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Abstract 

Zeger and Liang (1986) proposed a. methodology for discrete and continuous longitudinal da.ta 

tha.t uses the quasi-likelihood a.pproach. For those models, we generalized some diagnostic 
methods useful in regression models with independent responses as the projection (ha.t) ma.trix, 
the Cook's distance a.nd the sta.nda.rdized residual. Moreover, we use the half-normal proba.bility 
plot with simula.ted envelope for checking the adequacy of the fitted model only when the 
ma.rgina.l distributions belong to the exponential family. To construct this plot, we simulated 
correla.ted outcomes through algorithms describes in statistics litera.ture. Finally, we realized 
two applications to illustrate the techniques. 

Ke11 wonu: generalized estimating equations, diagnostic techniquea, repeated mea.rores, qua.ri­

li/celihood method,. 

1 Introduction 

Zeger and Liang (1986) developed the genera.lized estimating equations (GE&) using the 
quasi-likelihood (Wedderburn, 1974) approach to the analysis of longitudinal data. Liang 
and Zeger (1986) derived the GEF,s from a different and slightly more limited context. 
They assumed that the marginal distribution of the dependent variable followed a gener­
alized linear model (McCullagh and Nelder, 1989). In both of them, the GEEs are derived 
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without full specification of the joint distributions and a working correlation matrix for 

the vector of repeated measurements from each subject need be specified. Moreover, the 

dependence of the outcomes on the covariates is the primary focus and it is not necessary 

to specify the working correlation matrix correctly in order to have a consistent estimator 

of the regression parameters. However, choosing the working correlation close to the true 

correlation increases the statistical efficiency of the regression parameter estimator. 

After this theory, Liang and Zeger's method has been used widely in several areas 

which have non-Gaussian correlated data in practice. Therefore, in finding an appropriate 

relationship between correlated response variable and covariates through a linear model, 

it is important to check that the selected model is adequate to fit the data. 

The purpose of this paper is to propose diagnostic measures for any regression analysis 

with repeated measurements that uses the GEF.s methodology. These propose generalize 

the usual measures in generalized linear models (GLMs) such as the projection (hat) 

matrix, the Cook's distance and the standardized residual for detecting high leverage 

points, influential and outlier observations, respectively, and the half-normal probability 

plot with simulated envelope for checking the adequacy of the adjusted model. 

ID § 2, we review GE&! and introduce aome notation. Diasnostic measures and graph­

ical method are derived in § 3. Interpretation of the proposed measures is discussed 

through two illustrative examples in § 4. 

2 Generalized Estimating Equation 

Let Y; be mutually independent random vectors, where y1 = (Y;i, Yi2, ... , Y;")T is the t. x 1 

vector of repeated outcome values for the ith subject, and let X; = (Xii, Xa, ... , Xu;)T be 

the~ xp matrix of covariate values, with XfJ = (x.;1, .. ,,x.;,.)T, i = 1, ... ,n andj = 1, ... , ~­

Assume that the mean and variance of Yi; are 

(1) 

where v(J'i;) is a known function of the mean /Jt; and t;-1 is the dispersion parameter, 

either known or to be estimated. Suppose that the regression model is 'h; = x'f;fJ, where 

fJ = (Pi, . .. , /J.,)T is the p x 1 vector of unknown parameters to be estimated, 'Ii; = g(J'i;) 
and g(•) is a link function. Notice that to simplify notation, we let t. = t without 1088 of 

generality. 

In this way, if~ is the t x t correlation matrix for each y,, its covariance matrix is 

given by 

(2) 
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where ~ = diag{ t1~1), ... , t1(J.'i,)} denote a t x t diagonal matrix. In the context of 
quasi-likelihood multivariate, ~ must be a function of the mean #J;, that is, of fJ, with 
I-';= (µ;1, ... ,µ;1)T, However, the correlation is restrict to the interval [-1,1] that it 
increases the complexity of the iteration process. 

A practical way to solve this problem is to define a t x t working correlation matrix, 
R(a), that depends on an unknown parameter vector a and is equal for all subjects. So, 
the t x t working covariance matrix of Y; is given by 

(3) 

which will be equal to Cov(y;) if R(a) is indeed the true correlation matrix for the Y; ·s. 
The generalized e.,timating equations (GEEs) are 

n 

Enfn;-1(Y; - µ;) = o, (4) 
i=l 

where D; = XlA; and A;= diag{8µ;ifor,;1, ... ,8µ;tfor,;1} is at x t diagonal matrix 
which will be equal the identity matrix if l'i; = Th; is defined to the model, with i = 1, ... , n 
and i = I, ... ,t. 

The estimates of regression coefficients /3, which are our main interest here, are ob­
tained by alternating between the modified Fisher scoring iterative method for /3, as 
followa, and moment estimation of a and q,, a11 has been deacribed by Liang and Zege.r 

{1986). The estimates of a and ti> must be recalculated in each iteration. So, given current 
estimates of these nuisance parameters a and </>, the iterative procedure for estimating fJ 
is 

• (m+l) • (m) { [ ~ • T • -1 • 1-I [ ~ • T • -1 • ] }(m) /3 = /3 + ~ D; O; D; LJ D; O;_ (Y; - I-';) , (5) 
i=l i=l 

where m = 0, 1, 2, ... is the iteration number. A current estimate of /3 is updated by 
equations (5) evaluating the right-hand side at the current estimate of /3, a and¢, in the 
mth iteration. 

Liang and Zeger (1986) show that, under regularity conditions and considering a and 
J as consistent estimates, 

C • t> 1 vn(/3 - /3) ---t N.,,(O, J- ), 

with 
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The mbuwt, empirical or aandwich variance estimator of fJ is given by 

This estimator is obtained by replacing Cov(yi) by (y, - µi)(Yi - µi)T and /3, o: and ¢, by 
their respective estimators in (6). It is robust in the sense that is consistently estimates 
r 1 even if R(a) is misspecified. IT R(a) is correctly specified, the variance estimator of 

fJ reduces to 

{
~ •T•-1• }-1 
L..JDi Oi D, , 
i=l 

which is known by naive or model-baaed variance estimator. 

Considering that the regression model is correctly specified, the robust variance esti­
mator is always consistent. However, the naive estimator is consistent only if the working 
correlation matrix is also correctly specified. When the number of subjects is small, 
say < 20, the naive variance estimator may have better properties (Prentice, 1988) even 
if R(a) is wrong. This is because the robust variance estimator is asymptotically un­
biased, but could be highly biased when the number of subjects is small (Horton and 
Lipsitz, 1999). When the robust and naive variance estimates are similar, it shows the 
adequacy of the matrix R(a) to the model (Johnston, 1996). 

The G EEs method yields only unbiased estimates for the mean structure if the data 
are missing completely at random (Rubin, 1976). A general approach for calculating the 
magnitude of the bias of estimators obtained from standard analysis of estimating equation 
in the presence of incomplete data was presented by Rotnitzky and Wypij (1994). Several 
approaches have been proposed to deal with missing data in the framework of the GEEs 
(Ziegler et al., 1998). 

3 Diagnostic Techniques 

Diagnostic techniques are of great relevance for detecting regression problems and are 
very well discussed for regression models with independent observations in Paula (2004), 
for example. For those models, the diagonal elements of the projection (hat) matrix, the 
Cook's distance and the residuals are useful for detecting high leverage points, influential 
and outlier observations, respectively. Another resource for detecting regression problems 
is the half-normal plots with simulated envelopes (Atkinson, 1985). However, we can use 
this plot only when the marginal distributions is known. 
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Tan et a.I. (1997) proposed those diagnostic methods for checking the adequacy of 
marginal regression models for analyzing correlated binary data. Here, we present an 
extension of those diagnostic measures for regression models with repeated measurements 
as described in Section 2. 

Among others papers that discuas the diagnostic techniques for GEEs, Chang (2000) 
presents a nonparametric test that is a. sensitive approach to examining residua.I values 
for possible patterns of non-randomness, Pan (2001) proposes a modified model-selection 
criterion QIC based in Akaike's Information Criterion that works well in variable selection 
and selecting the working correlation matrix, and finally, we cite here Preisser and Qaqish 
(1996) that propose deletion diagnostics for GEEs, but in a subtle different point of view 
as we present in the next section. 

3.1 High Leverage, Influence and Outlier Points 

A most usefuJ way to view the iterative process outlined in (5) is by the method of 
iteratively reweighted least squares. This is obtained by employing the pseudo-observation 
vector z and the weight matrix W, upon which it becomes 

•(m+l) _ {[~ T .. -]-1[~ T •. ·]}(ml fJ - L...,~ W,X. L...,~ W,z, , 
i==l i==l 

(7) 

where W; = Aii;1 A; and z; = T/; + A;1 
(y. - fJ;) . 

At convergence of this iterative procedure, we may write 

~ = (xTwxr1xTWz, (8) 

where W = diag(Wi, ... , Wn) is a block diagonal weight matrix whose ith block corre­
sponding to the ith subject, X = (XI, ... , ~)T and z = (z'f, ... , z!)T, a.II of them 
with dimensions N x N, N x p and N x 1, respectively, with N = nt. 

In this sense, the residuals defined by the deviation of the observed data from the fit 
can be written as 

• 1/2 • 1/2 • -1 r• = W (z - ,)) = W A (y - µ), (9) 

where w1t2 is defined as the square root obtained from eigenvalue decomposition of 
W, A= diag(A1 , .. • ,A,.) is with dimension (N x N), and y = (y'f, ... ,y!)T and 
µ = (µf, ... , fs!)T are both with dimension (N x 1). 
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Since Cov(z) = A-1Cov(y).A.-1 ~ w-1
, then Cov(r•) ~ (1-H), where I is the NxN 

identity matrix and H is the N x N block diagonal matrix given by diag(Hi, ... , H,.), 

where 

i= 1, . . . ,n. (10} 

The matrix His symmetric (H'f = H) and idempotent (HH = H), so r(H) = tr{H} = p, 

where r(H) is the rank of H and p is the number of regression coefficients. 

The elements of r• own different va.ria.nces, which a.re difficult to compare themself, so 

we define the standardized residual associated with Yi; by 

( } 
e[i;i w!'2 At (y, - IJi) 

rsD iJ = Jl-ht; (11} 

where eci;J is the t x 1 vector with the jth element 1 and all the others 0, and h.; is the 

jth diagonal element of Hh i = 1, ... , n and j = 1, ... , t. 

The ordinary residual in (9) can also be written as r• = (I - H)W112 
z. Then, con-

- 1/2 sidering that W z plays the role of the outoome vector, we can interpret H as the hat 

matrix in the same way as in the normal linear regression, where W is the identity matrix. 

This view allows us to use the diagonal elements of H to detect high leverage point, as 

well as Paula (2004} presents to GLMs and Tan et al. (1997) propose to logistic regression 

with correlated responses. 

A large value of h.; indicates that the influence of the covariate measurements of this 
observation may be unduly large. Assuming that all points exercise the same influence 
on the regression parameter estimates, we hope each element h.; is a.round the average 

tr(H)/N = p/N, so the point that h.; ~ 2p/N can be considered a high leverage point. 
AP, another guideline to identify outlying subjects, we can use the average of the h.;s 
within a subject to identify leverage subjects. Namely, the ith subject can exercise a 
la.rge influence on fitted model, if 

Graphically, we can make a plot of h.; versus i, where i indicates the index of the 

subject, with i = 1, ... , n and j = 1, ... , t. If the interest is check the influence of each 

subject, then we build a plot of h.. versus i, i = 1, ... , n. 

The detection of outlier observations using a graphica.l representation can be made 

by the plot of standardized residual (rsD),; versus the index i, where i = 1, ... , n and 
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j = 1, ... , t. An outlier observation occurs when it differs too much from the fitted value 

and has not a so high leverage. 

In addiction to the diagnostic, the influence observation occurs when the difference 
between this observation and the fitted value is unduly large and presents a high leverage. 
The influence of each observation on regression coefficients can be assessed by Cook's 
distance. This measure shows the distance between the estimate regression coefficients 
using all responses values (fj) and without the observation Y,; (/Jc,;i), with i = 1, ... , n and 
j = 1, ... ,t. 

The idea of the one-step approximation for /Jc;;J presents by Pregibon (1981) is applied 
here for the GEEs estimator in (7), which is given by 

• (l) • [XTwx1-1[xTw
112 

eci;J][e&;JW
112 A-1

(y - Ml 
fJ(ij) = fJ - 1 - h.; 

Then, Cook's distance with the deletion of the observation Y,; is defined by 

1 • • T T • • • 2 b_; 
(CD);; = P(fJ - fl(,;J) X WX(fJ - /3(i;)) = (rso);; p(l _ h.;). (12) 

The plot of (CD);; against the index i, with i = 1, ... , n and j = 1, ... , t, indicates an 
influential observation when it presents a discrepant value compared with the others 
points. 

All of the diagnostic stati.stiCB discUBBed above involve estimated correlation parame­

ters, R(a), and thus may not be accurate when those estimates are not close to the true 
values. 

The measures cited above were found using the ordinary residual, r•, and making 
analogies between fj given by (8) and the equation to estimate fJ in the case of linear 
normal regression. Whatever, Preisser and Qaqish (1996) proposed their measures making 
an analogy of iJ = Xfj with the predictor of the linear normal regression which is given 
by fJ = µ = X(XTX)-1XTy = Hy. So, in the case of GEEs, the authors define H that 
is the projection matrix given by 

'1 = XfJ = X(XTwx)-1XTWz = Hz, 

where H is here an asymmetric and idempotent matrix. 

Following this purpose, the ordinary residual is given by r• = z - fJ = (I - H)z, 
and the expression of the covariance matrix is different of (I - H). This situation makes 
impossible the construction of the half-normal probability plot with simulated envelope, 
which procedure consists basically in generating residuals with mean zero and covariance 
matrix equal (I - H) (Atkinson, 1985). 
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3.2 Simulated envelope 

The half-normal plots with simulated envelopes are useful for identifying outlier observa­
tions and for examining the adequacy of the fitted model, even if the distribution of the 
residuals is not known (Neter et al., 1996). 

The steps of the algorithm presented below show that the construction of the half­
normal probability plot with simulated envelope is simple since we know how to generate 
correlated variables. So, to provide this, we can use the function rmvnorm of $-Plus or R 
softwares for generating multivariate Gaussian distribution (Venables and Ripley, 1999). 
Park et al. (1996) propose an algorithm for generating a random vector of correlated 
binary variables and Park and Shin (1998) develop an algorithm for generating a vector of 
dependent Poisson or gamma variables. Both of these papers provide a simple algorithm 
for generating a set of nonnegatively correlated variables of arbitrary dimension. For 
generating correlated variables with others distributions, we suggest the use of copulas 
(Nelsen, 1999). 

A simulated envelope for a half-normal probability plot of the absolute residuals is 
constructed to models with repeated measures in the following way: 

1. For each subject i, i = 1, ... , n, simulate a t x 1 vector of responses using the means 
vector and the correlations matrix estimates, based on the model fitted to the original 
data y. 

2. Fit to the simulated responses in the first step, the same model to y with the same 
covariates. 

3. Compute the set of standardized residuals as in the equation (11) and order them. 

4. Repeat steps 1 through 3 more 24 times independently. Here, let (rsn)im be the 
lth ordered absolute value of standardized residual belonging to mth simulation, 
l = 1, ... ,N em= 1, ... ,M, where M = 25. 

5. Calculate the minimum, median (or mean) and maximum of the smallest absolute 
values of residuals for all simulations, that is, of the values (rsnhm, m = 1, ... , 25. 

6. Repeat the last step for the second small absolute values of standardized residuals 
(rsnhm- After that, repeat this step for the third small values (rsn)Sm, and so forth, 
until the biggest absolute values of standardized residuals (rsn)Nm, m = 1, ... , 25. In 
the end of this step, we got three N x 1 vectors of the minimum, median (or mean) 
and maximum values of the standardized residuals. 

7. Finally, plot these values and the ordered absolute values of the original fitted stan-
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dardized residuals against the half-normal scores 

41_1 (' + N -1/8) 
2N + 1/2 ' 

where ~0 is the cumulative distribution function of the standard normal distribu­

tion. 

Large deviations of points from the medians (or means) of the simulated values or the 

occurrence of points near to or outside the simulated envelope, are indications that the 

fitted model is not appropriate. However, they do not provide enough information on how 

to improve the fit of the model. ff there are outlier points, they will appear at the top 

right of the half-normal probability plot as points separated from the others. 

Atkinson (1985) suggests by using M = 19 simulations, there is one chance in 20, 
or 5 percent, that the largest absolute standardized residual from the original data set 

lies outside the simulated envelope when the fitted model is correct. The value M = 25 

simulations is suggested by Tan et al. (1997), which we adopt in this paper. 

4 Applications 

As illustration we analyze two data set applying the theories developed in §2 and §3. 

4.1 Application using Gaussian Distribution 

In this example, the data was obtained from Lima and Saiiudo (1997). The aim was 

to verify the learning process of a certain task, which was developed by 40 volunteers. 
Each volunteer practice the task in 8 blocks of attempts. The response variable named 
Absolute Error was fitted by a regression model considering normal distribution and 
identity (canonical) link. The parameters involved in this model were: /3o, intercept and 

/Ji, slope - block effect. This model was fitted using the working correlation matrix under 

the unstructured, exchangeable and AR(l) structures. This last one presented the lowest 

standardized residuals and was preferable to fit the response variable. 

Table 1 shows the estimates of the regression, dispersion and correlation parameters of 

the fitted model using the working correlation matrix under the AR(l) structure. Through 

the generalized Wald test statistic proposed by Rotnitzky and Jewell (1990), we concluded 

the block effect is significant (P-value < 0, 001). 

9 



Table 1: Parameter estimates of the normal regression model using AR(l) structure to the 
logarithm Absolute Error variable. 

Parameter F.istimate Robust S.E. Naive S.E. 

/3o Intercept 3,850 0,067 0,068 

/J1 Blade -0,051 0,010 0,013 
,-1 Dispersion 0,173 
a Con-elation 0,531 

Applying the diagnostic techniques presented in § 3, we calculated the Cook's distance 
and the standardized residual for each pair of subject (volunteer) i and block of attempts 
j, i = 1, ... , 40 and j = 1, . .. , 8. Figure la and Figure 1 b show the values of these both 
measures, respectively. In the first one, the observations of the subjects 1, 33 and 39 
connected to the first block of attempts are higher than the other observations, indicating 
to be a possible influence points. In the set of data, the values of the Absolute Error 
from the subjects 1, 33 and 39 connected to the first block of attempts were 5.0, 5.1 and 
4.9, respectively. These values are not similar to the values of the other subjects of the 
first block, whose mean is 3.7. It indicates that the Cook's distance measure evidenced 
distinguished observations correctly. Figure lb do not show any residual far away the 
others. Notice that this example does not have quantitative covariates and because of 
that, we do not utilize the projection matrix to detect high leverage observations. 

The half-normal probability plot with simulated envelope (Figure 2) does not indicate 
any observation outside the simulated envelope. Then, we conclude that the normal 
regression model is adequate to fit the Absolute Error response. 

4.2 Application using Poisson Distribution 

This example, reported by Montgomery et al. (2001, p.215), is a biomedical example with 
30 subjects (rats) that have had a leukemic condition induced. Three chemotherapy types 
drugs were used, so we have 10 subjects for each drug. White (W) and red (R) blood cell 
counts were collected as covariates and the response is the number of cancer cell colonies. 
The data were collected on each subject at four different time periods. Poisson responses 
using a log (canonical) link were assumed. Thus 

(13) 

where i, j and l index subject, time period and drug, respectively, with i = 1, ... , 30, 
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Figure 1: Plot of the Cook's distance (a) and plot of the standardized residual (b) for the normal 
regression model using AR(l) structure to the Absolute Error variable . 
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Figure 2: Half-normal probability plot with simulated envelope for the normal regression model 
using AR(l) structure to the Absolute Error variable. 
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j = 1, ... ,4 and l = 1,2,3. Here, the first ten rats (i = 1, ... ,10) used the drug 1, the 
rats indexed by i = 11, ... , 20 used the drug 2 and the last ten rats (i = 21, ... , 30) used 
the drug 3. 

This model was fitted using unstructured, exchangeable and AR(l) correlation struc­
tures. In the first one, the regression estimates did not achieve the convergence after 
50 iterations. The AR(l) structure was chosen to explicate the correlation among the 
observations of the same subject and drug because it got the lowest residual. Besides, the 
algorithm for generating a vector of dependent Poisson described by Park and Shin (1998) 
failed to the fitted model with exchangeable correlation structure, what it made impossible 
the construction of the half-normal plot with simulated envelope to this structure. 

Table 2 shows the estimates of the regression and correlation parameters of the fit­
ted model as in (13) using the working correlation matrix under the AR(l) structure. 
Through the generalized Wald test statistic proposed by Rotnitzky and Jewell (1990), all 
the regression parameters are highly significant (P-value < 0, 001, for each parameter). 

Table 2: Parameter estimates of the Poisson regression model using AR(l) structure. 
Parameter Estimate Robust S.E. Naive S.E. 

/Ji Drug 1 3,0120 0,0778 0,0315 
th Drug 2 3,2315 0,0976 0,0891 
Pa Drug 3 3,1363 0,1540 0,1075 
p. W -0,0305 0,0051 0,0045 
· /35 R 0,0221 0,0065 0,0073 
o Correlation 0,9227 

Applying the diagnostic techniques presented in § 3, we calculated the measures liiJ 
and h.. to verify, respectively, if the observation (i,j) or the subject i is a high leverage, 
i = 1, . .. , 30 and i = l, ... , 4. Figure 3a and Figure 3b give these both measures, 
respectively. In this first one, apparently six observatioD.B are a high leverage cases: (1, 4), 
(3, 1) and (6, 1) connected to the drug 1, (16, 1) and (16, 4) connected to the drug 2 and 
(23, 4) connected to the drug 3. However, Figure 3b shows no subject as a possible high 
leverage. 

To detect influence and outlier observations, we calculated the Cook's distance and 
the standardized residual, which are presented, respectively, in Figure 3c and Figure 
3d. Both of them do not show any distinguished observation compared with the others. 
The half-normal probability plot with simulated envelope (Figure 4) does not indicate 
any observation outside the simulated envelope. So, we can conclude that the poisson 
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regression under AR(l) correlation structure is adequate to explain the relation between 
the number of cancer cell colonies and the covariates white and red blood cell counts. 
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Figure 3: Plot of the leverage for each observation (a), plot of the leverage for each subject 
(b), plot of the Cook's distance (c) and plot of the standardized residual (d) for the Poisson 
regression model using AR(l) structure. 
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Figure 4: Half-normal probability plot with simulated envelope for the Poill&on regression model 
using AR(l) structure. 
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