similar effects could be expected in colliders and near active
astrophysical objects, within models involving extra dimensions (see for example [21] and
references therein). Proposals linking anti-de Sitter geometries and conformal field theories
(AdS/CFT correspondences) offer a great variety of applications for d-dimensional thermody-
namic results [22–25].

In the present work,Weyl law and its extensions are explored through an intuitive approach.
Quasithermodynamic analysis and its description of systems with a finite volume and relevant
boundary conditions are a central issue in this article. The developed formalism is applied on
the quasithermodynamics of the electromagnetic field in a cavity and acoustic perturbations
in a solid. Generalizations for d-dimensional setups are derived. One of the contributions of
this work is to incorporate polarization effects directly into the asymptotic expansions of the
mode distributions, using mixed boundary conditions. We emphasize the role of the area term,
showing that, under certain conditions, a distinct quasithermodynamic behavior emerges.

In addition to the correction coming from the eigenvalue distribution, an expected charac-
teristic of the phenomenology of black-body radiation in finite cavities is the existence of a
minimum energy4. For the two-dimensional case, this issue was studied in [26]. Generaliz-
ing this development for arbitrary dimensions, our treatment allows us to compare the effects
associated to the minimum energy with those related to corrections of the spectral distribution.

This work is organized as follows. In section 2, the proposed formalism associated to the
Weyl law is established. In section 3, with the techniques introduced, higher-order corrections
to the Weyl law are obtained. More complex setups are considered in section 4, where mixed
boundary conditions and degeneracies are treated. In section 5 we turn to physics applications,
linking the results previously obtained with thermodynamics and quasithermodynamics. In
section 6, the thermodynamic treatment of the electromagnetic field in a finite cavity is con-
ducted. The quasithermodynamics of acoustic perturbations is considered in section 7, where
Debye model is analyzed and extended. In section 8 final comments and future perspectives
are presented. Further details on the calculation of the hypervolume associated to the axes and
counting functions are discussed in appendices A and B.

2. Scalar field and Weyl law

Electromagnetic and mechanic perturbations in cavities and solids are the main interest in the
present work. However, as we will see later on, the thermodynamics of those systems can be
described in terms of a simpler scalar perturbation. Let us consider a scalar field ψ (x1, . . . ,xd)
in d dimensions, confined in a cubic cavity of size L, which respects the Helmholtz equation,

∇2
dψ (x1, . . . ,xd)+ k2ψ (x1, . . . ,xd) = 0 , xi ∈ Ωd , k ∈ R . (1)

In equation (1), ∇2
d denotes the d-dimensional Laplacian. The hypervolumes of domain Ωd

and its boundary ∂Ωd are given respectively by

|Ωd|= Ld , |∂Ωd|= 2dLd−1 . (2)

4 This lower bound on the energy of the system would be associated to the quantum vacuum, according to [26].
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Two different boundary conditions for equation (1) will be initially explored, namely the Neu-
mann condition (∂nψ = 0 at ∂Ωd) and the Dirichlet condition (ψ= 0 at ∂Ωd).

Solutions of the d-dimensional Helmholtz equation (1) can be constructed using the one-
dimensional version of (1), which are

ϕ±n (x) =
e−iπ/4 ± eiπ/4√

4L

(
eiknx± e−iknx

)
, kn =

π

L
n , n=

{
0,1,2, . . .(+)
1,2,3, . . .(−)

. (3)

The label (+) indicates solutions satisfying Neumann conditions, while (−) denotes solutions
obeying Dirichlet conditions. From the one-dimensional solutions, d-dimensional generaliza-
tions can be constructed as

ψ± (x1, . . . ,xd) = ϕ±n1(x1)ϕ
±
n2(x2) · · ·ϕ

±
nd(xd) , (4)

with

k2 =
π2

L2
(n21 + · · ·+ n2d) . (5)

It should be noted that, for the Dirichlet case, the solutions with ni = 0 should be excluded in
order to avoid the null solution.

Considering equation (5), the set of solutions of the Helmholtz equation (1) can be labeled
by points in a discrete lattice. Specifically, we consider the d-dimensional Cartesian lattice Ldϵ,

Ldϵ ≡
{
(ϵ1, ϵ2, . . . , ϵd) ∈ Rd : ϵi = ϵni , ni = 0,1,2, . . .

}
, (6)

where the (real and positive) ϵ is the lattice parameter. We denote the region Ω̃d ⊂ Rd as one
of the 2d sections of the d-dimensional sphere of radius k, i.e.

Ω̃d ≡
{
(ϵ1, ϵ2, . . . , ϵd) ∈ Rd : ϵ21 + ϵ22 + · · ·+ ϵ2d < k2 , ϵi ⩾ 0

}
. (7)

The main questions addressed in the present work can be formulated as counting problems.
In this direction, let us define a counting function N(d)(k) as

N(d) (k) =

{
#(n1, . . . ,nd) :

π2

L2
(
n21 + · · ·+ n2d

)
< k2

}
. (8)

The function N(d)(k) can be expressed as

N(d)(k) = card
(
Ldϵ ∩ Ω̃d

)
, ϵ=

π

L
, (9)

where ‘card’ denotes the cardinality of the set [27]. It should be noted that the complete depend-
ence of N(d)(k) on k is described by Ω̃d, since the lattice is (for now) fixed. We are interested
in the asymptotic behavior of N(d)(k) as k→∞.

One method for the analysis is to adopt a ‘coarse grained’ version of the lattice, where the
counting of the discrete points is substituted by the calculation of volumes. More specifically,
the function N(d)(k) is approximated by the volume Vd(k) generated by hypercubes of side
length ϵ, centered on the points of the lattice belonging to Ldϵ ∩ Ω̃d(k). We illustrate this coarse
graining in figures 1 and 2 of the next section. The volume of each hypercube is ϵd, and hence
Vd (k) = ϵdN(d)(k). The total volume Vd (k) tends to infinity as k→∞, N(d)(k)→∞ and ϵ is
kept fixed.

Expression (9) and the coarse graining introduced are a well-known algorithm for the count-
ing process, in which the lattice is kept fixed. In the present work, we propose an alternative
approach. Instead of fixing ϵ (that is, the lattice), we fix the volume Vd (k). In other words, we
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propose to maintain the domain fixed and adjust the lattice. This can be accomplished rescaling
ϵi,

ϵi −→ ϵi = k−1ϵi = ϵni , ϵ=
π

kL
. (10)

With the rescaling, both the counting function N(d) (k) and the volume Vd become dependent
only on the lattice, that is,

Vd (ϵ) = ϵdN(d)(ϵ) . (11)

Intuitively, Vd(ϵ) should tend to the volume |Ω̃d| as the lattice becomes more dense (ϵ→ 0+),
where ∣∣∣Ω̃d

∣∣∣= 2−dωd , ωd =
πd/2

Γ
(
d
2 + 1

) , (12)

and Γ denotes the usual gamma function. The precise development of this relation will lead
to the so-called Weyl law, which will be explicitly shown with the approach proposed in this
work.

To clarify the notation, let us denote the counting function for the Neumann case as N(d)
+ ,

and analogouslyN(d)
− for the Dirichlet case.We focus on the difference in the counting problem

considering the Neumann and Dirichlet setup. This difference is a result of the inclusion of the
points belonging to the ϵi-axis for the calculation of N

(d)
+ , and the exclusion for N(d)

− .
Let us treat the Neumann boundary condition first, since (as will be shown in later sections)

N(d)
− can be expressed in terms of N(d)

+ . The counting function N(d)
+ can be written as

N(d)
+ (ϵ) =

M(ϵ)∑
n1=0

· · ·
M(ϵ)∑

nd−1=0


√

1− ϵ2(n21 + · · ·+ n2d−1)

ϵ

 , M(ϵ) =

⌊
1
ϵ

⌋
, (13)

with ⌊x⌋ representing the integer function (or floor function) of x [28]. Using the sawtooth
function η(x), η(x)≡ x−⌊x⌋, equation (11) is written as

V+
d (ϵ) = ϵd−1

M(ϵ)∑
n1=0

· · ·
M(ϵ)∑

nd−1=0

√
1− ϵ2(n21 + · · ·+ n2d−1)− ϵd

M(ϵ)∑
n1=0

· · ·
M(ϵ)∑

nd−1=0

η

(
1
ϵ

)
. (14)

Since 0⩽ η < 1, the second term of equation (14) obeys the following property:

0⩽ ϵd
M(ϵ)∑
n1=0

· · ·
M(ϵ)∑

nd−1=0

η < ϵ [ϵ+ ϵM(ϵ)]
d−1

, (15)

implying that

lim
ϵ→0+

ϵd
M(ϵ)∑
n1=0

· · ·
M(ϵ)∑

nd−1=0

η

(
1
ϵ

)
= 0 . (16)

Previous results lead to the Weyl law, as we will show in the following. Considering the
first term in equation (14), we observe that

ϵ=
M−1

1+ ηM−1
⇒ lim

ϵ→0+
ϵ= lim

M→∞

M−1

1+ ηM−1
= lim

M→∞
M−1 , (17)
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and we can write

lim
ϵ→0+

ϵd−1
M(ϵ)∑
n1=0

· · ·
M(ϵ)∑

nd−1=0

√
1− ϵ2

(
n21 + · · ·+ n2d−1

)

= lim
M→∞

1
Md−1

M(ϵ)∑
n1=0

· · ·
M(ϵ)∑

nd−1=0

√
1−

n21 + · · ·+ n2d−1

M2
. (18)

The last terms in equation (18) is the Riemann sum which gives the volume of Ω̃d. Hence,
using equation (16), we conclude that

lim
ϵ→0+

V+
d (ϵ) = 2−dωd . (19)

Result (19) is the Weyl law for the scalar field in a cubic cavity, with Neumann boundary
conditions.

Although the Weyl law is a well-known result, the procedure adopted here (that is, a coarse
graining with a scaling which fixes the domain and modifies the lattice) can be employed in
the improvement of the result (19). Also, this approach will allow us to consider different
boundary conditions and polarization effects.

3. Beyond the Weyl conjecture

Weyl law can be considered as the zero-order correction of the counting function. The first-
order correction was conjectured by Weyl and later proven by Ivrii [31]. In our notation, the
Weyl conjecture can be written as

ϵdN(d)
± (ϵ) = 2−dωd± 2−ddωd−1ϵ+O(ϵwd) , (20)

where wd =
(
d2 − d+ 1+ 1/d

)
/(d− 1) [32]. In the ‘big-O’ sense, no higher-order correc-

tions are known5 [31, 32]. Although for the scalar case the above correction is always the most
relevant, as we will see, when considering the vector problem this correction may cancels.
Therefore, its important to go beyond the first correction. For this goal a special type of ‘aver-
aged corrections’ can be considered. It is defined using Gaussian logarithmic averages, or the
called Brownell’s Õ formalism [32]. One says that f= Õ(g) if, for some x0,∣∣∣∣ˆ ∞

x0

e−
1
2ρ

2(ln y
x ′ )

2 df(x)
dx

∣∣∣∣
x ′

dx ′
∣∣∣∣⩽ δρg(y) , (21)

for every ρ> 0 and some δρ <∞. For the case d= 2,3, it is found that

ϵ2N(2)
± (ϵ) =

π

4
± ϵ+

ϵ2

4
+ Õ(ϵw̃2) , (22)

ϵ3N(3)
± (ϵ) =

π

6
± 3π

8
ϵ+

3
4
ϵ2 ± ϵ3

8
+ Õ(ϵw̃3) , (23)

where w̃2 > 2 and w̃3 > 3 [30, 32]. As will be seen below, the corrections (22) and (23) are
given by a polynomial expansion whose coefficients are related to the geometric ‘shape’ of the
Ω̃d boundary. Based on this geometric argument, it will be seen that we can always decompose

5 One writes f(x) = O(g(x)) if there exists a real δ > 0 and x0 such that |f(x)| ⩽ δg(x) for all x> x0. That is, f is
smaller than g as x→∞, and the asymptotic behavior of f is bounded by the function g.
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Figure 1. Two-dimensional coarse graining and lattice considered in the counting pro-
cess. The solid gray region contributes with an area equals to π/4 (one fourth of the
circle) and each axis contributes with an area equals to ϵ/2.

ϵdN(d)
+ (ϵ) as the sum of two contributions: one continuous component, that we will denote by

F (d)(ϵ), and other non-continuous.
Our goal in this section is to explore the relation between the functional form ofF (d)(ϵ) and

the corrections derived from the Brownell formalism.Wewill employ a ‘bottom-up approach’,
considering in detail particular values for d, and then extrapolating the results for general d.

The one-dimensional case (d= 1) is trivial, however it is crucial to construct the bottom-up
approach. For this case, the Brownell corrections coincide with the exact corrections. From
equation (13), the counting function for Neumann boundary condition is given by

ϵN(1)
+ (ϵ) = 1− ϵη

(
ϵ−1
)
∼ 1⇒F (1)(ϵ) = 1 . (24)

For the Dirichlet boundary condition the result is similar:

ϵN(1)
− (ϵ) = ϵ[N(1)

+ (ϵ)− 1] = 1− ϵ[1+ η
(
ϵ−1
)
]∼ 1 . (25)

For the two-dimensional Neumann scenario, given the shape of Ω̃2 boundary, we can
decompose ϵ2N(2)

+ as

ϵ2N(2)
+ (ϵ) =

π

4
+ axes-boundary area+ area of the boundary curve . (26)

This result is illustrated in figure 1. More precisely, the ‘axes-boundary area’ is the excess area
localized around the axes (which are not included in Ω̃2). As seen in figure 1, this quantity is

axes-boundary area= ϵ+
ϵ2

4
. (27)

Notice that we are considering the contribution of each axis in the interval [0,1], implying that
the contribution of the central square is ϵ2/4. The contribution of the area of the boundary curve
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Figure 2. Three-dimensional coarse graining and axes-boundary area. The dotted dark
lines represent the 1/8 of the sphere, that contributes with π/6. The solids part of the
cubes represents the axes-boundary area. The center cube contributes with ϵ3/8. The
cubes in each axis contributes with ϵ2/4 . The cubes in the faces represents 3 times
1/4 of the area of the circles, i.e. 3π/4 times ϵ. But only half this value, i.e. 3πϵ/8,
contributes.

is unknown6. However we know that it is described by a non-continuous function, otherwise
N(2)
+ (ϵ) would be a continuous function and we know that this is not true. Hence, it follows

that F (2)(ϵ) in this case is

F (2)(ϵ) =
π

4
+ ϵ+

ϵ2

4
, (28)

which agrees with the Brownell corrections given in equation (22) for the Neumann case.
For the two-dimensional Dirichlet scenario, note that we can relate N(2)

− and N(2)
+ as

N(2)
+ (ϵ) = N(2)

− (ϵ)︸ ︷︷ ︸
points outside the axes

+ 2N(1)
− (ϵ)+ 1︸ ︷︷ ︸

points at the axes

. (29)

Isolating N(2)
− and using results (24) and (28), we obtain the Brownell corrections given in

equation (22) for Dirichlet.
The analysis for the three-dimensional case can be conducted in an analogous manner.

To illustrate the development, let us consider figure 2, the generalization of two-dimensional
lattice diagram (one eighth of the three-dimensional sphere instead of one fourth of the two-
dimensional circle).

6 This is related to the famous, and still open, Gauss circle problem [29].
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With the three-dimensional lattice with Neumann boundary conditions, we get that F (3)(ϵ)
for this case is

F (3)(ϵ) =
π

6
+

3π
8
ϵ+

3
4
ϵ2 +

ϵ3

8
. (30)

Again, the Brownell corrections for Neumann given in equation (23), are obtained.
For the three-dimensional case with Dirichlet boundary conditions, the counting function

can be decomposed as

N(3)
+ (ϵ) = N(3)

− (ϵ)︸ ︷︷ ︸
points outside the axes

+ 3N(2)
− (ϵ)︸ ︷︷ ︸

points at the faces

+ 3N(1)
− (ϵ)+ 1︸ ︷︷ ︸

points at the axes

. (31)

Using previous results, we obtain expression (23).
After studying the cases d= 2 and d= 3 in detail, we can generalize these results to higher

dimensions. Let us initially consider the d-dimensional scenario with Neumann boundary con-
ditions. As in equation (26), the counting function ϵdN(d)

+ can be expressed as the sum of three
contributions: the term |Ω̃d|, the hypervolume associated to the axes and the hypervolume of
the boundary hypersurface. In appendix A, we show that the hypervolume associated to the
axes is given by

Hypervolume of the axes=
d∑

n=1

(
d
n

)
2−dωd−nϵ

n , (32)

where (
d
n

)
=

d!
n! (d− n)!

. (33)

Hence,

F (d) (ϵ) =
d∑

n=0

(
d
n

)
2−dωd−nϵ

n . (34)

The result obtained above generalizes the corrections (22) and (23) to an arbitrary dimension.
By repeating the procedure realized in [32] for d= 2,3, and the using the theorem (8.17) on
this reference, we can find

ϵdN(d)
+ (ϵ) = F (d) (ϵ)+ Õ(ϵw̃d) , w̃d > d . (35)

The Dirichlet case can be obtained using a generalization of expressions (29) and (31). This
generalization is constructed in appendix B, and the final expression can be condensed into

ϵdN(d)
± (ϵ) =

d∑
n=0

[
(−1)

d−n
2

]1∓1
(
d
n

)
2−dωd−nϵ

n+ Õ
(
ϵw̃d
)
. (36)

Expression (36) is the main result of this section. Note that this equation also maintains the
‘alternating symmetry’ observed for the cases d= 2,3, when we go from Neumann to Dirich-
let. If the coefficients do not follow this binomial pattern, the alternating symmetry in the signs
of coefficients is broken.

Rewriting expression (36) in terms of the variable k, we have the results provided by
Brownell’s formalism for higher orders,

9
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N(d)
± (k) =

1
2d

d∑
n=0

[
(−1)

d−n
2

]1∓1
(
d
n

)
π(n−d)/2Ld−n

Γ
(
d−n
2 + 1

) kd−n+ Õ
(
kd−w̃d

)
, (37)

where w̃d > d.

4. Mixed boundary conditions and degeneracies

From the results involving Neumann and Dirichlet cases discussed, it is possible to treat
more complex boundary conditions, dubbed here as ‘mixed boundary conditions’. Also, in
the present section, we will consider the effects of degeneracies in the spectra. Those setups
model physical systems described by Helmholtz equation which will be considered in this
work. Further interesting examples (not directly addressed here) can be found in [33, 34].

In the present development, mixed boundary conditions are constructed imposing Neumann
and Dirichlet conditions in different axes. The solutions of Helmholtz equation (1) under these
conditions can be written as

ψM (x1, . . . ,xd) = ϕ± (x1) · · ·ϕ± (xd) . (38)

In d dimensions, the number of possible scenarios with mixed boundary conditions is 2d,
including the ones which are entirely Dirichlet or Neumann. In any case, the counting function
(referred generally as N(d)

M for an arbitrary boundary condition) can be decomposed as a linear
combination in the form

N(d)
M (ϵ) =

d∑
n=0

AnN
(n)
− (ϵ) , (39)

where the coefficients {An} are related to the boundary conditions and possible degeneracies.
For example, result (B1) for the Neumann case without degeneracies is recovered with An =(d
n

)
(see appendix B for details). This expression (B1) can be generalizedwith the consideration

of vector fields associated to the Helmholtz equation. This development will be necessary to
the treatment of degeneracies. In the vector-field problem, beside the d modes {n1,n2, . . . ,nd},
there are also d components for the fields, {Fin1···nd , i= 1, . . . ,d}. However, contrary to the
scalar field, the internal degrees of freedom of the vector fields must be taken into account.
There is, the polarization of the vector field is an issue.

Possible polarizations can be transverse and longitudinal. Indeed, the vector fields can be
expressed as

Fin1···nd = F0i
χ∏
k=1

ϕ+nk

d∏
j=χ+1

ϕ−nj , i= 1, . . . ,d , (40)

with constants F0i ∈ C. Following the development which leaded to equation (B1), non-trivial
solutions can be separated into (χ+ 1) classes: those in which only one ni is null, those in
which two ni are null, and so on, up to those which χ of the ni are equal to zero. Let us label
these classes as ‘class zero’, ‘class one’, and so on, respectively.

The solutions where χ of the possible nk are null (forming the class χ) have only one non-
null component Fin1···nd . These solutions are polarized in the direction of this component. In the
same way, solutions with (χ− 1) of the possible ni being null have two non-null components,
and consequently two possible polarizations. Hence, the class n has a degenerescence equal to

ξ
(d,χ)
χ−i = i+ 1 , i= 0, . . . ,χ− 1 , χ⩽ d . (41)

10
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For the class zero, where none of the ni is null, all the components Fin1···nd can be non-null and

we have d degrees of freedom, ξ(d,χ)0 = d . This counting of the degrees of freedom considers
only the effect of the boundary conditions. In addition, one can also impose the orthogonality
condition, which prevents the longitudinal modes. This condition requires that the amplitude
vector to be perpendicular to the wave vector,

d∑
n=1

knF
0n = 0 , (42)

which reduces by one the number of degrees of freedom of the zero class configuration. There-
fore, we can write

ξ
(d,χ)
0 = ξ

(d)
0 = d− ξ̃ , (43)

where ξ̃ = 1 for systems which admit only transverse perturbations and ξ̃ = 0 for cases where
longitudinal perturbations are considered.

As commented in appendix B, each class n of the (χ+ 1) vector solutions behaves as
the Dirichlet problem in (d− n) dimensions. The class with only one of the ni equal to zero
(degenerescence equal to ξ(d,χ)1 ) can be divided in d sub-classes (d cases where nj = 0). If two

of the solutions have nj = 0 (degenerescence ξ(d,χ)2 ), the subclass can then be further separated
in
(d
2

)
sets. The process continues, until eventually new sub-classes cannot be produced. Given

the counting process presented, the total number of modes can be expressed as the composition
of the classes and sub-classes thus constructed,

N(d)
χ =

χ∑
n=0

(#n-class)× (n-degenerescence)×N(d−n)
− , (44)

or

N(d)
χ (ϵ) =

χ∑
n=0

(
d
n

)
ξ(d,χ)n N(d−n)

− (ϵ) , (45)

with N(m)
− given by equation (37), ξ(d,χ)m in equation (41) for m> 0 and ξ(d,χ)0 in equation (43).

We emphasize that expression (45) is one of the main results of the present work. For χ= d
and no polarization (ξ(d)i = 1 , ∀i= 0, . . . ,d), equation (B1) in appendix B is recovered.

In the following sections we will apply the formalism developed in concrete scenarios.
Namely, we will discuss the thermodynamics of the electromagnetic field in a hypercubic
cavity and acoustic perturbations in a generalized version of Debye model.

5. Thermodynamic and quasithermodynamic limits

From the Weyl law and its extensions, we turn to physics applications. The goal of this section
is to connect the derived expansions for the counting functions with thermodynamic analyses.
In this context, corrections of the Weyl law will correspond to the transition from the strict
thermodynamic limit to the quasithermodynamic approach.

Let us assume a semi-classical treatment, with the physical system of interest being
described by solutions of the Helmholtz equation (1). In the treatment, we consider a d-
dimensional cubic box with side length L populated by a thermal gas. The gas is composed by
effective massless particles (actually modes associated to electromagnetic or acoustic perturb-
ations) with a well-defined energy and subjected to the Bose–Einstein statistics. The system is
supposed to be in thermal equilibrium with constant temperature T. The number of modes is

11
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not conserved, and hence the chemical potential µ is null. Since the temperature and chemical
potential are fixed, the grand canonical ensemble is assumed.

A macroscopic treatment is established if a thermodynamic limit can be achieved. Since
that we are employing a grand canonical ensemble, the strict thermodynamic limit is defined
as [35]

|Ωd| →∞ with T fixed and µ= 0 , (46)

where |Ωd| is the hypervolume of the domain Ωd. As seen from equation (2), this condition
implies that

LT→∞ with T ̸= 0 fixed and µ= 0 . (47)

It is also important to consider not only the thermodynamic limit, but also how this limit is
approached. Hence, we establish the quasithermodynamic limit [1] as

|Ωd| large but finite, with T fixed and µ= 0 . (48)

The quasithermodynamic is particularly relevant in the present work, where finite cavities or
solids are considered.

Given that the system of interest is compatible with thermodynamic and quasithermody-
namic limits, the associated partition function can be written as

lnZ=−
ˆ ∞

0
D(ω) ln

[
1− exp

(
− ℏω
kBT

)]
dω , (49)

whereD(ω) is the spectral density function. Expression (49) can be seen as the Thomas-Fermi
approximation for the exact grand canonical partition function. From Z, all the associated
thermodynamic and quasithermodynamic quantities can be readily calculated. For example,
the internal energy is given by

U= kBT
2 ∂

∂T
(lnZ) . (50)

In a practical implementation of the quasithermodynamic limit, combined with the assump-
tion that the temperature of the system is fixed, the box length L should be large enough so
that [24]

kB
ℏc
LT≫ 1 , with LT kept finite. (51)

As reference, kB/(ℏc)≈ 436.7K−1m−1 in SI units. The relation between the spectral density
D in the partition function (49) and the counting functions studied in the previous sections
(collectively denoted by N(d)) is given by

D(ω)dω =
dN(d)(ω)

dω
dω . (52)

It follows that the Weyl law (19) is connected with the strict thermodynamic limit (47) when
only the term with highest power of LT is considered in the asymptotic expansion of the
counting function. For the link between extensions of Weyl law and the quasithermodynamic
limit (51), subdominant corrections on powers of LT are also considered in this expansion. It
should be noted that, although result (45) for the counting function is valid for any values of
L, it is only when condition (51) is satisfied that the integral form (49) of the partition function
can be employed.

12
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6. Quasithermodynamics of the electromagnetic field

A first application of the developed formalism involves quasithermodynamics of the electro-
magnetic field in a (hyper)cubic cavity. Let us consider a cubical cavity in d dimensions with
side length L. Its faces are supposed to be perfect conductors, surrounding a vacuum region.
The electric field inside the cavity satisfies a wave equation characterized by a velocity equals
to c. Also, the conductivity of the walls guaranties that the tangential components of the electric
field at the walls are null.

The components of the electric field inside the cavity are given by [36]

Ein1···nd (x1, . . . ,xd) = E0i×ϕ−n1 (x1) · · ·ϕ
+
ni (xi) · · ·ϕ

−
nd (xd) , (53)

where each component satisfies a mixed boundary condition (40) with χ= 1. Furthermore, as
only transverse modes are present, we have ξ̃ = 1 in equation (43). Hence, using result (45),
we find that the number of independent modes N(d)

em = N(d)
1 is given by

N(d)
em (ω) =

1
2d

[
(d− 1)
cdπd/2

(ωL)d

Γ
(
d
2 + 1

) + d(3− d)

cd−1π(d−1)/2

(ωL)d−1

Γ
(
d−1
2 + 1

)] . (54)

In equation (54), it was assumed the vacuum dispersion relation k= ω/c for the electromag-
netic field.

For the three-dimensional case we have the well-known quadratic term cancellation in ω
[9, 10]. In this case, we consider the next correction term in equation (45), furnishing

N(3)
em =

L3

3π2c3
ω3 − 3L

2πc
ω . (55)

Result (55) agrees with [9, 10, 30, 37]. However, equation (54) shows that this cancellation of
the ‘area’ term for the electromagnetic field only occurs in the three-dimensional case. This
implies a drastic difference in d= 3 scenario when comparing with other dimensionalities.

The spectral density D(d)
em can be calculated deriving expression (54) with respect to ω,

D(d)
em =

dN(d)
em

dω
=

1
2d

[
d(d− 1)Ldωd−1

πd/2Γ
(
d
2 + 1

)
cd

+
d(d− 1)(3− d)Ld−1ωd−2

π(d−1)/2Γ
(
d−1
2 + 1

)
cd−1

]
. (56)

Hence, the internal energy of the system can be written as

U(d) =

ˆ ∞

0
D(d)

em (ω)
ℏω

exp
(

ℏω
kBT

)
− 1

dω = kB

[
(d− 1)θdL

dTd+1 +(3− d)
d
2
θd−1L

d−1Td
]
,

(57)

where θm is defined as

θm ≡ ζ (m+ 1)Γ(m+ 1)m

2mπm/2Γ
(
m
2 + 1

) kmB
ℏmcm

. (58)

The term ζ (z) in equation (58) denotes the Riemann zeta function. Expression (57) can be
seen as an improved version of the Stefan–Boltzmann law for the electromagnetic field in a
hypercubic cavity, in a quasithermodynamic treatment.

In the strict thermodynamic limit, that is, when the correction is not considered, we
recover the Stefan–Boltzmann law in d dimensions. In the strict thermodynamic regime, the
(improved) result (57) can be compared with [38, 39]. However, in those references the authors
impose that ξ(d)em = ξ

(d)
0 = 2 for the polarization of the d-dimensional electric field (as done for

13
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the three-dimensional scenario). The observation that ξ(d)em = d− 1 is the correct factor was
made in [40].

It is important to stress that, while the enforcement that ξ(d)em = 2 for any dimension corres-
ponds to a simple factor for the main term of several thermodynamic quantities, this choice has
a very drastic effect for the correction terms in the quasithermodynamic analysis. For instance,
when considering the quasithermodynamics, the general enforcement of ξ(d)em = 2 would imply
the cancellation of the first correction for any value of d (not appropriate), and not for d= 3,
as we have obtained.

The quasithermodynamic Stefan–Boltzmann law (57) can also be rewritten as

U(d)

Ld
=

ˆ ∞

0
B(d) (ω,T,L) dω , (59)

implying that

B(d) (ω,T,L) =

[
ω

Γ
(
d
2 + 1

) − c(d− 3)
√
π

Γ
(
d−1
2 + 1

) 1
L

]
d(d− 1)ℏωd−1

2dπd/2cd
[
exp
(

ℏω
kBT

)
− 1
] . (60)

Expression (60) is a quasithermodynamic version of the Planck formula. This result describes
the effects of the boundedness of the cavity on the spectral density of the electromagnetic field.

For the two-dimensional case, a more detailed discussion is in order. Our results for d= 2
can be compared with the analysis presented in [26]. An interesting remark suggested in [26]
is that size effects prevent arbitrarily low frequencies in the system. With this observation,
particularized here for a square system of area L2, the authors propose an internal energy U
with the form

U= 2
ˆ ∞

ωmin

D(ω)
ℏω

exp
(

ℏω
kBT

)
− 1

dω , D(ω) =
L2ω
2πc2

, ωmin =

√
2πc
L

. (61)

The integral in equation (61) can be solved by making the change x= t+ xmin, where

x≡ ℏω
kBT

, xmin ≡
ℏωmin

kBT
=

√
2πℏc
kBTL

. (62)

One obtains

U(xmin) =
k3B

πℏ2c2
L2T3S(xmin) , (63)

S(xmin) = 2Li3
(
e−xmin

)
+ 2xminLi2

(
e−xmin

)
+ x2minLi1

(
e−xmin

)
, (64)

where the polylogarithm function Lis (z) is defined as

Lis+1 (z) =
1

Γ(s+ 1)

ˆ ∞

0

ts

exp(t)/z− 1
dt . (65)

Following the development in [26], the term S(xmin) is expanded around xmin = 0,

S(xmin) = 2ζ(3)− x2min

2
+
x3min

6
− x4min

48
− x6min

4320
+O

(
x7min

)
. (66)
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Observe that the expansion close to xmin = 0 is equivalent to consider [kB/(ℏc)] LT≫ 1, as
one sees from the definition of xmin in equation (62). Finally, using the expansion (66), and
keeping only the first-order term x2min, the approach from [26] furnishes7

U=
2ζ (3)
π

k3B
ℏ2c2

L2T3 −πkBT . (67)

We note that the first term in equation (67) differs from the result (57) presented in this
work by a factor of 2. This discrepancy is just a consequence of the authors in [26] using the
developments of [38] which, as previously commented, assume that ξ(d)em = 2 for any value of
d. However, as a more important remark, it is possible to see from equation (61) that, while
considering the size effects on the minimum frequency, these effects on the density of the
modes D(ω) are not taken into account. In other words, the integrand of U in equation (61) is
correct only in the thermodynamic limit.

We propose an improvement of the results in [26] by considering size effects for both
the minimal frequency and the density of the modes. Following the procedure that leads to
equation (64), but using D(2)

em of equation (56) instead of D(ω) in the integrand of the internal
energy U in expression (61), we get

U(2)
em = πkBT

[
x−2
minS(xmin)+

√
2
π
x−1
minS̃(xmin)

]
, (68)

with S(xmin) presented in equation (64) and

S̃(xmin) = Li2
(
e−xmin

)
+ xminLi1

(
e−xmin

)
. (69)

The expansion of S̃(xmin) around xmin = 0 gives

S̃(xmin) =
π2

6
− xmin +

x2min

4
− x3min

36
+

x5min

3600
+O

(
x6min

)
. (70)

Substituting the results (66) and (70) in equation (68), and keeping only terms of order up to
x2min, we obtain

U(2)
em =

ζ (3)
π

k3B
ℏ2c2

L2T3 +
πk2B
6ℏc

LT2 −

(
1
2
+

√
2
π

)
πkBT . (71)

In addition to the already mentioned factor of 2, and a correction of
√
2/π in the last term in

equation (67), we highlight the appearance of an ‘area’ term proportional to T2. This new term
is the leading correction on the quasithermodynamics limit.

It is important to notice that the second term in equation (71), that is, the leading correction,
is precisely the last term presented in equation (57) for d= 2. This is a consequence of the
fact that S in equation (66) does not have a linear term (i.e. a term proportional to xmin). The
existence of such linear term would change the second term in equation (57).

The above procedure for the two-dimensional scenario can be generalized to arbitrary
dimensions. In this case, to consider a minimal energy implies that

U(d)
em = d(d− 1)kBT

[(
x(d)min

)−d
CdSd

(
x(d)min

)
+
(
x(d)min

)−1
C̃dS̃

(
x(d)min

)]
, (72)

7 It should be remarked that equation (67) is not actually derived in [26].
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where

x(d)min =
ℏcπ
kBLT

√
3d
2

− 1 , Cd =
(π
8

) d
2 (3d− 2)

d
2

Γ
(
d
2 + 1

) , C̃d = (−1)d

2d−1π
C1 ,

Sd
(
x(d)min

)
=

d∑
k=0

(
d
k

)
Γ(k+ 1)

(
x(d)min

)d−k
Lik+1

(
e−x(d)min

)
,

(73)

and S̃ is given by equation (69) for any value of d. Similarly to the two-dimensional case, it is
straightforward to see that the limit of Sd around x

(d)
min = 0 does not have a linear term.

It should be noticed that the power of x(d)min in the second term in the brackets of equation (72)
does not depend on dimension and is equal to −1. Thus, the higher contribution of this term
is proportional to LT2, in the same way as in d= 2. Therefore, the leading terms in U(d)

em of
equation (72) are precisely those presented in expression (57). We conclude that, for d ̸= 3, the
existence of a minimal frequency would not affect the quasithermodynamics behavior, exactly
as in the thermodynamic limit, and the expression (57) is correct even if the minimal frequency
is considered8.

7. Quasithermodynamics of acoustic perturbations

7.1. General considerations

We turn to the quasithermodynamics of acoustic perturbations, focusing on the d-dimensional
version of the Debye model. Let us consider a harmonic solid, there is, an isotropic, elastic and
continuous body. The solid is assumed to be a hypercube of dimension d and length size L. In
this hypercube, a number of χ opposed faces are free, and hence the oscillations in these direc-
tions respect Neumann conditions. The remaining d−χ opposing faces are fixed, respecting
Dirichlet conditions. The propagation of vibrations in the solid is associated to acoustic waves.

In this setup, the components of the displacement field ui(x) of the particles that form the
solid (atoms, ions, molecules, etc) will be solutions of Helmholtz equation with the form (40).
Specifically, ui(x) are given by

uin1···nd (x1, . . . ,xd) = u0i×ϕ+n1 (x1) · · ·ϕ
+
nχ (xχ)︸ ︷︷ ︸

free faces

ϕ−nχ+1
(xχ+1) · · ·ϕ−nd (xd)︸ ︷︷ ︸

fixed faces

. (74)

Contrary to the description of the electromagnetic field in a cavity, acoustic perturbations
are free to oscillate in the longitudinal direction. Therefore, a distinct quasithermodynamic
behavior, comparing to the thermodynamic of electromagnetic perturbations, should be expec-
ted in the present setup. In particular, for d= 3, we should expect an important role of the area
term, the first term of quasithermodynamic correction9.

Let us apply the results derived in the present work to generalize the well-known expres-
sions in the usual three-dimensional Debye model and investigate the quasithermodynamic
regime. From equation (45), with ξ̃ = 0 in (43), we obtain

N(d)
s (ω) =

d

πd/22d

 1

Γ
(
d
2 + 1

) ( ωL

c(d)s0

)d

+
(2χ− d)π1/2

Γ
(
d−1
2 + 1

) ( ωL

c(d)sχ

)d−1
 . (75)

8 For the three-dimensional scenario, the absence of the area term could imply higher-order corrections. In this case,
the minimum frequency would affect the first correction term, which is proportional to LT2.
9 Effects associated to the area term in a three-dimensional setup with low temperature are considered in [41, 42].
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The quantities c(d)s0 and c(d)sχ represent an effective bulk sound velocities and will be discussed
in the next section.

Expression (75) can be interpreted as the number of modes associated to acoustic waves
whose frequencies are lower thanω. Unlike the electromagnetic case, in the treatment of Debye
model the area term is absent only for d even and when there is a precise balance between
Neumann and Dirichlet boundary conditions: half the faces of the solid are free and half are
fixed. In particular, for the three-dimensional scenario, there is always the influence of the area
term.

7.2. Influence of the area term

Let us focus on the effects of the area term, considering the extreme scenarios, where all the
walls are free (χ= d), or all the walls are fixed (χ= 0). In these cases,

N(d)
s± (ω) =

1
πd/2

d
2d

 1

Γ
(
d
2 + 1

) ( ωL

c(d)s0

)d

± dπ1/2

Γ
(
d−1
2 + 1

) ( ωL

c(d)s±

)d−1
 . (76)

In equation (76), the plus and minus signs are associated to the ‘all free’ and ‘all fixed’ types
of solid, respectively. Also, c(d)s0 can be interpreted as an effective velocity given by the linear
superposition of velocities cl and ct, of the longitudinal mode and of the (d− 1) transverse
modes, (

c(d)s0

)d
= dcdt

(
d− 1+

cdt
cdl

)−1

. (77)

It is important to notice that this linear superposition can only be applied to the main term [30].
Indeed, the reflection of the modes in the walls of the solid produce a mixture of the modes.
Hence, a purely transverse (or longitudinal) perturbation can be reflected as a superposition of
transverse and longitudinal waves. The phenomenon generates an effective velocity c(d)s± which

is different from c(d)s0 .
For the three-dimensional case, one approach to study the wave reflection in a specific wall

is to consider a slab instead of a cube, and hence to ignore border effects in this wall. That is the
approach followed in [41], where appropriate boundary conditions (Neumann or Dirichlet) are
imposed on the faces parallel to the plane of the slab (the planes of reflection). However, peri-
odic boundary conditions are enforced on the other faces (i.e. on the slab thickness direction),
in an approach which captures border effects. Note that the number of faces with periodic
boundary condition is equal to the dimension of the incident plane (two-dimensional in the
three-dimensional case). Periodic conditions at the borders are justified if the borders are far
enough from the region of interest. Within this simplified model, it was determined in [41] that

(
c(3)s+

)2
= 3

[
2
(
c2t
)2 − 3c2t c

2
l + 3

(
c2l
)2

c2t c2l
(
c2l − c2t

) ]−1

, (78)

(
c(3)s−

)2
= 3

[
2
c2t

+
1
c2l

+

(
c2l − c2t

)2
c2l c

2
t

(
c2l + c2t

)]−1

. (79)

Following the development presented in [41], it is observed that the presence of the power 2 in
cl,t is a consequence of the number of periodic boundary conditions considered. That, in turn,
is a result of the fact that the plates have two dimensions.
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In d dimensions, we can consider the reflection of the wave by any one of the 2d faces.
In this case, a slab is defined as the set of all points lying between two (d− 1)-dimensional
hyperplanes10 in Rd. In this way, the system is approximated by two infinite plates. Appro-
priate boundary conditions (Neumann or Dirichlet) are imposed on these plates, with periodic
boundary conditions enforced on the other (d− 1) directions. In this way, considering the
relation with the dimensionality of the system and the power series on ct and cl, the proposed
generalization of the three-dimensional results in equations (78) and (79) to the more general
d-dimensional scenario is(

c(d)s±

)d−1
= dcd−1

t

[
d− 1+

(
cd−1
l

)2 − cd−1
l cd−1

t + 2
(
cd−1
t

)2
cd−1
l

(
cd−1
l ∓ cd−1

t

) ]−1

. (80)

7.3. Debye frequency

One important parameter of the Debye model is the so-called Debye frequency. This quantity
refers to the cutoff angular frequency of the waves propagating in the solid, resulting from
the existence of a minimum distance between the particles that form the solid lattice. From
equation (76), it is possible to determine the Debye frequency ω(d)

D±, analyzing the number of
degrees of freedom of the system. That is,

nd+ n∂ l≈ nd= N(d)
s±

(
ω
(d)
D±

)
, (81)

where n is the number of particles inside the cavity (bulk) and n∂ is the number of particles
in the borders (edge). Considering the edge, the particles have l degrees of freedom. In
expression (81), we assumed that n≫ n∂ since we are performing a macroscopic (qua-
sithermodynamic) treatment, and hence we can consider n as an approximation to the total
number of particles of the system. In fact, we are interested in the border effects on the
modes propagating on the bulk, not considering the superficial modes (Rayleigh modes).
The contribution of the superficial modes can be disregarded in the quasithermodynamic
regime.

One relevant issue is the influence of the borders in Debye frequency. For the analysis of
this point, we rewrite expression (81) in the form(

ω
(d)
D±

)d
+Bd±

(
ω
(d)
D±

)d−1
−
(
ω
(d)
D0

)d
= 0 , (82)

with

Bd± ≡±
dπ1/2Γ

(
d
2 + 1

)
Γ
(
d−1
2 + 1

)
(
c(d)s0

)d
(
c(d)s±

)d−1
L
, (83)

ω
(d)
D0 ≡ 2π1/2c(d)s0

[
Γ

(
d
2
+ 1

)
ρd

] 1
d

. (84)

In equation (84), ρd denotes the (hyper)volumetric density of the cube, defined as

ρd ≡
n
Ld
. (85)

10 See section 3.4 of [43].
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The most physically relevant scenario is the three-dimensional solid. For d= 3, an exact
solution for equation (82) can be obtained:

ω
(3)
D± = πc(3)s0

 3
√
f0± + 3

√
f1± ∓

3
(
c(3)s0

)2
4
(
c(3)s±

)2 1L
 , (86)

where

fp± ≡ 6ρ3
π

∓
27
(
c(3)s0

)6
32
(
c(3)s±

)6 1
L3

+(−1)p

9ρ23
π2

±
81
(
c(3)0

)6
32π2

(
c(3)s±

)6 ρ3L3

1/2

. (87)

Let us consider other scenarios besides the most usual one. In the two-dimensional case,
again an exact expression for the Debye frequency ω(2)

D± can be produced,

2ω(2)
D± =

√
B2
2± +

(
2ω(2)

D0

)2
−B2± . (88)

For d> 3, we use the approximation(
ω
(d)
D±

)d
+Bd±

(
ω
(d)
D±

)d−1
=

(
ω
(d)
D± +

Bd±
d

)d

+O

(
1
L2

)
, (89)

which is justified since we are considering the quasithermodynamic regime of the theory.
Therefore, keeping only terms of order 1/L and employing result (82), we obtain

ω
(d)
D± = ω

(d)
D0 ∓

π1/2Γ
(
d
2 + 1

)
Γ
(
d−1
2 + 1

)
(
c(d)s0

)d
(
c(d)s±

)d−1

1
L
. (90)

It should be remarked that, for the two- and three-dimensional cases, exact expressions (88)
and (86) are available. With these results, higher-order contributions in 1/L are considered
(when compared to equation (90)).

In the strict thermodynamic limit (46) we observe that Bd± → 0, and

ω
(d)
D± (L→∞) = ω

(d)
D0 . (91)

With d= 3, expression (91) reduces to the well-known Debye frequency. Summarizing, we
have obtained in equation (90) a correction in Debye frequency for a harmonic solid in d
dimensions, with free (+) or fixed (−) walls.

It is interesting to notice that result (90) could offer a possible experimental test for the
developments presented in this work. Indeed, from equation (90) we observe that

ω
(d)
D+ ⩽ ω

(d)
D0 ⩽ ω

(d)
D− . (92)

That is, a solid with free walls should have lower Debye frequency when compared with the
standard result in the strict thermodynamic regime. In a similar way, a solid with fixed walls
will have larger Debye frequency. These differences are, in principle, measurable. Given that
in an electric conductor material the main contribution for the thermal capacity comes from
the electrons that are not strongly bound to the lattice, we expect that the effect (92) will be
more relevant in an electric insulator (non-metallic crystal).
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7.4. Heat capacity

We now consider the heat capacity of the solid in the quasithermodynamic regime. To evaluate
the heat capacity at constant volumeC(d)

± , let us examine the internal energyU(d)
± of the system

for both boundary conditions studied. Using equation (76), we obtain that the density of modes
is given by

D(d)
s± =

dN(d)
s±

dω
= κ

(d)
0 ωd−1 +κ

(d)
± ωd−2 , (93)

where the following quantities are defined:

κ
(d)
0 ≡ d2

2dπd/2
Ld

Γ
(
d
2 + 1

)(
c(d)s0

)d , (94)

κ
(d)
± ≡±d2 (d− 1)

2dπ
d−1
2

Ld−1

Γ
(
d−1
2 + 1

) (c(d)s±

)1−d
. (95)

Hence, the internal energy can be written as

U(d)
± =

k2BT
2

ℏ

ˆ θ
(d)
± /T

0
D(d)
s±

(
kBT
ℏ
x

)
xdx
ex− 1

, (96)

with

θ
(d)
± ≡ ℏ

kB
ω
(d)
D± (97)

denoting the Debye temperature in d dimensions. In general, the integral in equation (96) does
not have an analytic solution. Let us investigate the regimes of low temperature (T≪ θ

(d)
± ) and

high temperature (T≫ θ
(d)
± ).

The low-temperature limit is more commonly treated in the pertinent literature. In three
dimensions, this regime is captured by Debye law: the specific heat of a solid at constant
volume varies as the cube of the absolute temperature T. We aim to improve Debye law in
d dimensions considering solids with finite size, and hence adopting a quasithermodynamic
description.

It should be remarked that the quasithermodynamic limit (51) implies [kB/(ℏc)]LT≫ 1.
Therefore, low values for the temperature T should be compensated by corresponding large
values for L. For low enough temperatures, the internal energy of the system can be written as

U(d)
±

(
T≪ θ

(d)
±

)
=
d!κ(d)0

ℏd
ζ (d+ 1)kd+1

B Td+1 +
(d− 1)!κ(d)±

ℏd−1
ζ (d)kdBT

d . (98)

From expression (98) for U(d)
± , corrections in Debye law can be obtained:

C(d)
±

(
T≪ θ

(d)
±

)
=
d! (d+ 1)κ(d)0

ℏd
ζ (d+ 1)kd+1

B Td+
d(d− 1)!κ(d)±

ℏd−1
ζ (d)kdBT

d−1 . (99)

In the strict thermodynamic limit (46) we recover the Debye law in d dimensions [44]. For the
three-dimensional case, expression (99) reduces to the result previously discussed in [41].

The high-temperature regime is less explored, and we will consider it in the present work.
This scenario is actually more suitable for the quasithermodynamic treatment, because if T is
high, solids with low size L can be more accurately analyzed. In three dimensions, assuming
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the thermodynamic limit, the behavior of the system in this regime is captured by Dulong–
Petit law: the heat capacity of a solid with a mol of particles is approximated constant for
high enough temperature. Corrections for the Dulong–Petit law in d dimensions considering
a finite-size solid will be derived.

In the high-temperature regime θ(d)± /T→ 0, and the approximation ex− 1≈ x can be

employed in equation (96). With this approach, the internal energy U(d)
± (T≫ θ

(d)
± ) can be

explicitly written and the thermal capacity C(d)
± determined:

C(d)
±

(
T≫ θ

(d)
±

)
=

(
kB
ℏ

)d
[
κ
(d)
0

d

(
θ
(d)
±

)d
+

ℏκ(d)±
kB (d− 1)

(
θ
(d)
±

)d−1
]
kB . (100)

In the strict thermodynamic limit (46) we observe that ωD± → ω
(d)
D0 and hence

C(d)
±

(
T≫ θ

(d)
± ,L→∞

)
=
κ
(d)
0 ω

(d)
0

d
kB . (101)

For the three-dimensional case, result (101) is reduced to the usual Dulong–Petit law. For
general values of d, equation (100) furnishes the correction of the Dulong–Petit law for a
finite solid of arbitrary dimensionality.

8. Final comments

In the present work, we exploredWeyl law and its extensionswith an intuitive formalism, based
on the association between point counting and volumes of sections of the sphere. In several
published developments, the counting function depended strongly on the pertinent domain,
with the associated lattice kept fixed. In our approach, the domain is kept fixed and the lattice is
rescaled. Known results were rederived, showing the robustness of the method. Moreover, new
results were obtained, including corrections for the Weyl conjecture in d dimensions, effects
of the polarization, and an exploration of the role of the area term in the three-dimensional
scenario. Applications of the previous results were investigated, with the quasithermodynamic
analyses of the electromagnetic field in a finite cavity and acoustic perturbations in a finite
solid.

Applying the formalism to the thermodynamics and quasithermodynamics of the electro-
magnetic perturbations in a finite box within a semi-classical treatment, corrections to the
d-dimensional Stefan–Boltzmann law were obtained and polarization and border effects were
treated. In particular, we showed that the well-known cancellation of the area term only occurs
in three dimensions. This effect turns the thermodynamics of the system distinct for d ̸= 3.
The correction due to a minimum energy of the system is treated. In all scenarios except the
three-dimensional case, the quasithermodynamic corrections suppress an eventual effect of a
minimal energy.

Two-dimensional results for the quasithermodynamics of the electromagnetic field can be
linked to experimental setups. Indeed, the analysis of thermal radiation in d= 2 has applica-
tions in the description of single-layer materials (also known as ‘2Dmaterials’), which include
graphene, single layers of various dichalcogenides and complex oxides [11]. The results
presented in [26], describing two-dimensional thermal radiation and improved in the present
work, were used in [12] to study the emission spectra of a graphene transistor.

Concerning the electromagnetic field in a three-dimensional cavity, there is some discus-
sion in the literature involving the cancellation of area term. We believe this controversy is
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the result of an inadequate treatment of how polarization affects each term of the expan-
sion (34). For instance, in [1] polarization is assumed to have the same effect on all terms
of the expansion (34), and as a result the cancellation of the area term does not occur. Our res-
ult in equation (45) indicates that this approach is inadequate. Experimentally, the cancellation
of the area term in a three-dimensional setup implies in a very small correction [9]. Therefore,
other effects (such as scattering and diffraction) can supplant this correction. In fact, while the
results in [45] are compatible with the negative value correction presented in equation (55),
other experiments point to a positive correction term [46].

Moreover, we believe that three-dimensional systems are not the most suitable setups for
the observation of effects associated to the Weyl conjecture on electromagnetic radiation. Our
results suggest that a better approach to this goal is the use of two-dimensional effective sys-
tems. Such systems could be constructed using single-layer or nanostructures graphene devices
simulating two-dimensional blackbodies [12, 47].

Another main application of the developed formalism concerns the thermodynamics of
acoustic perturbations. An improved version of Debye model for a finite solid is treated. We
reproduce the known results for the three-dimensional case in the limit of low temperatures
and extend those results to arbitrary dimensions. New developments in the high-temperature
scenario and the influence of the area term are explored. Extensions of the known formulas
are obtained for Debye temperature and Dulong–Petit law.

The presented development captures some effects associated to internal degrees of freedom,
such as spin. Indeed, macroscopic effects associated to spin manifest itself in the polarization
of the fields. This is more directly seen when the electromagnetic perturbation is considered.
In this case, the two values of the photon spin (or, more precisely, of the photon helicity) can
be related to the two polarizations of the classical field. For acoustic perturbations the problem
is more subtle [48]. In an ideal isotropic medium, considering modes with long wavelength, it
is possible to associate longitudinally polarized modes with spin-0 phonons, and transversely
polarized modes with spin-1 phonons. In general, new internal degrees of freedom can be
incorporated into the presented approach, as long as they do not modify the eigenvalue problem
(i.e. the Helmholtz equation (1)). This can be done by increasing the multiplicity count of the
modes performed in section 4.

The analysis of arbitrary boundary conditions in the extensions of Weyl law, related with
all self-adjoint extensions of the d-dimensional Laplacian operator, is a work in progress. In
fact, as far as we know, there is no Weyl conjecture for such general scenario. We believe
that the approach introduced in the present development, based on a counting function with
the rescaling of the lattice, might be an important step in the problem. Further developments
of the present work might include the application of the proposed formalism on gravitational
systems. Also, a possible exploration of the influence of the area term in the Casimir effect
could be conducted, considering three-dimensional systems with finite temperature. Analyses
along those lines should appear in forthcoming presentations.
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Appendix A. Hypervolume associated to the axes

The calculation of the hypervolume associated to the axes in the d-dimensional case will be
presented. Before the actual calculation, let us fix the notation and definitions that are used in
the development.

We denote Ω̃d as one of the 2d partitions of the d-dimensional unit sphere, that is,

Ω̃d ≡
{
(ϵ1, ϵ2, . . . , ϵd) ∈ Rd : 0⩽ ϵi ⩽ 1 and ϵ21 + ϵ22 + · · ·+ ϵ2d ⩽ 1

}
. (A1)

Also, the hyperplanesHi are defined as

Hi ≡
{
(ϵ1, ϵ2, . . . , ϵd) ∈ Rd : ϵi = 0

}
, i= 1,2, . . . ,d . (A2)

The volume of a given subset S⊂ Rd is indicated by |S|. For example,∣∣∣Ω̃d

∣∣∣= 2−dωd . (A3)

Using the sets Ω̃d and Hi defined in equations (A1) and (A2), the subsets {Πi1,...,in} of Ω̃d

are constructed:

Πi1,...,in = Ω̃d ∩Hi1 ∩ ·· · ∩Hin , 1⩽ in ⩽ d , 1⩽ n⩽ d . (A4)

The number of subsets {Πi1,...,in} is nd. However, some of this subsets are equal, because: (1)
Πi1,...,in is symmetric under the switch of indexes; (2) and the idempotent propertyHj ∩Hi =
Hi, for i= j. So, the number of distinct sets is

#Πi1,...,in =

(
d
n

)
=

d!
n! (d− n)!

. (A5)

The subsets {Πi1,...,in}, each one labeled by n indexes, can be interpreted as sections of the
sphere in Rd−n, generated by different axes. For example, if d= 3,

(n= 1)


Π1 =Ω2 generated by ϵ2 and ϵ3
Π2 =Ω2 generated by ϵ1 and ϵ3
Π3 =Ω2 generated by ϵ1 and ϵ2

, (n= 2)


Π12 =Ω1 generated by ϵ3
Π13 =Ω1 generated by ϵ2
Π23 =Ω1 generated by ϵ1

,

(n= 3){Π123 = (0,0,0) . (A6)

With the symbology Πi1,...,in , n indicates the number of axes not included in the subset
generation.

From a given section Πi1,...,in , a cylinder CI can be defined, adding to Πi1,...,in an interval
with the form I= [a,b] for each not included axes,

CIi1,...,in =Πi1,...,in × I× I× ·· ·× I︸ ︷︷ ︸
n

. (A7)

It should be observed that, for each value of n, there are
(d
n

)
different cylinders with the same

volume Vnd, where

Vnd ≡
∣∣CIi1,...,in∣∣= |I|n |Πi1,...,in |= |I|n2n−dωd−n . (A8)
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Using previous results, the contribution of the axes to the total volume can be determined.
Considering the volumes of the cylinders CI constructed with the interval I=

[
− ϵ

2 ,0
]
, we

obtain

Hypervolume of the axes=
d∑

n=1

(
d
n

)
Vnd =

d∑
n=1

(
d
n

)( ϵ
2

)n
2n−dωd−n =

d∑
n=1

(
d
n

)
2−dωd−nϵ

n .

(A9)

Appendix B. Counting functions

Let us see how Neumann counting function can be constructed from the counting function
for Dirichlet case and vice versa. We start by arranging the Neumann modes in d+ 1 classes,
labeled by j= 0,1, . . . ,d. The first class is composed by modes where all ni are non-null. The
second class is composed by modes where only one of the ni is zero. In the third class two of
the ni are zero. The process is continued in this fashion, up to d+ 1 sets.

Given the proposed partition of the Neumann modes, we observe that the class where none
of the ni is zero is the solution for the Dirichlet problem in d dimensions, where all modes with
ni = 0 must be excluded. The class with only one of the ni is zero can be further divided into d
sub-classes where n1 = 0, or n2 = 0, etc. Hence, in each one of these sub-classes, disregarding
the null ni, we obtain sub-classes composed by Dirichlet solutions in d− 1 dimensions. The
class where two ni are null can be separated into

(d
2

)
sub-classes composed of modes which

satisfy Dirichlet boundary conditions in d− 2 dimensions. Carrying on with this procedure,
solutions of the Neumann problem can be written as a combination of the elements in the
constructed sub-classes:

N(d)
+ (ϵ) =

d∑
j=0

(
d
j

)
N(d−j)
− (ϵ) . (B1)

On the other hand, we know that the solutions for Dirichlet, unlike those for Neumann,
exclude the mode ni = 0, and therefore the difference between the number of solutions of both
will be given by

N(d)
+ −N(d)

− =
∑
n

(#Dirichlet solutions formed by n different axes) . (B2)

Since there are d axes, for each set of n axes there will be a degeneracy of
(d
n

)
in the Dirichlet

solutions, and hence

N(d)
+ −N(d)

− =
d−1∑
n=0

(
d
n

)
N(n)
− . (B3)

Substituting N(d)
− in the sum (B3), we get the relation (B1).

The inverse relation is obtained writing equation (B1) as

N(i)
+ =

d∑
j=0

PijN
(j)
− , Pij =

{ (i
j

)
, j⩽ i

0 j> i
, i, j= 0,1,2, . . . ,d . (B4)

The triangular matrix P is known as the Pascal’s matrix. It is invertible, since detP= 1, with
an inverse given by
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(
P−1

)i
j
=

{
(−1)i−j (i

j

)
, j⩽ i

0, j> i
. (B5)

Therefore we can solve equation (B4) for N(d)
− , obtaining

N(d)
− =

d∑
n=0

(−1)d−n
(
d
n

)
N(n)
+ . (B6)
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