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Abstract

Zeger and Liang (1986) proposed a methodology for discrete and continuous longitudinal data
that uses the quasi-likelihood approach. For those models, we generalized some diagnostic
methods useful in regression models with independent responses as the projection (hat) matrix,
the Cook’s distance and the standardized residual. Moreover, we use the half-normal probability
plot with simulated envelope for checking the adequacy of the fitted model only when the
marginal distributions belong to the exponential family. To construct this plot, we simulated
correlated outcomes through algorithms describes in statistics literature. Finally, we realized
two applications to illustrate the techniques.

Key words: generalized estimating equations, diagnostic techniques, repeated measures, quasi-
likelihood methods.

1 Introduction

Zeger and Liang (1986) developed the generalized estimating equations (GEEs) using the
quasi-likelihood (Wedderburn, 1974) approach to the analysis of longitudinal data. Liang
and Zeger (1986) derived the GEEs from a different and slightly more limited context.
They assumed that the marginal distribution of the dependent variable followed a gener-
alized linear model (McCullagh and Nelder, 1989). In both of them, the GEEs are derived
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without full specification of the joint distributions and a working correlation matrix for
the vector of repeated measurements from each subject need be specified. Moreover, the
dependence of the outcomes on the covariates is the primary focus and it is not necessary
to specify the working correlation matrix correctly in order to have a consistent estimator
of the regression parameters. However, choosing the working correlation close to the true
correlation increases the statistical efficiency of the regression parameter estimator.

After this theory, Liang and Zeger’s method has been used widely in several areas
which have non-Gaussian correlated data in practice. Therefore, in finding an appropriate
relationship between correlated response variable and covariates through a linear model,
it is important to check that the selected model is adequate to fit the data.

The purpose of this paper is to propose diagnostic measures for any regression analysis
with repeated measurements that uses the GEEs methodology. These propose generalize
the usual measures in generalized linear models (GLMs) such as the projection (hat)
matrix, the Cook’s distance and the standardized residual for detecting high leverage
points, influential and outlier observations, respectively, and the half-normal probability
plot with simulated envelope for checking the adequacy of the adjusted model.

In § 2, we review GEEs and introduce some notation. Diagnostic measures and graph-
ical method are derived in § 3. Interpretation of the proposed measures is discussed
through two illustrative examples in § 4.

2 Generalized Estimating Equation

Let y, be mutually independent random vectors, where y; = (¥;1, Yigs --» ¥ig,) " 18 the £; x 1
vector of repeated outcome values for the ith subject, and let X; = (x4, Xiz, ---, Xiz,)T be
the ; X p matrix of covariate values, with X5 = (Xij1,-r Xigp) T3 = 1,...,nand 5 = 1, ..., &.
Assume that the mean and variance of y,; are

E(y;) =m; and Var(y;) = ¢ v(uy), (1

where v(u;;) is a known function of the mean p; and ¢! is the dispersion parameter,
either known or to be estimated. Suppose that the regression model is n;; = x;‘;-ﬁ, where
B = (B1,-..,P,)T is the p x 1 vector of unknown parameters to be estimated, m;; = g(ss;)
and g(-) is a link function. Notice that to simplify notation, we let #; = ¢ without loss of
generality.

In this way, if Ry is the ¢ x ¢ correlation matrix for each y;, its covariance matrix is
given by

Cov(y,) = ¢ A} R; A}?, @)



where A; = diag{v(pq),...,v(p)} denote a ¢ x ¢ diagonal matrix. In the context of
quasi-likelihood multivariate, R; must be a function of the mean u;, that is, of 8, with
#; = (ti1,..., pie)T. However, the correlation is restrict to the interval [~1,1] that it
increases the complexity of the iteration process.

A practical way to solve this problem is to define a ¢ x t working correlation matrix,
R(a), that depends on an unknown parameter vector & and is equal for all subjects. So,
the ¢ x ¢ working covariance matrix of y, is given by

Q: = ¢7'A;” R(a) A}, ®)

which will be equal to Cov(y;) if R(a) is indeed the true correlation matrix for the y; s.
The generalized estimating equations (GEEs) are

n .
Y DIy, - ) =0, )
i=1
where D] = XTA; and A; = diag{Opm1/0m, ..., Om/Om:e} is a t x t diagonal matrix
which will be equal the identity matrix if u;; = 7;; is defined to the model, withi =1,.
and j = 1,.
The estimates of regression coefficients 3, which are our main interest here, are ob-

tained by alternating between the modified Fisher scoring iterative method for 8, as
follows, and moment estimation of « and ¢, as has been described by Liang and Zeger

(1986). The estimates of o and ¢ must be recalculated in each iteration. So, given current
estimates of these nuisance parameters x and ¢, the iterative procedure for estimating 8

is
3(m+1) — (rn) {[ZDTA—IA] [Z -T» I(Y: “‘)]}(M) (5)

where m = 0,1,2,... is the iteration number. A current estimate of 8 is updated by
equations (5) evaluating the right-hand side at the current estimate of 8, & and ¢ in the
mth iteration.
Liang and Zeger (1986) show that, under regularity conditions and considering & and
$ as consistent estimates,
VA(B - B) = Ny(0,37),

with

37 = lim n { EDTQ-ID 3 z":D,.Tn,.-l Cov(y,) 0;'D; }{ Z":D,.Tn,.-ln.-}_l

n—oo



The robust, empirical or sandwich variance estimator of B is given by

{E'T"“} {ZD;rﬂ.-_l(Y. )y — )0 D}{EDT"“ }_l

This estimator is obtained by replacing Cov(y;) by (y;— #;)(y; — ;)T and B, a and ¢ by
their respective estimators in (6). It is robust in the sense that is consistently estimates
J~! even if R(a) is misspecified. If R(c) is correctly specified, the variance estimator of

Breducesto
{Torarn)”,

which is known by naive or model-based variance estimator.

Considering that the regression model is correctly specified, the robust variance esti-
mator is always consistent. However, the naive estimator is consistent only if the working
correlation matrix is also correctly specified. When the number of subjects is small,
say < 20, the naive variance estimator may have better properties (Prentice, 1988) even
if R{a) is wrong. This is because the robust variance estimator is asymptotically un-
biased, but could be highly biased when the number of subjects is small (Horton and
Lipsitz, 1999). When the robust and naive variance estimates are similar, it shows the
adequacy of the matrix R(ax) to the model (Johnston, 1996).

The GEEs method yields only unbiased estimates for the mean structure if the data
are missing completely at random (Rubin, 1976). A general approach for calculating the
magnitude of the bias of estimators obtained from standard analysis of estimating equation
in the presence of incomplete data was presented by Rotnitzky and Wypij (1994). Several
approaches have been proposed to deal with missing data in the framework of the GEEs
(Ziegler et al., 1998).

3 Diagnostic Techniques

Diagnostic techniques are of great relevance for detecting regression problems and are
very well discussed for regression models with independent observations in Paula (2004),
for example. For those models, the diagonal elements of the projection (hat) matrix, the
Cook’s distance and the residuals are useful for detecting high leverage points, influential
and outlier observations, respectively. Another resource for detecting regression problems
is the half-normal plots with simulated envelopes (Atkinson, 1985). However, we can use
this plot only when the marginal distributions is known.



Tan et al. (1997) proposed those diagnostic methods for checking the adequacy of
marginal regression models for analyzing correlated binary data. Here, we present an
extension of those diagnostic measures for regression models with repeated measurements
as described in Section 2.

Among others papers that discuss the diagnostic techniques for GEEs, Chang (2000)
presents a nonparametric test that is a sensitive approach to examining residual values
for possible patterns of non-randomness, Pan (2001) proposes a modified model-selection
criterion QIC based in Akaike’s Information Criterion that works well in variable selection
and selecting the working correlation matrix, and finally, we cite here Preisser and Qagqish
(1996) that propose deletion diagnostics for GEEs, but in a subtle different point of view
as we present in the next section.

3.1 High Leverage, Influence and Outlier Points

A most useful way to view the iterative process outlined in (5) is by the method of
iteratively reweighted least squares. This is obtained by employing the pseudo-observation
vector z and the weight matrix W, upon which it becomes

BT = { [i x;'rwi)(i] - {z": XTWiZ.‘] }(m), @)
§=1 i=1
where W; = A3, 'A; and z =#,+A; (y; — ;) .

At convergence of this iterative procedure, we may write
. s N=1_
B = (xwa) XTWs3, (8)

where W = diag(‘fVl, e ,W,.) is a block diagonal weight matrix whose ith block corre-
sponding to the ith subject, X = (X7,...,X5)T and z = (27,...,2T)7, all of them
with dimensions N x N, N x p and N x 1, respectively, with N = nt.

In this sense, the residuals defined by the deviation of the observed data from the fit
can be written as

=W/

. < 1/2 -1 .
@Z-M=W"A (y-p), (9)
where W'/2 is defined as the square root obtained from eigenvalue decomposition of
W, A = diag(Ay,...,A,) is with dimension (N x N), and y = (yT,...,yD)T and
fo=(f],...,50)T are both with dimension (N x 1).



Since Cov(z) = z‘i_lcov(y)f\_1 & W™, then Cov(r*) 2 (I-H), where Iisthe Nx N
identity matrix and H is the N x N block diagonal matrix given by diag(H, ..., H,),
where

- 1/2

H=W/

The matrix H is symmetric (HT = H) and idempotent (HH = H), so r(H) = tr(H) = p,
where r(H) is the rank of H and p is the number of regression coefficients.

The elements of r* own different variances, which are difficult to compare themself, so
we define the standardized residual associated with y;; by

KXTWX)XTW, i=1,...,n (10)

.1/ 2 —1 R
e Wi A (i — i)

(rSD)ij = \/I—:—h: 1 (11)

where ey;;) is the ¢ x 1 vector with the jth element 1 and all the others 0, and hy; is the
jth diagonal element of H;, 1 =1,...,nand j = 1,...,%.

The ordinary residual in (9) can also be written as r* = (I — H)sz. Then, con-
sidering that W' plays the role of the outcome vector, we can interpret E as the hat
matrix in the same way as in the normal linear regression, where W is the identity matrix.
This view allows us to use the diagonal elements of H to detect high leverage point, as
well as Paula (2004) presents to GLMs and Tan et al. (1997) propose to logistic regression
with correlated responses.

A large value of h;; indicates that the influence of the covariate measurements of this
observation may be unduly large. Assuming that all points exercise the same influence
on the regression parameter estimates, we hope each element h;; is around the average
tr(H)/N = p/N, so the point that h;; > 2p/N can be considered a high leverage point.
As another guideline to identify outlying subjects, we can use the average of the h;;s
within a subject to identify leverage subjects. Namely, the ith subject can exercise a
large influence on fitted model, if

1, t(H) 2%
hi.—;jglhdj—-T?_-ﬁ-

Graphically, we can make a plot of h;; versus 4, where i indicates the index of the
subject, with { = 1,...,n and j = 1,...,¢. If the interest is check the influence of each
subject, then we build a plot of h; versus{,i=1,...,n.

The detection of outlier observations using a graphical representation can be made
by the plot of standardized residual (rsp);; versus the index ¢, where ¢ = 1,...,n and



J =1,..,t. An outlier observation occurs when it differs too much from the fitted value
and has not a so high leverage.

In addiction to the diagnostic, the influence observation occurs when the difference
between this observation and the fitted value is unduly large and presents a high leverage.
The influence of each observation on regression coefficients can be assessed by Cook’s
distance. This measure shows the distance between the estimate regression coefficients
using all responses values (3) and without the observation Yij (B(ij)), withi=1,...,n and
i=1..,t

The idea of the one-step approximation for ﬁ(,-,-) presents by Pregibon (1981) is applied
here for the GEEs estimator in (7), which is given by

N 5 1/2 5 1/2 2 ~1 .
50 _ 5 [XTWX]'[XTW “egyllef, W A (v — @)

@ =P - T-hg
Then, Cook’s distance with the deletion of the observation y,; is defined by
= 2(B = Bu) TXTWX(B - Bris) = (sp)?: ——tti—
(CD)u = p(ﬁ ﬂ(ij)) X*'WX(8 ﬂ(.'j)) = (ISD)ij p(1— h,-j)' (12)

The plot of (CD);; against the index 4, with ¢ = 1,...,n and j = 1,...,t, indicates an
influential observation when it presents a discrepant value compared with the others
points.

All of the diagnostic statistics discussed above involve estimated correlation parame-
ters, R(é&), and thus may not be accurate when those estimates are not close to the true
values.

The measures cited above were found using the ordinary residual, r*, and making
analogies between B given by (8) and the equation to estimate 8 in the case of linear
normal regression. Whatever, Preisser and Qaqish (1996) proposed their measures making
an analogy of §j = X3 with the predictor of the linear normal regression which is given
by #t = o = X(XTX)"'XTy = Hy. So, in the case of GEEs, the authors define H that
is the projection matrix given by

f = XB = X(X"WX)"'X"Wz = Hz,
where H is here an asymmetric and idempotent matrix.

Following this purpose, the ordinary residual is given by r* = z — /) = (I — H)z,
and the expression of the covariance matrix is different of (I — H). This situation makes
impossible the construction of the half-normal probability plot with simulated envelope,
which procedure consists basically in generating residuals with mean zero and covariance
matrix equal (I — H) (Atkinson, 1985).



3.2 Simulated envelope

The half-normal plots with simulated envelopes are useful for identifying outlier observa-
tions and for examining the adequacy of the fitted model, even if the distribution of the
residuals is not known (Neter et al., 1996).

The steps of the algorithm presented below show that the construction of the half-
normal probability plot with simulated envelope is simple since we know how to generate
correlated variables. So, to provide this, we can use the function rmvnorm of S-Plus or R
softwares for generating multivariate Gaussian distribution (Venables and Ripley, 1999).
Park et al. (1996) propose an algorithm for generating a random vector of correlated
binary variables and Park and Shin (1998) develop an algorithm for generating a vector of
dependent Poisson or gamma variables. Both of these papers provide a simple algorithm
for generating a set of nonnegatively correlated variables of arbitrary dimension. For
generating correlated variables with others distributions, we suggest the use of copulas
(Nelsen, 1999).

A simulated envelope for a half-normal probability plot of the absolute residuals is
constructed to models with repeated measures in the following way:

1. For each subject 4, i =1, ..., n, simulate a ¢ x 1 vector of responses using the means
vector and the correlations matrix estimates, based on the model fitted to the original
data y.

2. Fit to the simulated responses in the first step, the same model to y with the same
covariates.

3. Compute the set of standardized residuals as in the equation (11) and order them.

4. Repeat steps 1 through 3 more 24 times independently. Here, let (rsp)im be the
Ith ordered absolute value of standardized residual belonging to mth simulation,
l=1,..,Nem=1,..,M, where M = 25.

5. Calculate the minimum, median (or mean) and maximum of the smallest absolute
values of residuals for all simulations, that is, of the values (rsp)im, m =1, ..., 25.

6. Repeat the last step for the second small absolute values of standardized residuals
(rsp)a2m. After that, repeat this step for the third small values (rsp)sm, and so forth,
until the biggest absolute values of standardized residuals (rsp)ym, m = 1,...,25. In
the end of this step, we got three N x 1 vectors of the minimum, median (or mean)
and maximum values of the standardized residuals.

7. Finally, plot these values and the ordered absolute values of the original fitted stan-



dardized residuals against the half-normal scores

-1 I+ N-1/8
2N +1/2
where ®(-) is the cumulative distribution function of the standard normal distribu-
tion.

Large deviations of points from the medians (or means) of the simulated values or the
occurrence of points near to or outside the simulated envelope, are indications that the
fitted model is not appropriate. However, they do not provide enough information on how
to improve the fit of the model. If there are outlier points, they will appear at the top
right of the half-normal probability plot as points separated from the others.

Atkinson (1985) suggests by using M = 19 simulations, there is one chance in 20,
or 5 percent, that the largest absolute standardized residual from the original data set
lies outside the simulated envelope when the fitted model is correct. The value M = 25
simulations is suggested by Tan et al. (1997), which we adopt in this paper.

4 Applications

As illustration we analyze two data set applying the theories developed in §2 and §3.

4.1 Application using Gaussian Distribution

In this example, the data was obtained from Lima and Safiudo (1997). The aim was
to verify the learning process of a certain task, which was developed by 40 volunteers.
Each volunteer practice the task in 8 blocks of attempts. The response variable named
Absolute Error was fitted by a regression model considering normal distribution and
identity (canonical) link. The parameters involved in this model were: f, intercept and
B4, slope - block effect. This model was fitted using the working correlation matrix under
the unstructured, exchangeable and AR(1) structures. This last one presented the lowest
standardized residuals and was preferable to fit the response variable.

Table 1 shows the estimates of the regression, dispersion and correlation parameters of
the fitted model using the working correlation matrix under the AR(1) structure. Through
the generalized Wald test statistic proposed by Rotnitzky and Jewell (1990), we concluded
the block effect is significant (P-value < 0,001).



Table 1: Parameter estimates of the normal regression model using AR(1) structure to the
logarithm Absolute Error variable.

Parameter Estimate Robust S.E. Naive S.E.
Bo Intercept 3,850 0,067 0,068
B Block -0,051 0,010 0,013
¢~  Dispersion 0,173 '
a  Correlation 0,531

Applying the diagnostic techniques presented in § 3, we calculated the Cook’s distance
and the standardized residual for each pair of subject (volunteer) ¢ and block of attempts
Ji=1,...,40 and j =1,...,8. Figure 1a and Figure 1b show the values of these both
measures, respectively. In the first one, the observations of the subjects 1, 33 and 39
connected to the first block of attempts are higher than the other observations, indicating
to be a possible influence points. In the set of data, the values of the Absolute Error
from the subjects 1, 33 and 39 connected to the first block of attempts were 5.0, 5.1 and
4.9, respectively. These values are not similar to the values of the other subjects of the
first block, whose mean is 3.7. It indicates that the Cook’s distance measure evidenced
distinguished observations correctly. Figure 1b do not show any residual far away the
others. Notice that this example does not have quantitative covariates and because of
that, we do not utilize the projection matrix to detect high leverage observations.

The half-normal probability plot with simulated envelope (Figure 2) does not indicate
any observation outside the simulated envelope. Then, we conclude that the normal
regression model is adequate to fit the Absolute Error response.

4.2 Application using Poisson Distribution

This example, reported by Montgomery et al. (2001, p.215), is a biomedical example with
30 subjects (rats) that have had a leukemic condition induced. Three chemotherapy types
drugs were used, s0 we have 10 subjects for each drug. White (W) and red (R) blood cell
counts were collected as covariates and the response is the number of cancer cell colonies.
The data were collected on each subject at four different time periods. Poisson responses
using a log (canonical) link were assumed. Thus

log pij = Bi+ s Wij + Bs Ry, (13)

where ¢, j and I index subject, time period and drug, respectively, with i = 1,...,30,

10
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Figure 1: Plot of the Cook’s distance (a) and plot of the standardized residual (b) for the normal
regression model using AR(1) structure to the Absolute Error variable.
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Figure 2: Half-normal probability plot with simulated envelope for the normal regression model
using AR(1) structure to the Absolute Error variable.
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j=1,...,4 and | = 1,2,3. Here, the first ten rats (i = 1,...,10) used the drug 1, the
rats indexed by 5 = 11,...,20 used the drug 2 and the last ten rats (i = 21,...,30) used
the drug 3.

This model was fitted using unstructured, exchangeable and AR(1) correlation struc-
tures. In the first one, the regression estimates did not achieve the convergence after
50 iterations. The AR(1) structure was chosen to explicate the correlation among the
observations of the same subject and drug because it got the lowest residual. Besides, the
algorithm for generating a vector of dependent Poisson described by Park and Shin (1998)
failed to the fitted model with exchangeable correlation structure, what it made impossible
- the construction of the half-normal plot with simulated envelope to this structure.

Table 2 shows the estimates of the regression and correlation parameters of the fit-
ted model as in (13) using the working correlation matrix under the AR(1) structure.
Through the generalized Wald test statistic proposed by Rotnitzky and Jewell (1990), all
the regression parameters are highly significant (P-value < 0,001, for each parameter).

Table 2: Parameter estimates of the Poisson regression model using AR(1) structure.
Parameter Estimate Robust S.E. Naive S.E.

B.  Drugl 30120 0,0778 0,0315
B2 Drug2 32315 0,0976 0,0891
fs Drug3  3,1363 0,1540 0,1075
Ba w -0,0305 0,0051 0,0045
Bs R 0,0221 0,0065 0,0073

a Correlation  0,9227

Applying the diagnostic techniques presented in § 3, we calculated the measures hy;
and h;. to verify, respectively, if the observation (%, j) or the subject i is a high leverage,
¢ =1,...,30 and j = 1,...,4. Figure 3a and Figure 3b give these both measures,
respectively. In this first one, apparently six observations are a high leverage cases: (1, 4),
(3,1) and (6,1) connected to the drug 1, (16,1) and (16, 4) connected to the drug 2 and
(28,4) connected to the drug 3. However, Figure 3b shows no subject as a possible high
leverage.

To detect influence and outlier observations, we calculated the Cook’s distance and
the standardized residual, which are presented, respectively, in Figure 3c and Figure
3d. Both of them do not show any distinguished observation compared with the others.
The half-normal probability plot with simulated envelope (Figure 4) does not indicate
any observation outside the simulated envelope. So, we can conclude that the poisson

12



regression under AR(1) correlation structure is adequate to explain the relation between
the number of cancer cell colonies and the covariates white and red blood cell counts.
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Figure 3: Plot of the leverage for each observation (a), plot of the leverage for each subject
(b), plot of the Cook’s distance (c) and plot of the standardized residual (d) for the Poisson

regression model using AR(1) structure.

13



Owdered Absokrie Value of Standardized Residusl

T T T
0.0 0.3 1.0 1.5 20 25
Expected Half-Normal Order Statistics

Figure 4: Half-normal probability plot with simulated envelope for the Poisson regression model
using AR(1) structure.
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