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Abstract
In this paper, we propose a dimensional lattice Boltzmann method (LBM) that numerically solves the discrete lattice Boltz-
mann equation directly in physical units. This procedure facilitates the LBM application for simulating transport phenomena 
completely avoiding the use of lattice units and consequently of any particular unit conversion system. Several test problems 
related to different physical phenomena are simulated, such as heat diffusion, lid-driven cavity, forced convection in channels 
(both developed and under development) and two-phase liquid–gas systems, considering stationary and dynamic flows under 
very high density and viscosity ratios. We compare the numerical results with analytical or finite difference solutions, finding 
a good agreement between them. Similarly, we performed a stability analyses for three of the test cases. The traditional LBM 
was also considered for the sake of comparison, showing both the same accuracy and stability, as expected. Furthermore, we 
present solutions using the Allen–Cahn phase-field LBM model for high liquid/gas density and gas/liquid kinematic viscosity 
ratios, up to 43,300 and 470, respectively, commonly not found in open literature. The proposed methodology enhances the 
LBM use as a simulation tool for the wide transport phenomena where it finds application.
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1  Introduction

Nowadays, the lattice Boltzmann method (LBM) has been 
extensively used to simulate a wide range of transport phe-
nomena. A set of examples is: fluid flow and heat trans-
fer [12] problems, flows in porous media [36, 54, 78], heat 
transfer with nanofluids [37, 73, 81, 82], multiphase flows 

with liquid-liquid or liquid–gas systems [66, 71, 76, 83], 
thermal phase-change phenomena, both liquid–gas and 
solid–liquid [15, 35, 48, 58, 68, 72] and many others that 
could be mentioned here. These transport phenomena are of 
great importance for diverse engineering applications con-
sidering petroleum, energy, nuclear, electronic and refrigera-
tion industries, to name a few.

The LBM is a mesoscopic method that is based on the 
numerical solution of the discrete Boltzmann transport equa-
tion in phase space and time, called the lattice Boltzmann 
equation (LBE). The LBE was first proposed by McNamara 
and Zanetti [56] and is used to numerically find the values 
of particle distribution functions over the discrete domain. 
Then, macroscopic fields (such as density, velocity, con-
centration, temperature and others) can be calculated from 
the statistical moments of these functions [38, 56, 75]. The 
LBM allows recovering the macroscopic conservative laws 
through an asymptotic analysis called the Chapman–Enskog 
analysis [10]. This fact confirms that we can recover the 
macroscopic behavior of a physical system by the numerical 
solution of the LBE, which represents the mesoscopic level 
of the physical phenomena, as proven in Wolf-Gladrow [80].
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Traditionally, the LBM is solved in so-called lattice units 
(lu) or lattice scales, which generally consider unitary spa-
tial and temporal increments. There are two main methods 
employed to establish the relationships between physical and 
lattice scales. The first is the dimensional analysis, based 
on the use of Buckingham’s Π theorem, first proposed by 
Buckingham [8]. The second is the scaling method (or 
principle of corresponding states), which makes use of the 
thermodynamic equations of state (EoS) [2, 31]. The Π the-
orem is commonly applied to infer dimensionless groups 
( Π ) from the units of the input variables in the absence of 
known governing equations [3]. Once the governing equa-
tions are established, performing scale analysis through the 
non-dimensionalization process allows the identification of 
representative dimensionless numbers. This process also 
helps to find the coefficients of the equation in terms of spe-
cific references to the variables of the problem [3]. These 
references must be known and constant [2].

Several works have proposed different approaches for unit 
conversion in LBM. See for example the following works, 
to name a few of them, [2, 30, 31, 38, 74, 79]. In general, 
a set of works uses the Buckingham Π theorem to relate 
the physical scale with the lattice scale [30], generally to 
solve some multiphase flows problems. Other authors [74] 
used only the scale analysis, to find the main dimensionless 
numbers and simulate melting and solidification processes. 
As pointed out by Baakeem et al. [2], we can also make use 
of the Buckingham Π theorem and scale analysis together. 
This allows properties such as specific heat capacity, viscos-
ity and thermal diffusivity, which do not have a reference 
state, to be considered in the conversion process. In a recent 
study, [31] proposed the use of Planck units as a reference 
for performing the conversion between physical and lattice 
units, respectively. The method was successfully applied 
to simulate forced convection in tube banks considering 
heat sources, but required more steps in the unit conversion 
process.

Baakeem et al. [2] proposed a general procedure for simu-
lating several fluid flow and heat transfer problems, includ-
ing a two-dimensional stationary droplet with the pseudo-
potential model. The procedure is based on using the same 
basic reference parameters of the physical scale and the lat-
tice scale to carry out the conversion process. The methodol-
ogy allows certain flexibility while guaranteeing the stability 
of the solution. Very recently Wang et al. [79] developed a 
conversion strategy to simulate liquid–vapor phase change 
with the pseudopotential method. The authors proposed con-
version relations for the fundamental units using the sur-
face tension and EoS parameters related to fluid properties, 
in order to deduce conversion relations of other quantities. 
They also simulated a single bubble nucleation process by 
recovering the latent heat of the fluid and the correct super-
heating temperature in physical units.

However, the use of any non-dimensionalization pro-
cedure implies the addition of some computational steps 
before starting to simulate the problem. This also adds more 
calculations for post-processing the output simulated data. 
The procedures require, in fact, a carefully analysis that 
depends of each specific problem solved, having a certain 
degree of complexity. Cates et al. [9] simulated binary fluid 
mixtures in the presence of colloid particles and stated that 
LBM cannot completely resolve the hierarchy of length, 
energy and time-scales that arise in typical flows of com-
plex fluids. Thus, it had to be decided which physics to 
solve and what to leave unsolved when colloidal particles 
were present in one or both phases of the fluid. Therefore, 
it is very important to choose the most relevant dimension-
less numbers for an adequate simulation of the macroscopic 
problem.

The procedure is applied to solve five problems: involv-
ing one-dimensional heat conduction with heat source; two-
dimensional lid-driven cavity; heat transfer by convection 
in a two-dimensional channel, considering developed and 
developing flow, both with constant and oscillating heat 
flux; the two-phase problem of a static bubble surrounded 
by liquid (air-water and liquid–vapor of saturated water sys-
tems) and the solution of the dynamic layered Poiseuille 
flow for the same two-phase systems considered for the 
static problem. We adopted the phase-field LBM model 
based on the conservative Allen–Cahn equation to solve 
multiphase problems, after its modification to the dimen-
sional approach. In addition, we also present the solutions 
to three other classic problems in Appendices 1, 2 and 3. 
All numerical results are compared with reference solutions 
considering both the proposed and traditional LBM (solved 
in lattice units). These reference solutions are analytical 
when available, based on benchmark solutions from the 
literature or calculated using the finite difference method. 
A stability analysis was also carried out for three of the 
problems mentioned, aiming to compare the dimensional 
and conventional models.

The rationale for the proposed method was the use of 
traditional LBM established to simulate real problems, but 
employing physical units directly throughout the solution of 
the problem. This was also motivated by the need to simulate 
practical problems in their real conditions (thermophysical 
properties, domain geometry, numerical size refinement and 
others). Commonly, the use of traditional LBM is followed 
by the implementation of a set of dimensionless numbers 
which are sometimes not entirely correct. For example, a 
density ratio is used for a specific two-phase fluid system, 
but the dimensionless surface tension considered does not 
correspond to the actual fluid considered in the simulation. 
This issue is addressed in Sects. 3.4 and 3.5 of the paper. 
The authors noted that the solved LBE preserves the physi-
cal dimensionality if all variables are used in physical units, 
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including time and spatial increments. Then, through the 
simulation of several test problems, they verified the cor-
rectness and validity of the solutions obtained and of the 
entire procedure.

The main novelty of the paper is the proposition of 
dimensional LBM, which is a version of traditional LBM 
that performs all calculations in physical units, facilitating 
the application of the method. In this context, the specific 
novelties are: (I) proposition of dimensional LBM for two 
collision operators (BGK and MRT). Note that modifying 
the dimensionless MRT operator to the dimensional one is 
non-trivial; (II) modification of the traditional formulation 
of boundary conditions for direct use in physical units (see 
Eq. 21); (III) solution of hydrodynamic two-phase problems 
with a phase-field LBM based on the Allen–Cahn equa-
tion and proposition of a dimensional version of this LBM 
model and (IV) exploration of this phase-field LBM model 
in regions with high density and viscosity ratios, not previ-
ously published in the open literature.

The paper is divided into four main sections: In Sect. 2 
is presented the proposed dimensional LBM, while the 
results and the conclusions are provided in Sects. 3 and 4, 
respectively.

2 � The dimensional LBM

It is common in LBM to consider variables in lattice units 
rather than physical units [38, 59, 75]. This requires the 
use of dimensionless numbers to represent all physical 
parameters. The non-dimensionalization process generally 
involves choosing reference unit scales, which are defined 
by independent conversion factors and by the employ-
ment of similarity laws, in order to obtain the dimension-
less values of all physical variables of the problem [38]. 
There are several methods in the literature to perform this 

non-dimensionalization process, as well as to map the physi-
cal properties of a specific system to the lattice scales (and 
vice-versa). Some of these methods are presented by Su 
and Davidson [74], Huang et al. [31], Baakeem et al. [2] 
and Wang et al. [79]. These works give an idea of the com-
plexity embraced in this unit conversion process, which is 
greater for the simulation of multiphase and multicomponent 
problems.

To distinguish between the LBM proposed in this paper 
and the traditional LBM, which relies on a non-dimension-
alization process, we refer to the former as the “dimensional 
LBM” and the latter as the “conventional LBM”. The dimen-
sional LBM involves applying the LBM in its dimensional 
form. This means that the non-dimensionalization process 
is not applied, and the values of Δx , Δt , c = Δx∕Δt and all 
macroscopic variables (density, velocity, temperature, vis-
cosity and others) are used in physical units, preferably in 
the SI unit system. This approach completely eliminates the 
need for unit conversion procedures, which are typically 
employed for: map physical units of input data into lattice 
units, perform numerical simulations in lattice units and 
then map the output data from the lattice space back to the 
physical domain. Therefore, there is no need to select or 
employ any conversion parameters. Additionally, the entire 
simulation, including data input and output, is performed 
in physical units. A schematic representation of the dimen-
sional LBM procedure is shown in Fig. 1, in comparison 
with the traditional procedure.

In the following sections, we present the dimensional 
LBM models. The lattice Boltzmann equations (LBEs) of 
these models have been appropriately modified by incorpo-
rating Δt , Δx and c when necessary, to ensure that all vari-
ables are utilized in physical units during the simulations.

Fig. 1   Schematic representation of the dimensional LBM procedure
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2.1 � Dimensional LBM for fluid flow

The LBM is founded on the discretization of the Boltzmann 
transport equation within the phase space defined by veloc-
ity, physical space and time [38]. This discretization process 
yields the discrete LBE, which serves as the equation solved 
numerically. Considering a second-order discretization in 
time, a general form of the LBE can be given by Eq. 1. This 
equation delineates the evolution of the discrete distribution 
functions, fi , in both space and time for each discrete veloc-
ity direction i.

In Eq. 1, Sfi represents the source term associated with exter-
nal forces, particularly in fluid motion simulations. Here, Δt 
and Δx denote the discrete time and space intervals, respec-
tively, while �� represents the discrete particle velocities in 
each i direction. Typically, velocity schemes are defined as 
DdQq, following [62], where d represents the spatial dimen-
sion of the simulation (one, two or three-dimensional) and q 
is the number of discrete velocities considered.

The variable Ωi of Eq. 1 represents the collision opera-
tor, which accounts for particle collisions. This operator 
can be modeled in various forms. The simplest form that 
enables the simulation of Navier–Stokes equations (NSE) 
is the Bhatnagar–Gross–Krook (BGK) collision operator 
[6], defined as: ΩBGK

i
= −(fi − f

eq

i
)∕� , where � denotes the 

relaxation time and f eq
i

 is the equilibrium distribution func-
tion, representing the system’s state at equilibrium. With 
the BGK operator in mind, the LBE can be rewritten as 
presented in Eq. 2.

The equilibrium distribution function, f eq
i

 , is determined by 
Eq. 3 [23, 38], which is applicable for the slightly compress-
ible NSE. In this equation, � denotes the fluid density, cs 
represents the lattice sound speed and wi are the weights for 
each velocity direction i. The values of cs and wi also depend 
on the selected velocity scheme.

For the two-dimensional D2Q9 velocity scheme, cs = c∕
√
3 . 

The velocities and weights are defined by Eqs. 4 and 5 [62]. 
The variable c accounts for the lattice speed, defined as 
c = Δx∕Δt.

(1)
fi(x + ��Δt, t + Δt) − fi(x, t)

= Δt
[
Ωi(x, t) + Sfi(x, t)

]
.

(2)
fi(x + ��Δt, t + Δt) − fi(x, t)

= −
Δt

�

[
fi(x, t) − f

eq

i
(x, t)

]
+ Sfi(x, t)Δt.

(3)f
eq

i
(x, t) = wi�(x, t)

[
1 +

ci ⋅ u

c2
s

+
(ci ⋅ u)

2

2c4
s

−
u ⋅ u

2c2
s

]

(x,t)

.

It is important to note that through Chapman–Enskog analy-
sis [10], we can recover the NSE with sufficient degree of 
precision, establishing a direct connection between the LBE 
and the NSE. This connection is expressed by the relation-
ship between the relaxation time � and the fluid’s kinematic 
viscosity � , which is represented by the following expression,

When external forces act within the domain, their influence 
can be accounted for by including the source term Sfi in 
the LBE, as shown in Eq. 1. There are several schemes for 
modeling this term in the literature. In this paper, we adopt 
the scheme proposed by Guo et al. [24], which is widely 
employed as reported by Bawazeer et al. [4]. This scheme 
effectively mitigates the appearance of undesired deriva-
tives in the continuity and momentum equations resulting 
from time discretization artifacts, a concern present in other 
schemes [38]. Consequently, the source term for a given 
external force field F is expressed by Eq. 7, where F̂i repre-
sents the forcing term. It is important to note that the dimen-
sions of F are given in force per unit of volume (N m−3).

For simulating more complex flows, the multiple-relaxation-
time (MRT) collision operator, introduced by Higuera and 
Jiménez [29], is commonly employed within the LBE frame-
work to enhance the method stability, particularly for low � 
values [38]. Unlike the single-relaxation-time collision 
operator, the MRT operates in the moment space, offering 
improved numerical stability. Generally, the MRT can be 
defined as ΩMRT

i
= −

[
M−1�M

]
ij
(fj − f

eq

j
) , where [M] repre-

sents the transformation matrix and [�] denotes the collision 
matrix.

The transformation matrix is responsible for calculat-
ing the moments m of the distribution functions, given 
by m = [M] ⋅ f  . Similarly, equilibrium moments can be 
obtained as �eq = [M] ⋅ � eq . In the dimensional LBM, 
particularly considering the D2Q9 velocity scheme, the 

(4)�� = c

⎧
⎪⎨⎪⎩

(0, 0), i = 0,

(1, 0), (0, 1), (−1, 0), (0,−1), i = 1,… , 4,

(1, 1), (−1, 1), (−1,−1), (1,−1), i = 5,… , 8.

(5)wi =

⎧
⎪⎨⎪⎩

4∕9, i = 0,

1∕9, i = 1,… , 4,

1∕36 i = 5,… , 8.

(6)� =
(
� −

Δt

2

)
c2
s
.

(7)
Sfi =

(
1 −

Δt

2𝜏

)
F̂i =

(
1 −

Δt

2𝜏

)
wi[

�� − u

c2
s

+
(�� ⋅ u)��

c4
s

]
⋅ F
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dimensional transformation matrix is provided by Eq. 8. In 
this matrix, each row corresponds to one moment of the 
distribution function: e represents the energy (second-order 
moment), � the energy squared (fourth-order moment), Jx 
and Jy the mass fluxes (first-order moments), qx and qy the 
energy fluxes (third-order moments) and pxx and pxy the 
components of the stress tensor (second-order moments). 
As the matrix should be dimensional, the moments should 
be multiplied by the lattice speed c considering the appropri-
ate order for each one.

Despite of being represented by ΩMRT
i

 , it is common for 
the MRT collision step to be completely performed in the 
moment space. Then, the post-collision functions f ∗

i
 are 

recuperated by �∗ = [M]−1 ⋅�∗ , which are later used to per-
form the streaming process: fi(x + ciΔt, t + Δt) = f ∗

i
(x, t) . 

For the dimensional LBM, the inverse of the transformation 
matrix can be given by Eq. 9, considering the D2Q9 veloc-
ity scheme.

(8)

[M] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0 ⋅M�

c2 ⋅Me

c4 ⋅M�

c1 ⋅MJx

c3 ⋅Mqx

c1 ⋅MJy

c3 ⋅Mqy

c2 ⋅Mpxx

c2 ⋅Mpxy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1

−4c2 − c2 − c2 − c2 − c2 2c2 2c2 2c2 2c2

4c4 − 2c4 − 2c4 − 2c4 − 2c4 c4 c4 c4 c4

0 c 0 − c 0 c − c − c c

0 − 2c3 0 2c3 0 c3 − c3 − c3 c3

0 0 c 0 − c c c − c − c

0 0 − 2c3 0 2c3 c3 c3 − c3 − c3

0 c2 − c2 c2 − c2 0 0 0 0

0 0 0 0 0 c2 − c2 c2 − c2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(9)[M]−1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
9

−1
9c2

1
9c4

0 0 0 0 0 0
1
9

−1
36c2

−1
18c4

1
6c

−1
6c3

0 0 1
4c2

0
1
9

−1
36c2

−1
18c4

0 0 1
6c

1
6c3

−1
4c2

0
1
9

−1
36c2

−1
18c4

−1
6c

1
6c3

0 0 1
4c2

0
1
9

−1
36c2

−1
18c4

0 0 −1
6c

1
6c3

−1
4c2

0
1
9

1
18c2

1
36c4

1
6c

1
12c3

1
6c

1
12c3

0 1
4c2

1
9

1
18c2

1
36c4

−1
6c

−1
12c3

1
6c

1
12c3

0 −1
4c2

1
9

1
18c2

1
36c4

−1
6c

−1
12c3

−1
6c

−1
12c3

0 1
4c2

1
9

1
18c2

1
36c4

1
6c

1
12c3

−1
6c

−1
12c3

0 −1
4c2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

The Guo et al. [24] force scheme can be also adapted to 
the MRT operator [39, 40]. In this case, the collision pro-
cess in the moment space is represented by Eq. 10, being 
𝐅𝐦 = [M] ⋅ 𝐅̂ the moments of the forcing term.

The collision matrix can be defined as a diagonal matrix 
[�] = diag (�0,… ,�q−1) , in which the main diagonal are 
composed by the relaxation frequencies �i , related to each 
moment of the distribution functions. In this matrix, the 
frequencies associated with conserved moments are zero 
because they are not affected by the collision process [43].

Thus, for the D2Q9 velocity scheme, the collision matrix 
is defined as [�] = diag (0,�e,�� , 0,�q, 0,�q,�� ,��) [38]. 
The two last frequencies are related to the kinematic vis-
cosity of the fluid, being defined as �� = 1∕� . Also, the 
relaxation frequency related to the energy can be associated 
with the bulk viscosity of the fluid as � = (�−1

e
− 0.5Δt)c2

s
 

[23]. The other frequencies can be chosen without sig-
nificant effects in the transport coefficients, and values 
between 1∕Δt and 2∕Δt are recommended. The third-order 
relaxation parameter for the dimensional LBM is redefined 
as �q = (3∕Δt)(2∕Δt − ��)∕(3∕Δt − ��) . This relation was 
initially obtained by Lallemand and Luo [43], and here, we 
made the necessary changes to guarantee corresponding 
third-order relaxation parameter for the dimensional LBM, 
as now the relaxation frequencies ( � ) have units of [1/s]. 
We can obtain the macroscopic quantities of interest tak-
ing the zero and first moments of the distribution function 
fi [75]. Considering the force scheme, these moments are 
calculated by Eqs. 11 and 12, respectively, for both BGK 
and MRT collision operators.

In the simulations conducted in this paper, we employed the 
link-wise scheme for formulating the boundary conditions. 
In this scheme, the boundaries are positioned on lattice links, 
situated at a distance of 0.5Δx from the physical boundaries 
of the domain [38].

In the simulations of fluid flow, we utilized five primary 
boundary conditions (BC): inlet with prescribed velocity, 
outlet at atmosphere pressure, periodic boundaries, fixed 
non-slip walls, and symmetric boundaries. For both inlet 
and fixed walls, we considered the bounce-back scheme 
[41, 42], represented by Eq. 13.

(10)
�∗ = m − Δt[�] ⋅ (m −�eq) + Δt

(
[I] −

Δt

2
[�]

)
⋅ ��

(11)�(x, t) =

q−1∑
i=0

fi(x, t)

(12)u(x, t)�(x, t) =

q−1∑
i=0

��fi(x, t) +
Δt

2
F(x, t)
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In this equation, i denotes the opposite direction of i, �� 
and �w represent the boundary velocity and density, respec-
tively, and �� is the position of the boundary node. For fixed 
walls, the BC simplifies to f

i
(��, t + Δt) = f ∗

i
(��, t).

For the fluid outlet, we used the anti-bounce-back scheme 
[22], which is expressed by Eq. 14.

To maintain atmosphere pressure using this BC, we set �w 
equal to the fluid density at atmospheric pressure. Usually, 
this is the average density of the fluid in an equilibrium 
state. Additionally, the velocity is calculated by extrapola-
tion: �� ≈ u(��, t) + 0.5[u(��, t) − u(��−�, t)] . Here, ��−� 
represents the next node inside the domain in the normal 
direction of the boundary [38].

The symmetric boundaries are implemented using Eq. 15 
[38]. In this equation, j represents the indices of the pop-
ulation with same tangential velocity as i but with oppo-
site normal velocity, defined as (cj,tan;cj,n) = (ci,tan; − ci,n).

For instance, if we consider the top boundary as sym-
metric, and for the D2Q9 velocity scheme, there are three 
unknown distribution functions: f4 , f7 and f8 . As a result, f6 
has the same tangential velocity as f7 (where �� = c(−1, 1) 
and �� = c(−1,−1) ), but opposite normal velocity. Therefore 
f7(�� + ��,���Δt, t + Δt) = f ∗

6
(��, t) . Considering the tangen-

tial velocity of f7 as c7,tan = −c , the final relation becomes 
f7(�� − (Δx, 0), t + Δt) = f ∗

6
(��, t) . The same procedure can 

be applied to the other functions.

Lastly, for the periodic boundaries, the leaving distribution 
functions at one side are the unknown functions that arrive 
at the opposite boundary. Then, this BC can be represented 
by fi(��, t + Δt) = f ∗

i
(�� + L − ��Δt, t) , being L the size of 

the domain at the normal direction of the boundary.

2.2 � Dimensional thermal LBM

Because of its generality, the LBM can be also used to simu-
late heat transfer problems. There are several methods pro-
posed in the literature to deal with heat transfer [23]. In this 
case, we chose the double-distribution-function model.

In this model, it is defined another distribution func-
tion gi for the temperature field T [23, 32]. Thus, while the 
momentum evolution is simulated by Eq. 2, the evolution of 

(13)f
i
(��, t + Δt) = f ∗

i
(��, t) − 2wi�w

�� ⋅ ��

c2
s

(14)

f
i
(��, t + Δt) = −f ∗

i
(��, t) + 2wi�w[

1 +
(�� ⋅ ��)

2

2c4
s

−
�� ⋅ ��

2c2
s

]

(15)fj(�� + ��,���Δt, t + Δt) = f ∗
i
(��, t)

the temperature field is calculated by Eq. 16 for the BGK 
operator [11].

By the Chapman–Enskog analysis, we can recover the 
energy conservation equation, given a relation between 
the relaxation time of the thermal LBE, �T  , and the ther-
mal diffusivity of the fluid � : � = (�T − 0.5Δt)c2

s
 . This 

relation represents the link between the LBE and the 
energy equation.

In this case, the source term is related to the volumetric 
heat source instead of external forces and can be similarly 
formulated by Eq. 17 [27, 38]. It is important to note that q̇ 
has units of [K s−1] , because it is defined as q̇ = q���∕(𝜌cp) , 
were q′′′ is the volumetric heat source in (W m−3 ) and cp 
stands for the specific heat at constant pressure of the mate-
rial in (J kg−1K−1).

The equilibrium distribution function, geq
i

 , considered in 
Eq. 16, is related to the temperature and can be defined by 
Eq. 18.

It should be mention that in the previous relation, we used a 
linear velocity-dependent form of the equilibrium distribu-
tion function [38]. But if necessary, it is also possible to 
consider a second-order formulation, given by: 
g
eq

i
= wiT

[
1 +

ci⋅u

c2
s

+
(ci⋅u)

2

2c4
s

−
u⋅u

2c2
s

]
 . For the simulations per-

formed in this work, we used only the first-order equilibrium 
distribution function (Eq. 18), being enough for the desired 
results.

The macroscopic temperature can be found from the zero 
moment of the distribution function gi . However, differently 
than for the flow simulation, in the presence of volumetric 
heat generation, it is necessary to add an extra term to this 
moment of gi , as shown in Eq. 19 [69].

We also used the MRT collision operator for the ther-
mal LBM. In this case, considering the D2Q9 veloc-
ity set, the collision matrix can assume again the 
diagonal form. In this paper, it will be used the same 
relaxation parameter as employed in Martins and 
Gómez [55], but adapted for the dimensional LBM 

(16)
gi(x + ��Δt, t + Δt) − gi(x, t)

= −
Δt

�T

[
gi(x, t) − g

eq

i
(x, t)

]
+ Sgi(x, t)Δt

(17)Sgi =
(
1 −

Δt

2𝜏

)
wiq̇

(18)g
eq

i
(x, t) = wiT(x, t)

(
1 +

ci ⋅ u

c2
s

)

(x,t)

(19)T(x, t) =

q−1∑
i=0

gi(x, t) +
Δt

2
q̇(x, t)
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[�T ] = diag (0, 1∕Δt, 1∕Δt,�T , 1∕Δt,�T , 1∕Δt, 1∕Δt, 1∕Δt) , being 
�T = 1∕�T . The transformation matrices remain equal to 
those used for the simulation of fluid flow.

For the heat transfer simulations with the thermal LBM, 
five kinds of boundary conditions were considered: inlet 
with prescribed temperature, fixed walls with prescribed 
heat flux, fixed walls with prescribed temperature, outlet 
and symmetric boundaries.

For inlets with fixed temperature, we used the anti-
Bounce-Back scheme [19, 45, 86]. This BC is given by 
Eq. 20, where g∗

i
 is the post-collision distribution function, 

i is the opposite direction to i, �� represents the coordinates 
of the boundary node and the subscript w indicates the vari-
ables values at the boundary wall.

The same BC can be also used to treat fixed walls with 
prescribed temperatures [38]. In this case, the bound-
ary velocity �� is set to zero and the BC reduces itself to 
g
i
(��, t + Δt) = −g∗

i
(��, t) + 2wiTw.

The fixed wall Neumann BC (prescribed heat flux) was 
modeled with the scheme given by Li et al. [46], consider-
ing the D2Q9 velocity set with the halfway boundary. This 
scheme is based on the modification of proposed by Yoshida 
and Nagaoka [84] for the D2Q5. This BC is given by Eq. 21, 
where �i is a constant and q′′ is the heat flux normal to the 
boundary (units of [W m−2] ). There are many possible values 
of �i according to Li et al. [46], but we propose the adoption 
of �i = 2wi∕c

2
s
 , giving �1,2,3,4 = 4∕6 and �5,6,7,8 = 1∕6.

The symmetry boundary condition is the same used for the 
fluid moment distribution functions, as previously explained 
in Sect. 2.1.

For the outlets, we considered the first-order extrapola-
tion scheme: gi(��, t + Δt) = gi(��−�, t + Δt) . It is important 
to mention that the first-order scheme was used instead of 
the second-order one because the first is more stable than 
the second [59].

2.3 � Dimensional LBM version for two‑phase 
systems

There are several LBM models in the literature tailored for 
multiphase and multicomponent systems [23, 30, 47, 66, 71, 
72, 76]. In this paper, we provide a brief overview of the model 
proposed by Liang et al. [52], and subsequently, we adapt it 

(20)

g
i
(��, t + Δt) = −g∗

i
(��, t)

+ 2wiTw

[
1 +

(�� ⋅ ��)
2

2c4
s

−
�� ⋅ ��

2c2
s

]

(21)

g
i
(��, t + Δt)

= g∗
i
(��, t) + �i

(
Δt

Δx

)( q��

�cp

)

for simulating two-phase systems using the new proposed 
dimensional approach. This multiphase model is founded on 
the evolution of two distribution functions: hi and zi , designed 
to capture the movement of the interface and the pressure field, 
respectively.

These authors have developed a model akin to those pro-
posed by Ren et al. [64] and Wang et al. [78], which relies on 
utilizing the conservative Allen–Cahn equation for interface 
tracking. The Allen–Cahn equation, depicted in Eq. 22, serves 
as the cornerstone of their approach [13]. In this equation, � 
denotes the order parameter, responsible for delineating the 
regions occupied by each phase, where � = 1 corresponds to 
the liquid phase and � = 0 represents the gas phase. Addition-
ally, W symbolizes the interface width, as the model considers 
a diffuse interface between the distinct phases, while M repre-
sents the mobility and n , the normal direction to the interface, 
calculable as n = ∇�∕|∇�|.

Considering the BGK collision operator, the LBE responsi-
ble for the interface tracking, linked to hi functions, is rep-
resented by Eq. 23. The source term Shi is formulated to 
ensure the recovery of Eq. 22 through the Chapman–Enskog 
analysis. Consequently, this term is expressed by Eq. 24.

The temporal derivative in Eq.  24 can be com-
p u t e d  u s i n g  t h e  ex p l i c i t  E u l e r  s ch e m e : 
�t(�u) ≈ [�(t)u(t) − �(t − Δt)u(t − Δt)]∕Δt  [53] .  Fur-
thermore, �� represents the relaxation time for the inter-
face tracking LBE, associated with the mobility value as 
M = (�� − 0.5Δt)c2

s
 . The equilibrium distribution function 

is calculated considering a first-order expansion, as shown 
in Eq. 25.

Similarly to the traditional LBM, we can obtain the macro-
scopic quantities by the moments of the distribution func-
tions. Thus, the order parameter is calculated by the zero 
moment of hi using Eq. 26, and both the macroscopic density 
and kinematic viscosity are calculated as a linear function 
of � , such as � = �g + �(�l − �g) and � = �g + �(�l − �g) . 

(22)�t� + ∇ ⋅ (�u) = ∇ ⋅

[
M

(
∇� −

4�(1 − �)

W
n

)]

(23)
hi(x + ��Δt, t + Δt) − hi(x, t)

= −
Δt

��

[
hi(x, t) − h

eq

i
(x, t)

]
+ Shi(x, t)Δt

(24)Shi =

(
1 −

Δt

2��

)
wi

�� ⋅
[
�t(�u) + c2

s

4�(1−�)

W
n
]

c2
s

(25)h
eq

i
(x, t) = wi�(x, t)

(
1 +

ci ⋅ u

c2
s

)

(x,t)
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In these relations, the subscripts g and l refer to the gas and 
liquid properties, respectively.

In the case of pressure evolution, the original authors 
employed an incompressible transformation similar to 
that proposed by He et  al. [28], resulting in Eq.  27 for 
the BGK collision operator. Importantly, it should be 
noted that the MRT operator can also be used to per-
form the collision process for zi functions, applying 
Eq. 10 for the moments of these functions. For the D2Q9 
model, the adopted values for the collision matrix are 
[�] = diag (1∕Δt, 1∕Δt, 1∕Δt, 1∕Δt,�q2, 1∕Δt, 1∕Δt, 1∕�, 1∕�)  ,  with 
�q2 = (3∕Δt)(2∕Δt − ��)∕(3∕Δt − ��).

For calculating the equilibrium distribution functions, the 
authors proposed Eq. 28 to satisfy the divergence-free condi-
tion. In this equation, si represents the term computed using 
Eq. 29 [49, 50]. Additionally, in Eq. 28, p is defined as the 
total pressure.

To recover the NSE for a two-phase system, as represented 
by Eq. 30 (where � is the dynamic viscosity), the relaxa-
tion time is once again related to the kinematic viscosity as 
� = (� − 0.5Δt)c2

s
 . In this scenario, two types of body forces 

are employed. �� is defined as the body force acting over the 
domain, while �� represents the force related to surface ten-
sion at the interface. Various methods exist in the literature 
for calculating this force, but in this paper, we considered the 
potential form, which is related to the chemical potential ( � ) 
as: �� = �∇� [33, 88]. Therefore, the forcing term for the 
pressure evolution LBE is defined by Eq. 31 [53].

(26)�(x, t) =

q−1∑
i=0

hi(x, t)

(27)
zi(x + ��Δt, t + Δt) − zi(x, t)

= −
Δt

�

[
zi(x, t) − z

eq

i
(x, t)

]
+ Szi(x, t)Δt

(28)z
eq

i
(x, t) =

⎧⎪⎨⎪⎩

p(x,t)

c2
s

(wi − 1) + �(x, t)si(u), if i = 0

p(x,t)

c2
s

wi + �(x, t)si(u), if i ≠ 0

(29)si(u) = wi

(
ci ⋅ u

c2
s

+
(ci ⋅ u)

2

2c4
s

−
u ⋅ u

2c2
s

)

(x,t)

(30)
�(�u)

�t
+ ∇ ⋅ (�uu)

= −∇p + ∇ ⋅ [�(∇u + ∇uT )] + �� + ��

Now, the macroscopic quantities related to the pressure and 
momentum of the fluid are described by Eqs. 32 and 33, 
respectively. It is noteworthy that in these equations, the 
pressure depends on the velocity. Therefore, it must be cal-
culated after obtaining the velocity from Eq. 33.

The knowledge of the chemical potential, � , is crucial for 
conducting simulations using the presented LBM. This ther-
modynamic property can be derived from the free energy, Ψ , 
of the two-phase system [63]. The free energy is a function 
of density and given the linear relation between � and � , the 
chemical potential can be determined as: � = ��Ψ(�) . The 
total free energy of the system is computed using Eq. 34, 
where �(�) denotes the volumetric free energy (or the poten-
tial), and � is a constant associated to the strength of the 
surface tension [34].

In regions close to the critical point, certain simplifica-
tions of the fluid equation of state (EoS) can be applied 
[67]. One widely used simplification is expressed as fol-
lows: �(�) ≈ ��2(1 − �)2 , where � represents a constant. 
Although originally developed for regions near the critical 
point, this approximation has found widespread application 
in multiphase LBM models based on mean-field theory [16, 
17, 44, 87].

Given that � = ��Ψ(�) = ��� − �∇2� [7], the chemical 
potential can be determined using Eq. 35. Here, the con-
stants � and � are intricately linked to both the interface 
thickness (W) and the surface tension of the fluid ( � ) through 
relationships � =

3

2
�W  and � =

12�

W
.

Furthermore, the equilibrium of a planar interface between 
two phases can be effectively represented by Eq. 36, where 
�(x) denotes the coordinate perpendicular to the interface. 
To prevent instabilities, we initialize both the macroscopic 

(31)
Szi =

(
1 −

Δt

2𝜏

)
F̂z

i

=
(
1 −

Δt

2𝜏

)
wi

[
�� ⋅ (�� + ��)

c2
s

+
(u∇𝜌) ∶ (����)

c2
s

]

(32)

p(x, t) =
c2
s

(1 − w0)[
q−1∑
i=1

zi(x, t) +
Δt

2
u(x, t) ⋅ ∇�(x, t) + �(x, t)s0(u)

]

(33)u(x, t)�(x, t) =

q−1∑
i=0

��zi(x, t) +
Δt

2

[
��(x, t) + ��(x, t)

]

(34)Ψ = ∫V

�(�) +
�

2
|∇�|2dV

(35)� = ��� − �∇2� = 4��(� − 1)(� − 0.5) − �∇2�
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density and � with this equilibrium profile at the onset of 
the simulations.

In previous equations, such as Eq. 35, it becomes evident 
that computing the second-order derivative of � is neces-
sary. Utilizing the linear relationship between � and � , we 
can express density gradients as ∇� = (�l − �g)∇� . Thus, 
density gradient calculations can be performed via the first 
derivative of � . Following the approach outlined by Liang 
et al. [52], spatial gradients and the Laplacian of � can be 
efficiently computed using a second-order isotropic central 
scheme, as described by Eqs. 37 and 38, respectively.

In relation to the interface normal vector, it is important to 
mention that its calculation in the numerical code must be 
performed carefully. This vector is defined as n = ∇�∕|∇�| , 
and thus, there are nodes were |∇�| = 0 . Consequently, the 
division by this term can result in extremely high values. 
Therefore, the division is performed only where |∇�| ≠ 0 , 
otherwise n = 0.

2.4 � Limitations of dimensional LBM

It should be noted that the limitations of the dimensional 
LBM are the same as for the traditional LBM, as the main 
equations of the method, namely the LBE and BC, are essen-
tially the same. The only difference is that in the dimensional 
LBM, the non-dimensionalization process is ignored, and all 
the variables are treated directly in their respective physical 
(SI) units. These limitations are manly related to the choice 
of the relaxation parameter � and a limit for the maximum 
value of cell velocity.

For instance, considering the BGK collision operator for 
the D2Q9 scheme and the traditional equilibrium distribu-
tion function f eq

i
 for fluid flow (Eq. 3), � must not be too 

close to Δt∕2 (or 𝜏 > Δt∕2 ), and the maximum velocity in 
any cell must satisfy ������ <

√
1∕3Δx∕Δt [38]. This con-

dition applies to both dimensional and traditional LBM. 
However, for the traditional LBM, as the non-dimensional 
process is performed, these conditions becomes 𝜏 > 1∕2 and 
�ũmax� <

√
1∕3 , because generally Δx̃ = Δt̃ = 1 l.u. (the ̃ 

indicates variables in lattice units, also represented as l.u.).
It is also important to emphasize that the requirements of 

low-density variations and low Mach numbers, which must 

(36)�(x) =
1

2
+

1

2
tanh

(
2�(x)

W

)

(37)∇�(x) =
∑
i≠0

wi���(x + ��Δt)

c2
s
Δt

(38)∇2�(x) =
∑
i≠0

2wi

[
�(x + ��Δt) − �(x)

]
c2
s
Δt2

be satisfied by the traditional LBM for the simulation of 
incompressible flows, are also met by the dimensional LBM.

2.5 � Application of dimensional LBM 
for non‑dimensional problems

The non-dimensionalization process utilized in traditional 
CFD methods proves beneficial when the problem can be 
characterized with a known set of non-dimensional param-
eters, such as Reynolds, Rayleigh or Weber numbers, for 
example. This approach is advantageous because it allows 
multiple problems to be reduced to the same non-dimen-
sional problem through similarity. Typically, in such cases, 
the macroscopic equations like the Navier–Stokes equation 
(NSE) or energy conservation equation are non-dimension-
alized, and the problem is numerically solved using non-
dimensional variables.

First and foremost, it is crucial to differentiate between 
the non-dimensionalization process just described and the 
one conducted in traditional lattice Boltzmann method 
(LBM). While the former aims to generalize the mathemati-
cal formulation of the problem, attempting to represent the 
phenomenon through a set of non-dimensional parameters, 
the latter involves transforming from physical space to lat-
tice space, where Δt̃ = Δx̃ = 1 l.u. This transformation is not 
necessarily solely based on the non-dimensional numbers 
characterizing the problem.

Hence, the dimensional LBM can be employed to solve 
the non-dimensional form of physical problems, meaning 
the solution of non-dimensional macroscopic equations 
using the dimensional LBE (without transitioning to lat-
tice space). Consequently, the only modifications entail the 
relationship between relaxation parameters and macroscopic 
equations, along with the utilization of entirely dimension-
less variables.

For instance, let’s consider an isothermal incompress-
ible lid-driven cavity flow, where the governing equations 
are represented by the NSE. If we neglect the influences of 
gravity and wall roughness, the Reynolds number emerges 
as the key non-dimensional parameter characterizing the 
flow dynamics, given by Re = �UwL∕� , where L represents 
a characteristic length (such as the channel height), � denotes 
the fluid density, � stands for the fluid dynamic viscosity and 
Uw signifies the lid velocity. Subsequently, by denoting the 
non-dimensional variables with asterisks ∗ , the non-dimen-
sionalized form of the NSE can be expressed as follows:

Thus, with the BGK collision operator, through the Chap-
man–Enskog analysis, the relaxation time becomes linked 
to the Reynolds number rather than the kinematic viscosity: 
Re−1 = (�∗ − 0.5Δt∗)c∗2

s
 . Consequently, we can proceed to 

(39)
D∗�∗

Dt∗
= −∇∗p∗ +

1

Re
∇∗2�∗.
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solve the problem using the dimensional LBM. However, in 
this approach, we must non-dimensionalize the macroscopic 
fields (velocity, pressure and density) by � , V and L and the 
previous relation for the relaxation parameter.

The distinction lies in the fact that the variables denoted 
by ∗ arise from the traditional non-dimensionalization pro-
cess, aiming to generalize the problem through a set of 
non-dimensional parameters, while those represented by ̃ 
originate from the transformation to the lattice space, char-
acteristic of conventional LBM’s non-dimensionalization 
approach.

We observe that the conversion to the lattice space is not 
a prerequisite for solving non-dimensional problems. The 
dimensional LBM presented here enables the solution of 
such problems directly, essentially entailing the solution of 
the non-dimensionalized macroscopic equations without 
conversion to lattice units.

For the sake of comparison, we solved an example in 
Sect. 3.2 with the dimensional LBM considering the NSE 
both in physical units and in its non-dimensional form, and 
also with the traditional LBM. We compared the results 
between them and performed a stability analysis of the three 
approaches.

3 � Results

In this section, we present the simulation results obtained 
with the proposed dimensional LBM for five main problems. 
The results are compared with those of conventional LBM to 
verify that both methods achieve the same results. Further-
more, to evaluate the performance and accuracy of the LBM, 
the numerical results were compared with a reference solu-
tion, being analytical when available, from finite difference 
(FD) solutions or from literature. For these comparisons, we 
use the relative error norm L2 [20, 65], here called “global 
error” and defined by Eq. 40.

For the case in which the FD solution was taken as a 
reference, we carried out a convergence study to ensure 
the good quality of these reference results. To achieve this 
objective, it was established that the global errors between 
two consecutive simulations, one with a grid size of Δx and 
the other with Δxnext = Δx∕2 (reference solution), must be 
less than or equal to 0.01%, meaning E2 ≤ 0.01%.

As LBM is naturally a transient numerical method, to check 
whether the numerical solutions have reached the steady 
state, we apply the condition given by Eq. 41. In this rela-
tionship, � represents the main variable to be verified (veloc-
ity for Poiseuille flow or temperature for forced convection 

(40)E2(%) = 100

�∑
x(�ref − �num)

2

∑
x �

2
ref

problems, for example), and t̃ + 1000 is the instant of 1000 
steps of time after t̃.

Furthermore, three stability analyzes were performed 
comparing the stable regions in the graph Δt:Δx for both 
conventional and dimensional LBM. We selected one 
benchmark problem for each LBM model: the lid-driven 
cavity for fluid flow LBM (Sect. 2.1); forced convection 
in a hydrodynamic channel developed for thermal LBM 
(Sect. 2.2); and the static bubble test for the multiphase 
LBM model (Sect. 2.3).

In simulations, the procedure for choosing the values Δx 
and Δt for the dimensional LBM is similar to that of other 
explicit numerical methods (finite difference or finite vol-
ume methods, for example). First we define arbitrary values 
of Δx and Δt , which must always respect the stability con-
ditions (see Sect. 2). Next, we perform a spatial analysis 
of the grid size to check the convergence of the solution, 
stopping when the desired convergence is reached. In this 
analysis, Δt can be left unchanged or changed if necessary 
to achieve stability. For more complex cases, the stability 
of the simulations can be improved using the MRT colli-
sion operator. As the non-dimensionalization process is 
not performed for the dimensional LBM, the adjustment of 
Δx and Δt can be performed directly and simply, in a simi-
lar way to the traditional numerical methods mentioned 
previously.

All thermodynamic and transport properties employed for 
the fluid simulations were calculated using the free Coolprop 
python library [5].

3.1 � One‑dimensional heat diffusion

The first problem relates to determine the axial tempera-
ture distribution of a fuse used to prevent a power electronic 
module from breaking due to a high current. This problem 
was taken from Nellis and Klein [61], problem 3.8–1, and 
we address it here because it presents an interesting engi-
neering problem involving one-dimensional heat conduction.

The fuse is a wire (without insulation) with length 
L = 0.08 m and diameter d = 0.0015 m. Heat is lost from the 
surface of the fuse through convection to the surrounding air 
at T∞ = 20 ◦C with a heat transfer coefficient of h = 5 W m−2

K−1 . The fuse is made of an aluminum alloy with the fol-
lowing properties, assumed constant: � = 2700  kg m−3 , 
k = 150 W m−1K−1 , cp = 900 J kg−1K−1 and electrical resis-
tivity of res = 1 ⋅ 10−7 Ω m.

Initially, the fuse has an uniform temperature of 
Tini = T∞ = 20 ◦C . At this point, it is subjected to a current 
of Ie = 100A , resulting in uniform volumetric heat generation 
within the fuse material. Both ends of the fuse ( x = 0 and 

(41)max
[
𝜒(x, t̃ + 1000) − 𝜒(x, t̃)

] ≤ 10−8
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x = L ) are maintained at a constant temperature of Tw = 20 ◦C . 
The objective is to determine the axial temperature variation of 
the fuse, neglecting radial and angular temperature variations 
due to the small diameter of the fuse.

The governing equation for the energy conservation in the 
fuse is represented by Eq. 42. This equation is derived consid-
ering that the heat generated due to the current passing through 
the fuse is modeled as q��� = (16I2

c
res)∕(�2d4) , and that the 

total heat lost by convection per unit of volume is given by 
Q̇���

conv
= (𝜋dL)h(T − T∞)∕(0.25𝜋d

2 L) = 4h(T − T∞)∕d.

We examined both transient and steady-state solutions of 
the problem, employing both LBM models with BGK col-
lision operator using the D1Q3 velocity scheme. The cor-
responding lattice velocities are �� = 0 , �� = c and �� = −c , 
with the respective weights, w0 = 4∕6 , w1 = 1∕6 and 
w2 = 1∕6 . The sound speed remains cs = c∕

√
3 [62]. In 

all simulations, we employed the discrete time and space 
intervals of Δx = 4 ⋅ 10−4 m and Δt = 2.5 ⋅ 10−4 s. We cal-
culated a single source term for the LBM considering the 
sum of volumetric heat generation and convective losses as 
q̇ = q���∕(𝜌cp) − 4h(T − T∞)∕(𝜌cpd) . To avoid implicitness 
with the LBM, the convective losses were calculated using 
the temperature determined from the previous time step. 
Regarding the BCs, we implemented fixed temperatures at 
x = 0 and x = L using Eq. 20.

The transient LBM results were compared with numeri-
cal solutions obtained using the FD method. We employed 

(42)
�T

�t
= �

�2T

�x2
+

q���

�cp
−

4h(T − T∞)

�cpd

a forward time central space scheme to solve Eq. 42, with 
ΔxFDM = 4.0 ⋅ 10−4 m and ΔtFDM = 2.5 ⋅ 10−4 s, ensuring 
that E2 ≤ 0.01% . The steady-state LBM results were com-
pared against the analytical solution provided by Eq. 43, 

where m =

√
(hPer)∕(kAc) , and Per and Ac are the fuse 

perimeter and cross-sectional area, respectively.

The transient solutions for conventional and dimensional 
LBM, as well as for the FD method at various times, along 
with the global errors between each LBM and FD solutions, 
are presented in Figs. 2a, b, respectively. The transient solu-
tions exhibit the expected physical behavior, demonstrating 
an increase in fuse temperature over time, with the highest 
temperatures observed at the middle lengths of the fuse. The 
relative errors diminish with time as the system approaches 
a steady-state regime, and they remain small for all cases. 
Both LBM models yield identical results.

The steady-state solutions obtained with LBM models 
and the analytical solution given by Eq. 43 are depicted 
in Fig. 3. The stationary results accurately portray the 
temperature distribution, with the maximum temperature 
occurring at the middle of fuse length. It is worth noting 
that we only present this temperature distribution for the 
purpose of comparison between the LBM and analytical 
solutions, as the fuse alloy would melt at approximately 
500 ◦C . The global relative errors for the stationary 

(43)

T(x) =

(
Tw − T∞ −

q̇���Ac

hPer

)
⋅

[(
1 +

emL − 1

e−mx − emx

)
emx +

(
1 − emL

e−mx − emx

)
e−mx

]
+ T∞ +

q̇���Ac

hPer

Fig. 2   a One-dimensional axial temperature variation of the fuse for some time steps, obtained by the FD scheme and the conventional and 
dimensional LBM. b Temporal variation of the global errors for the conventional and dimensional LBM, in comparison with the FD solutions
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solution were consistent for the conventional and the 
dimensional LBM, with Edim

2
= Econv

2
= 0.0029%.

In this example, we observed that both the dimensional 
and the conventional LBM yielded identical results with 
very good accuracy compared the reference solutions. 
This finding indicates that the proposed dimensional 
LBM can be confidently used, and that the non-dimen-
sionalization process can be avoided without affecting the 
results obtained with the method.

3.2 � Lid‑driven cavity

After solving a pure heat diffusion problem, we proceeded to 
address a 2D isothermal and incompressible fluid flow prob-
lem: the lid-driven flow in a square cavity. We considered 
water at 25◦C and 1 atm as the working fluid, with properties 
summarized in Table 2 (liquid properties in first column). 
The square cavity has dimension L = 2.5 mm. To ensure 
comparability with benchmark solutions from literature [21], 
the Reynolds number was set to Re = 1000 . The Reynolds 
number is defined as Re = UwL∕� , allowing us to determine 
the lid speed from this non-dimensional parameter.

Here, we considered the steady-state solution obtained 
with a 250 × 250 grid using both the traditional and the 
dimensional LBM. Additionally, with the dimensional LBM, 
we solved both the physical and non-dimensional NSE, as 
explained in Sect. 2.5. The BGK collision operator was 
employed for all the three approaches.

The results for the dimensional LBM are depicted in 
Fig. 4, while the comparison against the literature solu-
tion is presented in Fig. 5. As expected, the three LBM 
approaches (dimensional LBM, dimensional LBM with 
non-dimensional NSE and conventional LBM) exhibited the 
same global deviation in relation to the reference numerical 
solution: 1.9513% . This deviation was calculated by Eq. 40.

Next, we investigated how the value of |u|max that guar-
antees stability changes with the Δx∕Δt ratio. Keeping 
the value of � constant, we represented the stability limits 
found in Fig. 6a. Both the dimensional and conventional 
LBM presented the same |u|max values for the entire range 
of tested Δx∕Δt . Our analysis revealed a linear relationship 

Fig. 3   Steady-state axial fuse temperature distribution for the numeri-
cal and analytical solutions

Fig. 4   a Speed contours (in ms−1 ) and b streamlines for the dimensional LBM, considering the lid-driven cavity problem for Re = 1000
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between Δt and Δx values, dictated by the |u|max limitation: 
Δx ≥ 0.64225Δt.

Additionally, we conducted a stability analysis to deter-
mine the stability region in Δt:Δx chart. This region is 
depicted in Fig. 6b, revealing that both the dimensional 
and conventional LBM models exhibit the same stability. 
Based on these results, we can conclude that the dimen-
sional LBM will demonstrate the same stability outcomes 
as the conventional LBM, given that both employ the same 
discrete equations.

3.3 � Heated channel

The third problem involves simulating forced convection in 
a two-dimensional channel (2D). The channel consists of 
two parallel plates subjected to external heat fluxes. This 
case was inspired by a problem from Nellis and Klein [61], 
problem 5–11, and we addressed it here due to its relevance 
in engineering, particularly in applications such as heat 
exchangers, electronic cooling microchannels and microflu-
idics. Also, it involves simulating a forced convection prob-
lem where we utilize the LBM to simulate both fluid flow 
and energy conservation. We employ the models presented 
in Sects. 2.1 and 2.2, respectively.

In this problem, we considered three different cases of 
forced convection between parallel plates. The first case 
involves simulating a fluid flow both thermally and hydro-
dynamically developed flow at the entrance of the channel, 
which is then subjected to alternating heat fluxes at the top 
and bottom boundaries. In the second case, we analyze a 
developing flow (both thermally and hydrodynamically) 
under a constant heat flux applied to both walls. The last 
scenario involves a developing flow with alternating heat 
fluxes at the walls. We analyzed the results of simulations 
for all three cases at the steady-state regime.

The geometry of the channel is H ∶ L = 0.0005 m:0.010 m, 
where H and L represent the channel height and length, 
respectively. The fluid used is water, characterized by con-
stant properties calculated at the mean temperature of 301 K, 
as summarized in Table 1. For this case, we considered the 
following BC: an imposed heat flux at the bottom and top 
walls (Neumman BC), a constant temperature inflow BC at 

Fig. 5   Comparison between the results from dimensional LBM, from 
dimensional LBM with the non-dimensional NSE and traditional 
LBM, having as reference the results from Ghia et al. [21] for Re = 
1000

Fig. 6   a Maximum velocity modulus |u|max for distinct values of grid velocity Δx∕Δt . b Stability map for the lid-driven cavity problem
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the left boundary and an outflow BC at atmospheric pressure 
at the right wall.

We implemented the LBM boundary conditions with 
the following considerations. For the fluid flow aspect, we 
employed Eq. 14 for both inlet and stationary walls. The out-
let BC was modeled using Eq. 14, as the channel is open to 
atmospheric pressure. For the simulation of the temperature 
field, we implemented the imposed heat flux on the bottom 
wall using Eq. 21, while the inlet BC was modeled using 
Eq. 20. At the outlet, we applied the first-order extrapolation 
scheme, as explained in Sect. 2.2. Due to channel’s symme-
try about its horizontal center line (with heat flux applied 
to both walls), we simulated only half of the domain (H/2), 
applying a symmetric BC for the top wall (resting at the 
y-center of the channel), as detailed in Sect. 2.1. For the 
analysis of results, the solution is mirrored to account for 
the entire channel.

In all the LBM simulations (for both models), we 
employed the D2Q9 velocity scheme, utilizing the BGK 
collision operator for fluid flow and the MRT for tempera-
ture field simulation. The MRT approach was necessary for 
solving the energy conservation equation due to stability 
and accuracy issues associated with the simulation of the 
developing flow.

For the first case, we assumed that water enters the chan-
nel with both thermally and hydrodynamically developed 
conditions. The velocity profile at the inlet is modeled by 
Eq. 44, where um = 0.2 m s−1 represents the mean velocity 
of the fluid. The temperature profile in this inlet region is 
described by Eq. 45, with Tin = 300 K as the mean tempera-
ture at the inlet. The y-axes represents the direction along 
the channel height, varying from the bottom to the top plate 
as 0 ≤ y ≤ H . The x-axes points into the direction of the 
channel length, varying from 0 ≤ x ≤ L , from the channel 
inlet to outlet.

It is assumed that both plates are subjected to a peri-
odic heat flux described by Eq. 46. The mean heat flux is 
maintained at q��

s
= 40000 W m−2 , with a variation about 

(44)u(y) = 6um

(
y

H
−

y2

H2

)

(45)T(y) = Tin +
q��
s
H

k

[
−
( y

H

)4

+ 2
( y

H

)3

−
y

H
+ 0.243

]

Δq��
s
= 40000 W m−2 , occurring at intervals of Lh = 1 mm. 

The signal function in the heat flux definition ( sign ) returns 
+1 if the argument is positive and −1 , if it is negative.

Given the conditions of the problem, the macroscopic equa-
tion describing the energy conservation for the first case is 
provided by Eq. 47. This equation was once again solved 
using a FD scheme to serve as a reference solution. The FD 
solution was obtained following the procedure outlined in 
Nellis and Klein [61], with ΔxFDM = ΔyFDM = 1.25 ⋅ 10−6 m 
for the entire channel, without applying symmetry BC.

The numerical solutions are shown in Fig. 7. For both LBM 
models, we used a spatial grid interval of Δx = 5.0 ⋅ 10−6 m 
and a time step of Δt = 2.0 ⋅ 10−6 s. The LBM solutions 
correspond to the transient version of Eq. 47. The results 
depicted in Fig.  7a demonstrated excellent agreement 
between the LBM results, as well as between the LBM and 
FD solutions. The global errors measured for the LBM mod-
els, using the FD solution as reference, were Edim

2
= 0.010% 

and Econv
2

= 0.012% , indicating very good agreement, with 
slightly smaller error for the dimensional LBM. Overall, the 
water temperature increases along its flow through the chan-
nel and exhibits oscillations in the heights near the heat flux 
sources.

In Fig. 7b, we show the variation of the local Nusselt 
number, Nu, with x for the dimensional LBM. Nu varies 
periodically with x, showing the same variation for each 
period of oscillation because the flow is completely devel-
oped. In this case, the average Nusselt number is equal to 
Nu = 6.67.

In the second case, we considered a developing water 
flow in the same channel under a constant heat flux. Now, 
the water enters with a uniform velocity and temperature 
of um = 0.02  m  s−1 and Tin = 300  K, respectively. The 
fluid is the channel is subjected to a uniform heat flux of 
q�� = 40,000 W m−2 . Treating of a developing flow problem, 
there are more changes in the velocity and temperature fields. 
Thus, we used lower values for the discrete time and space 
interval, about Δx = 2.50 ⋅ 10−6 m and Δt = 6.25 ⋅ 10−7 s, in 
order to obtain a convergent solution.

The temperature and velocity profiles given by the 
dimensional LBM for several cross-sections along the 
channel are shown in Fig. 8. We can observe that after 
a certain length along the channel, the velocity profile 
remains unchanged, indicating that the flow is hydrody-
namically developed. For flow between parallel plates at 
low Reynolds numbers and a uniform profile at the inlet, 

(46)q��(x) = q��
s
+ Δq��

s
sign

[
sin

(
2�x

Lh

)]

(47)u
�T

�x
= �

(
�2T

�x2
+

�2T

�y2

)

Table 1   Thermodynamic and 
transport properties of water 
at 301 K and 1 atm, calculated 
from Bell et al. [5], used for 
the simulation of the forced 
convection in the heated 
channel

� 996.279 kg m −3

� 8.382e−7 m2s−1

k 0.611 W m−1K−1

cp 4180.333 J kg−1K−1
⋅ m−3

� 1.467e−7 m2s−1
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the hydrodynamic entrance length can be calculated as 
Le = Dh(0.3125 + 0.011ReD) [1]. In this case, with a chan-
nel Reynolds number of Re  D = 23.86 , the predicted 
hydrodynamic entrance length is Le = 0.57 mm, while 
the length measured from the LBM results is approxi-
mately Le ≈ 0.60  mm. This result from simulations is 
consistent with the expectation from the analyzed rela-
tion. It should be noted that these relations are theoretical 
estimations. Additionally, it is known that the developed 
velocity profile must follow the analytical relation given 
by Eq. 44. Comparing the profile for x = 0.60 mm with 
the analytical velocity profile, we found a global error of 

about E2 = 0.1575% for both conventional and dimensional 
LBM.

Similarly, at certain X-values, the temperature in the 
Y-direction case to vary in shape, increasing only in magni-
tude as the channel is heated, while maintaining the same ΔT  
in y. From this observation, and noting that the local Nusselt 
values do not change after approximately x = 2.5 mm (see 
Fig. 9b), we conclude that the channel length is sufficient 
for both the velocity and thermal profiles to become fully 
developed. Therefore, we can compare the developed value 
of the local Nusselt number with the expected value from the 
literature. For a developed flow between two parallel plates 

Fig. 7   a Temperature variation along the channel X-direction for several Y-values, obtained with the FDM and the conventional and dimensional 
LBM. b Local Nusselt number at the channel walls for the dimensional LBM simulation

Fig. 8   Temperature (a) and velocity (b) Y-profiles at several cross-sections along the channel length for the developing flow
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with constant and equal heat fluxes, the Nusselt number is 
Nu = 8.24 [70]. In the results provided by the dimensional 
LBM, we obtained NuLBM = 8.15 , resulting in a very good 
agreement—a relative error of 1, 02% . The variation of the 
local Nusselt number on the channel walls is presented in 
Fig. 9b.

In the last case, the developing channel flow is subjected 
to an alternating heat flux given by Eq. 46, in order to com-
pare the impact of this BC variation on the local Nusselt 
number. The spatial and time intervals used were the same 
as for the previous simulation ( Δx = 2.50 ⋅ 10−6  m and 
Δt = 6.25 ⋅ 10−7 s). The steady-state temperature profiles 
obtained for this case are shown in Fig. 9a. As the flow is 
developing, we can observe a higher influence of the varying 
heat flux at the walls on the temperature profiles. As shown 
in Fig. 9b, the Nusselt number of the developing channel 
flow subjected to an alternating heat flux reaches higher 
local values than for the channel under a constant heat flux. 
However, the average Nusselt number was Nuconst = 8.92 for 
the constant heat flux and Nuvar = 6.43 for the varying one, 
the later being lower than the former due to the intermittency 
of the wall heat flux.

The temperature field along the entire channel is depicted 
in Fig. 10 for the three simulated cases, revealing several 
notable differences. In Fig. 10a, where the flow is fully 
developed at the channel inlet, the temperature distribution 
shows slight variations along the channel due to the heat-
ing process under the oscillating heat flux. In this case, the 
warmer fluid regions near the walls are slightly larger, and 
the cold fluid core decreases at the channel outlet. However, 
this is the only case where the temperature of the core fluid 
is almost equal to the smaller input temperature value. The 

other two cases involve developing flow under the constant 
and oscillating heat flux, Fig. 10b, c, respectively. In the case 
of the constant heat flux, the outlet mean temperature higher 
due to the constant heating experienced along the channel. 
The temperature field follows a similar pattern for the the 
developing flow subjected to an oscillating heat flux, but the 
convective heat transfer into the center of the channel is less 
pronounced due to the intermittency of the heat flux.

The higher average Nusselt number was obtained for the 
developing flow under a constant heat flux ( Nu = 8.92 ). This 
value is even higher than the theoretical one for developed 
flow, Nu = 8.24 , due to the effect of the development of 
the hydrodynamic and thermal boundary layers. For the two 
cases with oscillating heat flux, the average Nusselt numbers 
were lower, with values of Nu = 6.67 and Nu = 6.43 for the 
developed and developing flow, respectively. In this case, 
the inlet cold flow developing region decreased the total heat 
transferred from the wall heaters. The present problem could 
mimic the heat transfer process in a refrigerating channel of 
electronic devices.

In addition, it is important to mention that viscous dis-
sipation was neglected in all simulations in this section. We 
based this assumption on the small values of the Brinkman 
number, Br (Eq. 48). The highest value obtained was approx-
imately Br = 10−5 , indicating that the contribution of heat 
dissipation due to viscous stress is insignificant for these 
cases and can be safely neglected.

(48)Br =
�u2

m

k(Tw − Tm)

Fig. 9   a Temperature profiles along the x-direction at several Y-values for the developing flow with oscillating heat flux. b Local Nusselt number 
for the developing flow, considering both constant and oscillating heat flux and for the developed flow according to [70]



Journal of the Brazilian Society of Mechanical Sciences and Engineering          (2024) 46:333 	 Page 17 of 28    333 

In Appendices 1, 2 and 3, we showed simulation results 
obtained with the proposed dimensional LBM for other 
classical problems, including one-dimensional convection-
diffusion flow, isothermal Pouseuille flow and natural con-
vection in an enclosure. For the first two cases (Appendices 
1 and 2), the obtained results are compared with analytical 
solutions. However, for natural convection (Appendix 3), the 
numerical solutions are compared against benchmark results 
available in the literature [14]. In all cases, the dimensional 
LBM results were also compared with conventional LBM 
results. All tests show very small global errors, indicating 
that the proposed LBM is physically coherent and accurate. 
Therefore, considering the results discussed in this section 
and those provided in Appendices 1, 2 and 3, we can con-
clude that the dimensional LBM is useful for simulating 
applied problems involving heat convection and diffusion.

For a final assessment of the thermal LBM, a stability 
analysis was conducted, considering both the dimensional 
and conventional approaches. Since we already demon-
strated that both methods have the same stability for the 
momentum LBE (see Sect. 3.2), we focused on the hydro-
dynamic developed flow with alternating heat flux for this 
analysis. Given that the flow component is already at steady 
state, only the thermal LBE needs to be solved.

The stability map is depicted in Fig. 11. Once again, both 
LBM models exhibit the same stability regions. Interest-
ingly, it appears that there is no lower limit as observed in 
Fig. 6. This is likely because we only solve the energy con-
servation LBE, without addressing the momentum LBE. 

Consequently, the limit imposed by |u|max is absent, leaving 
only the diffusive limit related to �T.

3.4 � Static bubble

In this section, we studied a two-phase fluid system con-
sisting of one component (a liquid–vapor saturated water 
system) and two components (air–water system). Here, 
we considered the theoretical problem of a static bubble 

Fig. 10   Temperature field distribution along the channel, for the first (a), second (b) and third (c) simulated cases

Fig. 11   Stability map for the forced convection in the hydrodynamic-
developed thermal developing channel, considering both dimensional 
and conventional LBM
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surrounded by a liquid in equilibrium. This is a common 
benchmark test that allows for the evaluation of conven-
tional and dimensional LBM performance.

The problem consists of a circular (2D) bubble with 
radius R surrounded by liquid, initialized at the center of a 
square domain. All the boundaries are considered periodic, 
and the order parameter � (and consequently the density 
� ) profile between the phases is initialized using Eq. 36 
to avoid instabilities related to a sharp interface. As the 
system evolves over time, it reaches the equilibrium at 
the steady state, and the density profile must match the 
analytical solution represented by Eq. 49 [88]. Also, the 
relation between the pressure difference inside/outside the 
bubble ( ΔP = Pout − Pin ) and the surface tension of the 
liquid � follows the Laplace law, given by Eq. 50.

We use the verification of these two relations to compare the 
performance of the dimensional LBM across four different 
two-phase systems. The first system is an air–water system 
at 25 ◦C and 101.325 kPa (1 atm). The other three systems 
consist of a vapor bubble surrounded by liquid phase of satu-
rated water, without phase change, at three different satu-
rated temperatures: 100 ◦C , 80 ◦C and 25 ◦C , respectively. 
The thermodynamic and transport properties for each system 
are presented in Table 2. To compare the dimensional and 
conventional LBM, we simulate the first system (water–air) 
with the both methods. The other three systems were only 
simulated using the dimensional LBM.

(49)

�(x, y) =
(�l + �g)

2
−

(�l − �g)

2
tanh

⎧
⎪⎨⎪⎩

2
�√

(x − xc)
2 + (y − yc)

2 − R
�

W

⎫⎪⎬⎪⎭

(50)ΔP =
�

R

The domain has dimensions of 1  mm:1  mm, and 
for each system, we tested six different bubble radii: 
0.250 mm, 0.225 mm, 0.20 mm, 0.175 mm, 0.150 mm 
and 0.125 mm. The interface width and mobility values 
were W = 25.0 ⋅ 10−6 m and M = 1.0 ⋅ 10−5 m2 s−2 , respec-
tively, and we selected discrete time and space intervals as 
Δx = 5.0 ⋅ 10−6 m and Δt = 1.0 ⋅ 10−7 s for all simulations. 
For the air–water system, the BGK collision operator was 
applied in all LBEs for both LBM models. In the case of the 
other three systems, the MRT operator was implemented 
for the two-phase momentum equation instead of Eq. 27, in 
order to achieve greater stability. We kept the BGK operator 
for the interface tracking LBE (Eq. 23).

A representation of the density contours for saturated 
water at 25 ◦C with a bubble of radius R = 0.20 mm is 
displayed Fig. 12a. In addition, the results for the density 
profile in the X-direction for the six tested bubble radii 
with saturated water at 25◦C are presented in Fig. 12b. The 
global errors for the density profile compared to the ana-
lytical solution are shown in Table 3 for the four two-phase 
systems. We observe that the errors are very low for all 
cases, indicating the high accuracy of both LBM models. 
For the air–water system, the dimensional and conventional 
LBMs exhibit the same errors, suggesting that the dimen-
sional LBM does not affect the accuracy of the LBM for 
this problem.

It should be noted that the results presented in Fig. 12 and 
Table 3 for saturated water at 25◦C were obtained for very 
high density and viscosity ratios, namely: �l∕�g =43,349.0, 
�g∕�l = 470.9 , and �l∕�g = 91.8 , (see Table 2). These ratios 
are exceptionally high and are not fully simulated in the open 
literature, underscoring the precision and reliability of the 
proposed dimensional LBM.

Considering verification of the Laplace law, we calculated 
the pressure inside the bubble ( Pin ) as the average of all gas 
nodes (where � = 0.0 ). Similarly, we obtained the outside 
pressure ( Pout ) by averaging the fluid nodes’ pressure (where 
� = 1.0 ). The results from LBM simulations, compared 

Table 2   Thermodynamic and 
transport properties of the four 
fluid systems considered for 
the static bubble simulations, 
obtained from [5]

Air and water—
25◦C , 1 atm

Sat. water—100◦C Sat. water—80◦C Sat. water—25◦C

�g (kg m−3) 1.184 0.598 0.294 0.023
�l (kg m−3) 997.048 958.349 971.766 997.003
�l∕�g 842.1 1602.6 3305.3 43,349.0
�g (10−7m2 s−1) 155.770 204.493 392.919 4204.120
�l (10−7m2 s−1) 8.927 2.938 3.643 8.927
�g∕�l 17.4 69.6 107.9 470.9
�g (10−5Pa s) 1.845 1.223 1.154 0.970
�l (10−5Pa s) 89.006 28.158 35.404 89.004
�l∕�g 48.2 23.0 30.7 91.8
� (N m−1) 0.072 0.059 0.063 0.072
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with the expected values from the Laplace law, are shown 
in Fig. 13, while the relative errors for each simulation are 
displayed in Table 4. Once again, we observe that the errors 
were the same for both the dimensional and conventional 
LBM in the case of the air–water system, as expected. Addi-
tionally, although greater than those for the density profiles, 
the errors observed for ΔP are considerable low. This vali-
dates all the simulated results and underscores the capability 
of the multiphase LBM presented in this work to accurately 
simulate real fluids with high density and viscosity ratios.

An important consideration is how the literature handles the 
relationship between the parameters of the physical system and 
their counterparts in lattice space. Commonly, traditional LBM 
is utilized for a set of dimensionless numbers and properties 

ratios. In simulations of the static bubble test found in the open 
literature, authors commonly aim to simulate a density ratio of 
�l∕�g = 1000 , often justifying that it approximates the water–air 
system. However, it is common for the viscosity ratios and sur-
face tension employed in these simulations not to precisely cor-
respond to the physical values of the system.

In the present simulations of the air–water system at 25◦C , 
following the non-dimensionalization process explained pre-
viously, the following dimensionless parameters were uti-
lized: 𝜈̃g = 1.682 , 𝜈̃l = 3.57 ⋅ 10−3 , 𝜎̃ = 5.7648 , 𝜌̃g = 1.184 , 
𝜌̃l = 997.084 and M̃ = 0.040 . Notably, the dimensionless 
surface tension value in this problem, 𝜎̃ = 5.7648 , exceeds 
the commonly used range, typically between 0.0001 and 0.2 
[25, 26, 52, 53]. This “high” non-dimensional value is neces-
sary to maintain the correct correspondence with the physi-
cal value of � = 0.072 N m−1 . It underscores the importance 
of employing the LBM while considering the real physical 
properties of the systems, allowing for the study of method 
limitations and advantages from a more realistic perspec-
tive. This is the primary objective of the dimensional LBM 
proposition, where real physical conditions are automati-
cally taken into account. The challenges now revolve around 
obtaining converged solutions, similar to any other tradi-
tional explicit method.

Ultimately, we conducted a numerical stability analysis 
for the air–water system, considering both LBM models, 
similar to the tests in Sects. 3.2 and 3.3. The stability map is 
depicted in Fig. 14. From this figure, we can conclude that, 

Fig. 12   a Representation of the density profiles for saturated water at 
25◦C , considering a bubble with radius R = 0.20 mm, being the blue 
region (inner part) occupied by the gas, and the red (outer part), by 
the liquid. b Density profiles at cross sections for each R value simu-

lated, for the saturated water at 25 ◦C . (Obs: it was represented only 
a half of the cross-section, because the domain is symmetric) (color 
figure online)

Table 3   E
2
 Results between LBM and analytical solutions of the den-

sity profiles for each value of R−1

R−1 (m−1) Air-water—25◦C , 1 
atm Dim. and Conv. 
LBM (%)

Sat. 
water—
100◦C (%)

Sat. water 
- 80◦C (%)

Sat. 
water—
25◦C 
(%)

4000.0 0.253 0.253 0.253 0.253
4444.44 0.289 0.286 0.286 0.286
5000.0 0.316 0.316 0.316 0.316
5714.29 0.346 0.346 0.347 0.347
6666.67 0.391 0.392 0.392 0.392
8000.0 0.460 0.462 0.462 0.461
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for the multiphase LBM model presented in Sect. 2.3, both 
methods exhibit the same stability.

3.5 � Layered Poiseuille flow

In this final section, we conduct a dynamic multiphase test to 
evaluate the performance of the dimensional LBM. This test 
involves a layered Poiseuille flow, which is a flow between 
two parallel plates where one phase occupies the lower half-
part of the channel and the other phase occupies the upper 
half. The fluid is then subjected to a constant force field that 
accelerates both phases in the lengthwise direction of the 
channel. Upon reaching equilibrium between viscous forces 
and the force field, the system achieves a steady state with a 
constant velocity profile in the X-direction. It is important to 
mention that we have neglected any disturbance/oscillation 
of the interface, considering it as a perfect horizontal region.

We studied the stationary solution of the problem, assum-
ing that the dynamic viscosity varies with the position y of 
the channel height in the same manner as the density. Adher-
ing to the diffuse interface model followed by the LBM, we 
can simplify the NSE to obtain Eq. 51. The profile assumed 
for the dynamic viscosity is provided by Eq. 52. To obtain 
a reference solution, we solved the problem using a central 
second-order FD scheme.

It is important to note that if we were to consider a sharp 
interface between the phases, the problem would have an 
analytical solution [51, 64]. However, for coherence in the 
comparisons between the LBM models and the reference 
solution, we preferred to use the FD scheme described 

Fig. 13   a Pressure difference variation with R −1 obtained from the Laplace law and the conventional and dimensional LBM simulations for: a 
Air–water system and b saturated water systems

Table 4   E
2
 Results between the LBM models simulations and the 

Laplace law for the pressure difference in the static bubble problem

R−1 (m−1) Air-water—25◦C , 1 
atm Dim. and Conv. 
LBM (%)

Sat. 
water—
100◦C (%)

Sat. 
water—
80◦C (%)

Sat. 
water—
25◦C 
(%)

4000.0 5.097 4.998 4.998 4.996
4444.44 4.981 4.976 4.976 4.965
5000.0 4.943 4.936 4.936 4.935
5714.29 4.857 4.853 4.849 4.850
6666.67 4.675 4.667 4.666 4.667
8000.0 4.357 4.349 4.349 4.351

Fig. 14   Stability map for the static bubble simulation with the air–
water system, considering both dimensional and conventional LBM
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previously. This scheme allows the consideration of a diffuse 
interface, represented by Eq. 52, consistent with the assump-
tions of the multiphase LBM model. Other authors in the lit-
erature have also made similar choices [18, 85]. The spatial 
interval used for the FD scheme was ΔyFDM = 4.0 ⋅ 10−8 m, 
chosen to meet the convergence criteria established for the 
FD solutions at the beginning of the section.

Here, we considered the same four two-phase systems as in 
Sect. 3.4, applying both LBM models only to the air–water 
system. For the other three cases, which are saturated water 
systems at different temperatures (100◦C , 80◦C and 25◦C ), 
we only simulated using the dimensional LBM. The channel 
height was set to H = 0.50 mm, and since the steady-state 
solution does not depend on the channel length, we assumed 
a total channel length of 10Δx to reduce the simulation time. 
For LBM simulations, we used the D2Q9 velocity scheme 
with the BKG collision operator for the interface tracking 
equation (Eq. 23) and the MRT for the momentum equation. 
The interface width and the mobility were again assumed 
to be W = 25.0 ⋅ 10−6 m and M = 1.0 ⋅ 10−5 m2  s −1 . For all 
simulations, the selected spatial and temporal discretization 
intervals were Δx = 1.25 ⋅ 10−6 m and Δt = 1.25 ⋅ 10−8 s. We 
took the driving force of the problem as Fx = uc(�l + �g)∕H

2 , 
where uc = 1.0 ⋅ 10−4 m s−1 represent the velocity at the 
center of the channel.

Furthermore, instead of using the linear relation between 
�(x) and �(x) as mentioned previously in Sect. 2.3, we now 
calculate the kinematic viscosity by the dynamic viscosity as 
�(x) = �(x)∕�(x) , where �(x)=�(x)(�l − �g) + �g . This adjust-
ment was made to achieve better results for the transition in 
the � value at the interface, as indicated by [89] and [18].

The numerical solutions obtained with the LBM mod-
els compared to the FD method are presented in Fig. 15, 
with their respective global errors provided in Table 5. 
Once again, both LBM models showed the same errors for 
the air–water system, indicating the physical coherence of 
the dimensional LBM. The dimensional LBM model also 
exhibited very good accuracy for the other three cases (the 
saturated water systems). It is interesting to observe that 
the highest global error was observed for the saturated 
water at 100◦C , which has the smallest kinematic viscos-
ity ( �l = 2.938 ⋅ 10−7m2 s−1 ). This behavior is attributed to 
the fact that low kinematic viscosities lead to low � values, 
which may result in the amplification of small instabilities. 
Although this instabilities are not significant enough to affect 

(51)
d

dy

[
�(y)

du(y)

dy

]
+ Fx = 0

(52)�(y) =
(�l + �g)

2
−

(�l − �g)

2
tanh

(
2y − H

W

)

the convergence, they do reduce the accuracy. In this case 
of almost pure shear flow, the magnitude of viscosity has 
greater influence on the simulation results than the density 
ratio. Indeed, the global error for the saturated water at 25◦C 
is the smallest among the saturated water systems, despite 
having the highest density ratio, equal to �l∕�g = 43,349.0.

Now, to demonstrate the facilities of the dimensional pro-
cedure in numerical simulations, we present a simple analy-
sis of grid refinement considering the saturated water system 
at 25◦C , as an example. Initially, we employed a grid with 
Δx = 5.0 ⋅ 10−6 m and Δt = 1.0 ⋅ 10−7 s. However, this mesh 
size yielded poor accuracy results, resulting in a global error 
of E2 = 16.132% (see Fig. 16). Subsequently, we halved the 
mesh in an attempt to improve the solution. To comply with 
the LBM stability criteria, we also adjusted the Δt value, 
resulting in the new discrete intervals Δxnew = 2.50 ⋅ 10−6 m 
and Δtnew = 0.25 ⋅ 10−7 s. The global error for this refined 
mesh was reduced to approximately E2 = 3.804% . Fol-
lowing this step, we further refined the mesh size to 
Δxnew2 = 1.25 ⋅ 10−6  m and Δtnew2 = 0.125 ⋅ 10−7  s. With 
this finer mesh, the smallest error was obtained, equal to 
E2 = 1.628% , as expected.

We did not performed further mesh refinements because 
the obtained errors were already sufficient small, as shown 
in Table 5, and conducting finer mesh simulations would 
require more computational time. Therefore, we utilized 
the finest mesh size for all the remaining simulations. From 
the explanation provided above, it is clear that the proposed 
dimensional LBM completely eliminates the need for dimen-
sionalization processes, focusing solely on setting appropri-
ate spatial and temporal discretization intervals. The results 
obtained indicate that the multiphase LBM is also suitable 
for addressing dynamic two-phase problems, even with very 
high density and viscosity ratios, which are rarely encoun-
tered in the open literature.

4 � Conclusions

We presented a new implementation methodology for the 
lattice Boltzmann method, which considers all variables 
in physical units instead of converting them to the lattice 
space, as usually. To validate and analyze the applicability of 
the proposed LBM, several common engineering problems 
were solved. They include: one-dimensional heat conduc-
tion with heat generation; two-dimensional lid-driven cav-
ity flow; two-dimensional forced convection in a channel 
under both oscillating and constant heat flux (for both devel-
oped and developing flows); two-dimensional multiphase 
stationary bubble in a liquid phase and two-dimensional 
multiphase-layered Pouseuille flow, all considering real 
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fluids with very high density and viscosity ratios. Solutions 
for three additional problems, including: one-dimensional 
advection–diffusion equation, isothermal channel flow and 
natural convection, were briefly presented in Appendices 1, 

2 and 3. All numerical results were compared with analytical 
solutions, when available, and with those provided by the 
FD scheme, otherwise. In all cases, the simulated results 
exhibited very good accuracy. The following main conclu-
sions are provided. 

	 I	 The obtained results confirm that the dimensional 
LBM can be safely used for simulating many com-
mon transport phenomena involving single-phase 
fluid flow and heat transfer processes, as well as 
hydrodynamic static and dynamic two-phase and 
two component flows. The proposed method pro-

Fig. 15   Velocity profiles for the layered Poiseuille flow given by both LBM and FDM for: a air-water system, b saturated water at 100◦C , c satu-
rated water at 80◦C and d saturated water at 25◦C

Table 5   Global relative errors, E
2
 , between LBM simulations and FD 

solutions for the layered Poiseuille two-phase system cases

Air-
water—25◦C , 
1 atm both

Sat. water—
100◦C

Sat. water—
80◦C

Sat. water—
25◦C

E
2
(%) 0.282 1.628 1.311 0.817
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duced accurate results, which were equal to those 
obtained with the conventional LBM for the same 
problems. Additionally, we verified that the dimen-
sional LBM exhibits the same stability. The method 
can be extended to three dimensions and adapted for 
the use of other collision operators without major dif-
ficulties.

	 II	 Considering the discussed results, it is of paramount 
importance to highlight that in this work, we were 
able to simulate static and dynamic two-phase prob-
lems involving real fluids with high density and vis-
cosity ratios. These rations reached values of �l∕�g = 
43,300 and �g∕�l = 470 , respectively, while maintain-
ing good accuracy. To the best of authors’ knowledge, 
these are novel findings of the phase-field multiphase 
lattice Boltzmann area, demonstrating the power of 
the LBM model described in Sect. 2.3, based on the 
use of Allen–Cahn equation. Additionally, these 
results underscore the facilities offered by the dimen-
sional approach proposed in this paper.

	 III	 The use of the proposed dimensional LBM enables 
the development of numerical simulations for applied 
transport phenomena problems using physical units 
directly in all calculations. Indeed, the conversion to 
lattice units can make the application of the LBM 
more laborious, requiring additional steps for imple-
mentation. Therefore, the proposed method has the 
potential to enhance the use of LBM as simulation 
tool for a wide tange of problems in several fields.

	 IV	 The dimensional LBM can also be applied to solve 
non-dimensional problems when the governing equa-

tions are already non-dimensionalized, as explained 
in Sect. 2.5 and demonstrated in Sect. 3.2.

Appendix 1: 1D advection–diffusion 
equation

In this example, we solve the advection–diffusion equa-
tion in a 1D domain. Air at an average temperature 
of 335.50  K is considered, with the following prop-
er ties: � = 1.052  kg  m−3 ,  cp = 1008.174  J  kg−1K−1 
and k = 0.029  W  m−1K−1 . Initially, the domain is at 
Tini = 298.0 K, and suddenly the right boundary is sub-
jected to a temperature of TL = 373.0 K, while the other 
end is maintained at T0 = 298.0 K. The domain length is 
L = 1.0 m, and the air is moving with a constant speed 
u = 0.001 m s−1.

The macroscopic equation that represents the physical 
problem is expressed by Eq. 53, and the corresponding 
analytical solution for the steady-state condition is given 
by Eq. 54.

For this specific problem, given its simplicity in handling 
boundary conditions in the 1D case, we used the wet-node 
scheme for the boundaries instead of the link-wise scheme. 
This last scheme was used in the remainder of all simula-
tions carried out in the paper. Then, using the D1Q3 velocity 
scheme, the BCs were implemented according to Eq. 55. 
Here, we considered the traditional BGK operator for the 
LBE, represented in Eq. 16.

The LBM models are solved considering Δx = 0.0125 m and 
Δt = 0.10 s. The numerical solutions with LBM and the ana-
lytical solution are all shown in Fig. 17. Comparison of the 
solutions resulted in a global error of E2 = 0.030% for both 
LBM models relative to the theoretical solution.

The results provided verify the accuracy of the dimen-
sional LBM.

(53)u
�T

�x
= �

�2T

�x2

(54)T(x) = T0 + (TL − T0)

⎡⎢⎢⎢⎣

exp
�

�cpux

k
− 1

�

exp
�

�cpuL

k
− 1

�
⎤⎥⎥⎥⎦

(55)

{
g1(0, t + Δt) = T0 − g0(0, t + Δt) − g2(0, t + Δt), for x = 0.0;

g2(L, t + Δt) = TL − g0(L, t + Δt) − g1(L, t + Δt), for x = L;

Fig. 16   Numerical solutions of the layered Poiseuille flow given by 
the dimensional LBM for the saturated water system at 100◦C , con-
sidering three different spatial grids
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Appendix 2: isothermal channel flow

We also applied both LBM models to simulate an isothermal 
Poiseuille flow between two parallel plates. The distance 
between the plates was assumed to be H = 0.50 mm. As the 
analytical solution does not depend on the channel length 
(given by Eq. 44), we used 10 computational cells ( 10Δx ) 
in the X-direction. We employed the D2Q9 velocity scheme 
with Δx = 5.0 ⋅ 10−6 m and Δt = 1.0 ⋅ 10−7 s.

The mean velocity of the channel was um = 0.20m s−1 and 
the driving force in the x direction was Fx = 12um�∕H

2 . The 
fluid is water at a mean temperature of 301 K, with proper-
ties listed in Table 1. The results are depicted in Fig. 18, 
and the global errors for both LBM models compared to 
the analytical solution are Edim

2
= Econv

2
= 0.011% , indicating 

very good accuracy.

Appendix 3: natural convection in a square 
enclosure

In this Appendix, we simulate natural convection in a 
square enclosure with length L = 0.0130 m containing air 
initially at Tini = 293.85 K. The left wall of the domain 
is maintained at a higher constant temperature equal to 
Th = 373.15 K, while the right wall remains at the initial 
temperature of Tc = 293.85 K. The upper (top) and lower 
(bottom) walls are considered insulated. Air properties are 
calculated at a reference temperature of Tref = 333.50 K: 
� = 1.059 kg m−3 , cp = 1008.045 J kg−1K−1 , k = 0.029 W m−1

K−1 , � = 2.702 ⋅ 10−5  m2  s, � = 1.90 ⋅ 10−5  m2  s and 
�exp = 3.004 ⋅ 10−3K−1 (thermal expansion coefficient).

The temperature difference between the walls causes 
a mass flux due to the difference in density between the 
hot and cold fluids. To consider this effect without chang-
ing the fluid density in the simulations, we assumed a 
buoyancy force given by Eq. 56 [57, 60, 77]. This is the 
so-called Boussinesq approximation. In this equation, � 
is the reference density, calculated at the reference tem-
perature Tref , and g = (0,− 9.81) m s−2 is the gravitational 
acceleration.

We considered the D2Q9 velocity set, with the BGK and 
MRT collision operators for momentum and thermal LBEs, 
respectively. For stationary walls, we used the bounce-
back BC for the momentum distribution function (Eq. 13). 
Furthermore, for the fixed temperature BCs (left and right 
walls), we employed the anti-bounce-back rule (Eq. 20), 
and the upper and lower walls were modeled as thermally 
insulated, just applying the BB rule (Eq. 21) with zero heat 
flux ( q�� = 0).

The problem can be characterized by the Rayleigh number 
(Eq. 57), which will be considered as Ra = 104 for the first 
case and Ra = 106 , for the second. In this last test, to obtain 
Ra = 106 without changing the average fluid temperature, we 
considered a new square cavity size, equal to L = 0.60 m, 
and the wall temperatures were changed to Th = 373.85 K 
and Tc = 293.15  K, keeping Tref = 333.50  K. Therefore, 
the air properties in both tests were maintained constant and 
unchanged.

(56)��(x, t) = −��exp
[
T(x, t) − Tref

]
g

(57)Ra =
|g|�expL3(Th − Tc)

��

Fig. 17   Steady-state temperature distribution for the one-dimensional 
advection–diffusion problem

Fig. 18   Steady-state velocity profiles of the isothermal Poiseuille 
flow between two parallel plates obtained for the dimensional and 
conventional LBM simulations and the analytical solution
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For both cases, discrete space and time intervals equal to 
Δx = 2.0 ⋅ 10−4 m and Δt = 2.0 ⋅ 10−4 s, were considered, 
respectively. Steady-state results for the temperature con-
tours and streamlines are presented in Figs. 19 and 20. To 
evaluate the dimensional LBM, its solution is compared 
with the results of the conventional LBM, and both numeri-
cal solutions are validated through a comparison with the 
benchmark solutions found in the literature [14]. All these 

Table 6   Calculated average Nusselt numbers from the simulated 
results by both LBM models and the benchmark solution [14]

Ra = 10
4 Ra = 10

6

Nu Error (%) Nu Error (%)

Benchmark [14] 2.243 – 8.800 –
Dim. LBM 2.242 0.045 8.805 0.057
Conv. LBM 2.242 0.045 8.794 0.068

Fig. 19   Simulated temperature contours (a) and streamlines (b) for Ra = 10
4 with the dimensional LBM

Fig. 20   Simulated temperature contours (a) and streamlines (b) for Ra = 10
6 with the dimensional LBM
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solutions are presented in Table  6. Both LBM models 
showed good agreement with the benchmark expected val-
ues, presenting very small global errors, E2.
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