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Abstract

In this paper, we propose a dimensional lattice Boltzmann method (LBM) that numerically solves the discrete lattice Boltz-
mann equation directly in physical units. This procedure facilitates the LBM application for simulating transport phenomena
completely avoiding the use of lattice units and consequently of any particular unit conversion system. Several test problems
related to different physical phenomena are simulated, such as heat diffusion, lid-driven cavity, forced convection in channels
(both developed and under development) and two-phase liquid—gas systems, considering stationary and dynamic flows under
very high density and viscosity ratios. We compare the numerical results with analytical or finite difference solutions, finding
a good agreement between them. Similarly, we performed a stability analyses for three of the test cases. The traditional LBM
was also considered for the sake of comparison, showing both the same accuracy and stability, as expected. Furthermore, we
present solutions using the Allen—Cahn phase-field LBM model for high liquid/gas density and gas/liquid kinematic viscosity
ratios, up to 43,300 and 470, respectively, commonly not found in open literature. The proposed methodology enhances the
LBM use as a simulation tool for the wide transport phenomena where it finds application.

Keywords Dimensional LBM - LBM without lattice units - Transport phenomena simulation - Modified LBE for physical
units

with liquid-liquid or liquid—gas systems [66, 71, 76, 83],
thermal phase-change phenomena, both liquid—gas and
solid-liquid [15, 35, 48, 58, 68, 72] and many others that
could be mentioned here. These transport phenomena are of
great importance for diverse engineering applications con-
sidering petroleum, energy, nuclear, electronic and refrigera-
tion industries, to name a few.

The LBM is a mesoscopic method that is based on the
numerical solution of the discrete Boltzmann transport equa-
tion in phase space and time, called the lattice Boltzmann
equation (LBE). The LBE was first proposed by McNamara
and Zanetti [56] and is used to numerically find the values
of particle distribution functions over the discrete domain.
Then, macroscopic fields (such as density, velocity, con-
centration, temperature and others) can be calculated from
the statistical moments of these functions [38, 56, 75]. The
LBM allows recovering the macroscopic conservative laws
through an asymptotic analysis called the Chapman—Enskog

1 Introduction

Nowadays, the lattice Boltzmann method (LBM) has been
extensively used to simulate a wide range of transport phe-
nomena. A set of examples is: fluid flow and heat trans-
fer [12] problems, flows in porous media [36, 54, 78], heat
transfer with nanofluids [37, 73, 81, 82], multiphase flows
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analysis [10]. This fact confirms that we can recover the
macroscopic behavior of a physical system by the numerical
solution of the LBE, which represents the mesoscopic level
of the physical phenomena, as proven in Wolf-Gladrow [80].
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Traditionally, the LBM is solved in so-called lattice units
(lu) or lattice scales, which generally consider unitary spa-
tial and temporal increments. There are two main methods
employed to establish the relationships between physical and
lattice scales. The first is the dimensional analysis, based
on the use of Buckingham’s IT theorem, first proposed by
Buckingham [8]. The second is the scaling method (or
principle of corresponding states), which makes use of the
thermodynamic equations of state (EoS) [2, 31]. The IT the-
orem is commonly applied to infer dimensionless groups
(IT) from the units of the input variables in the absence of
known governing equations [3]. Once the governing equa-
tions are established, performing scale analysis through the
non-dimensionalization process allows the identification of
representative dimensionless numbers. This process also
helps to find the coefficients of the equation in terms of spe-
cific references to the variables of the problem [3]. These
references must be known and constant [2].

Several works have proposed different approaches for unit
conversion in LBM. See for example the following works,
to name a few of them, [2, 30, 31, 38, 74, 79]. In general,
a set of works uses the Buckingham II theorem to relate
the physical scale with the lattice scale [30], generally to
solve some multiphase flows problems. Other authors [74]
used only the scale analysis, to find the main dimensionless
numbers and simulate melting and solidification processes.
As pointed out by Baakeem et al. [2], we can also make use
of the Buckingham IT theorem and scale analysis together.
This allows properties such as specific heat capacity, viscos-
ity and thermal diffusivity, which do not have a reference
state, to be considered in the conversion process. In a recent
study, [31] proposed the use of Planck units as a reference
for performing the conversion between physical and lattice
units, respectively. The method was successfully applied
to simulate forced convection in tube banks considering
heat sources, but required more steps in the unit conversion
process.

Baakeem et al. [2] proposed a general procedure for simu-
lating several fluid flow and heat transfer problems, includ-
ing a two-dimensional stationary droplet with the pseudo-
potential model. The procedure is based on using the same
basic reference parameters of the physical scale and the lat-
tice scale to carry out the conversion process. The methodol-
ogy allows certain flexibility while guaranteeing the stability
of the solution. Very recently Wang et al. [79] developed a
conversion strategy to simulate liquid—vapor phase change
with the pseudopotential method. The authors proposed con-
version relations for the fundamental units using the sur-
face tension and EoS parameters related to fluid properties,
in order to deduce conversion relations of other quantities.
They also simulated a single bubble nucleation process by
recovering the latent heat of the fluid and the correct super-
heating temperature in physical units.

@ Springer

However, the use of any non-dimensionalization pro-
cedure implies the addition of some computational steps
before starting to simulate the problem. This also adds more
calculations for post-processing the output simulated data.
The procedures require, in fact, a carefully analysis that
depends of each specific problem solved, having a certain
degree of complexity. Cates et al. [9] simulated binary fluid
mixtures in the presence of colloid particles and stated that
LBM cannot completely resolve the hierarchy of length,
energy and time-scales that arise in typical flows of com-
plex fluids. Thus, it had to be decided which physics to
solve and what to leave unsolved when colloidal particles
were present in one or both phases of the fluid. Therefore,
it is very important to choose the most relevant dimension-
less numbers for an adequate simulation of the macroscopic
problem.

The procedure is applied to solve five problems: involv-
ing one-dimensional heat conduction with heat source; two-
dimensional lid-driven cavity; heat transfer by convection
in a two-dimensional channel, considering developed and
developing flow, both with constant and oscillating heat
flux; the two-phase problem of a static bubble surrounded
by liquid (air-water and liquid—vapor of saturated water sys-
tems) and the solution of the dynamic layered Poiseuille
flow for the same two-phase systems considered for the
static problem. We adopted the phase-field LBM model
based on the conservative Allen—Cahn equation to solve
multiphase problems, after its modification to the dimen-
sional approach. In addition, we also present the solutions
to three other classic problems in Appendices 1, 2 and 3.
All numerical results are compared with reference solutions
considering both the proposed and traditional LBM (solved
in lattice units). These reference solutions are analytical
when available, based on benchmark solutions from the
literature or calculated using the finite difference method.
A stability analysis was also carried out for three of the
problems mentioned, aiming to compare the dimensional
and conventional models.

The rationale for the proposed method was the use of
traditional LBM established to simulate real problems, but
employing physical units directly throughout the solution of
the problem. This was also motivated by the need to simulate
practical problems in their real conditions (thermophysical
properties, domain geometry, numerical size refinement and
others). Commonly, the use of traditional LBM is followed
by the implementation of a set of dimensionless numbers
which are sometimes not entirely correct. For example, a
density ratio is used for a specific two-phase fluid system,
but the dimensionless surface tension considered does not
correspond to the actual fluid considered in the simulation.
This issue is addressed in Sects. 3.4 and 3.5 of the paper.
The authors noted that the solved LBE preserves the physi-
cal dimensionality if all variables are used in physical units,
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including time and spatial increments. Then, through the
simulation of several test problems, they verified the cor-
rectness and validity of the solutions obtained and of the
entire procedure.

The main novelty of the paper is the proposition of
dimensional LBM, which is a version of traditional LBM
that performs all calculations in physical units, facilitating
the application of the method. In this context, the specific
novelties are: (I) proposition of dimensional LBM for two
collision operators (BGK and MRT). Note that modifying
the dimensionless MRT operator to the dimensional one is
non-trivial; (IT) modification of the traditional formulation
of boundary conditions for direct use in physical units (see
Eq. 21); (II) solution of hydrodynamic two-phase problems
with a phase-field LBM based on the Allen—Cahn equa-
tion and proposition of a dimensional version of this LBM
model and (IV) exploration of this phase-field LBM model
in regions with high density and viscosity ratios, not previ-
ously published in the open literature.

The paper is divided into four main sections: In Sect. 2
is presented the proposed dimensional LBM, while the
results and the conclusions are provided in Sects. 3 and 4,
respectively.

2 The dimensional LBM

It is common in LBM to consider variables in lattice units
rather than physical units [38, 59, 75]. This requires the
use of dimensionless numbers to represent all physical
parameters. The non-dimensionalization process generally
involves choosing reference unit scales, which are defined
by independent conversion factors and by the employ-
ment of similarity laws, in order to obtain the dimension-
less values of all physical variables of the problem [38].
There are several methods in the literature to perform this

non-dimensionalization process, as well as to map the physi-
cal properties of a specific system to the lattice scales (and
vice-versa). Some of these methods are presented by Su
and Davidson [74], Huang et al. [31], Baakeem et al. [2]
and Wang et al. [79]. These works give an idea of the com-
plexity embraced in this unit conversion process, which is
greater for the simulation of multiphase and multicomponent
problems.

To distinguish between the LBM proposed in this paper
and the traditional LBM, which relies on a non-dimension-
alization process, we refer to the former as the “dimensional
LBM” and the latter as the “conventional LBM”. The dimen-
sional LBM involves applying the LBM in its dimensional
form. This means that the non-dimensionalization process
is not applied, and the values of Ax, Az, ¢ = Ax/At and all
macroscopic variables (density, velocity, temperature, vis-
cosity and others) are used in physical units, preferably in
the ST unit system. This approach completely eliminates the
need for unit conversion procedures, which are typically
employed for: map physical units of input data into lattice
units, perform numerical simulations in lattice units and
then map the output data from the lattice space back to the
physical domain. Therefore, there is no need to select or
employ any conversion parameters. Additionally, the entire
simulation, including data input and output, is performed
in physical units. A schematic representation of the dimen-
sional LBM procedure is shown in Fig. 1, in comparison
with the traditional procedure.

In the following sections, we present the dimensional
LBM models. The lattice Boltzmann equations (LBEs) of
these models have been appropriately modified by incorpo-
rating Af, Ax and ¢ when necessary, to ensure that all vari-
ables are utilized in physical units during the simulations.

Traditional LBM

Main Loop (in lattice units)

Non-dimensionalization
from physical to lattice

units and BC’s

::>{ Collision H

Streaming

Calculation of Redimensionalization
macroscopic

variables

{

units

-}

’::}L from lattice to physical

H OutputJ

Dimensional LBM

Main Loop (in physical units)

Input

and BC’s

[ Collision H

Streaming

~
Calculation of
macroscopic [ Output
variables
)

Fig. 1 Schematic representation of the dimensional LBM procedure
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2.1 Dimensional LBM for fluid flow

The LBM is founded on the discretization of the Boltzmann
transport equation within the phase space defined by veloc-
ity, physical space and time [38]. This discretization process
yields the discrete LBE, which serves as the equation solved
numerically. Considering a second-order discretization in
time, a general form of the LBE can be given by Eq. 1. This
equation delineates the evolution of the discrete distribution
functions, f;, in both space and time for each discrete veloc-
ity direction i.

[(x+ At 1+ A - fi(x, 1)
= Q1) + S, (x, 1)) M

In Eq. I, S represents the source term associated with exter-
nal forces, particularly in fluid motion simulations. Here, At
and Ax denote the discrete time and space intervals, respec-
tively, while ¢; represents the discrete particle velocities in
each i direction. Typically, velocity schemes are defined as
DdQgq, following [62], where d represents the spatial dimen-
sion of the simulation (one, two or three-dimensional) and g
is the number of discrete velocities considered.

The variable Q, of Eq. 1 represents the collision opera-
tor, which accounts for particle collisions. This operator
can be modeled in various forms. The simplest form that
enables the simulation of Navier—Stokes equations (NSE)
is the Bhatnagar—Gross—Krook (BGK) collision operator
[6], defined as: QP9K = —(f; — 1)/, where 7 denotes the
relaxation time and fl.eq is the equilibrium distribution func-
tion, representing the system’s state at equilibrium. With
the BGK operator in mind, the LBE can be rewritten as
presented in Eq. 2.

[(x+ At 1+ A - fi(x, 1)

—% [fix. ) = fFAx, 0] + S (x, DAL @
The equilibrium distribution function, fieq, is determined by
Eq. 3 [23, 38], which is applicable for the slightly compress-
ible NSE. In this equation, p denotes the fluid density, c,
represents the lattice sound speed and w; are the weights for
each velocity direction i. The values of ¢, and w; also depend
on the selected velocity scheme.

¢-u (Ci‘u)z u-u
&0 =wip(x,0) 1+ = Ry )

Cs (x,1)

For the two-dimensional D209 velocity scheme, ¢, = ¢/ \/5 .
The velocities and weights are defined by Egs. 4 and 5 [62].
The variable ¢ accounts for the lattice speed, defined as
¢ = Ax/At.

@ Springer

(0,0), i=0,
¢ =cd (1,0),(0,1),(=1,0),(0,=1), i=1,....4, (4

(1’1)3(_171)7(_17_1),(1,_1)7 l=5,,8
4/9, i=0,

w; =19 1/9, i=1,..,4, 3)
1/36 i=5,...,8

It is important to note that through Chapman—Enskog analy-
sis [10], we can recover the NSE with sufficient degree of
precision, establishing a direct connection between the LBE
and the NSE. This connection is expressed by the relation-
ship between the relaxation time 7 and the fluid’s kinematic
viscosity v, which is represented by the following expression,

v= <T— %)cf (6)

When external forces act within the domain, their influence
can be accounted for by including the source term S in
the LBE, as shown in Eq. 1. There are several schemes for
modeling this term in the literature. In this paper, we adopt
the scheme proposed by Guo et al. [24], which is widely
employed as reported by Bawazeer et al. [4]. This scheme
effectively mitigates the appearance of undesired deriva-
tives in the continuity and momentum equations resulting
from time discretization artifacts, a concern present in other
schemes [38]. Consequently, the source term for a given
external force field F is expressed by Eq. 7, where F, repre-
sents the forcing term. It is important to note that the dimen-
sions of F are given in force per unit of volume (N m™).

At At
= (1-5)F=(1-3)m,
fi 2T l 2 Wl

T

¢—u (¢ up (7
c2 * c* ¥

For simulating more complex flows, the multiple-relaxation-
time (MRT) collision operator, introduced by Higuera and
Jiménez [29], is commonly employed within the LBE frame-
work to enhance the method stability, particularly for low =
values [38]. Unlike the single-relaxation-time collision
operator, the MRT operates in the moment space, offering
improved numerical stability. Generally, the MRT can be
defined as QYT = — [M_IAM] = ff ), where [M] repre-
sents the transformation matrix and [A]denotes the collision
matrix.

The transformation matrix is responsible for calculat-
ing the moments m of the distribution functions, given
by m = [M] - f. Similarly, equilibrium moments can be
obtained as m® = [M] - f®. In the dimensional LBM,
particularly considering the D2Q9 velocity scheme, the
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dimensional transformation matrix is provided by Eq. 8. In
this matrix, each row corresponds to one moment of the
distribution function: e represents the energy (second-order
moment), e the energy squared (fourth-order moment), J,
and J, the mass fluxes (first-order moments), ¢, and g, the
energy fluxes (third-order moments) and p,, and p,, the
components of the stress tensor (second-order moménts).
As the matrix should be dimensional, the moments should
be multiplied by the lattice speed ¢ considering the appropri-
ate order for each one.

A-M »
kM,
M,
"M I,
M] = |- M,
Cl . MJ‘.
I ‘Mé),
2
f»z _ xpﬂ
Pay
1 1 1 1 1 1 1 1 1
—4c2 - =t =t = 2R 22 2 202
4t —2¢* —2¢* —2¢* —2¢F & 4 &4
0 c 0 —c 0 c —c¢c —c¢c ¢
=l 0 =22 0 203 0 3 - -3 7
0 0 c 0 —-c ¢ ¢ =—-c¢ -c
0 0 =22 0 203 3 3 -3 -3
0 c? -2 ? -2 0 0 0 0
0 0 0 0 0 & —=¢ & -
(3)
Despite of being represented by Q¥*T, it is common for

the MRT collision step to be completely performed in the
moment space. Then, the post-collision functions f;* are
recuperated by f* = [M]~! - m*, which are later used to per-
form the streaming process: fi(X + ¢;At, ¢+ Af) =f[*(x, 1.
For the dimensional LBM, the inverse of the transformation
matrix can be given by Eq. 9, considering the D2Q9 veloc-
ity scheme.

1 -1 1
5 52 o7 00 OO0 0O
1 -1 -1 1 -1 1
9 36¢2 18c¢* 6¢c 63 00 4¢2 0
1 -1 -1 1 1 -1
Lol lg g L 1L -y
9 36¢% 18c* 6c 6¢3  4c?
1 -1 -1 -1 1 1
= S A L
9 36¢% 18c* 6¢ 63 4c?
NI R SR
M]™ = 9 36¢2 184 00 6c 63 4c? 0 ®
b+ 111t 1 1 4 L
9 18c¢2 36¢* 6¢c 1263 6¢  12¢3 4c2
[ T R e B P |
9 18¢2 36¢* 6¢c 12¢3 6¢ 1263 4c2
e i el el Y
9 18¢2 36¢* 6¢c 12¢3 6¢ 1263 4c2
L S S T S B B
9 18¢2 36¢* 6¢c 12¢3 6¢ 1263 4c2

The Guo et al. [24] force scheme can be also adapted to
the MRT operator [39, 40]. In this case, the collision pro-
cess in the moment space is represented by Eq. 10, being
F, =[M]- F the moments of the forcing term.

m* = m — Af[A] - (m — m%) + At([I] - %[A]) 'F,,
(10

The collision matrix can be defined as a diagonal matrix
[A] = diag (@, ... ,a)q_l), in which the main diagonal are
composed by the relaxation frequencies w;, related to each
moment of the distribution functions. In this matrix, the
frequencies associated with conserved moments are zero
because they are not affected by the collision process [43].

Thus, for the D209 velocity scheme, the collision matrix
is defined as[A] = diag (0, w,, ,, 0, @, 0, @, 0, w,)[38].
The two last frequencies are related to the kinematic vis-
cosity of the fluid, being defined as w, = 1/7. Also, the
relaxation frequency related to the energy can be associated
with the bulk viscosity of the fluid as # = (@, — 0.5A1)c?
[23]. The other frequencies can be chosen without sig-
nificant effects in the transport coefficients, and values
between 1 /At and 2/ At are recommended. The third-order
relaxation parameter for the dimensional LBM is redefined
asw, = (3/An(2/At — w,)/(3/At — w,). This relation was
initially obtained by Lallemand and Luo [43], and here, we
made the necessary changes to guarantee corresponding
third-order relaxation parameter for the dimensional LBM,
as now the relaxation frequencies (@) have units of [1/s].
We can obtain the macroscopic quantities of interest tak-
ing the zero and first moments of the distribution function
f; [75]. Considering the force scheme, these moments are
calculated by Egs. 11 and 12, respectively, for both BGK
and MRT collision operators.

g-1
px,1) = Y fi(x.1) an
i=0
q-1 A
u(x, Np(x, 1) = Z ofi(x, 1)+ TIF(X, 1) (12)
i=0

In the simulations conducted in this paper, we employed the
link-wise scheme for formulating the boundary conditions.
In this scheme, the boundaries are positioned on lattice links,
situated at a distance of 0.5Ax from the physical boundaries
of the domain [38].

In the simulations of fluid flow, we utilized five primary
boundary conditions (BC): inlet with prescribed velocity,
outlet at atmosphere pressure, periodic boundaries, fixed
non-slip walls, and symmetric boundaries. For both inlet
and fixed walls, we considered the bounce-back scheme
[41, 42], represented by Eq. 13.

@ Springer
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In this equation, i denotes the opposite direction of i, u,,
and p,, represent the boundary velocity and density, respec-
tively, and xy, is the position of the boundary node. For fixed
walls, the BC simplifies to f;(xb, t+ Ar) = fi*(xb, 1).

For the fluid outlet, we used the anti-bounce-back scheme
[22], which is expressed by Eq. 14.

" G- Uy
f;-.(Xb,l+ At) zfi (Xb’ t) - 2wipw C2 (13)

To maintain atmosphere pressure using this BC, we set p,,
equal to the fluid density at atmospheric pressure. Usually,
this is the average density of the fluid in an equilibrium
state. Additionally, the velocity is calculated by extrapola-
tion: uy & u(xXy, t) + 0.5[u(xy, t) —u(x,_;, H)]. Here, x,_;
represents the next node inside the domain in the normal
direction of the boundary [38].

fi(Xy, t + A1) = —f7 (X, 1) + 2w;p,,

L €ouy’ uyeuy, (14)

1
2c4 2¢2

The symmetric boundaries are implemented using Eq. 15
[38]. In this equation, j represents the indices of the pop-
ulation with same tangential velocity as i but with oppo-
site normal velocity, defined as (¢;4,3¢j,) = (Cian> — Ci)-

For instance, if we consider the top boundary as sym-
metric, and for the D209 velocity scheme, there are three
unknown distribution functions: f, f;and f;. As aresult, f;
has the same tangential velocity as f; (where ¢ = c¢(—1, 1)
and ¢; = c¢(—1, —1)), but opposite normal velocity. Therefore
J7(Xp + €7 an AL, T+ Al) = f(Xy, 7). Considering the tangen-
tial velocity of f; as ¢;,, = —c, the final relation becomes
J1(xp — (Ax, 0), 1 + At) = f7 (X}, 1). The same procedure can
be applied to the other functions.

[i(Xp + € an AL, T + AL) = f(Xp, 1) (15)

Lastly, for the periodic boundaries, the leaving distribution
functions at one side are the unknown functions that arrive
at the opposite boundary. Then, this BC can be represented
by fi(xy, 1+ A1) = f7(x, + L — ¢;Az, 1), being L the size of
the domain at the normal direction of the boundary.

2.2 Dimensional thermal LBM

Because of its generality, the LBM can be also used to simu-
late heat transfer problems. There are several methods pro-
posed in the literature to deal with heat transfer [23]. In this
case, we chose the double-distribution-function model.

In this model, it is defined another distribution func-
tion g; for the temperature field 7' [23, 32]. Thus, while the
momentum evolution is simulated by Eq. 2, the evolution of

@ Springer

the temperature field is calculated by Eq. 16 for the BGK
operator [11].

8i(X+ AL t+ Ar) — g;(x, 1)

Y [g:i(x. 1) — g%, 0)] + S, (x, A (16)
r !

By the Chapman—Enskog analysis, we can recover the
energy conservation equation, given a relation between
the relaxation time of the thermal LBE, 7, and the ther-
mal diffusivity of the fluid a: a = (z; — 0.5A1)c?. This
relation represents the link between the LBE and the
energy equation.

In this case, the source term is related to the volumetric
heat source instead of external forces and can be similarly
formulated by Eq. 17 [27, 38]. It is important to note that g
has units of [K s7'], because it is defined as ¢ = ¢’ /(pc,),
were ¢’ is the volumetric heat source in (W m™) and c,
stands for the specific heat at constant pressure of the mate-
rial in (J kg”'K™).

ArN
S, = (1= 55w a7
The equilibrium distribution function, g?q, considered in
Eq. 16, is related to the temperature and can be defined by
Eq. 18.

g%, 1) = w;T(x t)<1 + u) (18)
i ’ i 4 2

Cs (x,1)

It should be mention that in the previous relation, we used a
linear velocity-dependent form of the equilibrium distribu-
tion function [38]. But if necessary, it is also possible to
consider a second-order formulation, given by:
g?q = wiT[l + cp—zu + (c;)z - %] For the simulations per-
formed in this W(;rk, we used 0niy the first-order equilibrium
distribution function (Eq. 18), being enough for the desired
results.

The macroscopic temperature can be found from the zero
moment of the distribution function g;. However, differently
than for the flow simulation, in the presence of volumetric
heat generation, it is necessary to add an extra term to this
moment of g;, as shown in Eq. 19 [69].

q-1
T(x 1) = ) g%, 0)+ %c’](x, ) (19)
i=0

We also used the MRT collision operator for the ther-
mal LBM. In this case, considering the D2Q9 veloc-
ity set, the collision matrix can assume again the
diagonal form. In this paper, it will be used the same
relaxation parameter as employed in Martins and
Goémez [55], but adapted for the dimensional LBM
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[A;] = diag (0,1/At, 1/At, 07, 1/At,0p, 1/At, 1/At, 1/Af), being
@y = 1/7;. The transformation matrices remain equal to
those used for the simulation of fluid flow.

For the heat transfer simulations with the thermal LBM,
five kinds of boundary conditions were considered: inlet
with prescribed temperature, fixed walls with prescribed
heat flux, fixed walls with prescribed temperature, outlet
and symmetric boundaries.

For inlets with fixed temperature, we used the anti-
Bounce-Back scheme [19, 45, 86]. This BC is given by
Eq. 20, where g is the post-collision distribution function,
i is the opposite direction to i, X;, represents the coordinates
of the boundary node and the subscript w indicates the vari-
ables values at the boundary wall.

gi(Xp, t + A1) = =g (X, 1)
(ci i uw)2 _ uy, - 4y,
2ct 22

(20)

+2w, T, 1+

The same BC can be also used to treat fixed walls with
prescribed temperatures [38]. In this case, the bound-
ary velocity u,, is set to zero and the BC reduces itself to
gi(Xp, 1+ A1) = —g7 (X, 1) + 2w, T,,.

The fixed wall Neumann BC (prescribed heat flux) was
modeled with the scheme given by Li et al. [46], consider-
ing the D2Q9 velocity set with the halfway boundary. This
scheme is based on the modification of proposed by Yoshida
and Nagaoka [84] for the D2Q5. This BC is given by Eq. 21,
where 4; is a constant and ¢”’ is the heat flux normal to the
boundary (units of [W m~2]). There are many possible values
of 4; according to Li et al. [46], but we propose the adoption
of A; = 2w;/c?, giving 4,534 = 4/6 and As¢ ;4 = 1/6.

g:(Xp, 1+ A7)
INAV A

=g (Xp,t +/1'<—) —
8 (. 1) + 4, Ax (pcp

The symmetry boundary condition is the same used for the
fluid moment distribution functions, as previously explained
in Sect. 2.1.

For the outlets, we considered the first-order extrapola-
tion scheme: g,(xy, t + Af) = g;(X,_y, + At). It is important
to mention that the first-order scheme was used instead of
the second-order one because the first is more stable than
the second [59].

@

2.3 Dimensional LBM version for two-phase
systems

There are several LBM models in the literature tailored for
multiphase and multicomponent systems [23, 30, 47, 66, 71,
72,76]. In this paper, we provide a brief overview of the model
proposed by Liang et al. [52], and subsequently, we adapt it

for simulating two-phase systems using the new proposed
dimensional approach. This multiphase model is founded on
the evolution of two distribution functions: /; and z;, designed
to capture the movement of the interface and the pressure field,
respectively.

These authors have developed a model akin to those pro-
posed by Ren et al. [64] and Wang et al. [78], which relies on
utilizing the conservative Allen—Cahn equation for interface
tracking. The Allen—Cahn equation, depicted in Eq. 22, serves
as the cornerstone of their approach [13]. In this equation, ¢
denotes the order parameter, responsible for delineating the
regions occupied by each phase, where ¢ = 1 corresponds to
the liquid phase and ¢p = O represents the gas phase. Addition-
ally, W symbolizes the interface width, as the model considers
a diffuse interface between the distinct phases, while M repre-
sents the mobility and n, the normal direction to the interface,
calculable asn = V¢/| V|

d,p+V-(gu)=V- [M(qu _ Mnﬂ

W (22)

Considering the BGK collision operator, the LBE responsi-
ble for the interface tracking, linked to %, functions, is rep-
resented by Eq. 23. The source term S, is formulated to
ensure the recovery of Eq. 22 through the Chapman—Enskog
analysis. Consequently, this term is expressed by Eq. 24.

hi(X + ¢;At, t + At) — h(X, 1)

= Al - 1%, 0)] + 8, (x. AT (23)
s :
¢
- |0/(gu) + 2 44-n|
S, = l_ﬂ w, CL W 24)
i 2z, c?
The temporal derivative in Eq. 24 can be com-
puted using the explicit Euler scheme:
o,(¢pu) = [p(Hu(?) — Pp(r — Au(r — A]/Ar [53]. Fur-

thermore, 7, represents the relaxation time for the inter-
face tracking LBE, associated with the mobility value as
M= (ry— O.SAI)Cf. The equilibrium distribution function
is calculated considering a first-order expansion, as shown
in Eq. 25.

« c-u
A1) = w0 1+ - 25)

S S

Similarly to the traditional LBM, we can obtain the macro-
scopic quantities by the moments of the distribution func-
tions. Thus, the order parameter is calculated by the zero
moment of /; using Eq. 26, and both the macroscopic density
and kinematic viscosity are calculated as a linear function
of ¢, such as p = p, + ¢d(p; — p,) and v =v, + p(v; — v,).

@ Springer
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In these relations, the subscripts g and / refer to the gas and S = (1 _ At ) o
liquid properties, respectively. & 2¢ /)1
Ay [e-(F+Fy)  @Vp):(ge)]  GD
-1 = <1 - —)wi[ +
pex.0) = Y h(x.0) (26) 2z c? c;
i=0

In the case of pressure evolution, the original authors
employed an incompressible transformation similar to
that proposed by He et al. [28], resulting in Eq. 27 for
the BGK collision operator. Importantly, it should be
noted that the MRT operator can also be used to per-
form the collision process for z; functions, applying
Eq. 10 for the moments of these functions. For the D209
model, the adopted values for the collision matrix are

[A]l= diag (1/Ar,1/At,1/AL,1/At @y, 1/AL1/AL1/2,1/7), With
w,=B/AN2/At—,)/(B/Al - o).
(X + ALt + A1) — 7;(X, 1)

(27)

- _% 7000 = 0] + 5, (x, DA

For calculating the equilibrium distribution functions, the
authors proposed Eq. 28 to satisfy the divergence-free condi-
tion. In this equation, s; represents the term computed using
Eq. 29 [49, 50]. Additionally, in Eq. 28, p is defined as the
total pressure.

EE2(w; = 1) + p(x, Ds(w), if i = 0

x0) =1 4
Zl ( ) P(zfz,t) w; + p(x’ t)si(u)’ if i # 0 (28)

w ci'“+(ci‘“)2 u-u

(n) =w; -
Sl Wz C? 2C;4 2C? (%0 (29)

To recover the NSE for a two-phase system, as represented
by Eq. 30 (where ¢ is the dynamic viscosity), the relaxa-
tion time is once again related to the kinematic viscosity as
v=(t— O.SAt)cf. In this scenario, two types of body forces
are employed. Fy is defined as the body force acting over the
domain, while F represents the force related to surface ten-
sion at the interface. Various methods exist in the literature
for calculating this force, but in this paper, we considered the
potential form, which is related to the chemical potential (y)
as: F, = uV¢ [33, 88]. Therefore, the forcing term for the
pressure evolution LBE is defined by Eq. 31 [53].

d(pw)
Y + V- (puu) 30)

=-Vp+V-[((Vu+Vu)]+F,+F,

@ Springer

Now, the macroscopic quantities related to the pressure and
momentum of the fluid are described by Eqs. 32 and 33,
respectively. It is noteworthy that in these equations, the
pressure depends on the velocity. Therefore, it must be cal-
culated after obtaining the velocity from Eq. 33.

2

S

px, 1) = (1_—W0)

g-1 A (32)
Z(X, 1) + Ttu(x, £) - Vo(x, ) + p(X, )sy(u)
1

i=

g—1
u(x, Hp(x, 1) = Y ezi(x, 1) + % [F,x,0)+Fyx,0]  (33)
=0

The knowledge of the chemical potential, u, is crucial for
conducting simulations using the presented LBM. This ther-
modynamic property can be derived from the free energy, ¥,
of the two-phase system [63]. The free energy is a function
of density and given the linear relation between p and ¢, the
chemical potential can be determined as: y = d,'¥(¢). The
total free energy of the system is computed using Eq. 34,
where y(¢) denotes the volumetric free energy (or the poten-
tial), and « is a constant associated to the strength of the
surface tension [34].

v= [ wior+ §Ivorav 4)
\4

In regions close to the critical point, certain simplifica-
tions of the fluid equation of state (EoS) can be applied
[67]. One widely used simplification is expressed as fol-
lows: y(¢) =~ pp>(1 — ¢)?, where f represents a constant.
Although originally developed for regions near the critical
point, this approximation has found widespread application
in multiphase LBM models based on mean-field theory [16,
17, 44, 87].

Given that u = 0,¥(¢p) = 9w — kV2¢ [7], the chemical
potential can be determined using Eq. 35. Here, the con-
stants k and f are intricately linked to both the interface
thickness (W) and the surface tension of the fluid (¢) through

relationships k = %o-W and f = 127”

=0,y — KV =4 — (b — 0.5 - xV$  (35)

Furthermore, the equilibrium of a planar interface between
two phases can be effectively represented by Eq. 36, where
y(x) denotes the coordinate perpendicular to the interface.
To prevent instabilities, we initialize both the macroscopic
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density and ¢ with this equilibrium profile at the onset of
the simulations.

_1.1 2r(x)
P(x) = > + > tanh< W ) (36)

In previous equations, such as Eq. 35, it becomes evident
that computing the second-order derivative of ¢ is neces-
sary. Utilizing the linear relationship between p and ¢, we
can express density gradients as Vp = (p; — p,)V¢. Thus,
density gradient calculations can be performed via the first
derivative of ¢. Following the approach outlined by Liang
et al. [52], spatial gradients and the Laplacian of ¢ can be
efficiently computed using a second-order isotropic central
scheme, as described by Eqs. 37 and 38, respectively.

_ wiGP(x + ¢;Ar)
Vo(x) = #20 T 37
2w; |p(x + ¢;Af) — P(x)
RZOEDY | 0 | (38)
i#0 5

In relation to the interface normal vector, it is important to
mention that its calculation in the numerical code must be
performed carefully. This vector is defined asn = V¢ /| V|,
and thus, there are nodes were |V¢| = 0. Consequently, the
division by this term can result in extremely high values.
Therefore, the division is performed only where |[V¢| # 0,
otherwise n = 0.

2.4 Limitations of dimensional LBM

It should be noted that the limitations of the dimensional
LBM are the same as for the traditional LBM, as the main
equations of the method, namely the LBE and BC, are essen-
tially the same. The only difference is that in the dimensional
LBM, the non-dimensionalization process is ignored, and all
the variables are treated directly in their respective physical
(SI) units. These limitations are manly related to the choice
of the relaxation parameter = and a limit for the maximum
value of cell velocity.

For instance, considering the BGK collision operator for
the D209 scheme and the traditional equilibrium distribu-
tion function f; for fluid flow (Eq. 3), = must not be too
close to At/2 (or = > At/2), and the maximum velocity in
any cell must satisfy |up,,,| < \/1/_3AX/AI [38]. This con-
dition applies to both dimensional and traditional LBM.
However, for the traditional LBM, as the non-dimensional
process is performed, these conditions becomes 7 > 1/2 and
[0 ] < \/m, because generally Ax = A7 =1 Lu. (the ~
indicates variables in lattice units, also represented as 1.u.).

It is also important to emphasize that the requirements of
low-density variations and low Mach numbers, which must

be satisfied by the traditional LBM for the simulation of
incompressible flows, are also met by the dimensional LBM.

2.5 Application of dimensional LBM
for non-dimensional problems

The non-dimensionalization process utilized in traditional
CFD methods proves beneficial when the problem can be
characterized with a known set of non-dimensional param-
eters, such as Reynolds, Rayleigh or Weber numbers, for
example. This approach is advantageous because it allows
multiple problems to be reduced to the same non-dimen-
sional problem through similarity. Typically, in such cases,
the macroscopic equations like the Navier—Stokes equation
(NSE) or energy conservation equation are non-dimension-
alized, and the problem is numerically solved using non-
dimensional variables.

First and foremost, it is crucial to differentiate between
the non-dimensionalization process just described and the
one conducted in traditional lattice Boltzmann method
(LBM). While the former aims to generalize the mathemati-
cal formulation of the problem, attempting to represent the
phenomenon through a set of non-dimensional parameters,
the latter involves transforming from physical space to lat-
tice space, where A7 = AX = 11.u. This transformation is not
necessarily solely based on the non-dimensional numbers
characterizing the problem.

Hence, the dimensional LBM can be employed to solve
the non-dimensional form of physical problems, meaning
the solution of non-dimensional macroscopic equations
using the dimensional LBE (without transitioning to lat-
tice space). Consequently, the only modifications entail the
relationship between relaxation parameters and macroscopic
equations, along with the utilization of entirely dimension-
less variables.

For instance, let’s consider an isothermal incompress-
ible lid-driven cavity flow, where the governing equations
are represented by the NSE. If we neglect the influences of
gravity and wall roughness, the Reynolds number emerges
as the key non-dimensional parameter characterizing the
flow dynamics, given by Re = pU, L/{, where L represents
a characteristic length (such as the channel height), p denotes
the fluid density, ¢ stands for the fluid dynamic viscosity and
U,, signifies the lid velocity. Subsequently, by denoting the
non-dimensional variables with asterisks *, the non-dimen-
sionalized form of the NSE can be expressed as follows:

D*u*
Dr*

* ok 1 *2__%
=-Vp"+ —V .
PV (39)

Thus, with the BGK collision operator, through the Chap-
man-Enskog analysis, the relaxation time becomes linked
to the Reynolds number rather than the kinematic viscosity:
Re™! = (z* — 0.5Ar*)c*. Consequently, we can proceed to
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solve the problem using the dimensional LBM. However, in
this approach, we must non-dimensionalize the macroscopic
fields (velocity, pressure and density) by p, V and L and the
previous relation for the relaxation parameter.

The distinction lies in the fact that the variables denoted
by * arise from the traditional non-dimensionalization pro-
cess, aiming to generalize the problem through a set of
non-dimensional parameters, while those represented by ~
originate from the transformation to the lattice space, char-
acteristic of conventional LBM’s non-dimensionalization
approach.

We observe that the conversion to the lattice space is not
a prerequisite for solving non-dimensional problems. The
dimensional LBM presented here enables the solution of
such problems directly, essentially entailing the solution of
the non-dimensionalized macroscopic equations without
conversion to lattice units.

For the sake of comparison, we solved an example in
Sect. 3.2 with the dimensional LBM considering the NSE
both in physical units and in its non-dimensional form, and
also with the traditional LBM. We compared the results
between them and performed a stability analysis of the three
approaches.

3 Results

In this section, we present the simulation results obtained
with the proposed dimensional LBM for five main problems.
The results are compared with those of conventional LBM to
verify that both methods achieve the same results. Further-
more, to evaluate the performance and accuracy of the LBM,
the numerical results were compared with a reference solu-
tion, being analytical when available, from finite difference
(FD) solutions or from literature. For these comparisons, we
use the relative error norm L, [20, 65], here called “global
error” and defined by Eq. 40.

For the case in which the FD solution was taken as a
reference, we carried out a convergence study to ensure
the good quality of these reference results. To achieve this
objective, it was established that the global errors between
two consecutive simulations, one with a grid size of Ax and
the other with Ax,.,, = Ax/2 (reference solution), must be
less than or equal to 0.01%, meaning E, < 0.01%.

ZX(Iref - )(num)2
2
ZI!( ){ref

As LBM is naturally a transient numerical method, to check
whether the numerical solutions have reached the steady
state, we apply the condition given by Eq. 41. In this rela-
tionship, y represents the main variable to be verified (veloc-
ity for Poiseuille flow or temperature for forced convection

Ey(%) = 100 (40)

@ Springer

problems, for example), and 7 + 1000 is the instant of 1000
steps of time after 7.

max [¢(x,7+ 1000) — y(x,7)] < 107° 41

Furthermore, three stability analyzes were performed
comparing the stable regions in the graph Az:Ax for both
conventional and dimensional LBM. We selected one
benchmark problem for each LBM model: the lid-driven
cavity for fluid flow LBM (Sect. 2.1); forced convection
in a hydrodynamic channel developed for thermal LBM
(Sect. 2.2); and the static bubble test for the multiphase
LBM model (Sect. 2.3).

In simulations, the procedure for choosing the values Ax
and At for the dimensional LBM is similar to that of other
explicit numerical methods (finite difference or finite vol-
ume methods, for example). First we define arbitrary values
of Ax and At, which must always respect the stability con-
ditions (see Sect. 2). Next, we perform a spatial analysis
of the grid size to check the convergence of the solution,
stopping when the desired convergence is reached. In this
analysis, Az can be left unchanged or changed if necessary
to achieve stability. For more complex cases, the stability
of the simulations can be improved using the MRT colli-
sion operator. As the non-dimensionalization process is
not performed for the dimensional LBM, the adjustment of
Ax and At can be performed directly and simply, in a simi-
lar way to the traditional numerical methods mentioned
previously.

All thermodynamic and transport properties employed for
the fluid simulations were calculated using the free Coolprop
python library [5].

3.1 One-dimensional heat diffusion

The first problem relates to determine the axial tempera-
ture distribution of a fuse used to prevent a power electronic
module from breaking due to a high current. This problem
was taken from Nellis and Klein [61], problem 3.8—1, and
we address it here because it presents an interesting engi-
neering problem involving one-dimensional heat conduction.

The fuse is a wire (without insulation) with length
L = 0.08 m and diameter d = 0.0015 m. Heat is lost from the
surface of the fuse through convection to the surrounding air
atT,, = 20 °C with a heat transfer coefficient of h=5Wm?2
K~!. The fuse is made of an aluminum alloy with the fol-
lowing properties, assumed constant: p = 2700 kg m~3,
k=150 W m~'K~!, ¢, =900J kg~ 'K~! and electrical resis-
tivity of res=1- 1077 Q m.

Initially, the fuse has an uniform temperature of
T, =T, =20°C. At this point, it is subjected to a current
of 1, = 1004, resulting in uniform volumetric heat generation
within the fuse material. Both ends of the fuse (x = 0 and
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x = L) are maintained at a constant temperature of 7,, = 20 °C.
The objective is to determine the axial temperature variation of
the fuse, neglecting radial and angular temperature variations
due to the small diameter of the fuse.

The governing equation for the energy conservation in the
fuse is represented by Eq. 42. This equation is derived consid-
ering that the heat generated due to the current passing through
the fuse is modeled as ¢ = (16/*res)/(x*d*), and that the
total heat lost by convection per unit of volume is given by
Q" = (adL)W(T - T,)/(0.25zd* L) = 4W(T - T,,)/d.

4n(T —T,,)
pcyd

aT B C-)Q_r]-v qfll

=% p_cp - (42)
We examined both transient and steady-state solutions of
the problem, employing both LBM models with BGK col-
lision operator using the D103 velocity scheme. The cor-
responding lattice velocities are ¢, = 0,¢; = cand ¢, = —c,
with the respective weights, w, =4/6, w;, =1/6 and
w, = 1/6. The sound speed remains ¢, = c/\/§ [62]. In
all simulations, we employed the discrete time and space
intervals of Ax =4 -10"*m and Az =2.5-10~*s. We cal-
culated a single source term for the LBM considering the
sum of volumetric heat generation and convective losses as
g=4"/(pc,) - ANT - T)/(pc,d). To avoid implicitness
with the LBM, the convective losses were calculated using
the temperature determined from the previous time step.
Regarding the BCs, we implemented fixed temperatures at
x = 0and x = L using Eq. 20.

The transient LBM results were compared with numeri-
cal solutions obtained using the FD method. We employed

160 t =1.0s N
140 [ .
t=0.8s
120 i
t = 0.6s
O 100 | b
=1
80 t =04s i
60 b
t=0.2s
40 H O  Conventional LBM -
%  Dimensional LBM
FDM
20 L L T T T L L
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

x (m)

(a)

a forward time central space scheme to solve Eq. 42, with
Axppy = 4.0 - 107 m and Aty = 2.5 107 s, ensuring
that E, < 0.01%. The steady-state LBM results were com-
pared against the analytical solution provided by Eq. 43,

where m = \/(;lPer)/(kAc), and Per and A, are the fuse

perimeter and cross-sectional area, respectively.

‘//IA
T(x) = <TW—T00— g )

hPer
mL __ _ mL v///A
1L Vg (A= o] g T
e—WLX —_ emx e—mx —_ emX hPer
(43)

The transient solutions for conventional and dimensional
LBM, as well as for the FD method at various times, along
with the global errors between each LBM and FD solutions,
are presented in Figs. 2a, b, respectively. The transient solu-
tions exhibit the expected physical behavior, demonstrating
an increase in fuse temperature over time, with the highest
temperatures observed at the middle lengths of the fuse. The
relative errors diminish with time as the system approaches
a steady-state regime, and they remain small for all cases.
Both LBM models yield identical results.

The steady-state solutions obtained with LBM models
and the analytical solution given by Eq. 43 are depicted
in Fig. 3. The stationary results accurately portray the
temperature distribution, with the maximum temperature
occurring at the middle of fuse length. It is worth noting
that we only present this temperature distribution for the
purpose of comparison between the LBM and analytical
solutions, as the fuse alloy would melt at approximately
500°C. The global relative errors for the stationary

0.015 T T T T T
—=&— Conventional LBM
—%— Dimensional LBM |

0.014

T

T

0.013

T

0.012

T

0.011

Ey (%)

T

0.009

T

0.008

T

0.007

T

0.006

0.005 | | | | |
0

Fig.2 a One-dimensional axial temperature variation of the fuse for some time steps, obtained by the FD scheme and the conventional and
dimensional LBM. b Temporal variation of the global errors for the conventional and dimensional LBM, in comparison with the FD solutions
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Fig. 3 Steady-state axial fuse temperature distribution for the numeri-
cal and analytical solutions

solution were consistent for the conventional and the
dimensional LBM, with E$™ = EZ*™ = 0.0029%.

In this example, we observed that both the dimensional
and the conventional LBM yielded identical results with
very good accuracy compared the reference solutions.
This finding indicates that the proposed dimensional
LBM can be confidently used, and that the non-dimen-
sionalization process can be avoided without affecting the
results obtained with the method.
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3.2 Lid-driven cavity

After solving a pure heat diffusion problem, we proceeded to
address a 2D isothermal and incompressible fluid flow prob-
lem: the lid-driven flow in a square cavity. We considered
water at 25°C and 1 atm as the working fluid, with properties
summarized in Table 2 (liquid properties in first column).
The square cavity has dimension L = 2.5 mm. To ensure
comparability with benchmark solutions from literature [21],
the Reynolds number was set to Re = 1000. The Reynolds
number is defined as Re = U,,L/v, allowing us to determine
the lid speed from this non-dimensional parameter.

Here, we considered the steady-state solution obtained
with a 250 x 250 grid using both the traditional and the
dimensional LBM. Additionally, with the dimensional LBM,
we solved both the physical and non-dimensional NSE, as
explained in Sect. 2.5. The BGK collision operator was
employed for all the three approaches.

The results for the dimensional LBM are depicted in
Fig. 4, while the comparison against the literature solu-
tion is presented in Fig. 5. As expected, the three LBM
approaches (dimensional LBM, dimensional LBM with
non-dimensional NSE and conventional LBM) exhibited the
same global deviation in relation to the reference numerical
solution: 1.9513%. This deviation was calculated by Eq. 40.

Next, we investigated how the value of |[u|™ that guar-
antees stability changes with the Ax/At ratio. Keeping
the value of = constant, we represented the stability limits
found in Fig. 6a. Both the dimensional and conventional
LBM presented the same |u|™* values for the entire range
of tested Ax/At¢. Our analysis revealed a linear relationship

Fig.4 a Speed contours (in ms™') and b streamlines for the dimensional LBM, considering the lid-driven cavity problem for Re = 1000
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Fig.5 Comparison between the results from dimensional LBM, from
dimensional LBM with the non-dimensional NSE and traditional
LBM, having as reference the results from Ghia et al. [21] for Re =
1000

between Az and Ax values, dictated by the |u|™* limitation:
Ax > 0.64225A¢.

Additionally, we conducted a stability analysis to deter-
mine the stability region in A#:Ax chart. This region is
depicted in Fig. 6b, revealing that both the dimensional
and conventional LBM models exhibit the same stability.
Based on these results, we can conclude that the dimen-
sional LBM will demonstrate the same stability outcomes
as the conventional LBM, given that both employ the same
discrete equations.
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3.3 Heated channel

The third problem involves simulating forced convection in
a two-dimensional channel (2D). The channel consists of
two parallel plates subjected to external heat fluxes. This
case was inspired by a problem from Nellis and Klein [61],
problem 5-11, and we addressed it here due to its relevance
in engineering, particularly in applications such as heat
exchangers, electronic cooling microchannels and microflu-
idics. Also, it involves simulating a forced convection prob-
lem where we utilize the LBM to simulate both fluid flow
and energy conservation. We employ the models presented
in Sects. 2.1 and 2.2, respectively.

In this problem, we considered three different cases of
forced convection between parallel plates. The first case
involves simulating a fluid flow both thermally and hydro-
dynamically developed flow at the entrance of the channel,
which is then subjected to alternating heat fluxes at the top
and bottom boundaries. In the second case, we analyze a
developing flow (both thermally and hydrodynamically)
under a constant heat flux applied to both walls. The last
scenario involves a developing flow with alternating heat
fluxes at the walls. We analyzed the results of simulations
for all three cases at the steady-state regime.

The geometry of the channel is H : L =0.0005 m:0.010 m,
where H and L represent the channel height and length,
respectively. The fluid used is water, characterized by con-
stant properties calculated at the mean temperature of 301 K,
as summarized in Table 1. For this case, we considered the
following BC: an imposed heat flux at the bottom and top
walls (Neumman BC), a constant temperature inflow BC at

104 -
g
4
107 1
- Dim. LBM
O  Conv. LBM
& Dim. LBM with non. diu. NSE
10-6 L | L
10”7 106 107 10 1073
At (s)
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Fig.6 a Maximum velocity modulus [u|™** for distinct values of grid velocity Ax/At. b Stability map for the lid-driven cavity problem
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Table 1 Thermodynamic and

-3
transport properties of water P 996.279 kg m

at 301 K and 1 atm, calculated v 8.382e—7 m%s~!
f}rlom.Belll et al. [fS]h usfed f(zlr k 0.611 W m-'K-!

the simulation of the force: el 3
convection in the heated Cl’ 4180.333 T kg” K™'-m
channel a 1.467e~7 m?s™!

the left boundary and an outflow BC at atmospheric pressure
at the right wall.

We implemented the LBM boundary conditions with
the following considerations. For the fluid flow aspect, we
employed Eq. 14 for both inlet and stationary walls. The out-
let BC was modeled using Eq. 14, as the channel is open to
atmospheric pressure. For the simulation of the temperature
field, we implemented the imposed heat flux on the bottom
wall using Eq. 21, while the inlet BC was modeled using
Eq. 20. At the outlet, we applied the first-order extrapolation
scheme, as explained in Sect. 2.2. Due to channel’s symme-
try about its horizontal center line (with heat flux applied
to both walls), we simulated only half of the domain (H/2),
applying a symmetric BC for the top wall (resting at the
y-center of the channel), as detailed in Sect. 2.1. For the
analysis of results, the solution is mirrored to account for
the entire channel.

In all the LBM simulations (for both models), we
employed the D2Q9 velocity scheme, utilizing the BGK
collision operator for fluid flow and the MRT for tempera-
ture field simulation. The MRT approach was necessary for
solving the energy conservation equation due to stability
and accuracy issues associated with the simulation of the
developing flow.

For the first case, we assumed that water enters the chan-
nel with both thermally and hydrodynamically developed
conditions. The velocity profile at the inlet is modeled by
Eq. 44, where u,, = 0.2 m s~! represents the mean velocity
of the fluid. The temperature profile in this inlet region is
described by Eq. 45, with T;, = 300 K as the mean tempera-
ture at the inlet. The y-axes represents the direction along
the channel height, varying from the bottom to the top plate
as 0 <y < H. The x-axes points into the direction of the
channel length, varying from 0 < x < L, from the channel
inlet to outlet.

2
u(y) = 6um<% _ %) (44)

/!

TG) =T, + qskH [—(%)4 + 2(%)3 - % +0.243] (45)

It is assumed that both plates are subjected to a peri-
odic heat flux described by Eq. 46. The mean heat flux is
maintained at ¢!’ = 40000 W m~2, with a variation about
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Ag” = 40000 W m~2, occurring at intervals of L, = 1 mm.
The signal function in the heat flux definition (sign) returns
+1if the argument is positive and —1, if it is negative.

q"(x) = 4" + Aq sign [sin <?>] (46)
h

Given the conditions of the problem, the macroscopic equa-
tion describing the energy conservation for the first case is
provided by Eq. 47. This equation was once again solved
using a FD scheme to serve as a reference solution. The FD
solution was obtained following the procedure outlined in
Nellis and Klein [61], with Axgpyy = Ayppy = 1.25 - 1079 m
for the entire channel, without applying symmetry BC.

T (T O Y
0x oxr  0y? “7

The numerical solutions are shown in Fig. 7. For both LBM
models, we used a spatial grid interval of Ax = 5.0 - 10°m
and a time step of At =2.0-107% s. The LBM solutions
correspond to the transient version of Eq. 47. The results
depicted in Fig. 7a demonstrated excellent agreement
between the LBM results, as well as between the LBM and
FD solutions. The global errors measured for the LBM mod-
els, using the FD solution as reference, were E‘2jim =0.010%
and E5°™ = 0.012%, indicating very good agreement, with
slightly smaller error for the dimensional LBM. Overall, the
water temperature increases along its flow through the chan-
nel and exhibits oscillations in the heights near the heat flux
sources.

In Fig. 7b, we show the variation of the local Nusselt
number, Nu, with x for the dimensional LBM. Nu varies
periodically with x, showing the same variation for each
period of oscillation because the flow is completely devel-
oped. In this case, the average Nusselt number is equal to
Nu = 6.67.

In the second case, we considered a developing water
flow in the same channel under a constant heat flux. Now,
the water enters with a uniform velocity and temperature
of u,, =0.02 m s~ and T;, = 300 K, respectively. The
fluid is the channel is subjected to a uniform heat flux of
g" =40,000 W m~2. Treating of a developing flow problem,
there are more changes in the velocity and temperature fields.
Thus, we used lower values for the discrete time and space
interval, about Ax = 2.50 - 107®m and Az = 6.25 - 10”7 s, in
order to obtain a convergent solution.

The temperature and velocity profiles given by the
dimensional LBM for several cross-sections along the
channel are shown in Fig. 8. We can observe that after
a certain length along the channel, the velocity profile
remains unchanged, indicating that the flow is hydrody-
namically developed. For flow between parallel plates at
low Reynolds numbers and a uniform profile at the inlet,
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Fig. 7 a Temperature variation along the channel X-direction for several Y-values, obtained with the FDM and the conventional and dimensional
LBM. b Local Nusselt number at the channel walls for the dimensional LBM simulation
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Fig.8 Temperature (a) and velocity (b) Y-profiles at several cross-sections along the channel length for the developing flow

the hydrodynamic entrance length can be calculated as
L, = D,(0.3125 4+ 0.011Re) [1]. In this case, with a chan-
nel Reynolds number of Re , =23.86, the predicted
hydrodynamic entrance length is L, = 0.57 mm, while
the length measured from the LBM results is approxi-
mately L, = 0.60 mm. This result from simulations is
consistent with the expectation from the analyzed rela-
tion. It should be noted that these relations are theoretical
estimations. Additionally, it is known that the developed
velocity profile must follow the analytical relation given
by Eq. 44. Comparing the profile for x = 0.60 mm with
the analytical velocity profile, we found a global error of

about £, = 0.1575% for both conventional and dimensional
LBM.

Similarly, at certain X-values, the temperature in the
Y-direction case to vary in shape, increasing only in magni-
tude as the channel is heated, while maintaining the same AT
in y. From this observation, and noting that the local Nusselt
values do not change after approximately x = 2.5 mm (see
Fig. 9b), we conclude that the channel length is sufficient
for both the velocity and thermal profiles to become fully
developed. Therefore, we can compare the developed value
of the local Nusselt number with the expected value from the
literature. For a developed flow between two parallel plates
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Fig.9 a Temperature profiles along the x-direction at several Y-values for the developing flow with oscillating heat flux. b Local Nusselt number
for the developing flow, considering both constant and oscillating heat flux and for the developed flow according to [70]

with constant and equal heat fluxes, the Nusselt number is
Nu = 8.24 [70]. In the results provided by the dimensional
LBM, we obtained Nu, g); = 8.15, resulting in a very good
agreement—a relative error of 1,02%. The variation of the
local Nusselt number on the channel walls is presented in
Fig. 9b.

In the last case, the developing channel flow is subjected
to an alternating heat flux given by Eq. 46, in order to com-
pare the impact of this BC variation on the local Nusselt
number. The spatial and time intervals used were the same
as for the previous simulation (Ax = 2.50-107% m and
At = 6.25- 1077 s). The steady-state temperature profiles
obtained for this case are shown in Fig. 9a. As the flow is
developing, we can observe a higher influence of the varying
heat flux at the walls on the temperature profiles. As shown
in Fig. 9b, the Nusselt number of the developing channel
flow subjected to an alternating heat flux reaches higher
local values than for the channel under a constant heat flux.
However, the average Nusselt number was N_uconsl = 8.92 for
the constant heat flux and N_uVar = 6.43 for the varying one,
the later being lower than the former due to the intermittency
of the wall heat flux.

The temperature field along the entire channel is depicted
in Fig. 10 for the three simulated cases, revealing several
notable differences. In Fig. 10a, where the flow is fully
developed at the channel inlet, the temperature distribution
shows slight variations along the channel due to the heat-
ing process under the oscillating heat flux. In this case, the
warmer fluid regions near the walls are slightly larger, and
the cold fluid core decreases at the channel outlet. However,
this is the only case where the temperature of the core fluid
is almost equal to the smaller input temperature value. The
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other two cases involve developing flow under the constant
and oscillating heat flux, Fig. 10b, c, respectively. In the case
of the constant heat flux, the outlet mean temperature higher
due to the constant heating experienced along the channel.
The temperature field follows a similar pattern for the the
developing flow subjected to an oscillating heat flux, but the
convective heat transfer into the center of the channel is less
pronounced due to the intermittency of the heat flux.

The higher average Nusselt number was obtained for the
developing flow under a constant heat flux (ﬁ = 8.92). This
value is even higher than the theoretical one for developed
flow, Nu = 8.24, due to the effect of the development of
the hydrodynamic and thermal boundary layers. For the two
cases with oscillating heat flux, the average Nusselt numbers
were lower, with values of Nu = 6.67 and Nu = 6.43 for the
developed and developing flow, respectively. In this case,
the inlet cold flow developing region decreased the total heat
transferred from the wall heaters. The present problem could
mimic the heat transfer process in a refrigerating channel of
electronic devices.

In addition, it is important to mention that viscous dis-
sipation was neglected in all simulations in this section. We
based this assumption on the small values of the Brinkman
number, B, (Eq. 48). The highest value obtained was approx-
imately B, = 107>, indicating that the contribution of heat
dissipation due to viscous stress is insignificant for these
cases and can be safely neglected.

2
Cu,

T T "
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In Appendices 1, 2 and 3, we showed simulation results
obtained with the proposed dimensional LBM for other
classical problems, including one-dimensional convection-
diffusion flow, isothermal Pouseuille flow and natural con-
vection in an enclosure. For the first two cases (Appendices
1 and 2), the obtained results are compared with analytical
solutions. However, for natural convection (Appendix 3), the
numerical solutions are compared against benchmark results
available in the literature [14]. In all cases, the dimensional
LBM results were also compared with conventional LBM
results. All tests show very small global errors, indicating
that the proposed LBM is physically coherent and accurate.
Therefore, considering the results discussed in this section
and those provided in Appendices 1, 2 and 3, we can con-
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clude that the dimensional LBM is useful for simulating
applied problems involving heat convection and diffusion.

For a final assessment of the thermal LBM, a stability
analysis was conducted, considering both the dimensional
and conventional approaches. Since we already demon-
strated that both methods have the same stability for the
momentum LBE (see Sect. 3.2), we focused on the hydro-
dynamic developed flow with alternating heat flux for this
analysis. Given that the flow component is already at steady
state, only the thermal LBE needs to be solved.

The stability map is depicted in Fig. 11. Once again, both
LBM models exhibit the same stability regions. Interest-
ingly, it appears that there is no lower limit as observed in
Fig. 6. This is likely because we only solve the energy con-
servation LBE, without addressing the momentum LBE.

Fig. 11 Stability map for the forced convection in the hydrodynamic-
developed thermal developing channel, considering both dimensional
and conventional LBM

Consequently, the limit imposed by |u|™** is absent, leaving
only the diffusive limit related to 7.

3.4 Static bubble

In this section, we studied a two-phase fluid system con-
sisting of one component (a liquid—vapor saturated water
system) and two components (air—water system). Here,
we considered the theoretical problem of a static bubble
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surrounded by a liquid in equilibrium. This is a common
benchmark test that allows for the evaluation of conven-
tional and dimensional LBM performance.

The problem consists of a circular (2D) bubble with
radius R surrounded by liquid, initialized at the center of a
square domain. All the boundaries are considered periodic,
and the order parameter ¢ (and consequently the density
p) profile between the phases is initialized using Eq. 36
to avoid instabilities related to a sharp interface. As the
system evolves over time, it reaches the equilibrium at
the steady state, and the density profile must match the
analytical solution represented by Eq. 49 [88]. Also, the
relation between the pressure difference inside/outside the
bubble (AP = P, — P;,) and the surface tension of the
liquid o follows the Laplace law, given by Eq. 50.

p(xy) = (n J; re) ; Pg) anh
2| Vo= + 6=y - R (49)
W
aP=2 (50)

We use the verification of these two relations to compare the
performance of the dimensional LBM across four different
two-phase systems. The first system is an air—water system
at 25°C and 101.325 kPa (1 atm). The other three systems
consist of a vapor bubble surrounded by liquid phase of satu-
rated water, without phase change, at three different satu-
rated temperatures: 100 °C, 80 °C and 25 °C, respectively.
The thermodynamic and transport properties for each system
are presented in Table 2. To compare the dimensional and
conventional LBM, we simulate the first system (water—air)
with the both methods. The other three systems were only
simulated using the dimensional LBM.

The domain has dimensions of 1 mm:1 mm, and
for each system, we tested six different bubble radii:
0.250 mm, 0.225 mm, 0.20 mm, 0.175 mm, 0.150 mm
and 0.125 mm. The interface width and mobility values
were W =25.0-10°m and M = 1.0 - 107> m? s72, respec-
tively, and we selected discrete time and space intervals as
Ax=5.0-10°m and At = 1.0 - 1077 s for all simulations.
For the air—water system, the BGK collision operator was
applied in all LBEs for both LBM models. In the case of the
other three systems, the MRT operator was implemented
for the two-phase momentum equation instead of Eq. 27, in
order to achieve greater stability. We kept the BGK operator
for the interface tracking LBE (Eq. 23).

A representation of the density contours for saturated
water at 25°C with a bubble of radius R = 0.20 mm is
displayed Fig. 12a. In addition, the results for the density
profile in the X-direction for the six tested bubble radii
with saturated water at 25°C are presented in Fig. 12b. The
global errors for the density profile compared to the ana-
Iytical solution are shown in Table 3 for the four two-phase
systems. We observe that the errors are very low for all
cases, indicating the high accuracy of both LBM models.
For the air—water system, the dimensional and conventional
LBMs exhibit the same errors, suggesting that the dimen-
sional LBM does not affect the accuracy of the LBM for
this problem.

It should be noted that the results presented in Fig. 12 and
Table 3 for saturated water at 25°C were obtained for very
high density and viscosity ratios, namely: p;/p, =43,349.0,
vo/v; =470.9,and {;/{, = 91.8, (see Table 2). These ratios
are exceptionally high and are not fully simulated in the open
literature, underscoring the precision and reliability of the
proposed dimensional LBM.

Considering verification of the Laplace law, we calculated
the pressure inside the bubble (P;,) as the average of all gas
nodes (where ¢ = 0.0). Similarly, we obtained the outside
pressure (P,,,) by averaging the fluid nodes’ pressure (where
¢ = 1.0). The results from LBM simulations, compared

Table 2 Thermodynamic and
transport properties of the four

Air and water—

Sat. water—100°C Sat. water—80°C Sat. water—25°C

. . 25°C, 1 atm
fluid systems considered for
the s.tatic bubble simulations, P (kg m™) 1.184
obtained from [5] 3
p; (kgm™) 997.048
P/ P, 842.1
v, (107m” s71) 155.770
v, (107" m? s71) 8.927
ve/vi 174
I (10-Pas) 1.845
£,(107Pas) 89.006
a/¢, 48.2
o (Nm™) 0.072

0.598 0.294 0.023
958.349 971.766 997.003
1602.6 3305.3 43,349.0
204.493 392.919 4204.120
2.938 3.643 8.927
69.6 107.9 470.9
1.223 1.154 0.970
28.158 35.404 89.004
23.0 30.7 91.8
0.059 0.063 0.072
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Fig. 12 a Representation of the density profiles for saturated water at
25°C, considering a bubble with radius R = 0.20 mm, being the blue
region (inner part) occupied by the gas, and the red (outer part), by
the liquid. b Density profiles at cross sections for each R value simu-

Table 3 E, Results between LBM and analytical solutions of the den-
sity profiles for each value of R™!

R!'(m™) Air-water—25°C, 1 Sat. Sat. water ~ Sat.
atm Dim. and Conv. water— -80°C (%) water—
LBM (%) 100°C (%) 25°C
(%)
4000.0 0.253 0.253 0.253 0.253
4444.44  0.289 0.286 0.286 0.286
5000.0 0.316 0.316 0.316 0.316
5714.29  0.346 0.346 0.347 0.347
6666.67  0.391 0.392 0.392 0.392
8000.0 0.460 0.462 0.462 0.461

with the expected values from the Laplace law, are shown
in Fig. 13, while the relative errors for each simulation are
displayed in Table 4. Once again, we observe that the errors
were the same for both the dimensional and conventional
LBM in the case of the air—water system, as expected. Addi-
tionally, although greater than those for the density profiles,
the errors observed for AP are considerable low. This vali-
dates all the simulated results and underscores the capability
of the multiphase LBM presented in this work to accurately
simulate real fluids with high density and viscosity ratios.
An important consideration is how the literature handles the
relationship between the parameters of the physical system and
their counterparts in lattice space. Commonly, traditional LBM
is utilized for a set of dimensionless numbers and properties

lated, for the saturated water at 25 °C. (Obs: it was represented only
a half of the cross-section, because the domain is symmetric) (color
figure online)

ratios. In simulations of the static bubble test found in the open
literature, authors commonly aim to simulate a density ratio of
pi/ p; = 1000, often justifying that it approximates the water—air
system. However, it is common for the viscosity ratios and sur-
face tension employed in these simulations not to precisely cor-
respond to the physical values of the system.

In the present simulations of the air—water system at 25°C,
following the non-dimensionalization process explained pre-
viously, the following dimensionless parameters were uti-
lized: ¥, = 1.682, v = 3.57-1073, 6 = 5.7648, P, =1.184,
p; =997.084 and M = 0.040. Notably, the dimensionless
surface tension value in this problem, 6 = 5.7648, exceeds
the commonly used range, typically between 0.0001 and 0.2
[25, 26,52, 53]. This “high” non-dimensional value is neces-
sary to maintain the correct correspondence with the physi-
cal value of & = 0.072 N m~. It underscores the importance
of employing the LBM while considering the real physical
properties of the systems, allowing for the study of method
limitations and advantages from a more realistic perspec-
tive. This is the primary objective of the dimensional LBM
proposition, where real physical conditions are automati-
cally taken into account. The challenges now revolve around
obtaining converged solutions, similar to any other tradi-
tional explicit method.

Ultimately, we conducted a numerical stability analysis
for the air—water system, considering both LBM models,
similar to the tests in Sects. 3.2 and 3.3. The stability map is
depicted in Fig. 14. From this figure, we can conclude that,
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Fig. 13 a Pressure difference variation with R™! obtained from the Laplace law and the conventional and dimensional LBM simulations for: a
Air—water system and b saturated water systems

Table4 E, Results between the LBM models simulations and the
Laplace law for the pressure difference in the static bubble problem

R'(m™") Air-water—25°C, 1 Sat. Sat. Sat.
atm Dim. and Conv. water— water— water—
LBM (%) 100°C (%) 80°C (%) 25°C
(%)
4000.0 5.097 4.998 4.998 4.996
444444 4981 4.976 4.976 4.965
5000.0 4.943 4.936 4.936 4.935
571429  4.857 4.853 4.849 4.850
6666.67 4.675 4.667 4.666 4.667
8000.0 4.357 4.349 4.349 4.351

104 . ,
*  Dim. LBM B
O  Conv. LBM /
]
—10°¢

e 7
_dif

/

Az (m

for the multiphase LBM model presented in Sect. 2.3, both
methods exhibit the same stability.

3.5 Layered Poiseuille flow

In this final section, we conduct a dynamic multiphase test to
evaluate the performance of the dimensional LBM. This test
involves a layered Poiseuille flow, which is a flow between
two parallel plates where one phase occupies the lower half-
part of the channel and the other phase occupies the upper
half. The fluid is then subjected to a constant force field that
accelerates both phases in the lengthwise direction of the
channel. Upon reaching equilibrium between viscous forces
and the force field, the system achieves a steady state with a
constant velocity profile in the X-direction. It is important to
mention that we have neglected any disturbance/oscillation
of the interface, considering it as a perfect horizontal region.
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Fig. 14 Stability map for the static bubble simulation with the air—
water system, considering both dimensional and conventional LBM

We studied the stationary solution of the problem, assum-
ing that the dynamic viscosity varies with the position y of
the channel height in the same manner as the density. Adher-
ing to the diffuse interface model followed by the LBM, we
can simplify the NSE to obtain Eq. 51. The profile assumed
for the dynamic viscosity is provided by Eq. 52. To obtain
a reference solution, we solved the problem using a central
second-order FD scheme.

It is important to note that if we were to consider a sharp
interface between the phases, the problem would have an
analytical solution [51, 64]. However, for coherence in the
comparisons between the LBM models and the reference
solution, we preferred to use the FD scheme described
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previously. This scheme allows the consideration of a diffuse
interface, represented by Eq. 52, consistent with the assump-
tions of the multiphase LBM model. Other authors in the lit-
erature have also made similar choices [18, 85]. The spatial
interval used for the FD scheme was Ayppy = 4.0 - 1078 m,
chosen to meet the convergence criteria established for the
FD solutions at the beginning of the section.

du(y)

d —
d_y[g()))d_y] +F, =0 (51)

442 (52)

_@ry G- <2y—H>
2 2 w

Here, we considered the same four two-phase systems as in
Sect. 3.4, applying both LBM models only to the air—water
system. For the other three cases, which are saturated water
systems at different temperatures (100°C, 80°C and 25°C),
we only simulated using the dimensional LBM. The channel
height was set to H = 0.50 mm, and since the steady-state
solution does not depend on the channel length, we assumed
a total channel length of 10Ax to reduce the simulation time.
For LBM simulations, we used the D2Q9 velocity scheme
with the BKG collision operator for the interface tracking
equation (Eq. 23) and the MRT for the momentum equation.
The interface width and the mobility were again assumed
tobeW=250-10"mand M = 1.0- 10> m? s~'. For all
simulations, the selected spatial and temporal discretization
intervals were Ax = 1.25- 10 ®mand At = 1.25 - 107%s. We
took the driving force of the problem as F, = u.({; + &,)/H?,
where u, = 1.0 - 10™* m s~! represent the velocity at the
center of the channel.

Furthermore, instead of using the linear relation between
v(x) and ¢(x) as mentioned previously in Sect. 2.3, we now
calculate the kinematic viscosity by the dynamic viscosity as
v(x) = £(x)/ p(x), where { (X)=¢(X)(; — &) + {,. This adjust-
ment was made to achieve better results for the transition in
the 7 value at the interface, as indicated by [89] and [18].

The numerical solutions obtained with the LBM mod-
els compared to the FD method are presented in Fig. 15,
with their respective global errors provided in Table 5.
Once again, both LBM models showed the same errors for
the air—water system, indicating the physical coherence of
the dimensional LBM. The dimensional LBM model also
exhibited very good accuracy for the other three cases (the
saturated water systems). It is interesting to observe that
the highest global error was observed for the saturated
water at 100°C, which has the smallest kinematic viscos-
ity (v; =2.938 - 10~'m? s™!). This behavior is attributed to
the fact that low kinematic viscosities lead to low = values,
which may result in the amplification of small instabilities.
Although this instabilities are not significant enough to affect

the convergence, they do reduce the accuracy. In this case
of almost pure shear flow, the magnitude of viscosity has
greater influence on the simulation results than the density
ratio. Indeed, the global error for the saturated water at 25°C
is the smallest among the saturated water systems, despite
having the highest density ratio, equal to p;/p, = 43,349.0.

Now, to demonstrate the facilities of the dimensional pro-
cedure in numerical simulations, we present a simple analy-
sis of grid refinement considering the saturated water system
at 25°C, as an example. Initially, we employed a grid with
Ax=5.0-10"mand At = 1.0 - 1077 s. However, this mesh
size yielded poor accuracy results, resulting in a global error
of E, = 16.132% (see Fig. 16). Subsequently, we halved the
mesh in an attempt to improve the solution. To comply with
the LBM stability criteria, we also adjusted the Az value,
resulting in the new discrete intervals Ax,.,, = 2.50 - 10" m
and At,,,, = 0.25 - 1077 s. The global error for this refined
mesh was reduced to approximately E, = 3.804%. Fol-
lowing this step, we further refined the mesh size to
AX,er = 1.25-107% m and Af,,, = 0.125- 1077 s. With
this finer mesh, the smallest error was obtained, equal to
E, = 1.628%, as expected.

We did not performed further mesh refinements because
the obtained errors were already sufficient small, as shown
in Table 5, and conducting finer mesh simulations would
require more computational time. Therefore, we utilized
the finest mesh size for all the remaining simulations. From
the explanation provided above, it is clear that the proposed
dimensional LBM completely eliminates the need for dimen-
sionalization processes, focusing solely on setting appropri-
ate spatial and temporal discretization intervals. The results
obtained indicate that the multiphase LBM is also suitable
for addressing dynamic two-phase problems, even with very
high density and viscosity ratios, which are rarely encoun-
tered in the open literature.

4 Conclusions

We presented a new implementation methodology for the
lattice Boltzmann method, which considers all variables
in physical units instead of converting them to the lattice
space, as usually. To validate and analyze the applicability of
the proposed LBM, several common engineering problems
were solved. They include: one-dimensional heat conduc-
tion with heat generation; two-dimensional lid-driven cav-
ity flow; two-dimensional forced convection in a channel
under both oscillating and constant heat flux (for both devel-
oped and developing flows); two-dimensional multiphase
stationary bubble in a liquid phase and two-dimensional
multiphase-layered Pouseuille flow, all considering real
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Fig. 15 Velocity profiles for the layered Poiseuille flow given by both LBM and FDM for: a air-water system, b saturated water at 100°C, ¢ satu-

rated water at 80°C and d saturated water at 25°C

Table 5 Global relative errors, E,, between LBM simulations and FD
solutions for the layered Poiseuille two-phase system cases

Air- Sat. water—  Sat. water—  Sat. water—
water—25°C, 100°C 80°C 25°C
1 atm both

E,(%) 0.282 1.628 1.311 0.817

fluids with very high density and viscosity ratios. Solutions
for three additional problems, including: one-dimensional
advection—diffusion equation, isothermal channel flow and
natural convection, were briefly presented in Appendices 1,

@ Springer

2 and 3. All numerical results were compared with analytical
solutions, when available, and with those provided by the
FD scheme, otherwise. In all cases, the simulated results
exhibited very good accuracy. The following main conclu-
sions are provided.

I The obtained results confirm that the dimensional
LBM can be safely used for simulating many com-
mon transport phenomena involving single-phase
fluid flow and heat transfer processes, as well as
hydrodynamic static and dynamic two-phase and
two component flows. The proposed method pro-
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Fig. 16 Numerical solutions of the layered Poiseuille flow given by
the dimensional LBM for the saturated water system at 100°C, con-
sidering three different spatial grids

duced accurate results, which were equal to those
obtained with the conventional LBM for the same
problems. Additionally, we verified that the dimen-
sional LBM exhibits the same stability. The method
can be extended to three dimensions and adapted for
the use of other collision operators without major dif-
ficulties.

II Considering the discussed results, it is of paramount
importance to highlight that in this work, we were
able to simulate static and dynamic two-phase prob-
lems involving real fluids with high density and vis-
cosity ratios. These rations reached values of p;/p, =
43,300 and Ve /v, = 470, respectively, while maintain-
ing good accuracy. To the best of authors’ knowledge,
these are novel findings of the phase-field multiphase
lattice Boltzmann area, demonstrating the power of
the LBM model described in Sect. 2.3, based on the
use of Allen—Cahn equation. Additionally, these
results underscore the facilities offered by the dimen-
sional approach proposed in this paper.

IIT The use of the proposed dimensional LBM enables
the development of numerical simulations for applied
transport phenomena problems using physical units
directly in all calculations. Indeed, the conversion to
lattice units can make the application of the LBM
more laborious, requiring additional steps for imple-
mentation. Therefore, the proposed method has the
potential to enhance the use of LBM as simulation
tool for a wide tange of problems in several fields.

The dimensional LBM can also be applied to solve
non-dimensional problems when the governing equa-

v

tions are already non-dimensionalized, as explained
in Sect. 2.5 and demonstrated in Sect. 3.2.

Appendix 1: 1D advection-diffusion
equation

In this example, we solve the advection—diffusion equa-
tion in a 1D domain. Air at an average temperature
of 335.50 K is considered, with the following prop-
erties: p=1052 kg m™, ¢,=1008.174 J kg~'K™'
and k=0.029 W m~'K~'. Initially, the domain is at
T, = 298.0 K, and suddenly the right boundary is sub-
jected to a temperature of 7, = 373.0 K, while the other
end is maintained at 7, = 298.0 K. The domain length is
L = 1.0 m, and the air is moving with a constant speed
u=0.001ms"

The macroscopic equation that represents the physical
problem is expressed by Eq. 53, and the corresponding
analytical solution for the steady-state condition is given
by Eq. 54.

aT 0T
exp <% - 1)
Tx)=Ty+ (T, —Ty) (54)

exp (—pc’]’(uL - 1)

For this specific problem, given its simplicity in handling
boundary conditions in the 1D case, we used the wet-node
scheme for the boundaries instead of the link-wise scheme.
This last scheme was used in the remainder of all simula-
tions carried out in the paper. Then, using the D103 velocity
scheme, the BCs were implemented according to Eq. 55.
Here, we considered the traditional BGK operator for the
LBE, represented in Eq. 16.

{ 80,1+ A1) =T, — go(0,7 + A1) — g,(0, + A1), for x = 0.0;
& Lt+ AN =T, —go(L,t + A1) — g, (L, t + At), forx = L;
(55)
The LBM models are solved considering Ax = 0.0125 m and
At = 0.10 s. The numerical solutions with LBM and the ana-
lytical solution are all shown in Fig. 17. Comparison of the
solutions resulted in a global error of E, = 0.030% for both
LBM models relative to the theoretical solution.
The results provided verify the accuracy of the dimen-
sional LBM.
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Fig. 17 Steady-state temperature distribution for the one-dimensional
advection—diffusion problem

Appendix 2: isothermal channel flow

We also applied both LBM models to simulate an isothermal
Poiseuille flow between two parallel plates. The distance
between the plates was assumed to be H = 0.50 mm. As the
analytical solution does not depend on the channel length
(given by Eq. 44), we used 10 computational cells (10Ax)
in the X-direction. We employed the D209 velocity scheme
withAx=5.0-10°mand Ar=1.0-107s.

The mean velocity of the channel was u,, = 0.20m s~' and
the driving force in the x direction was F, = 12u,,{ /H?. The
fluid is water at a mean temperature of 301 K, with proper-
ties listed in Table 1. The results are depicted in Fig. 18,
and the global errors for both LBM models compared to
the analytical solution are Egim = E5°™ = 0.011%, indicating
very good accuracy.

Appendix 3: natural convection in a square
enclosure

In this Appendix, we simulate natural convection in a
square enclosure with length L = 0.0130 m containing air
initially at 7;,; = 293.85 K. The left wall of the domain
is maintained at a higher constant temperature equal to
T, = 373.15 K, while the right wall remains at the initial
temperature of 7. = 293.85 K. The upper (top) and lower
(bottom) walls are considered insulated. Air properties are
calculated at a reference temperature of 7,.; = 333.50 K:
p=1.059kgm, ¢, = 1008.045J kg™ 'K=!, k = 0.029 W m!
K, a=2702-10" m?> s, v=190-10" m? s and
Pexp = 3.004 - 107 K~" (thermal expansion coefficient).

@ Springer

Fig. 18 Steady-state velocity profiles of the isothermal Poiseuille
flow between two parallel plates obtained for the dimensional and
conventional LBM simulations and the analytical solution

The temperature difference between the walls causes
a mass flux due to the difference in density between the
hot and cold fluids. To consider this effect without chang-
ing the fluid density in the simulations, we assumed a
buoyancy force given by Eq. 56 [57, 60, 77]. This is the
so-called Boussinesq approximation. In this equation, p
is the reference density, calculated at the reference tem-
perature T, and g = (0, —9.81) m s2 is the gravitational
acceleration.

Fy(X, 1) = =Py [T(X, 1) — Ty (56)

We considered the D2Q9 velocity set, with the BGK and
MRT collision operators for momentum and thermal LBEs,
respectively. For stationary walls, we used the bounce-
back BC for the momentum distribution function (Eq. 13).
Furthermore, for the fixed temperature BCs (left and right
walls), we employed the anti-bounce-back rule (Eq. 20),
and the upper and lower walls were modeled as thermally
insulated, just applying the BB rule (Eq. 21) with zero heat
flux (¢ = 0).

The problem can be characterized by the Rayleigh number
(Eq. 57), which will be considered as Ra = 10* for the first
case and Ra = 100, for the second. In this last test, to obtain
Ra = 10° without changing the average fluid temperature, we
considered a new square cavity size, equal to L = 0.60 m,
and the wall temperatures were changed to 7, = 373.85 K
and T, = 293.15 K, keeping T, = 333.50 K. Therefore,
the air properties in both tests were maintained constant and
unchanged.

|g|ﬁexpL3(Th - Tc)
a=

va

(57)
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Table 6 Calculated average Nusselt numbers from the simulated  For both cases, discrete space and time intervals equal to
results by both LBM models and the benchmark solution [14] Ax=20-10"*m and Ar =2.0- 10~ s, were considered,
Ra = 10 Ra= 106 respectively. Steady-state results for the temperature con-
— Error (%) o Error (%) tours and streamlines are presented in Figs. 19 and 20. To
ITo1r ITor . . . . .
Nu ’ Nu ’ evaluate the dimensional LBM, its solution is compared
Benchmark [14] 2.243 - 8.800 -
Dim. LBM 2242 0.045 8.805  0.057
Conv. LBM 2242 0.045 8794  0.068
0.012

Temperature (K) for Ra = 10* (Dim. LBM)

with the results of the conventional LBM, and both numeri-

cal solutions are validated through a comparison with the

benchmark solutions found in the literature [14]. All these
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Fig. 19 Simulated temperature contours (a) and streamlines (b) for Ra = 10* with the dimensional LBM
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solutions are presented in Table 6. Both LBM models
showed good agreement with the benchmark expected val-
ues, presenting very small global errors, E,.
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