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Abstract

A new measure of the bivariate asymmetry of a dependence structure be-
tween two random variables is introduced based on copula characteristic func-
tion. The proposed measure is represented as the discrepancy between the
rank—based distance correlation computed over two complementary order-
preserved sets. Generalproperties of the measure are established, as well
as an explicit expression for the empirical version. It is shown that the
proposed measure is asymptotically equivalent to a fourth—order degenerate
V-statistics and that the limit distributions have representations in terms
of weighted sums of an independent chi-square random variables. Under
dependent random variables, the asymptotic behavior of bivariate distance
covariance and variance process is demonstrated. Numerical examples illus-
trate the properties of the measures.
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1 Introduction

Over the past twenty years, modeling of dependence among random vari-
ables using copulas has been developed rapidly. In parameter estimation and
copula model selection, important progress has been made. For example, Do-
bri¢ and Schmid (2005) investigated a test of goodness-of-fit for parametric
families of copulas with application to financial data set, see also Genest and
Segers (2009) and Genest et al. (2011) for bivariate extreme-value copulas;
testing the independence assumption based on the empirical copula process
proposed by Genest and Rémillard (2004) and Kojadinovic and Yan (2011);
testing for equality in law of dependent random variables, consult (Rémillard
and Scaillet, 2009).

Otherwise, since there is a bijection between characteristic function and
bivariate distribution, through its copula, one could alternatively work with
the characteristic function associated with a copula. For a historical review
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of characteristic function we refer to Lukacs (1970) and Ushakov (1999).
Some review methods for testing certain hypothesis based on the empirical
characteristic function have been investigated, for example, goodness-of-fit
tests procedures by Fan (1997); Meintanis (2004); Székely and Rizzo (2005)
and Meintanis et al. (2016); for the problem of testing the symmetry see
e.g., Feuerverger and Mureika (1977) and Henze et al. (2003); testing the
concepts of independence consult Csorgd (1985); Kankainen and Ushakov
(1998); Székely et al. (2007); Meintanis and Iliopoulos (2008); Fan et al.
(2017) and the references therein. More recently, characteristic function
associated to copula models have been investigated by Bahraoui et al. (2018)
for goodness-of-fit testing in multivariate copula models, and used it for
testing the structural assumptions, radial symmetry (Bahraoui and Quessy,
2017) and symmetry (Bahraoui et al., 2019).

In the current paper, we focus on the bivariate asymmetry measure (ra-
dial and diagonal symmetry), an important tool in many fields, e.g., in
finance (Zhang and Shinki, 2007), insurance (Ang and Chen, 2002), and en-
vironmental science (Wang, 2016) and Salvadori et al. (2007). The literature
review in measures of copula asymmetry has not been sufficiently set out,
one of most classical measure is Skewness, see, e.g., Biicher et al. (2017)
and others measures are based mainly on moments, Quantiles or treating
upper and lower tail-weighted asymmetry. For a deep discussion on these
measures, consult (Joe, 2015), Section 2.15, Rosco and Joe (2013); Krupskii
and Joe (2015); Krupskii (2017) and for a very recent review see, e.g., Lee
et al. (2018).

We suggest a new measure of asymmetry for bivariate copulas based on
characteristic function in set y={y~,7"}, where v~ and v* will be called a
complementary order-preserved sets v = {(t1,t2) : t1 > to} and v~ = {(t1,
ty) : t1 < ta}. The set v is collection of sub-sets = and v~ of R?. We show
that the proposed measure is easily interpretable tool to detect a association
between two variables, it belongs to the interval [0, 1] with lower bound zero
characterize independence. In fact, the projection of the family of all two—
dimensional copulas, namely € onto a class %, where & C R? is the class
of all bivariate copula characteristic function, provides many advantages:

(a) we overcome the problem of estimation of a partial derivative of the
copulas;

(b) from an empirical point of view, the simple form of computation of the
new measure;

(c) the measure discriminates well among the different copula models ac-
cording to their tail behavior.
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The paper is organized as follows. Section 2 contains a definition and
some proprieties of measure of asymmetry. Section 3 is devoted to the em-
pirical version of distance correlation/covariance. The asymptotic behavior
of empirical bivariate distance correlation is investigated in Section 4 under
independent and dependent random variables. Section 5 introduces a graph-
ical interpretation of CCF in the set v = {y~,7"} with an estimation of the
proposed measure of asymmetry for different bivariate copula models. A
small application of a new measure of asymmetry to real-life data of a mod-
erate sample size are presented in Section 6, and we conclude an additional
discussion and possible future developments in Section 7. All the proofs are
to be found in the Appendix.

2 A New Measure of Bivariate Asymmetry and its Properties

A new bivariate asymmetry measure is introduced in this section. We
establish necessary and sufficient conditions that the asymmetry measure
should fulfill and natural property of distance correlation. Then, some prop-
erties of dependence ordering and Fréchet-Hoeffding bound are derived in
Subsection 2.2.

2.1. Definition and Proprieties

2.1.1.  Measure of Bivariate Asymmetry. Let (X1, X2) be a pair of ran-
dom variables with the joint distribution function H(z1,z2) = P(X; <
r1, X2 < x3), where (71,72) € R?, R = (—00,+00) denote the ordinary
real line. If the marginal distributions

Fl(a:) = P(Xl < xl) and FQ(JJ) = P(Xg < xg)

are continuous, Sklar’s Theorem ensures the existence of unique copula C :
[0, 1] — [0, 1] such that

H(z1,72) = C {Fi(z1), Fa(22)},

for each (x1,x2) € R2. It is, in fact, the joint distribution of U = (U, Us) =
(F1(X1), F»(X2)). Then, the copula is a distribution function on [0, 1]? with
uniform % (0,1) margins. For more details on the theory of copulas and
their applications, we refer to Joe (2015); McNeil et al. (2015) and Nelsen
(2006).

Let now ¥ be the bivariate copula characteristic function (CCF here-
after) of a copula C € %, defined for i> = —1 and U ~ C by

wc(t):E{ei@lUﬁtZUz)}: /[0 . et 40y up),  t=(t1,12) € R2,
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Using the ||.|l,-norm in the weighted Lg space of functions, conditionally on
set 7y, we define a measure of dependence as quadratic distance between the
empirical joint copula characteristic function and the product of its margins

{Agj,Ag‘}(C) = A3(0) :/|ch(t)—w1(t1)¢2(t2)|2 w(t)dt, (1)

Y

where w(t) is an arbitrary positive weight function for which the integral
above exists and ;(t;) = E {ei tj Uj }, j = 1,2, denotes the marginal CCF.

As suggested by Székely et al. (2007), the specific choice w(t)=(r|t1||t2]) 2
ensures that A, (C) = 0 if and only if U; and U; are independent and where
for (U, Us) € R?

A,(C) = /R2 We(ty, ta) — 1 (1) (ta)]? wolty, ta) dty dis.

We will consider further the measure A, (C), which can be interpreted as a
distance covariance between U; and Us in arbitrary dimension by

{4242, } © = 42,(0) = [ 10e®) — ir(t)iatea) P wot) e, (@)

v

with non-integrable symmetry weighted function wo(t) = (|t1][t2])~2 and
where 7 is collection of sub-sets v+ and v~ of R2. Then, one can define the
distance correlation by

_1
R, (U) = 43,(C) {o, o} “1(e2,,>0), (3)
A ,.2 18 distance variance of U, = (U, Uy) ~ C, £ =1, 2.

DEFINITION 1. A new measure of bivariate asymmetry is the mapping
Ay (Yo) + B — Ry defined as follows

where o) 0l = Awo 1

Au,(We) = |RS (U) — R

wo

(U)

, (4)

where the distance correlation is given in Eq. 3.

It is desirable to check the identifiability properties that the measure of
bivariate asymmetry in a dependence structure should satisfy.

LEMMA 1. The measure Ay, : B — Ry of bivariate asymmetry, satisfies
the following proprieties :

(a) There exists € € Ry such that, Ay, (Pe) < e, for allC € €;
(b) Auy(Pco) =0 if C is radially symmetric;
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(c) Awy(To) = Awy(Ps), for any C;

(d) If W, converges uniformly to We, asn — oo and the fact that f,y wo(t)dt
< 00, one has Ayy(¥n) = Aw,(Ye) (a.s), where for U ~ C, S (u1, us)
=u+us—1+C(1—wuy,1—uq) is a survival copula of C € € and
U, is empirical counterpart of Yo

An overview description of these assumptions for bivariate copulas can
be found in Durante et al. (2010); Dehgani et al. (2013) and for weaker
version consult (Rosco and Joe, 2013).

2.1.2.  Proprieties of Distance Correlation. As shown by Schweizer and
Wolff (1981), several copula models based on dependence measures between
two continuous random variables satisfy the axioms of Rényi (1959). Since
the distance correlation defined in Eq. 10, is rank-based version of distance
correlation R}, (U), all the axioms of Rényi (1959) are verified, specifically,
the axiom of monotonic invariance. Likewise, distance correlation specified
by Eq. 3 has properties of a true dependence measure and satisfies R}, (U) €
[0,1], R}, (U) = 0 characterizes independence between random variables U;
and Us, with marginal uniform distribution.

2.1.3. Diagonal Section Versus Distance Variance. For a given cop-
ula C, let d¢ : [0,1] — [0,1] be the diagonal section of copula C. The
function dc satisfies the following proprieties: dc(1) = 1, dc(u) < wu, for
all w € [0,1] and |6¢c(ur) — dc(ua)| < 2 |ug — ugl, for all (u1,us) € [0,1]2.
For more details about the diagonal section of the copula C, consult Alsina
et al. (2006); Fredricks and Nelsen (1997) and Fernandez-Sénchez and Ubeda
Flores (2018).

Then, the distance variance can be written, for each U, ~ C, £ =1,2 as

DYy = [ 10501+ 12) = ws(tr) s(e2)? wn(t) d, (5)
¥
where
Us(t) = Us(tr 1) = [ O s ),
[0,1]
Hence, if U; and Us are independent i.e., C(uj,uz) = ujug, for all

(u1,uz) € [0,1]%, the diagonal section is then given by éc(u) = C(u,u) = u?.

Then, after simple algebraic manipulations, one obtains the diagonal (CCF)
2 (eiltittz) _ 1)
i(ti+t2)

and the margins v, is a characteristic function of uniform distribution % (0, 1),
that is equal to 1 if t, = 0 and (e"* — 1) /it,, for each ¢ € {1,2}.

Us(t + t2) =
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As a consequence, Dng7£ is concentrated to the diagonal section, de-
pending only on (¢1,t2) and bounded i.e., Dgwo! < o0, for any £ =1, 2.

Moreover, the measure of bivariate asymmetry can be written as

Auo(Fo) = 0,0, [45,(C) = 45,(C)],
where A, are given in Eq. 1. Thence, the asymptotic behavior of the mea-
sure of asymmetry relies on the asymptotic behavior of weighted distance
covariance.

2.2.  Stochastic Orders and Fréchet-Hoeffding Bound In this Subsec-
tion, an additional property of stochastic ordering is provided, the reader
is referred to the monograph of Shaked and Shanthikumar (2007) for further
details on this subject.

Let 11 and 19 be the characteristic function associated with C7 and Co,
respectively. Hence, if a bivariate copula C; is stochastically dominated by
another copula Cy i.e., C1(uy,uz) <5t C1(uy,uz) for all uj, ug in [0, 1] implies
that the corresponding characteristic function also satisfies stochastically
ordering 1 (t1,t2) <st Wa(t1,t2) in complementary order-preserved sets T
and v~. A direct consequence of this property is the Fréchet-Hoeffding
bound. We will present in the following Lemma, an important interpretation
of the copula characteristic function associated to lower Fréchet-Hoeffding
bound W (uy, us) = max(u; +uz — 1,0) and upper Fréchet-Hoeffding bound
M (u1,uz) = min(ug, ug), for any u; and us in [0, 1].

LEMMA 2. For any copula C € € and t = (t1,t2) € R?, one has

Py (t) < Yo (t) < Pn(t),

where the lower bound

1 . ) 1 ) )
W t) = ( ity Z(t1+t2)) _ itg ity
w(t) T e e P— (e e )

and the upper bound is product of the characteristic function of uniform
distribution g, for £ =1,2,

(1 o eit1) (eitg o 1)
ty to '

Up(t) = Pa(te) a(tz) =

One can observe that the Fréchet-Hoeffding bounds of copulas charac-
teristic function do not depend on arguments uy,us € [0, 1].



NEW MEASURE OF THE BIVARIATE ASYMMETRY 7

3 The Empirical Version

Here we will construct an empirical version of measure of asymmetry
given by Eq. 4 based on ranks of observations and we give an explicit formula
for computation the distance covariance. First, let (X171, X12) ..., (Xn1, Xn2)
be independent copies of a random vector X = (X7, X3) with a copula C,
whose marginal distributions F; and Fb are continuous. In most of the
applications, the marginal distributions are unknown, so that the uniform
random vector U = (U, Us) = (F1(X1), F1(X1)) is unobservable. One can
then work with the pairs of pseudo—observations ﬁl, . ,ﬁn of U ~ C,
where ﬁj = (ﬁjl, ﬁjg), with elements

A 1
U0 =

nHZH(XMSXﬂ), =1,2. (6)
k=1

A natural empirical version of distance covariance A7, is given by
= [ 198(0) = a0 ua(t2) () e 7)
v

where ¥, is the empirical CCF specified by
1< PN PN
Wn(t) = nz:lexp (itl Ujl—i-itzUjQ) , (8)
j:

and the empirical marginal (CCF) are given by ¢n1(t1) = ¥,(t1,0) and
Yn1(t2) = ¥n(0,t2). Hence following (4), the empirical version measure of
bivariate asymmetry is defined as follows

-~

Ay (¥, ‘R

~

()~ Ry (05 9)

n,wWo

where R, is the empirical distance correlation given by

1
N -~ ~ BN
RO, = A7, { ZLW} i (UZMO’K > o) . (10)
Notice that 37 0.l is a product of the empirical bivariate distance vari-
ances i.e., 0w /17 1 A

ol Moo 20 for each v = {y+,7"} C R
In order to set an explicit formula for computation of distance covariance,

let p,, be a measure defined by

Huo(a,b) = / (1 —cos(aty)) (1 —cos(bta)) wo(t)dt. (11)
g
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for any (a,b) € [0,1]2. By a tedious, but straightforward algebraic compu-
tation, we get

3
o (a,b) = o (Jaf* + [b[?) + [a] [b].

In the next Lemma, we obtain an explicit expression to compute the
empirical distance covariance.

LEMMA 3. The empirical distance covariance Aj, ., can be computed as
follows

~ 1 & ~ o o~ ~
Mo = e} Z Ho (Ujl — U1, Uj2 — Um)
Jik=1
1 n
T Z P (Ujl —Up1,Us2 — Ul2)
7.k,s,l=1
2 n
T3 Z P (Ujl = Uk1,Uj2 — Usz) ;
j,k/‘,S:l

where ﬁjg, {=1,2 are given in Eq. 6.
REMARK 1. The evaluation of a measure p,, (z,y) is different than those
obtained in Lemma 1 of Székely et al. (2007), where for all z € R, one has

1—-cos(szx

/ # ds=m |z|.
R s

On the other hand, it is clear that the weighted function wq is antisymmetric,

that is, satisfies

wo(t) = wo(—t), forall t= (ti,tz) € R (12)

However, if the weight function w is asymmetric, one can define the weight
function w* by

w*(t) = (w(t) +w(-t)) /2,

wish satisfies Eq. 12, thus Agw, = 4] -

4 Asymptotic Behavior of Rank Degenerate V' Statistic

In terms of stochastic processes approach, the technicalities need to de-
rive the large sample distribution of the empirical copulas characteristic func-
tion process

Z(t) = Vi {W(t) — o1 (t)Uno(t)}, for all t = (t1,13) € R2. (13)
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It seems to be a non-trivial problem in a complex-valued space. In this
section, the asymptotic behavior of distance covariance A3, given in Eq. 7
is handled by theory of U and V-statistics in the context of ranks statistics.
We refer the readers to the books of Lee (1990) and Koroljuk and Borovskich
(1994). In the first step, we show that if the two random variables U; and
Us are independent i.e., Yo(t1,t2) = ¥1(t1)Ya(t2), the empirical distance
covariance is represented as fourth order degenerate V-statistic, and its limit
is weighted sums of independent chi-square variables.
Henceforth, we assume the following condition

/1. The weight function w is such that

wt) = w(-t), and 0< / (Jt1] + [t2))* w(t) dt < oo,
8!
vVt = (tl,tg) <.

4.1. Degenerate V -Statistic Representation Among various measures of
dependence between a of random variables (U, Uz) and a class of rank test
procedures, can be written as the following linear form

n n
///Z%Z...Z%(Rh,...,}zid), (14)
i1=1  ig=1
where @, is a symmetric kernel and R; is the rank of X; amongst X1, ..., X,.

For example when the kernel ¢, is a Lipschitz function, one can ex-
tract from the representation (14) Gini’s mean difference, Wilcozon’s signed—
rank test, Kendall rank correlation coefficient or its projection into the
family of linear rank statistic, the so-called Spearman rank correlation. For
more details of the theory of rank statistics, see the excellent book of Hajek
et al. (1999). An important step of representation (14) is that one can de-
rive the asymptotic behavior of .#,, and apply a multiplier bootstrap U and
V-statistics technique to inference statistics. However, in many cases ¢, is
simple to manipulate and it is robust concerning non—monotone dependence
structure.

Since one uses the ranks of the observations, the distance measure repre-
senting as degenerate V-statistic and its limit distribution is a weighted sum
of independent chi-square variables with some term, namely, “decentraliza-
tion”. Before we get that, if U; and Us are independent, that is, A}, (C) = 0,
for U ~ C, we will represent the empirical distance covariance in the sets ~
as a fourth—order degenerate V-statistic.
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4.1.1.  Independent Random Variables.
Let Ti(ui,ug) = <ﬁ(u1,u2) + ft(ug,ul)) /2 be a symmetric kernel func-

tiOl’l, where for u; = (uil, Ulg), ug = (UQl, u22) in [0, 1]2 and t = (tl, tg) € RQ,
the symmetric kernel 1% is given by

Te(ui,up) = exp (itul) +it {I(us < uy) — wi} — k(t),

where £(t) = ¢1(t1) ¥1(t2) = ('™ — 1) (e'"2 — 1) /t1t2 denotes the product
of uniform margins of copula characteristic function.

PropPOSITION 1. If Uy and Us are independent and that Condition <
holds, then for Uy, ..., U, i.i.d. generated from the copula C, the empirical
bivariate distance covariance A3 ., given by Eq. 7 has the following repre-

sentation
n

~ 1
A%:UJO = E Z KO’.);() (Uja Uj’a Uy, Uk’) )
j7j/7k7k/:1

where the functional symmetry kernel 12 KJ,(u1,u2, us, uy) is defined by
/W{Tt(ula w2) + Li(ug, wr)} {Y¢(u3, us) + ¢ (us, uz)} wo(t) dt
+ /W{Tt(lh,u?,) +Te(ug, ur)} {Te(ug, ug,) + T e(ug, uz)} wo(t) dt
+ /W{Tt(ul’ uy) + Yi(ug,u)} {T¢(u2,u3) + i (us, uz) } wo(t)dt.
First denote by

QU (ur, wy) = / Py(uy) Py (u3) wo(t) d t,
g

where P;(u) = E{7%(u,U) + 73(U,u)}. Then, A, ,, shares the same limit

as A}, defined by

- 1 &
A} oo = - Z QL. (Uj;, Uy) + op(1).
=1

The next statement is a consequence of the results of Bahraoui et al.
(2018) where the Héjek projection method ( e.g., Serfling (1980)) into two
dimensional surface of V-statistics //1\717“,O is used and whose proof is
omitted.
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COROLLARY 1. Following Corollary 1, p. 83 in Lee (1990) and if Uy and
Us are independent, one has for i.i.d. Uy, ..., U, generated from the copula
C, that A}, ., converges in distribution to

A, =E{QL (U U} + > A, (N2 -
v=1

where {N,}52, is a sequence of i.i.d. N(0,1) random variables and {\,}5°
are the eigenvalues of n-operator, generated by the symmetry kernel QJ, as
follows

n:h— E{QZO(U,u) h(U)}.

REMARK 2. It was shown in Section 2.1 that the bivariate distance
variance is bounded under independent random variables U; and Us. Then,
one can represent the empirical measure of bivariate asymmetric AAwO(Wn)
defined by Eq. 9 as a fourth—order degenerate V-statistic by

N 1 n
Awo(q/n) = E Z U]an 7UkaUk’)
e
where the symmetric kernel is given by = = o, ‘ n ! ~ } + - K ‘

Then as consequence of Corollary 1, one has that Awo( ) converge in dlstrl—
bution to weighted sums of independent chi-square variables with {)\K}
the eigenvalues of n*-operator, generated by the symmetry kernel Q. as
follows

n*:h— E{QLT (U, u) h(U)},

where the symmetry kernel QL) = ‘Qjo — Q;O} is projection of kernel
Edo-

4.1.2.  Dependent Random Variables. Under dependent random vari-
ables Uy and Us, the asymptotic properties depend on unknown copula C
and the marginal CCF. In this case, the empirical distance covariance is rep-
resented as sixth-order degenerate V-statistic and we will show that a limit
has a normal distribution with mean zero and covariance given in Eq. 15.

Let L¢ be the symmetrized kernel function defined by

Lt (uy, up, uz) = (E¢(ug, ug, u) + L (ug, up, ug) + Le(uz, uy, ug))/3,
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where L is the kernel function given, for u; = (u11,u12), ug = (u21, uge),
uz = (U31,U32) in [0, 1]2 and t = (tl,tQ) S R2, by
Et(ul7u2’u3) _ e(itu{) o e(itug)
+1 e(itu{) {tl f(un, U31) + to f(ulg, U32)}
—j et (trunttoun) fn) 7 () ugy) + 0.7 (g2, uza) }
where .# denotes .#(a1,a2) =1 (az < a1) — ag and I is indicator function.
The Proposition below states the connection between the empirical dis-

tance covariance and degenerate V-statistic, when U; and U, are dependent
random variables and the margins are unknown.

PRrOPOSITION 2. If Condition @1 and Uy and Uy are dependent variables
are verified, then for Uy, ..., U, generated from the copula C, the empirical
distance covariance A?z,wo has the following representation

N 1 n
A;Yl,w = E Z QSZJO (Ujan’aUkafaUé’va) ,
73,3 kL0 m

where T2 @7 (ul, u2, us, Uy, Us, 116) =

/{Lt uy, ug, u3) L_¢(uy, us, ug)+ Li(ug, ug, us) L_g(ug, us, ug)

+L¢(ug,ug,up) L_t(ug,us,uz)+ Le(ug, us, ug) £-¢(uy, ug, us)

+Lg(ur, uy, ug) L_t(uz, us, uz)+ Ly (ug, ug, uz) L_g(uy, us, uy)

+E¢(ug,us,us) bt (ug, ug, ug)+ £t (ug, ug, us) L (us, us, ug) } wo(t)dt.
Let now introduce the following quantities

7'12?“}0 = Var <§ZO(U1)) and 77 wo = Cov ( (Ul) (Uk)>

where &3, (u) = E {&}, (u, Uy, Us, Uy, Us, Ug)}.
The next Proposition shows the large-sample behavior of the empirical
distance covariance process

Hyo(U) = 2 (47, - 60c)(U)) U= (U1,U) ~ C

for dependent variables (Uy, Uy), where 6(¥¢) is an estimator of A}, given
by

0(We)(U) = E{Qﬂ Ul,Ug,U3,U4,U5,U6)}
= /|ng — 1 (t1) 2 (t2)]* wo(t)d t.
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PROPOSITION 3. Assume Condition @ holds. For Uy, ..., U, generated
from the copula C, suppose that the covariance Y p-, T,?MO 1s finite. Then,
the empirical distance covariance process H, o, converges weakly, asn — oo,
to a centered independent Gaussian process H,,, with covariance

o
~2 _ p2 2 E 2
TUJO = 6 T]-7WO + 2 Tk,wo .

k=2

REMARK 3. Clearly, from previous Proposition 3, one can derive the
large-sample theory of the empirical distance variance process H,, ., (Uy), for
every Uy = (Up,Uy) ~ C, £ = 1,2. The only terms that will change are the
symmetry kernel &,, and covariance function ?30. In the sequel, we denote
for each ¢ = 1,2, the symmetry kernel of distance variance by ¢Zwo and
covariance function ﬁ%m. On the other hand, the stochastic representation

of the empirical distance correlation R} has the functional form

B(0)) = ¢ (B )

where ¢(z,y) = x/,/y is continuous function. In fact, R} is V-functionals
statistics with some symmetry ratio kernel. To derive the asymptotic behav-
ior of R}, one can use the Functional Delta Method if the related symmetry
ratio kernel is bounded, if not, the V-functionals statistics are not Hadamard
differentiable. The methodologies introduced by Beutner and Zéhle (2012)
will be useful in this case. In the sequel, we suppose that the related sym-
metry kernel of R;, is bounded.

The following Lemma shows the asymptotic behavior of R}, under de-
pendent random variables U; and Us.

PROPOSITION 4. Assume that the covariance e o T wo 18 finite and that
Condition </ holds. Then, the empirical distance correlation process

R)(U) = va {R)(U) - ()}, U=(U,0s)~C

converges in distribution, as n — oo, to RY(U) independent centered normal
distribution with variance-covariance 72, = (V)T 02(V), where (V) €

wo
R3* the gradient of ¢ and 2 € R3*3 is the covariance matriz.

5. Example in Copulas Models

In this section, we present a graphical visualization of characteristic func-
tion associated to a copula; computation of a measure of asymmetry A(¥¢)
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for some bivariate parametric copula models in the set v~ and v, and
numerical example to illustrate the finite sample behavior. Six parametric
bivariate copula families will be considered, the radially asymmetry copulas,
namely, Clayton (C/¢) and Gumbel (Gu) :

~1/9
CS(uy, up) <uf9 +uy? - 1) L 0>0,

1-6
CS™(uy, ug) = exp{_(\1nu1|1/<1—9>+|1an;1/<1—9>) } 0 € [0,1],

the radially symmetry bivariate copula models, Frank (Fr), Plackett (P¢)
and the Student T,,, (with v = 6 degree of freedom) copulas:

(679’“1 _ 1) (679u2 o 1)
-0 _ 1

CF (uy,up) — —;m{u } R\ {0}

Colur, uz) — v/{Co(ur, uz)}? — 46(6 — 1)U1u2
2(0-1)

Llu) Lug)
Cg”(ul,ug) = / / ouo(x1,x2) deady, 6 € (—1,1),

Cg’é(ul,uQ) 6 € [0,00)

where ¢, g is the bivariate density of Student with v degrees of freedom and
Co(ur,ug) = 14 (0 —1)(ug +u2). The last copula models that we consider is
the radial symmetry Farlie-Gumbel-Morgenstern (FGM) copula introduced
by Farlie (1960) and has the following representation:

CFM(up,ug) = ugup {1—0(1—uy) (1 —ug)}, —-1<6<1.

The bivariate parametric copula models have been parameterized in terms
of their associated Kendall’s tau, defined for a given copula C by

1 r1
TC:4/ / C(ul,UQ)dC(’U,l,’U,g)—l.
0 JO

Figure 1 shows the curves of the real part of W¢ associated with Gumbel(a-
b-¢) and Frank(d-e-f) for sample size n = 50, where ¥¢ is given, for U ~ C
and conditionally to the set v C R2.

As one can see in Fig. 1, even with small or moderate sample sizes, the
difference between curves of real part of ¥ in sets v~ and 7 is signifi-
cantly interesting when the strength of dependence increases and there exist
more variation between (CCF) in a complementary order-preserved sets v
and v~ .
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Figure 1: Curves of real part of ¥ (t1,t2) for Gumbel (a-b-¢) Frank (d-e-f)
copula (in red) when ¢; < t2 and (in blue) when ¢y < ¢; with n =50

Table 1 reports the results of estimated measure of bivariate asymme-
try for n € {50,100} and 7 € {0,0.5.0.8}. One can observe the followings
patterns: (a) under radial asymmetry copula, when 7 increases, the esti-
mated measure increases, near to one i.e., the strong relationship between
variables, and under radial symmetry copula models, when sample size n
increases and for small values of 7 the measure of bivariate asymmetry de-
creases, the measure close to zero, this drop can be explained by the fact
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Table 1: Measure of asymmetry AAWO () for Clayton (C¢), Gumbel (Gu),
Farlie Gumbel Morgenstern (FGM), Plackett (P¢), Frank and Student (7)
copulas

Ce Gu FGM 1294 Fr Ts

.0842 .0792 .1056 .0812 .0795 .0729
5317 .4086 .2607 .5266 .5287 .3398
.8152 .9292 .2636 .6045 9763 .9427

.0290 .0569 .0756 .0492 .0307 .0402
5295 4629 .1186 .3947 .7186 .3620
.8209 9167 .1868 .6268 9079 7187

.0160 .0159 .0186 0135 .0119 .0260
.b184 5319 1553 .2949 .3356 4058
.8937 .8988 .1502 .5562 9126 8763

n = 100

3

I

(@)

)
A D,

that distance correlation R, is close to RIO under radial symmetry copula
models, and according to Fig. 1 one can see that the curve of real part of
Yo (C Frank copula) in the sets v and v~ are near-identical. (b) in gen-
eral and for all copulas under consideration, when 7 = 0 and sample size
n increases, the measure of asymmetry decreases. As one can see, that the
smallest value of measure appears in (FGM) copula, as a consequence, that
the (FGM) copula has a small perturbation of independence copula. On the
other side, the estimated measure of bivariate asymmetry AAWO (¥,,) is related
to the concept of bivariate tail dependence and tail order, see Joe (2015) for

more details of concept on the tail of copula families.

6. Data Example

6.1. Nutrient Data The nutrient data consists of four-day measure-
ments for the intake of ( Calcium, iron, protein, vitamin A, vitamin C) from
women aged 25 to 50 in the United States as part of the “Continuing Survey
of Food Intakes of Individuals” program. The data has n=737 measurements
collected from a cohort study of the Department of Agriculture (USDA) and
it is available online from the University of Pennsylvania repository. The
results of a measure of asymmetry AAMO (¥,) and the degree of asymmetry
CCF are represented in Table 2. The data was used to illustrate the con-
cepts of symmetry (Genest et al., 2012); Quessy and Bahraoui (2013) and
to fit the multivariate data by Archimedean copula via Liouville generaliza-
tion (McNeil and Neslehova, 2010). The results of test of symmetry (Genest
et al., 2012) find that there are six out of ten pairs bivariate margins for



NEW MEASURE OF THE BIVARIATE ASYMMETRY 17

Table 2: Measure of asymmetry AAWO (¥,,) and degree of asymmetry between
brackets (u(¥¢)) for the nutrient dataset, n=100

Nutrien Iron Protein VitaminA VitaminC

Calcium 1939 (.1194)  .2253 (.1237)  .3165 (.1108)  .1069 (.1055)
Iron 4143 (.1086)  .2378 (.1159)  .2209 (.1251)
Protein 1340 (.1213)  .1489 (.1352)
vitamin A 1957 (.1256)

which the null hypothesis of symmetry i.e., Hy : C(u,v) — C(v,u) = 0, for u
and v in [0, 1)2, is reject. For each pair of variables, we calculated the degree
of asymmetry CCF defined by

pPco) = sup |Po(ti,ta) — Ye(te, t1)l.
(tl,tg)Ew

Table 2 resulted the asymmetry in the dependence of the pairs ( Iron, Pro-
tein) and (Calcium, vitamin A) has a relatively high association compared
with the other pairs; compared with the degree of asymmetry p(¥¢), the
measure A\WO(LP,L) identified a strong asymmetry in the dependence when
the degree of asymmetry CCF is important, maybe due to the existence of
tails. Note that the degree of asymmetry calculated to CCF rather than
copulas C, where for any copula, we have

pwWe) <u(C)= sup |C(u,v) —C(v,u)| <
(u,v)€[0,1]2

W =

7 Discussion

In this paper, we investigated a new measure of bivariate asymmetry
based on the rank characteristic function associated with copula models
and considered its properties. The theory of V-statistic seems to be more
sophisticated than the approach based on the stochastic process to derive the
asymptotic behavior of the empirical copula characteristic function process
Z,(t) given in Eq. 13. The proposed measure discriminates well the strength
of dependence between different copulas according to their tail behavior
i.e., tail dependence or independence and the geometrical structure radial
asymmetry or symmetry.

It is worthwhile mentioning that the direction of asymmetry involves
the direction of the association between the two random variables U; and
U,. In this sense, the properties of non-exchangeability partake some of
the properties of independence. The direction of asymmetry is camouflaged
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or governed by an eigenvector related to an eigenvalue of symmetry kernel
extracted from V-statistics. In other sense, there exists a relation between
the procedure of test independence and test of non—exchangeability of the
random variables.

In further research, it is hoped to extend the results of this paper in
high dimensional, testing independence based on rank distance correlation
of copula models, and measuring the asymmetry under weak dependent data,
see e.g., Leucht (2012) and Biicher and Kojadinovic (2013).
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Appendix A: Proofs
A.1 Proof of Lemma 1
The property (a) will allow us to prove the boundedness of our measure.
From Lemma 2, one has

Awo (!pW) < Awo (EPC) < Awo (WM)

Using the fact that the Fréchet Hoeffding bounds of CCF are bounded, we
can find €1 and &5 for which, for every C' € ¥ and ‘eit“| <1,u=(ug,ug) €
[0, 1], one has | A, (¥ar)| < 1 and |A, (T)| < eo.

For property (b), if C is radially symmetric, one has Yo (t1,t2) =
U(—ty,—t2). In other words, it can be equivalently written as

gc(tl,tQ) =K {sin (t1W1 + tQWQ)} =0, (15)
where (W1, W) = (U1 —1/2,U2—1/2). Then in this case, one has R} (U) =
R, (U), forall U~ C .

The property (c) can be established directly.
For property (d), assume that

|ICp —Clloo =0, for Ce€F.

lim
n—oo
Then the integrals f[o 12 #(0)dC(u) and f[o 12 #(0)dCp (u) exists for all u =

(u1,u2) € [0,1]%, where ¢(u) = exp(itu). Hence, one has

lim ¢(u)dCy(u) = ¢(u)dC(u).

e Jo,n)? [0,1]?

A.2 Proof of Lemma 2

For the lower copula characteristic function bound ¥y associated to
W (u1,u2) = max (u; + ug — 1,0), one has

g[/W(tl,tQ) = /{01]2 eit1u1+it2u2 dw(ulqu)

— / ] eitl u1+ita uz d]I{U1 > 1— U/Q}
[0,1]

1 1
— / {/ e”1“1+”2“2du1} dusy
0 1—us
L1 o o
— / { (eltl-i-’btzuz _ elt1+l(t2—t1)u2>} d’UQ
0 Ztl

— L (eitl — ei(tl"‘t?)) _ 71 (eit2 — eitl) .
t1to to — t1
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For the upper copula characteristic function bound ¥j; associated to
M (u1,uz) = min (up, uz2), one has

WM(t17t2) — /[0 ; eit1 w14ty us dM(ul, u2)

= /[ . ettruntitzuz q Lo Tuy < upb + ugl{ug < ur}}
0,1

1 u2 . .
= / {/ ettiurtitzuz dul} dus
0 0
1 Uy
‘|‘/ {/ 6it1u1+it2u2dUQ} d’LL1
0 0
1 1 ) )
— / { (61(t1+t2)u2 o eztguz)} dUQ
o Lt
Loy /. .
+/ { (62(t1+t2)u1 o ezt1u1>} dU1
0 Y,tg

Loin it 2 i(t1+t
= — (" 4e"2 -2 ——(e’(lJr?)—l)
tltg( ) tth

(eit1 _ 1) ( ity 1

= i HW te),

where for each ¢ = 1,2, ¥,(t,) is characteristic function of uniform distribu-
tion % (0, 1).

A.3 Proof of Lemma 3
First, write
W (t1,t2) — Y1 (t1) Yna(t2)* = W (tr, ta)[* + [thn (£1)1hna(ta) |
<29 { Y (11) 2 t2) P01, 12) |

where ¥, is a complex conjugate of empirical CCF ¥, given by Eq. 8. For
the first term, one has

0 (t1, t2)]* = W(tl,h)%(tl,tz)

= n2 Z {COS( j1 _Ukl)tl +(UJ2 —ng) tg)
7,k=1

+i sin ((ﬁjl —Up) t1 + (Uja — Upe) tg)} .
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Using trigonometric identities cos(x +y) = cos(x) cos(y) —sin(z) sin(y), one
has

1 — A~ A ~ A
’!pn(tl, t2)‘2 = ﬁ Z COSs ((Ujl — Ukl) tl) COSs ((Ujg — UkQ) tQ) + 61(t1,t2).
7,k=1

The same kind of arguments apply to the second term and one has the
following representation

[n1 (t1)n2 (L) = 1/%1(751) 2(t2)Yn1(t1)Yn2(t2)
= Z ( 1= Um)tl) cos ((Us2 — ﬁl2)t2> :

J,k,s,l=

Similarly, one can write the real part of the third term, with respect to the
symmetric property of weighted function wg, as

{¢n1(t1)¢n2(t2) (t1,t2} = n3 Z COS( ]1—Uk1)t1)

7,k,s=1
X COS ((ﬁjz — ﬁsg)tg) .

The remainder imaginary part terms of A, (t1,t2) = |¥,(t1,t2) — Yn1(t1)
wng(tg)]2 vanishes. Let S{A,(t1,t2)} = €1 + €2 — 2¢3, where

n

61(t1,t2) = —% Z sin ((ﬁjl — Ukl)h) sin ((ﬁjQ — ng) tg) .
7,k=1
Eg(tl,tg) = —% Z sin ((ﬁjl - ﬁkl) t1> sin ((652 - (752) t2> .
7,k,s,0=1

and

1 & . /o~ . VPN .
63(t1,t2) = E Z S1n ((Ujl — Ukl) t1> Sin ((UjQ — Usg) t2> .
jik,s=1

Now, since the weighted function wy is symmetric and the fact that e, (¢1,t2) =
—€r(—t1,t2) = —€,(t1, —t2) for any r = 1, 2,3, one has

/%{An(tl,tg)} wo(t1,t2) dty dte = 0.
v
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Using now the identities
cos(a) cos(b) =1 — (1 — cos(a)) — (1 — cos(b)) + (1 — cos(a)) (1 — cos(b)),

one has A, ., =

% Zn: {1 — cos ((ﬁjl — ﬁm)tl)} {1 — cos ((ﬁjQ — ﬁk2)t2>}

jk=1
+ % i {1 — cos (((7]-1 — ﬁkl)t1>} {1 — oS <((752 — ﬁl2)t2>}
Jikeosl=1
— % Zn: {1 — cos ((Ujl — ﬁkl)h)} {1 — cos (((7]2 — (752)t2)} .
Jiks=1

Further, from the measure i, given in Eq. 11, for any (a,b) € [0,1]%,
one gets expression given in the Lemma.2.

A.4 Proof of Proposition 2

First of all, let define for any (u1,u2) € [0,1]? and (t1,t2) € R?, the func-
tion g(u1,ue) = exp {ity uy + ito us} and its derivatives gp = dg(u1, ug)/Oug
at uy and g = 0%g(u1,u2)/Ourduy, for all k, k' = 1,2. The mean-value
theorem shows then that

~

g (@17@2) = 9(Uj1,Uj2) + g1 (U1, Uj2) (Ujl - Uj )

+ 92 (Uj1,Uj2) (ﬁjQ - Uj2) + énj,
where for U]’.} between ﬁjg and Ujy, for £ = 1,2, one has

1 ~ ~ —~ 2 ~ —~ 2
enj = 3 {91,1(Uj*17 Ujs) (Ujl - Uj ) +92.2(Uf) (sz - Uj )

+201,2 (ﬁfl,ﬁjg) (ﬁj — U, ) (ﬁjQ -U; )}
Since
1

_ S 1S
Up=—-Y 1({Un<Up) and Uj= 5211([]1@2 <Uj).
k=1 k=1
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The distance covariance A;YWO can be expressed as
B = [ Waltrta) = don(t) boa(t2) wn(t) d
¥
2
1 ¢ (it Uj1+it2Ujz) 1 (it Uj1+itaUjry)
_ it1Uj1 2Ujo) _ — 1Uj1 2U ./
Jj=1 J,3’'=1
2
1 & s Lo
_ / ﬁ Z <€(Zt1Uj1+Zt2Uj2) _e(ltlUjl-HmU]-/g)) wo(t)dt
T ga=1
2
1 — ~ o~ ~ o~
= / E Z {g (Ujl,U]Q) —g <Uj1,Uj/2>} wo(t) dt
Y 4.5'=1
2
- 1 &
= / ﬁ Ly (Uj,Uj/,Uk) + ﬁ Z (enj + enj’) wo(t)dt.
v Ji3’ k=1 J,3'=1

Using now |a + b|* = |a|* +|b]*+2R(a 1_7) for any complex numbers a and

W’Y

n2,wo’

b, it follows that Ajw, = Vilwy + W) o0 +
and t = (t1,t2) € R? where

1 n
Vo =75 > /Lt (U;,U;,Uy) Lg (Up, Uy, Up) wo(t) dt,

j7j/7k’klvl’l/7m:1 v

2
1 &
Wi = [ {52 2 arren) | oty
J3'=1
2 2
1< 1 <
= / —QZenj wo(t) dt—l-/ ﬁzenj/ WQ(t) dt
v n j=1 Y n j'=1

3,3 k=1

for U = (Ul,UQ) ~ C

1 1
WT;YQ,UJO = \/§R (713 E Ly (U]aU ) (2 E en] JrenJ ) wo(t)dt.
Y
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Using the fact that g1 2(u1,u2) = 0g(u1, uz)/0us Qug = —t1 ta2 g(u1, uz), one
has

1 o [ 2 o [ 2
eng(tn, )l < 530 (T = Un) +[tal (T2 = Uso)
+2[t1]|t2] (ﬁjl - U;j ) (@2 —U;j )} :
Since ﬁjg —Ujr = Op(n~'/2), for any £ = 1,2 and for each j € {1,...,n},
one can then conclude that
lenj(t1,t2)| = ([ta] + [t2])* Op(n™1).
Then, since fv (Jt1] + |t2])* wo(t) dt < oo, one has
Wi = 0pn™) [ (11l + )" wn(t) dt = 02(1),
¥

The same arguments holds for W;Zi@) = op(1). For the last term, is a con-

sequence of Cauchy-Schwartz inequality yields ng@) = op(1). Therefore,
ng,wo = op(1). Once again one apply a Cauchy-Schwartz inequality for
square integrable complex functions f and g:

/Rz f(t)g(’c)dt’ < (/R |f(t)\2dt>1/2 </R ]g(t)\th> "

and using the fact that |R(z)| < |z| for any complex number z = a+ b, with
combination to the last statement and that V}/,,, is asymptotically equivalent
to V-statistic, that is, converges in distribution, one obtains WJQ’WO = op(1),
which complete the proof.

That is
5
‘ Wn2,w0

A.5 Proof of Proposition 3
Since @, (u) = E{&}, (1, Us, U3, Uy, Us, Ug)} # 0, the kernel &), is
non—degenerate. Assume that Y r- , Cov (9530 (U1), %, (Uk)> are bounded.

Then from Theorem 2 of Newman (1980) entails that the empirical distance
covariance process converge weakly to an independent Gaussian random vari-
ables with mean zero and variance

72, =6 (Var (@3,(U1)) +2 i Cov (@, (U1), 2, (Uk))> :

k=2
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As a conjecture, if the condition Y o, Cov( oo (U1), wo(Uk)) does not
hold, there exist slowly varying function

L(z) = (Var ( ,(U1) ) +2 Z Cov ( (U1) (Uk’))>

k=2

with

L
ISE);Z)) v 1, forany a>0

such that the empirical distance covariance process

Hioo(U) = Vi L(2) (A, = 000C)(U)), U= (U1,Up) ~C

does not converge in distribution to a Gaussian random variables. A detailed
discussion can be found in Herrndorf (1984).

A.6 Proof of Proposition 4

First for U = (Ul,Ug) ~ (C, Uy = (Ul,Uz) = ((Ul,Ul), (UQ,UQ)) ~ C
and as a consequence of Proposition 3 the empirical distance process

Howo(U) \
Hn,wo (Ul) n—>—>oo N3 (0,49)
Hn,wo (UQ)

a three-variate centered Gaussian distribution, where £2 € R3*3 is the covari-
ance matrix of random vector (D, D1 u,, @2’“)0)? Hence, by delta-method
and we assume that the covariance > po o 77 wo 1s finite, one has

R;(U) = Vi { R}(U;) - R(U)} — N (0,72,

)
n—00 wo

where 72 = 4 (V)T 2(Vy) and (V) € R3*! the gradient of ¢ at the point

(43,(0), 42,1 42,5)

Second, let
~2
~ o~ no
Y 7Y v "Pnwo
Zn2 - Zn2,1 Zn2,2 -~ )
Puwo
where for every £ = 1,2, Zgﬂ = \/ﬁ//l\;yl’woyg/ﬁf,wo is the empirical distance
variance process that converge in distribution, as n tends to infinity, to in-
dependent standard normal distribution. Then, one has Z], converge in
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distribution, as n tends to infinity, to independent chi-squared random vari-
ables with one degree of freedom.
If Z), and Z, are independent i.e., P(Z!, = Z,) = 1, it follows by con-
tinuous mapping Theorem that the functional empirical distance covariance
Vi By [183001 "
R) =9 (Zy1,Zpy) = =" no.f

Two Puwy

converge in distribution, as n — oo, to limit R = ¢ (Z1, Z) where (21, 22) =
21/+/72, that is, Student’s ¢t-distribution with one degree of freedom.
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