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Abstract

A new measure of the bivariate asymmetry of a dependence structure be-
tween two random variables is introduced based on copula characteristic func-
tion. The proposed measure is represented as the discrepancy between the
rank–based distance correlation computed over two complementary order-
preserved sets. Generalproperties of the measure are established, as well
as an explicit expression for the empirical version. It is shown that the
proposed measure is asymptotically equivalent to a fourth–order degenerate
V -statistics and that the limit distributions have representations in terms
of weighted sums of an independent chi-square random variables. Under
dependent random variables, the asymptotic behavior of bivariate distance
covariance and variance process is demonstrated. Numerical examples illus-
trate the properties of the measures.
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1 Introduction

Over the past twenty years, modeling of dependence among random vari-
ables using copulas has been developed rapidly. In parameter estimation and
copula model selection, important progress has been made. For example, Do-
brić and Schmid (2005) investigated a test of goodness-of-fit for parametric
families of copulas with application to financial data set, see also Genest and
Segers (2009) and Genest et al. (2011) for bivariate extreme-value copulas;
testing the independence assumption based on the empirical copula process
proposed by Genest and Rémillard (2004) and Kojadinovic and Yan (2011);
testing for equality in law of dependent random variables, consult (Rémillard
and Scaillet, 2009).

Otherwise, since there is a bijection between characteristic function and
bivariate distribution, through its copula, one could alternatively work with
the characteristic function associated with a copula. For a historical review
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of characteristic function we refer to Lukacs (1970) and Ushakov (1999).
Some review methods for testing certain hypothesis based on the empirical
characteristic function have been investigated, for example, goodness-of-fit
tests procedures by Fan (1997); Meintanis (2004); Székely and Rizzo (2005)
and Meintanis et al. (2016); for the problem of testing the symmetry see
e.g., Feuerverger and Mureika (1977) and Henze et al. (2003); testing the
concepts of independence consult Csörgő (1985); Kankainen and Ushakov
(1998); Székely et al. (2007); Meintanis and Iliopoulos (2008); Fan et al.
(2017) and the references therein. More recently, characteristic function
associated to copula models have been investigated by Bahraoui et al. (2018)
for goodness-of-fit testing in multivariate copula models, and used it for
testing the structural assumptions, radial symmetry (Bahraoui and Quessy,
2017) and symmetry (Bahraoui et al., 2019).

In the current paper, we focus on the bivariate asymmetry measure (ra-
dial and diagonal symmetry), an important tool in many fields, e.g., in
finance (Zhang and Shinki, 2007), insurance (Ang and Chen, 2002), and en-
vironmental science (Wang, 2016) and Salvadori et al. (2007). The literature
review in measures of copula asymmetry has not been sufficiently set out,
one of most classical measure is Skewness, see, e.g., Bücher et al. (2017)
and others measures are based mainly on moments, Quantiles or treating
upper and lower tail-weighted asymmetry. For a deep discussion on these
measures, consult (Joe, 2015), Section 2.15, Rosco and Joe (2013); Krupskii
and Joe (2015); Krupskii (2017) and for a very recent review see, e.g., Lee
et al. (2018).

We suggest a new measure of asymmetry for bivariate copulas based on
characteristic function in set γ={γ−, γ+}, where γ− and γ+ will be called a
complementary order-preserved sets γ+ = {(t1, t2) : t1 > t2} and γ− = {(t1,
t2) : t1 < t2}. The set γ is collection of sub-sets γ+ and γ− of R2. We show
that the proposed measure is easily interpretable tool to detect a association
between two variables, it belongs to the interval [0, 1] with lower bound zero
characterize independence. In fact, the projection of the family of all two–
dimensional copulas, namely C onto a class B, where B ⊆ R

2 is the class
of all bivariate copula characteristic function, provides many advantages:

(a) we overcome the problem of estimation of a partial derivative of the
copulas;

(b) from an empirical point of view, the simple form of computation of the
new measure;

(c) the measure discriminates well among the different copula models ac-
cording to their tail behavior.
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The paper is organized as follows. Section 2 contains a definition and
some proprieties of measure of asymmetry. Section 3 is devoted to the em-
pirical version of distance correlation/covariance. The asymptotic behavior
of empirical bivariate distance correlation is investigated in Section 4 under
independent and dependent random variables. Section 5 introduces a graph-
ical interpretation of CCF in the set γ = {γ−, γ+} with an estimation of the
proposed measure of asymmetry for different bivariate copula models. A
small application of a new measure of asymmetry to real-life data of a mod-
erate sample size are presented in Section 6, and we conclude an additional
discussion and possible future developments in Section 7. All the proofs are
to be found in the Appendix.

2 A New Measure of Bivariate Asymmetry and its Properties

A new bivariate asymmetry measure is introduced in this section. We
establish necessary and sufficient conditions that the asymmetry measure
should fulfill and natural property of distance correlation. Then, some prop-
erties of dependence ordering and Fréchet-Hoeffding bound are derived in
Subsection 2.2.

2.1. Definition and Proprieties
2.1.1. Measure of Bivariate Asymmetry. Let (X1, X2) be a pair of ran-

dom variables with the joint distribution function H(x1, x2) = P(X1 ≤
x1, X2 ≤ x2), where (x1, x2) ∈ R

2, R = (−∞,+∞) denote the ordinary
real line. If the marginal distributions

F1(x) = P(X1 ≤ x1) and F2(x) = P(X2 ≤ x2)

are continuous, Sklar’s Theorem ensures the existence of unique copula C :
[0, 1]2 → [0, 1] such that

H(x1, x2) = C {F1(x1), F2(x2)} ,

for each (x1, x2) ∈ R
2. It is, in fact, the joint distribution of U = (U1, U2) =

(F1(X1), F2(X2)). Then, the copula is a distribution function on [0, 1]2 with
uniform U (0, 1) margins. For more details on the theory of copulas and
their applications, we refer to Joe (2015); McNeil et al. (2015) and Nelsen
(2006).

Let now ΨC be the bivariate copula characteristic function (CCF here-
after) of a copula C ∈ C , defined for i2 = −1 and U ∼ C by

ΨC(t)=E
{
ei(t1U1+t2U2)

}
=

∫

[0,1]2
ei(t1u1+t2u2)dC(u1, u2), t=(t1, t2) ∈ R

2,
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Using the ‖.‖w-norm in the weighted L2 space of functions, conditionally on
set γ, we define a measure of dependence as quadratic distance between the
empirical joint copula characteristic function and the product of its margins

{
Λγ+

ω , Λγ−
ω

}
(C) = Λγ

ω(C) =

∫

γ
|ΨC(t)− ψ1(t1)ψ2(t2)|2 ω(t)d t, (1)

where w(t) is an arbitrary positive weight function for which the integral
above exists and ψj(tj) = E

{
ei tj Uj

}
, j = 1, 2, denotes the marginal CCF.

As suggested by Székely et al. (2007), the specific choice ω(t)=(π|t1||t2|)−2

ensures that Λω(C) = 0 if and only if U1 and U2 are independent and where
for (U1, U2) ∈ R

2

Λω(C) =

∫

R2

|ΨC(t1, t2)− ψ1(t1)ψ2(t2)|2 ω0(t1, t2) d t1 d t2.

We will consider further the measure Λω0(C), which can be interpreted as a
distance covariance between U1 and U2 in arbitrary dimension by

{
Λγ+

ω0
, Λγ−

ω0

}
(C) = Λγ

ω0
(C) =

∫

γ
|ΨC(t)− ψ1(t1)ψ2(t2)|2 ω0(t) d t, (2)

with non–integrable symmetry weighted function ω0(t) = (π|t1||t2|)−2 and
where γ is collection of sub–sets γ+ and γ− of R2. Then, one can define the
distance correlation by

Rγ
ω0
(U) = Λγ

ω0
(C)

{
σγ
ω0,�

}− 1
2
I

(
σγ
ω0,�

> 0
)
, (3)

where σγ
ω0,�

= Λγ
ω0,1

Λγ
ω0,2

is distance variance of U� = (U�, U�) ∼ C, 	 = 1, 2.

Definition 1. A new measure of bivariate asymmetry is the mapping
Δω0(ΨC) : B → R+ defined as follows

Δω0(ΨC) =
∣∣R+

ω0
(U)−R−

ω0
(U)
∣∣ , (4)

where the distance correlation is given in Eq. 3.

It is desirable to check the identifiability properties that the measure of
bivariate asymmetry in a dependence structure should satisfy.

Lemma 1. The measure Δω0 : B → R+ of bivariate asymmetry, satisfies
the following proprieties :

(a) There exists ε ∈ R+ such that, Δω0(ΨC) ≤ ε, for all C ∈ C ;

(b) Δω0(ΨC) = 0 if C is radially symmetric;
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(c) Δω0(ΨC) = Δω0(ΨS), for any C;

(d) If Ψn converges uniformly to ΨC , as n → ∞ and the fact that
∫
γ ω0(t)d t

< ∞, one has Δω0(Ψn) → Δω0(ΨC) (a.s), where for U ∼ C, S (u1, u2)
= u1 + u2 − 1 + C (1− u1, 1− u1) is a survival copula of C ∈ C and
Ψn is empirical counterpart of ΨC .

An overview description of these assumptions for bivariate copulas can
be found in Durante et al. (2010); Dehgani et al. (2013) and for weaker
version consult (Rosco and Joe, 2013).

2.1.2. Proprieties of Distance Correlation. As shown by Schweizer and
Wolff (1981), several copula models based on dependence measures between
two continuous random variables satisfy the axioms of Rényi (1959). Since
the distance correlation defined in Eq. 10, is rank-based version of distance
correlation Rγ

ω0(U), all the axioms of Rényi (1959) are verified, specifically,
the axiom of monotonic invariance. Likewise, distance correlation specified
by Eq. 3 has properties of a true dependence measure and satisfies Rγ

ω0(U) ∈
[0, 1], Rγ

ω0(U) = 0 characterizes independence between random variables U1

and U2, with marginal uniform distribution.
2.1.3. Diagonal Section Versus Distance Variance. For a given cop-

ula C, let δC : [0, 1] → [0, 1] be the diagonal section of copula C. The
function δC satisfies the following proprieties: δC(1) = 1, δC(u) < u, for
all u ∈ [0, 1] and |δC(u1)− δC(u2)| < 2 |u1 − u2|, for all (u1, u2) ∈ [0, 1]2.
For more details about the diagonal section of the copula C, consult Alsina
et al. (2006); Fredricks and Nelsen (1997) and Fernández-Sánchez and Úbeda
Flores (2018).

Then, the distance variance can be written, for each U� ∼ C, 	 = 1, 2 as

Dγ
δ,ω0,�

=

∫

γ
|Ψδ(t1 + t2)− ψδ(t1)ψδ(t2)|2 ω0(t) dt, (5)

where

Ψδ(t) = Ψδ(t1 + t2) =

∫

[0,1]
ei (t1+t2)udδC(u).

Hence, if U1 and U2 are independent i.e., C(u1, u2) = u1 u2, for all
(u1, u2) ∈ [0, 1]2, the diagonal section is then given by δC(u) = C(u, u) = u2.
Then, after simple algebraic manipulations, one obtains the diagonal (CCF)

Ψδ(t1 + t2) =
2 (ei(t1+t2) − 1)

i (t1 + t2)
,

and themarginsψ� is a characteristic function of uniform distribution U (0, 1),
that is equal to 1 if t� = 0 and

(
ei t� − 1

)
/it�, for each 	 ∈ {1, 2}.
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As a consequence, Dγ
δ,ω0,�

is concentrated to the diagonal section, de-

pending only on (t1, t2) and bounded i.e., Dγ
δ,ω0,�

< ∞, for any 	 = 1, 2.
Moreover, the measure of bivariate asymmetry can be written as

Δω0(ΨC) = σ−1
ω0,�

∣∣Λ+
ω0
(C)− Λ−

ω0
(C)
∣∣ ,

where Λγ
ω0 are given in Eq. 1. Thence, the asymptotic behavior of the mea-

sure of asymmetry relies on the asymptotic behavior of weighted distance
covariance.

2.2. Stochastic Orders and Fréchet-Hoeffding Bound In this Subsec-
tion, an additional property of stochastic ordering is provided, the reader
is referred to the monograph of Shaked and Shanthikumar (2007) for further
details on this subject.

Let ψ1 and ψ2 be the characteristic function associated with C1 and C2,
respectively. Hence, if a bivariate copula C1 is stochastically dominated by
another copula C2 i.e., C1(u1, u2) ≺st C1(u1, u2) for all u1, u2 in [0, 1] implies
that the corresponding characteristic function also satisfies stochastically
ordering ψ1(t1, t2) ≺st ψ2(t1, t2) in complementary order-preserved sets γ+

and γ−. A direct consequence of this property is the Fréchet-Hoeffding
bound. We will present in the following Lemma, an important interpretation
of the copula characteristic function associated to lower Fréchet-Hoeffding
bound W (u1, u2) = max(u1 + u2 − 1, 0) and upper Fréchet-Hoeffding bound
M(u1, u2) = min(u1, u2), for any u1 and u2 in [0, 1].

Lemma 2. For any copula C ∈ C and t = (t1, t2) ∈ R
2, one has

ΨW (t) ≤ ΨC(t) ≤ ΨM (t),

where the lower bound

ΨW (t) =
1

t1t2

(
eit1 − ei(t1+t2)

)
− 1

t2 − t1

(
eit2 − eit1

)

and the upper bound is product of the characteristic function of uniform
distribution ψ�, for 	 = 1, 2,

ΨM (t) = ψ1(t1)ψ2(t2) =

(
1− eit1

) (
eit2 − 1

)
t1 t2

.

One can observe that the Fréchet-Hoeffding bounds of copulas charac-
teristic function do not depend on arguments u1, u2 ∈ [0, 1].
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3 The Empirical Version

Here we will construct an empirical version of measure of asymmetry
given by Eq. 4 based on ranks of observations and we give an explicit formula
for computation the distance covariance. First, let (X11, X12) . . . , (Xn1, Xn2)
be independent copies of a random vector X = (X1, X2) with a copula C,
whose marginal distributions F1 and F2 are continuous. In most of the
applications, the marginal distributions are unknown, so that the uniform
random vector U = (U1, U2) = (F1(X1), F1(X1)) is unobservable. One can
then work with the pairs of pseudo–observations Û1, . . . , Ûn of U ∼ C,
where Ûj = (Ûj1, Ûj2), with elements

Ûj� =
1

n+ 1

n∑
k=1

I (Xk� ≤ Xj�) , 	 = 1, 2. (6)

A natural empirical version of distance covariance Λγ
ω0 is given by

Λ̂γ
n,ω0

=

∫

γ
|Ψn(t)− ψn1(t1)ψn2(t2)|2 ω0(t) dt (7)

where Ψn is the empirical CCF specified by

Ψn(t) =
1

n

n∑
j=1

exp
(
i t1 Ûj1 + i t2 Ûj2

)
, (8)

and the empirical marginal (CCF) are given by ψn1(t1) = Ψn(t1, 0) and
ψn1(t2) = Ψn(0, t2). Hence following (4), the empirical version measure of
bivariate asymmetry is defined as follows

Δ̂ω0(Ψn) =
∣∣∣R+

n,ω0
(Ûj)−R−

n,ω0
(Ûj)

∣∣∣ , (9)

where Rγ
n is the empirical distance correlation given by

Rγ
n(Ûj) = Λ̂γ

n,ω0

{
σ̂γ
n,ω0,�

}− 1
2
I

(
σ̂γ
n,ω0,�

> 0
)
. (10)

Notice that σ̂γ
n,ω0,�

is a product of the empirical bivariate distance vari-

ances i.e., σ̂γ
n,ω0 = Λ̂γ

n,ω0,1
Λ̂γ
n,ω0,2

, for each γ = {γ+, γ−} ⊂ R
2.

In order to set an explicit formula for computation of distance covariance,
let μω0 be a measure defined by

μω0(a,b) =

∫

γ
(1− cos(a t1)) (1− cos(b t2)) ω0(t) dt. (11)
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for any (a,b) ∈ [0, 1]2. By a tedious, but straightforward algebraic compu-
tation, we get

μω0(a,b) =
3

2

(
|a|2 + |b|2

)
+ |a| |b|.

In the next Lemma, we obtain an explicit expression to compute the
empirical distance covariance.

Lemma 3. The empirical distance covariance Λγ
n,ω0 can be computed as

follows

Λ̂γ
n,ω0

=
1

n2

n∑
j,k=1

μω0

(
Ûj1 − Ûk1, Ûj2 − Ûk2

)

+
1

n4

n∑
j,k,s,l=1

μω0

(
Ûj1 − Ûk1, Ûs2 − Ûl2

)

− 2

n3

n∑
j,k,s=1

μω0

(
Ûj1 − Ûk1, Ûj2 − Ûs2

)
,

where Ûj�, 	 = 1, 2 are given in Eq. 6.

Remark 1. The evaluation of a measure μω0(x, y) is different than those
obtained in Lemma 1 of Székely et al. (2007), where for all x ∈ R, one has

∫

R

1− cos(s x)

|s|2
d s = π |x| .

On the other hand, it is clear that the weighted function ω0 is antisymmetric,
that is, satisfies

ω0(t) = ω0(−t), for all t = (t1, t2) ∈ R
2. (12)

However, if the weight function ω is asymmetric, one can define the weight
function ω� by

ω�(t) = (ω(t) + ω(−t)) /2,

wish satisfies Eq. 12, thus Λ̂γ
n,ω0 = Λ̂γ

n,ω� .

4 Asymptotic Behavior of Rank Degenerate V Statistic

In terms of stochastic processes approach, the technicalities need to de-
rive the large sample distribution of the empirical copulas characteristic func-
tion process

Zn(t) =
√
n {Ψn(t)− ψn,1(t1)ψn,2(t2)} , for all t = (t1, t2) ∈ R

2. (13)



New Measure of the Bivariate Asymmetry 9

It seems to be a non–trivial problem in a complex-valued space. In this
section, the asymptotic behavior of distance covariance Λγ

n,ω given in Eq. 7
is handled by theory of U and V -statistics in the context of ranks statistics.
We refer the readers to the books of Lee (1990) and Koroljuk and Borovskich
(1994). In the first step, we show that if the two random variables U1 and
U2 are independent i.e., ΨC(t1, t2) = ψ1(t1)ψ2(t2), the empirical distance
covariance is represented as fourth order degenerate V -statistic, and its limit
is weighted sums of independent chi-square variables.

Henceforth, we assume the following condition

A1. The weight function ω is such that

ω(t) = ω(−t), and 0 <

∫

γ
(|t1|+ |t2|)4 ω(t) dt < ∞,

∀t = (t1, t2) ∈ γ.

4.1. Degenerate V -Statistic Representation Among various measures of
dependence between a of random variables (U1, U2) and a class of rank test
procedures, can be written as the following linear form

Mn =
1

n

n∑
i1=1

. . .
n∑

id=1

ϕn (Ri1 , . . . , Rid) , (14)

where ϕn is a symmetric kernel and Ri is the rank of Xi amongst X1, . . . , Xn.
For example when the kernel ϕn is a Lipschitz function, one can ex-

tract from the representation (14) Gini’s mean difference, Wilcoxon’s signed–
rank test, Kendall rank correlation coefficient or its projection into the
family of linear rank statistic, the so-called Spearman rank correlation. For
more details of the theory of rank statistics, see the excellent book of Hájek
et al. (1999). An important step of representation (14) is that one can de-
rive the asymptotic behavior of Mn and apply a multiplier bootstrap U and
V -statistics technique to inference statistics. However, in many cases ϕn is
simple to manipulate and it is robust concerning non–monotone dependence
structure.

Since one uses the ranks of the observations, the distance measure repre-
senting as degenerate V -statistic and its limit distribution is a weighted sum
of independent chi-square variables with some term, namely, “decentraliza-
tion”. Before we get that, if U1 and U2 are independent, that is, Λ

γ
ω0(C) = 0,

for U ∼ C, we will represent the empirical distance covariance in the sets γ
as a fourth–order degenerate V -statistic.
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4.1.1. Independent Random Variables.

Let Υt(u1,u2) =
(
Υ̃t(u1,u2) + Υ̃t(u2,u1)

)
/2 be a symmetric kernel func-

tion, where for u1 = (u11, u12), u2 = (u21, u22) in [0, 1]2 and t = (t1, t2) ∈ R
2,

the symmetric kernel Υ̃t is given by

Υ̃t(u1,u2) = exp
(
i t uT

1

)
+ i t {I(u2 ≤ u1)− u1} − κ(t),

where κ(t) = ψ1(t1)ψ1(t2) =
(
ei t1 − 1

) (
ei t2 − 1

)
/t1t2 denotes the product

of uniform margins of copula characteristic function.

Proposition 1. If U1 and U2 are independent and that Condition A1

holds, then for U1, . . . ,Un i.i.d. generated from the copula C, the empirical
bivariate distance covariance Λ̂γ

n,ω0 given by Eq. 7 has the following repre-
sentation

Λ̂γ
n,ω0

=
1

n3

n∑
j,j′,k,k′=1

Kγ
ω0

(
Uj ,Uj′ ,Uk,Uk′

)
,

where the functional symmetry kernel 12Kγ
ω0(u1,u2,u3,u4) is defined by

∫

γ
{Υt(u1,u2) + Υt(u2,u1)} {Υ−t(u3,u4) + Υ−t(u4,u3)} ω0(t) dt

+

∫

γ
{Υt(u1,u3) + Υ−t(u3,u1)} {Υ−t(u2,u4, ) + Υ−t(u4,u2)} ω0(t) dt

+

∫

γ
{Υt(u1,u4) + Υt(u4,u1)} {Υ−t(u2,u3) + Υt(u3,u2)} ω0(t) d t.

First denote by

Qγ
ω0
(u1,u2) =

∫

γ
Pt(u1)P−t(u2)ω0(t) d t,

where Pt(u) = E{Υt(u,U) + Υt(U,u)}. Then, Λγ
n,ω0 shares the same limit

as Λ̃γ
n,ω0 defined by

Λ̃γ
n,ω0

=
1

n

n∑
j,k=1

Qγ
ω0

(Uj ,Uk) + oP(1).

The next statement is a consequence of the results of Bahraoui et al.
(2018) where the Hájek projection method ( e.g., Serfling (1980)) into two
dimensional surface of V -statistics Λ̂γ

n,ω0 is used and whose proof is
omitted.
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Corollary 1. Following Corollary 1, p. 83 in Lee (1990) and if U1 and
U2 are independent, one has for i.i.d. U1, . . . ,Un generated from the copula
C, that Λ̃γ

n,ω0 converges in distribution to

Λ̃γ
ω0

= E
{
Qγ

ω0
(U,U)

}
+

∞∑
ν=1

λν

(
N2

ν − 1
)
,

where {Nν}∞ν=1 is a sequence of i.i.d. N(0, 1) random variables and {λν}∞ν=1

are the eigenvalues of η-operator, generated by the symmetry kernel Qγ
ω0 as

follows

η : h 
→ E{Qγ
ω0
(U,u)h(U)}.

Remark 2. It was shown in Section 2.1 that the bivariate distance
variance is bounded under independent random variables U1 and U2. Then,
one can represent the empirical measure of bivariate asymmetric Δ̂ω0(Ψn)
defined by Eq. 9 as a fourth–order degenerate V -statistic by

Δ̂ω0(Ψn) =
1

n3

n∑
j,j′,k,k′=1

Ξγ
ω0

(
Uj ,Uj′ ,Uk,Uk′

)
,

where the symmetric kernel is given by Ξ = σ−1
ω0

∣∣K+
ω0

−K−
ω0

∣∣ ≈ ∣∣K+
ω0

−K−
ω0

∣∣.
Then as consequence of Corollary 1, one has that Δ̂ω0(Ψn) converge in distri-
bution to weighted sums of independent chi-square variables with {λκ}∞κ=1

the eigenvalues of η�-operator, generated by the symmetry kernel Qγ,�
ω0 as

follows

η� : h 
→ E{Qγ,�
ω0

(U,u)h(U)},

where the symmetry kernel Qγ,�
ω0 =

∣∣Q+
ω0

−Q−
ω0

∣∣ is projection of kernel
Ξγ

ω0 .

4.1.2. Dependent Random Variables. Under dependent random vari-
ables U1 and U2, the asymptotic properties depend on unknown copula C
and the marginal CCF. In this case, the empirical distance covariance is rep-
resented as sixth-order degenerate V -statistic and we will show that a limit
has a normal distribution with mean zero and covariance given in Eq. 15.
Let �Lt be the symmetrized kernel function defined by

�Lt(u1,u2,u3) = (�̃Lt(u1,u2,u3) + �̃Lt(u2,u1,u3) + �̃Lt(u3,u1,u2))/3,
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where �̃L is the kernel function given, for u1 = (u11, u12), u2 = (u21, u22),
u3 = (u31, u32) in [0, 1]2 and t = (t1, t2) ∈ R

2, by

�̃Lt(u1,u2,u3) = e(i tu
T
1 ) − e(i tu

T
2 )

+i e(i tu
T
1 ) {t1 I (u11, u31) + t2 I (u12, u32)}

−i ei (t1 u11+t2 u22) {t1I (u11, u31) + t2I (u22, u32)} ,
where I denotes I (a1, a2) = I (a2 ≤ a1)− a2 and I is indicator function.

The Proposition below states the connection between the empirical dis-
tance covariance and degenerate V -statistic, when U1 and U2 are dependent
random variables and the margins are unknown.

Proposition 2. If Condition A1 and U1 and U2 are dependent variables
are verified, then for U1, . . . ,Un generated from the copula C, the empirical
distance covariance Λ̂γ

n,ω0 has the following representation

Λ̂γ
n,ω =

1

n5

n∑
j,j′,k,�,�′,m=1

Φγ
ω0

(
Uj ,Uj′ ,Uk,U�,U�′ ,Um

)
,

where 72Φγ
ω(u1,u2,u3,u4,u5,u6) =∫

γ
{�Lt(u1,u2,u3) �L−t(u4,u5,u6)+ �Lt(u1,u4,u5) �L−t(u2,u3,u6)

+�Lt(u1,u2,u6) �L−t(u4,u5,u3)+ �Lt(u1,u5,u6) �L−t(u4,u2,u3)

+�Lt(u1,u4,u6) �L−t(u2,u5,u3)+ �Lt(u1,u6,u3) �L−t(u4,u5,u2)

+�Lt(u1,u5,u3)�L−t(u4,u2,u6)+ �Lt(u1,u4,u3)�L−t(u2,u5,u6)}ω0(t)dt.

Let now introduce the following quantities

τ21,ω0
= Var

(
Φ̃γ
ω0
(U1)

)
and τ2k,ω0

= Cov
(
Φ̃γ
ω0
(U1), Φ̃

γ
ω0
(Uk)

)
,

where Φ̃γ
ω0(u) = E {Φγ

ω0 (u,U2,U3,U4,U5,U6)}.
The next Proposition shows the large-sample behavior of the empirical

distance covariance process

Hn,ω0(U) = n1/2
(
Λ̂γ
n,ω − θ(ΨC)(U)

)
U = (U1, U2) ∼ C

for dependent variables (U1, U2), where θ(ΨC) is an estimator of Λγ
n,ω given

by

θ(ΨC)(U) = E
{
Φγ
ω0

(U1,U2,U3,U4,U5,U6)
}

=

∫

γ
|ΨC(t)− ψ1(t1)ψ2(t2)|2 ω0(t)d t.



New Measure of the Bivariate Asymmetry 13

Proposition 3. Assume Condition A1 holds. For U1, . . . ,Un generated
from the copula C, suppose that the covariance

∑∞
k=2 τ

2
k,ω0

is finite. Then,
the empirical distance covariance process Hn,ω0 converges weakly, as n → ∞,
to a centered independent Gaussian process Hω0 with covariance

τ̃2ω0
= 62

(
τ21,ω0

+ 2
∞∑
k=2

τ2k,ω0

)
.

Remark 3. Clearly, from previous Proposition 3, one can derive the
large-sample theory of the empirical distance variance process Hn,ω0(U�), for
every U� = (U�, U�) ∼ C, 	 = 1, 2. The only terms that will change are the
symmetry kernel Φγ

ω0 and covariance function τ̃2ω0
. In the sequel, we denote

for each 	 = 1, 2, the symmetry kernel of distance variance by Φγ
�,ω0

and

covariance function ρ̃2�,ω0
. On the other hand, the stochastic representation

of the empirical distance correlation R̂γ
n has the functional form

R̂γ
n(Ûj) = ϕ

(
Λ̂γ
n,ω0

, σ̂γ
n,ω0,�

)
,

where ϕ(x, y) = x/
√
y is continuous function. In fact, Rγ

n is V -functionals
statistics with some symmetry ratio kernel. To derive the asymptotic behav-
ior of Rγ

n, one can use the Functional Delta Method if the related symmetry
ratio kernel is bounded, if not, the V -functionals statistics are not Hadamard
differentiable. The methodologies introduced by Beutner and Zähle (2012)
will be useful in this case. In the sequel, we suppose that the related sym-
metry kernel of Rγ

n is bounded.

The following Lemma shows the asymptotic behavior of R̂γ
n under de-

pendent random variables U1 and U2.

Proposition 4. Assume that the covariance
∑∞

k=2 τ
2
k,ω0

is finite and that
Condition A1 holds. Then, the empirical distance correlation process

R
γ
n(U) =

√
n
{
R̂γ

n(Ûj)−Rγ(U)
}
, U = (U1, U2) ∼ C

converges in distribution, as n → ∞, to R
γ(U) independent centered normal

distribution with variance-covariance τ2ω0
= (∇ϕ)TΩ(∇ϕ), where (∇ϕ) ∈

R
3×1 the gradient of ϕ and Ω ∈ R

3×3 is the covariance matrix.

5. Example in Copulas Models

In this section, we present a graphical visualization of characteristic func-
tion associated to a copula; computation of a measure of asymmetry Δ(ΨC)
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for some bivariate parametric copula models in the set γ− and γ+, and
numerical example to illustrate the finite sample behavior. Six parametric
bivariate copula families will be considered, the radially asymmetry copulas,
namely, Clayton (C	) and Gumbel (Gu) :

CC�
θ (u1, u2) =

(
u−θ
1 + u−θ

2 − 1
)−1/θ

, θ > 0,

CGu
θ (u1, u2) = exp

{
−
(
|lnu1|1/(1−θ) + |lnu2|1/(1−θ)

)1−θ
}
, θ ∈ [0, 1],

the radially symmetry bivariate copula models, Frank (Fr), Plackett (P	)
and the Student Tν , (with ν = 6 degree of freedom) copulas:

CFr
θ (u1, u2) = −1

θ
ln

{
1 +

(
e−θu1 − 1

) (
e−θu2 − 1

)
e−θ − 1

}
, R \ {0}

CP�
θ (u1, u2) =

ζθ(u1, u2)−
√
{ζθ(u1, u2)}2 − 4θ(θ − 1)u1u2

2(θ − 1)
, θ ∈ [0,∞)

CTν
θ (u1, u2) =

∫ t−1
ν (u1)

−∞

∫ t−1
ν (u2)

−∞
ϕν,θ(x1, x2) dx2 dx1, θ ∈ (−1, 1),

where ϕν,θ is the bivariate density of Student with ν degrees of freedom and
ζθ(u1, u2) = 1+ (θ− 1)(u1+u2). The last copula models that we consider is
the radial symmetry Farlie-Gumbel-Morgenstern (FGM) copula introduced
by Farlie (1960) and has the following representation:

CFGM
θ (u1, u2) = u1 u2 {1− θ (1− u1) (1− u2)} , −1 < θ < 1.

The bivariate parametric copula models have been parameterized in terms
of their associated Kendall’s tau, defined for a given copula C by

τC = 4

∫ 1

0

∫ 1

0
C(u1, u2) dC(u1, u2)− 1.

Figure 1 shows the curves of the real part of ΨC associated with Gumbel(a-
b-c) and Frank(d-e-f) for sample size n = 50, where ΨC is given, for U ∼ C
and conditionally to the set γ ⊆ R

2.
As one can see in Fig. 1, even with small or moderate sample sizes, the

difference between curves of real part of ΨC in sets γ− and γ+ is signifi-
cantly interesting when the strength of dependence increases and there exist
more variation between (CCF) in a complementary order-preserved sets γ+

and γ−.
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Figure 1: Curves of real part of ΨC(t1, t2) for Gumbel (a-b-c) Frank (d-e-f)
copula (in red) when t1 < t2 and (in blue) when t2 < t1 with n = 50

Table 1 reports the results of estimated measure of bivariate asymme-
try for n ∈ {50, 100} and τ ∈ {0, 0.5.0.8}. One can observe the followings
patterns: (a) under radial asymmetry copula, when τ increases, the esti-
mated measure increases, near to one i.e., the strong relationship between
variables, and under radial symmetry copula models, when sample size n
increases and for small values of τ the measure of bivariate asymmetry de-
creases, the measure close to zero, this drop can be explained by the fact
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Table 1: Measure of asymmetry Δ̂ω0(Ψn) for Clayton (C	), Gumbel (Gu),
Farlie Gumbel Morgenstern (FGM), Plackett (P	), Frank and Student (T6)
copulas

τC C	 Gu FGM P	 Fr T6

n = 20 0 .0842 .0792 .1056 .0812 .0795 .0729
.5 .5317 .4086 .2607 .5266 .5287 .3398
.8 .8152 .9292 .2636 .6045 .9763 .9427

n = 50 0 .0290 .0569 .0756 .0492 .0307 .0402
.5 .5295 .4629 .1186 .3947 .7186 .3620
.8 .8209 .9167 .1868 .6268 .9079 .7187

n = 100 0 .0160 .0159 .0186 .0135 .0119 .0260
.5 .5184 .5319 .1553 .2949 .3356 .4058
.8 .8937 .8988 .1502 .5562 .9126 .8763

that distance correlation R−
ω0

is close to R+
ω0

under radial symmetry copula
models, and according to Fig. 1 one can see that the curve of real part of
ΨC (C Frank copula) in the sets γ+ and γ− are near-identical. (b) in gen-
eral and for all copulas under consideration, when τ = 0 and sample size
n increases, the measure of asymmetry decreases. As one can see, that the
smallest value of measure appears in (FGM) copula, as a consequence, that
the (FGM) copula has a small perturbation of independence copula. On the
other side, the estimated measure of bivariate asymmetry Δ̂ω0(Ψn) is related
to the concept of bivariate tail dependence and tail order, see Joe (2015) for
more details of concept on the tail of copula families.

6. Data Example

6.1. Nutrient Data The nutrient data consists of four-day measure-
ments for the intake of ( Calcium, iron, protein, vitamin A, vitamin C) from
women aged 25 to 50 in the United States as part of the “Continuing Survey
of Food Intakes of Individuals” program. The data has n=737 measurements
collected from a cohort study of the Department of Agriculture (USDA) and
it is available online from the University of Pennsylvania repository. The
results of a measure of asymmetry Δ̂ω0(Ψn) and the degree of asymmetry
CCF are represented in Table 2. The data was used to illustrate the con-
cepts of symmetry (Genest et al., 2012); Quessy and Bahraoui (2013) and
to fit the multivariate data by Archimedean copula via Liouville generaliza-
tion (McNeil and Nešlehová, 2010). The results of test of symmetry (Genest
et al., 2012) find that there are six out of ten pairs bivariate margins for
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Table 2: Measure of asymmetry Δ̂ω0(Ψn) and degree of asymmetry between
brackets (μ(ΨC)) for the nutrient dataset, n=100
Nutrien Iron Protein V itaminA V itaminC

Calcium .1939 (.1194) .2253 (.1237) .3165 (.1108) .1069 (.1055)
Iron .4143 (.1086) .2378 (.1159) .2209 (.1251)
Protein .1340 (.1213) .1489 (.1352)
vitamin A .1957 (.1256)

which the null hypothesis of symmetry i.e., H0 : C(u, v)−C(v, u) = 0, for u
and v in [0, 1]2, is reject. For each pair of variables, we calculated the degree
of asymmetry CCF defined by

μ(ΨC) = sup
(t1,t2)∈ω

|ΨC(t1, t2)− ΨC(t2, t1)|.

Table 2 resulted the asymmetry in the dependence of the pairs ( Iron, Pro-
tein) and (Calcium, vitamin A) has a relatively high association compared
with the other pairs; compared with the degree of asymmetry μ(ΨC), the
measure Δ̂ω0(Ψn) identified a strong asymmetry in the dependence when
the degree of asymmetry CCF is important, maybe due to the existence of
tails. Note that the degree of asymmetry calculated to CCF rather than
copulas C, where for any copula, we have

μ(ΨC) ≤ μ(C) = sup
(u,v)∈[0,1]2

|C(u, v)− C(v, u)| ≤ 1

3
.

7 Discussion

In this paper, we investigated a new measure of bivariate asymmetry
based on the rank characteristic function associated with copula models
and considered its properties. The theory of V -statistic seems to be more
sophisticated than the approach based on the stochastic process to derive the
asymptotic behavior of the empirical copula characteristic function process
Zn(t) given in Eq. 13. The proposed measure discriminates well the strength
of dependence between different copulas according to their tail behavior
i.e., tail dependence or independence and the geometrical structure radial
asymmetry or symmetry.

It is worthwhile mentioning that the direction of asymmetry involves
the direction of the association between the two random variables U1 and
U2. In this sense, the properties of non–exchangeability partake some of
the properties of independence. The direction of asymmetry is camouflaged
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or governed by an eigenvector related to an eigenvalue of symmetry kernel
extracted from V -statistics. In other sense, there exists a relation between
the procedure of test independence and test of non–exchangeability of the
random variables.

In further research, it is hoped to extend the results of this paper in
high dimensional, testing independence based on rank distance correlation
of copula models, and measuring the asymmetry under weak dependent data,
see e.g., Leucht (2012) and Bücher and Kojadinovic (2013).

Acknowledgements. The authors are partially supported by a FAPESP
grants 2013/07375-0 and 2018/05262-7. The authors would like to thank the
Editor and two referees for their valuable comments.

References

alsina, c., frank, m.j. and schweizer, b. (2006). Associative functions. World Scientific
Publishing Co. Pte Ltd., Hackensack, NJ. Triangular norms and copulas.

ang, a. and chen, j. (2002). Asymmetric correlations of equity portfolios. J. Financial
Econ. 63, 443–494.

bahraoui, t., bouezmarni, t. and quessy, j.-f. (2018). A family of goodness-of-fit tests
for copulas based on characteristic functions. Scand. J. Stat. 45, 301–323.

bahraoui, t., bouezmarni, t. and quessy, j.-f. (2019). Testing the symmetry of a de-
pendence structure with a characteristic function. Depend. Model. 6, 331–355.

bahraoui, t. and quessy, j.-f. (2017). Tests of radial symmetry for multivariate copulas
based on the copula characteristic function. Electron. J. Stat. 11, 2066–2096.
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Appendix A: Proofs

A.1 Proof of Lemma 1

The property (a) will allow us to prove the boundedness of our measure.
From Lemma 2, one has

Δω0(ΨW ) ≤ Δω0(ΨC) ≤ Δω0(ΨM ).

Using the fact that the Fréchet Hoeffding bounds of CCF are bounded, we
can find ε1 and ε2 for which, for every C ∈ C and

∣∣ei tu∣∣ ≤ 1, u = (u1, u2) ∈
[0, 1]2, one has |Δω0(ΨM )| ≤ ε1 and |Δω0(ΨW )| ≤ ε2.

For property (b), if C is radially symmetric, one has ΨC(t1, t2) =
Ψ(−t1,−t2). In other words, it can be equivalently written as

LC(t1, t2) = E {sin (t1W1 + t2W2)} = 0, (15)

where (W1,W2) = (U1−1/2, U2−1/2). Then in this case, one has R+
ω0
(U) =

R−
ω0
(U), for all U ∼ C .
The property (c) can be established directly.
For property (d), assume that

lim
n→∞

‖Cn − C‖∞ = 0, for C ∈ C .

Then the integrals
∫
[0,1]2 φ(u)dC(u) and

∫
[0,1]2 φ(u)dCn(u) exists for all u =

(u1, u2) ∈ [0, 1]2, where φ(u) = exp(itu). Hence, one has

lim
n→∞

∫

[0,1]2
φ(u)dCn(u) =

∫

[0,1]2
φ(u)dC(u).

A.2 Proof of Lemma 2

For the lower copula characteristic function bound ΨW associated to
W (u1, u2) = max (u1 + u2 − 1, 0), one has

ΨW (t1, t2) =

∫

[0,1]2
ei t1 u1+i t2 u2 dW (u1, u2)

=

∫

[0,1]2
ei t1 u1+i t2 u2 dI{u1 ≥ 1− u2}

=

∫ 1

0

{∫ 1

1−u2

ei t1 u1+i t2 u2 du1

}
du2

=

∫ 1

0

{
1

it1

(
ei t1+i t2 u2 − ei t1+i (t2−t1)u2

)}
du2

=
1

t1t2

(
eit1 − ei(t1+t2)

)
− 1

t2 − t1

(
eit2 − eit1

)
.
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For the upper copula characteristic function bound ΨM associated to
M(u1, u2) = min (u1, u2), one has

ΨM (t1, t2) =

∫

[0,1]2
ei t1 u1+i t2 u2 dM(u1, u2)

=

∫

[0,1]2
ei t1 u1+i t2 u2 d {u1I{u1 ≤ u2}+ u2I{u2 ≤ u1}}

=

∫ 1

0

{∫ u2

0
ei t1 u1+i t2 u2 du1

}
du2

+

∫ 1

0

{∫ u1

0
ei t1 u1+i t2 u2 du2

}
du1

=

∫ 1

0

{
1

it1

(
ei (t1+t2)u2 − ei t2 u2

)}
du2

+

∫ 1

0

{
1

it2

(
ei (t1+t2)u1 − ei t1 u1

)}
du1

=
1

t1t2

(
eit1 + eit2 − 2

)
− 2

t1 t2

(
ei(t1+t2) − 1

)

=

(
eit1 − 1

)
i t1

(
eit2 − 1

)
i t2

=
2∏

�=1

ψ�(t�),

where for each 	 = 1, 2, ψ�(t�) is characteristic function of uniform distribu-
tion U (0, 1).

A.3 Proof of Lemma 3

First, write

|Ψn(t1, t2)− ψn1(t1)ψn2(t2)|2 = |Ψn(t1, t2)|2 + |ψn1(t1)ψn2(t2)|2

−2�
{
ψn1(t1)ψn2(t2)Ψn(t1, t2)

}
,

where Ψn is a complex conjugate of empirical CCF Ψn given by Eq. 8. For
the first term, one has

|Ψn(t1, t2)|2 = Ψn(t1, t2)Ψn(t1, t2)

=
1

n2

n∑
j,k=1

{
cos
(
(Ûj1 − Ûk1) t1 + (Ûj2 − Ûk2) t2

)

+i sin
(
(Ûj1 − Ûk1) t1 + (Ûj2 − Ûk2) t2

)}
.
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Using trigonometric identities cos(x+y) = cos(x) cos(y)− sin(x) sin(y), one
has

|Ψn(t1, t2)|2 =
1

n2

n∑
j,k=1

cos
(
(Ûj1 − Ûk1) t1

)
cos
(
(Ûj2 − Ûk2) t2

)
+ ε1(t1, t2).

The same kind of arguments apply to the second term and one has the
following representation

|ψn1(t1)ψn2(t2)|2 = ψn1(t1)ψn2(t2)ψn1(t1)ψn2(t2)

=
1

n4

n∑
j,k,s,l=1

cos
(
(Ûj1 − Ûk1)t1

)
cos
(
(Ûs2 − Ûl2)t2

)
.

Similarly, one can write the real part of the third term, with respect to the
symmetric property of weighted function ω0, as

�
{
ψn1(t1)ψn2(t2)Ψn(t1, t2)

}
=

1

n3

n∑
j,k,s=1

cos
(
(Ûj1 − Ûk1)t1

)

× cos
(
(Ûj2 − Ûs2)t2

)
.

The remainder imaginary part terms of Δn(t1, t2) = |Ψn(t1, t2)− ψn1(t1)
ψn2(t2)|2 vanishes. Let �{Δn(t1, t2)} = ε1 + ε2 − 2ε3, where

ε1(t1, t2) = − 1

n2

n∑
j,k=1

sin
(
(Ûj1 − Ûk1) t1

)
sin
(
(Ûj2 − Ûk2) t2

)
.

ε2(t1, t2) = − 1

n4

n∑
j,k,s,�=1

sin
(
(Ûj1 − Ûk1) t1

)
sin
(
(Ûs2 − Û�2) t2

)
.

and

ε3(t1, t2) =
1

n3

n∑
j,k,s=1

sin
(
(Ûj1 − Ûk1) t1

)
sin
(
(Ûj2 − Ûs2) t2

)
.

Now, since the weighted function ω0 is symmetric and the fact that εr(t1,t2)=
−εr(−t1, t2) = −εr(t1,−t2) for any r = 1, 2, 3, one has

∫

γ
�{Δn(t1, t2)} ω0(t1, t2) dt1 dt2 = 0.
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Using now the identities

cos(a) cos(b) = 1− (1− cos(a))− (1− cos(b)) + (1− cos(a)) (1− cos(b)) ,

one has Λ̂γ
n,ω0 =

1

n2

n∑
j,k=1

{
1− cos

(
(Ûj1 − Ûk1)t1

)}{
1− cos

(
(Ûj2 − Ûk2)t2

)}

+
1

n4

n∑
j,k,s,l=1

{
1− cos

(
(Ûj1 − Ûk1)t1

)}{
1− cos

(
(Ûs2 − Ûl2)t2

)}

− 2

n3

n∑
j,k,s=1

{
1− cos

(
(Ûj1 − Ûk1)t1

)}{
1− cos

(
(Ûj2 − Ûs2)t2

)}
.

Further, from the measure μω0 given in Eq. 11, for any (a,b) ∈ [0, 1]2,
one gets expression given in the Lemma.2.

A.4 Proof of Proposition 2

First of all, let define for any (u1, u2) ∈ [0, 1]2 and (t1, t2) ∈ R
2, the func-

tion g(u1, u2) = exp {i t1 u1 + i t2 u2} and its derivatives gk = ∂g(u1, u2)/∂uk
at uk and gk,k′ = ∂2g(u1, u2)/∂uk∂uk′ , for all k, k′ = 1, 2. The mean-value
theorem shows then that

g
(
Ûj1, Ûj2

)
= g(Uj1, Uj2) + g1 (Uj1, Uj2)

(
Ûj1 − Uj1

)

+ g2 (Uj1, Uj2)
(
Ûj2 − Uj2

)
+ enj ,

where for U�
j� between Ûj� and Uj�, for 	 = 1, 2, one has

enj =
1

2

{
g1,1(Û

�
j1, Û

�
j2)
(
Ûj1 − Uj1

)2
+ g2,2(Û

�
j1)
(
Ûj2 − Uj2

)2

+2 g1,2

(
Û�
j1, Û

�
j2

)(
Ûj1 − Uj1

)(
Ûj2 − Uj2

)}
.

Since

Ûj1 =
1

n

n∑
k=1

I (Uk1 ≤ Uj1) and Ûj2 =
1

n

n∑
k=1

I (Uk2 ≤ Uj2) .
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The distance covariance Λγ
n,ω0 can be expressed as

Λ̂γ
n,ω0

=

∫

γ
|Ψn(t1, t2)− ψn1(t1)ψn2(t2)|2 ω0(t) dt

=

∫

γ

∣∣∣∣∣∣
1

n

n∑
j=1

e(it1
̂Uj1+it2 ̂Uj2) − 1

n2

n∑
j,j′=1

e(it1
̂Uj1+it2 ̂Uj′2)

∣∣∣∣∣∣

2

ω0(t)dt

=

∫

γ

∣∣∣∣∣∣
1

n2

n∑
j,j′=1

(
e(it1

̂Uj1+it2 ̂Uj2) − e(it1
̂Uj1+i t2 ̂Uj′2)

)
∣∣∣∣∣∣

2

ω0(t)dt

=

∫

γ

∣∣∣∣∣∣
1

n2

n∑
j,j′=1

{
g
(
Ûj1, Ûj2

)
− g
(
Ûj1, Ûj′2

)}
∣∣∣∣∣∣

2

ω0(t) dt

=

∫

γ

∣∣∣∣∣∣
1

n3

n∑
j,j′,k=1

Lt

(
Uj ,Uj′ ,Uk

)
+

1

n2

n∑
j,j′=1

(
enj + enj′

)
∣∣∣∣∣∣

2

ω0(t)dt.

Using now |a+ b|2 = |a|2+ |b|2+2�(a b̄), for any complex numbers a and
b, it follows that Λγ

n,ω0 = V γ
n,ω0 + W γ

n1,ω0
+ 2W γ

n2,ω0
, for U = (U1, U2) ∼ C

and t = (t1, t2) ∈ R
2 where

V γ
n,ω0

=
1

n6

n∑
j,j′,k,k′,l,l′,m=1

∫

γ
Lt

(
Uj ,Uj′ ,Uk

)
Lt (Uk′ ,Ul,Ul′) ω0(t) dt,

W γ
n1,ω0

=

∫

γ

⎛
⎝ 1

n2

n∑
j,j′=1

(
enj + enj′

)
⎞
⎠

2

ω0(t) dt

=

∫

γ

⎛
⎝ 1

n2

n∑
j=1

enj

⎞
⎠

2

ω0(t) dt+

∫

γ

⎛
⎝ 1

n2

n∑
j′=1

enj′

⎞
⎠

2

ω0(t) dt

+2

∫

γ

⎛
⎝ 1

n2

n∑
j=1

enj

⎞
⎠
⎛
⎝ 1

n2

n∑
j′=1

enj′

⎞
⎠ ω0(t) dt

= W
γ,(1)
n1 +W

γ,(2)
n1 + 2W

γ,(3)
n1

and

W γ
n2,ω0

= 2

∫

γ

�

⎧
⎪⎨
⎪⎩

⎛
⎝ 1

n3

n∑
j,j′,k=1

Lt

(
Uj ,Uj′ ,Uk

)
⎞
⎠
⎛
⎝ 1

n2

n∑
j,j′=1

(
enj + enj′

)
⎞
⎠
⎫
⎪⎬
⎪⎭

ω0(t)dt.
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Using the fact that g1,2(u1, u2) = ∂g(u1, u2)/∂u1 ∂u2 = −t1 t2 g(u1, u2), one
has

|enj(t1, t2)| ≤ 1

2

{
|t1|2

(
Ûj1 − Uj1

)2
+ |t2|2

(
Ûj2 − Uj2

)2

+2|t1||t2|
(
Ûj1 − Uj1

)(
Ûj2 − Uj2

)}
.

Since Ûj�−Uj� = OP(n
−1/2), for any 	 = 1, 2 and for each j ∈ {1, . . . , n},

one can then conclude that

|enj(t1, t2)| = (|t1|+ |t2|)2 OP(n
−1).

Then, since
∫
γ (|t1|+ |t2|)4 ω0(t) dt < ∞, one has

W
γ,(1)
n1 = OP(n

−1)

∫

γ
(|t1|+ |t2|)4 ω0(t) dt = oP(1).

The same arguments holds for W
γ,(2)
n1 = oP(1). For the last term, is a con-

sequence of Cauchy-Schwartz inequality yields W
γ,(3)
n1 = oP(1). Therefore,

W γ
n1,ω0

= oP(1). Once again one apply a Cauchy-Schwartz inequality for
square integrable complex functions f and g:

∣∣∣∣
∫

R2

f(t) g(t) dt

∣∣∣∣ ≤
(∫

R2

|f(t)|2 dt
)1/2(∫

R2

|g(t)|2 dt
)1/2

.

That is ∣∣∣W γ
n2,ω0

∣∣∣ ≤
√
V γ
n,ω0 W

γ
n1,ω0

,

and using the fact that |�(z)| ≤ |z| for any complex number z = a+ i b, with
combination to the last statement and that V γ

n,ω0 is asymptotically equivalent
to V -statistic, that is, converges in distribution, one obtains W γ

n2,ω0
= oP(1),

which complete the proof.

A.5 Proof of Proposition 3

Since Φ̃γ
ω0(u) = E {Φγ

ω0 (u,U2,U3,U4,U5,U6)} �= 0, the kernel Φγ
ω0 is

non–degenerate. Assume that
∑∞

k=2Cov
(
Φ̃γ
ω0(U1), Φ̃

γ
ω0(Uk)

)
are bounded.

Then from Theorem 2 of Newman (1980) entails that the empirical distance
covariance process converge weakly to an independent Gaussian random vari-
ables with mean zero and variance

τ̃2ω0
= 62

(
Var
(
Φ̃γ
ω0
(U1)

)
+ 2

∞∑
k=2

Cov
(
Φ̃γ
ω0
(U1), Φ̃

γ
ω0
(Uk)

))
.
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As a conjecture, if the condition
∑∞

k=2Cov
(
Φ̃γ
ω0(U1), Φ̃

γ
ω0(Uk)

)
does not

hold, there exist slowly varying function

L(z) ≡ 62

(
Var
(
Φ̃γ
ω0
(U1)

)
+ 2

z∑
k=2

Cov
(
Φ̃γ
ω0
(U1), Φ̃

γ
ω0
(Uk)

))

with
L(αz)

L(z)
−→
z→∞

1, for any α > 0

such that the empirical distance covariance process

Hn,ω0(U) =
√
nL(z)

(
Λ̂γ
n,ω0

− θ(ΨC)(U)
)
, U = (U1, U2) ∼ C

does not converge in distribution to a Gaussian random variables. A detailed
discussion can be found in Herrndorf (1984).

A.6 Proof of Proposition 4

First for U = (U1, U2) ∼ C, U� = (U1,U2) = ((U1, U1), (U2, U2)) ∼ C
and as a consequence of Proposition 3 the empirical distance process

⎛
⎝

Hn,ω0(U)
Hn,ω0(U1)
Hn,ω0(U2)

⎞
⎠ d−−−→

n→∞
N3 (0, 4Ω)

a three-variate centered Gaussian distribution, where Ω ∈ R
3×3 is the covari-

ance matrix of random vector (Φω0 , Φ1,ω0 , Φ2,ω0)
T . Hence, by delta-method

and we assume that the covariance
∑∞

k=2 τ
2
k,ω0

is finite, one has

R
γ
n(U) =

√
n
{
R̂γ

n(Ûj)−Rγ(U)
}

d−−−→
n→∞

N
(
0, τ2ω0

)

where τ2ω0
= 4 (∇ϕ)TΩ(∇ϕ) and (∇ϕ) ∈ R

3×1 the gradient of ϕ at the point

(
Λγ
ω0
(C), Λγ

ω0,1
, Λγ

ω0,2

)T
.

Second, let

Zγ
n2 = Z̃γ

n2,1 Z̃
γ
n2,2 =

n σ̂2
n,ω0

ρ̃ω0

,

where for every 	 = 1, 2, Z̃γ
n2,� =

√
n Λ̂γ

n,ω0,�
/ρ̃�,ω0 is the empirical distance

variance process that converge in distribution, as n tends to infinity, to in-
dependent standard normal distribution. Then, one has Zγ

n2 converge in
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distribution, as n tends to infinity, to independent chi-squared random vari-
ables with one degree of freedom.

If Zγ
n1 and Zγ

n2 are independent i.e., P (Zγ
n1 = Zγ

n2) = 1, it follows by con-
tinuous mapping Theorem that the functional empirical distance covariance

Rγ
n = ϕ (Zγ

n1, Z
γ
n2) =

√
n Λ̂γ

n,ω0

τ̃ω0

{
n σ̂2

n,ω0,�
)

ρ̃ω0

}−1/2

converge in distribution, as n → ∞, to limitR = ϕ (Z1, Z2) where ϕ(z1, z2) =
z1/

√
z2, that is, Student’s t-distribution with one degree of freedom.
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