


HOMOGENEITY RANK OF REAL REPRESENTATIONS
OF COMPACT LIE GROUPS

CLAUDIO GORODSKI AND FABIO PODESTA

ABSTRACT. The main result of this paper is the classification of the real irreducible repre-
sentations of compact Lie groups with vanishing homogeneity rank.

1. INTRODUCTION

Let a compact Lie group G act smoothly on a smooth manifold M. The codimension of
the principal orbits in M is called the cohomogeneity cohom(G, M) of the action. Piittmann,
starting from an inequality for the dimension of the fixed point set of a maximal torus in G
due to Bredon ([Bre72], p. 194), introduced in [Pue02] the homogeneity rank of (G, M) as
the integer

homrk(G, M) = 1k G — rk Gpyinc — cohom{G, M)
= tk G — 1k Gprine + (dim G — dim Gprinc) — dim M,

where Gprinc is a principal isotropy subgroup of the action and, for a compact Lie group K,
rk K denotes its rank, namely the dimension of a maximal torus. We will see in the next
section that orbit-equivalent actions have the same homogeneity rank.

This invariant, although not with this name, had already been considered by Huckleberry
and Wurzbacher who proved that a Hamiltonian action of a compact Lie group on a symplec-
tic manifold has vanishing homogeneity rank if and only if the principal orbits are coisotropic
with respect to the invariant symplectic form (see [HW90], Theorem 3, p. 267 for this result
and other characterizations of this property). If p: G — U(V) is a complex representation
where V is a complex vector space endowed with an invariant symplectic structure, then the
G-action is automatically Hamiltonian, and it has vanishing homogeneity rank if and only
if every principal orbit is coisotropic; this condition can be proved to be equivalent to the
fact that a Borel subgroup of the complexified group G* has an open orbit in V, and also to
the fact that the naturally induced representation of G on the ring of regular functions C[V]
splits into the sum of mutually inequivalent irreducible representations (see e.g. {Kra85],
p. 199). Complex representations with these equivalent properties are called cotsotropic or
multiplicity-free; Kac [Kac80] classified the irreducible multiplicity-free representations and,
later, Benson and Ratcliff [BR96] and, independently, Leahy [Lea98] classified the reducible
ones.

In this paper we consider the case of an irreducible representation p : G — O(V) of a
compact Lie group G on a real vector space V with vanishing homogeneity rank. Since
representations admitting an invariant complex structure have null homogeneity rank if and
only if they are multiplicity-free, we will deal only with irreducible representations of real
type, also called absolutely irreducible, namely those which admit no invariant complex
structure. Qur main result is the following theorem.
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Theorem 1. An absolutely irreducible representation p of a compact connected Lie group
G has vanishing homogeneity rank if and only if it is either orbit-equivalent to the isotropy
representation of a non-Hermitian symmetric space of inner type or it is one of the following
representations:

G p d|c

Sp(1) x Sp(n), n > 2| (standard)® ®y (standard) | 8n | 3
SO(4) x Spin(7) (standard) ®g (spin) 325
Sp(1) x Spin(11) (standard) ®x (spin) | 64 |6

where d denotes the dimension of the representation space and ¢ denotes its cohomogeneity.

2. PRELIMINARIES

Let (G, V) be an absolutely irreducible representation of a compact Lie group G on a real
vector space V. It is shown in Corollary 1.2 in [Pue02] that the homogeneity rank of a linear
representation is non positive. In this regard, the representations with vanishing homogene-
ity rank are precisely those with maximal homogeneity rank. The following monotonicity
property that is stated on p. 375 in [Pue02] and is valid for smooth actions on smooth man-
ifolds will be the basis of the method of our classification. Since there is no proof in [Pue02],
we include one for the sake of completeness.

Proposition 2. Let (G, M) be a smooth action. If G' be a closed subgroup of G, then
bomrk(G’, M) < homrk(G, M).

Proof. We first prove the statement in the case in which M is G-homogencous, i. e. we
prove that given a homogeneous space M = G/H, where G is a compact Lie group and H
is a closed subgroup, for every closed subgroup G’ of G we have

homrk(G',G/H) <1k G ~ 1k H.

We prove this by induction on the dimension of the manifold, the initial case dimM = 1
being clear. Fix the point 0 = [H] € G/H, a maximal torus Ty of H, and a maximal
torus T’ of G containing Ty. Since conjugation of G’ by elements of G does not affect the
homogeneity rank, we can assume that a maximal torus 7* of G’ sits inside 7. Then we have

1k G' —1k G, < dimT’' — dim(T" N G.) = dimT" -0 < d&im T - o,
where G, denotes the isotropy subgroup of G’ at o. Therefore
tkG' -1k G, < 1tk G —rk H.

We now consider the slice representation of G/, on the normal space W to the orbit G’ - o;
we can assume that the dimension k of W is at least 2, since otherwise G/, contains a
principal isotropy subgroup of (G, G/H) as a subgroup of finite index and the claim follows
immediately. Denote by S the unit sphere in W with respect to a G -invariant inner product
in W and apply the induction hypothesis. Since G', is a closed subgroup of SO(k), we have
homrk(G., S) tk G}, — 1k G} — cohom(G', M) + 1
homrk(SO(k), S)
1+ (-1)*
2 b
2
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where G, denotes a principal isotropy subgroup of G’ on M. It then follows that

1+

14 (=1)F
homrk(G', M) SrkG’—rkG’o+——2—1) <1k G—rk H,

and our claim is proved.

In the general case, we fix a G-regular point p € M and observe that a point ¢ € G-pis
principal for the G'-action on G - p if and only if it is principal for the G'-action in M; this
means that cohom(G’, M) = cobom(G, M) + cohom(G', G + p). We know from the previous
case that

homrk(G’, G - p) < homrk(G,G - p),
and now our claim follows by subtracting cohom(G, M) from both members of the above
inequality. (]

Corollary 3. Let (G,V) be a representation of a compact Lie group G on a real vector space
V. If (G,V) is not of vanishing homogeneity rank, then the action of a closed subgroup of
G on V is never of vanishing homogeneity rank.

The preceding corollary indicates a strategy to classify representations with vanishing
homogeneity rank. First we observe that the standard representation of SO(n) on R" is
of vanishing homogeneity rank if and only if n is even. Then we need to decide which of
the maximal subgroups of SO(n), where n is even, act absolutely irreducibly on R" with
vanishing homogeneity rank. For each example that we encounter, we examine which of
its maximal subgroups still act absolutely irreducibly on R" with vanishing homogeneity
rank, and so on. The process will eventually yield all the closed subgroups of SO(n) that
act absolutely irreducibly on R™ with vanishing homogeneity rank. The effectiveness of this
strategy is elucidated by the following well known result of Dynkin [Dyn52al.

Theorem 4 (Dynkin). (1) Let G be a mazimal connected subgroup of SO(n). Then G
is confugate in O(n) to one of the following:
(a) SO(k) x SO(n — k), where1 <k <n-1;
(b) p(SO(p} x SO(g)), wherepg=n and3 <p<g, and p is the real tensor product
of the vector representations;
{c) U(k), where 2k =n;
(d) p(Sp(p) x Sp(g)), where 4pg = n # 4, and p i3 the queternionic tensor product
of the vector representations;
(e) p(G1), where G, is simple and p is a real form of a complex irreducible repre-
sentation of degree n of real type.
(2) Let G be a mazimal connected subgroup of SU(n). Then G is conjugate to one of the
following:
(a) SO(n);
(b) Sp(k), where 2k = n;
(c) S(U(k) x U(n — k)), where1< k<n—1;
(d) p(SU(p) x SU(q)), wherepg =n andp 2 3 and g > 2, and p is the complez
tensor product of the vector representations;
(e) p(G1), where G is simple and p is a complez irreducible representation of degree
n of complex type.
(3) Let G be a mazimal connected subgroup of Sp(n). Then G is conjugate to one of the
following:
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(a) U(n);

(b) Sp(k) x Sp(n—k), wherel <k<n-—1;

(c) A(SO(p) x Sp(q)), where pg =n and p > 3 and g > 1, and p is the real tensor
product of the vector representations;

(d) p(G1), where G, is simple and p is a complez irreducible representation of degree
2n of quaternionic type.

Recall that a symmetric space of compact type X = L/G is said to be of inner type if
tk L = rk G; otherwise, X is said to be of outer type (compare Theorem 8.6.7 on p. 255
in [Wol84]). Moreover, the isotropy representation of X is absolutely irreducible if and only
if X is non-Hermitian. The following lemma implies that the isotropy representations of
symmetric spaces of semisimple type that have vanishing homogeneity rank are precisely
those coming from non-Hermitian symmetric spaces of inner type.

Lemma 5. Let (G, V) be the isotropy representation of a symmetric space of compact type
X = L/G. Then homrk(G,V) =0 if and only if tk G = 1k L.

Proof. Let | = g+ V be the Cartan decomposition of X with respect to the involution,
where [ and g respectively denote the Lie algebras of L and G. Let ¢ C V be a max-
imal Abelian subspace. By the structural theory of symmetric spaces, it is known that
the dimension of a is equal to the cohomogeneity of (G,V), and that the centralizer m
of a in g is the Lie algebra of a principal isotropy subgroup of (G,V). It follows that
homrk(G,V) = rk g — rk m — dima. Let t be a Cartan subalgebra of m. Then it is easily
seen that t + a is a Cartan subalgebra of . Now tkm = dimt, rk [ = dimt + dima, and
hence homrk(G, V) = 1k g — rk [ = rk G — rk L which proves our thesis. |

We will also use Theorem 1.3 of [Pue02] which, for convenience of the reader, we restate
here.

Theorem 6 (Piittmann). Let (G, M) be an isometric action of the compact Lie group G on
@ Riemannian manifold M. Then, for any z € M, we have
dim v,(G - )% < cohom(G, M) - (tk G, — rk Gpnc),
where v (G - z) denotes the normal space to the orbit G-z at z, vz(G - )% denotes the fized
point subspace of G in v,(G - 1), and Gprine i3 a principal isotropy subgroup of (G, M).
The following proposition implies that orbit-equivalent actions have the same homogemeity
rank.

Proposition 7. Let (G, M) be a smooth action. If G' is a closed subgroup of G, and G and
G' have the same orbits in M, then homrk(G', M) = homrk(G, M).

Proof. 1t is clearly enough to prove that if G’ and G act transitively on the same manifold
M, then homrk(G', M) = homrk(G, M). If we represent M = G/H = G'/H' for suitable
closed subgroups H C G and H' C G, then we claim that

tkG—rk H=1kG' —rk H'
This follows from the fact that, given a homogeneous space M = G/H with G compact, the
number xx(M) :=rk H — 1k G is a homotopy invariant of M (see [Oni9%4], p. 207) O

Finally, we state the following direct consequences of the definition of homogeneity rank,
which we shall repeatedly use in our arguments.
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Remark 8. Let (G, M) be a smooth action of a compact Lie group G on a smooth manifold
M. Then:
(a) If homrk(G, M) =0, then dim M < dimG + 1k G.
(b) If G’ is a connected closed subgroup of G having the same homogeneity rank, then
rk G' > 1k G — 1k Gprine. Moreover if G is finite, then G = @' (indeed, G and
G' are orbit-equivalent both with finite principal isotropy, hence G and G’ have the
same Lie algebra).

3. THE CLASSIFICATION

In this section, we apply the strategy discussed in the previous section to classify absolutely
irreducible representations with vanishing homogeneity rank. It is enough to consider orthog-
onal representations of even degree 2n. According to Theorem 4, the maximal connected
subgroups of SO(2n) acting absolutely irreducibly on V' = R?™ are: p(SO(p) x SO(g)),
where pg = 2n and 3 < p < ¢, and p is the real tensor product of the vector representations;
2(Sp(p) x Sp(g)), where 4pg = 2n # 4, and p is the quaternionic tensor product of the vector
representations; and p(G,), where G is simple and p is a real form of a complex irreducible
representation of degree 2n of real type.

3.1. The case of p(SO(p) x SO(¢)) and its maximal subgroups. Here pg =2n and 3 <
p < q. We have that p is the isotropy representation of the symmetric space SO(p + q)/SO(p) x
SO(yq), and tk SO(p + q) = rk SO(p) +rk SO(g) because not both of p, g are odd. It follows
from Corollary 3 that this is an example.

Next we must investigate maximal connected subgroups G of p(SO(p) x SO(g)). We shall
consider separately three cases which cover all the possibilities.
3.1.1. G = p(G1), where G; = KX?O(q), and K CASO(p) is a mazimal connected subgroup.
Set G, = SO(p) x SO(g), G = p(G1). There is a G, -regular point z € V whose connected
principal isotropy subgroup is given by Gz = SO(g — p) C SO(g). The isotropy subgroup
of G, at z is the intersection G1, N Gi, and its connected component is SO(g — p). If G has
vanishing homogeneity rank on V, then Theorem 6 applied to z gives

dim;(Gz)® < cohom(G,V) — (rk G; — 1k Glprinc)
= tkG-1k G;
tk K + rk SO(g) — tk SO(g — p)
= 1k K +1k SO(p),
where we have used that mot both of p, ¢ are odd. Note that dim v,(Gz) = p and
dim v,(Gz) = p+ dim SO(p) — dim K. It is clear that
v2(Gz)® > v:(Gx),
since v;(Gz) D 1,(Gx), Gz C @, and z is G-regular. It follows that
dim v,(Gz)% > p.
Combining with the above we get that
tk K + 1k SO(p) > p 2 21k SO(p),

and therefore
tk K =1k SO(p).
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By the classification of maximal subgroups of maximal rank of SO(p), (see, for example,
section 8.10 in [Wol84]), since K is irreducible and of real type on R?, we must have K =

SO(p).

3.1.2. G = p(G1), where G; = SO(p)x K, and K C SO(qg) is a mazimal connected subgroup.
According to Theorem 4, we need to consider three cases.
(a) K = p(K,), where K, is simple and 4 is an absolutely irreducible representation of
degree ¢. Of course we need only to consider representations y such that u(K;) is a proper
subgroup of SO(g).

We may assume p < ¢. Remark 8(a) gives that p? < pg < ‘-’%LQ + [B] + r, where
r = dim K + rk K, and [z] denotes the greatest integer contained not exceeding z. This
implies that

(1) P’ < 2r,
and that
(2 P’ —2gp+2r > 0.
Equation (2) and p > 3 then imply that
g 3
<=-4-.
(3) 9S5+3

Let s be the minimal degree of an absolutely irreducible representation of A and such that
its image is not the full SO(s). Then

r 3
(4) 8> 3 + 2
is a sufficient condition for (G, V') not to be of vanishing homogeneity rank. We next run
through the possibilities for K.

¢ K, = 8U(m), wherem > 2. Here r = m®*4+m ~ 2. If m = 2, then s =5, and (4)
holds. If m > 3, then 8§ = m? — 1 (realized by the adjoint representation), and (4)
holds.

e K, = Sp(m), where m > 2. Here r = 2m? + 2m. If m = 2, then s = 10 (realized by
the adjoint representation) and (3) holds. If m > 8 then s = 2m? —m — 1 (realized
by the second fundamental representation) and (3) holds.

e K, = Spin(m}, where m > 7. Here r = "2'_1 + [?] All irreducible representations
of real type violate (3), except possibly the (half-)spin representations of B, By,
Dyt. These have respectively g = 241, 2% 2%~1_ Condition (3) is respectively

3.2% <pak?— 16k + 9,
3. 2%+ < 64k% + 16k + 9,
3-2% <64k? 4 9.
The only cases that survive are By and Dy. In the case of By we have ¢ = 8
and r = 24. Then (1) implies that p = 3, 4, 5, 6. Next we use (2) to get rid of
P =5, 6. We end up with p = 3 and p = 4, and this gives the admissible cases
(SO(3) x Spin(7), R* ® R®) and (SO(4) x Spin(7), R* @ R®), but note that the first
one of these is orbit-equivalent to (SO(3) x SO(8), R* ® R®). In the case of Dy, we
have that z(Spin(8)) = SO(8), and we rule this out.
6



e K, is an exceptional group. Here (4) holds in each case, so there are no examples,
see the table below.

iKli T 8
G| 16| 7
F,| 56 | 26
Ee | 84 | 78
E; (140 | 133
Es | 256 | 248

(b) K = u(SO(k) x SO(1)), where 3 < k <l and ¢ = kI, and p is the real tensor product

k
of the vector representations. Here r = # + [g] -3 + {%} - % Note that —1 <8 <0.

=0
Then (3) is k2 +1% — 6kl +26+9 > 0. Set m = [ —k > 0. Then m? — 4km —4k*+9+26 > 0.
This implies that

(5) 2k + /8k%2 -9 —20 < m.

If pk < I, since the action of SO(p) x u(SO(k) x SO()) C SO(p) x SO(g) on R* ® R is
the same thing as the action of /(SO(p) x SO(k)) x SO(l) € SO(pk) x SO(!) on R* @R,
where /' is the real tensor product of the vector representations, this case has already been
considered in section 3.1.1. So now we assume that

(6) pk > L.

Note that ¢ > v/2r. This implies via (2) that 3 < p < g—1/¢? — 2r. Combining this with (6)
we have | < kg — kv/q® — 2r and then 1*(1 — 2k?) + 2k?r > 0. Substituting the value of r we
get k<l< k«/k—:!%e- We deduce that § = 0 and

k
7 0<m<k|———-1].
™ <m<k (o= -1)
Now (5) and (7) combined imply that 3k +v8k% — 9 < 7;:%_-1, which is impossible for k£ > 3.
(c) K = u(Sp(k) x Sp(l)), where ¢ = 4kl # 4, and 4 is the quaternionic tensor product of
the vector representations. We postpone this case to section 3.4.

3.1.3. G = {(z,0(2)) : = € SO(p)}, where p =g and o is an sutomorphism of SO(p). Here
Remark 8(a) immediately implies that (G, V) cannot have vanishing homogeneity rank.

3.2. The case of p(Sp(p) x Sp(¢)) and its maximal subgroups. Here 4pg = 2n #
4 and p < q. We have that p is the isotropy representation of the symmetric space
Sp(p + ¢)/Sp(p) x Sp(g), and rk Sp(p + q) = rk Sp(p) + 1k Sp(g). It follows from Corol-
lary 3 that this is an example.

Next we must investigate maximal connected subgroups G of p(Sp(p) x Sp(g)). We shall

consider three cases separately which cover all the possibilities.
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3.2.1. G = p(G1), where G1 = K x Sp(g), and K C Sp(p) is a mazimal connected subgroup.
Set Gy = Sp(p) x Sp(g). There is a G,-regular point z € V whose principal isotropy
subgroup is given by G, = Sp(1)® x Sp(g — p). Let O be the orbit of G; through z. A
point y € O is Gy-regular in O if and only if it is Gi-regular in V; moreover the isotropy
subgroup G, is given by the intersection of G, with a suitable conjugate of Gi. in G,. This
means that a principal isotropy subgroup of G; contains a subgroup isomorphic to Sp(g - p).
If (G, V') has vanishing homogeneity rank, it then follows that

dimV =4pg < dimK +rk K +2¢* 4+ 2¢ — (2(g-p)?+2(¢-p),
hence
(8) 2p* — 2p < dim K + 1k K.

According to Theorem 4, there are two cases to be considered. But if K is of the form
#(SO(k) x Sp(1)), where p is the real tensor product of the vector representations, we refer
to section 3.4. So we can assume that K is of the form p(K1), where K is simple and u
is a complex irreducible representation of degree 2p of quaternionic type. Let s be half the
minimal degree of a complex irreducible representation of quaternionic type of K, and such
that its image is not the full Sp(s). The list of the values of s for each compact simple
group K; is given by the following table (groups not appearing in the table do not admit
quaternionic representations):

l K; [ 8 I
SU(4a +2), a>1 e |
Spin(8a +3), a>1 24
Spin(8a+4), a > 1 24
Spin(8a+5), a > 1 2%+l
Sp(a), a > 3 2(2a? - 3a —~ 2)
Sp(2) 8
Sp(1) 2
E, 28

It is now easy to see that (8) implies K3 = Sp(1) and p = 2, and then the only admissible
case is Gy = Sp(1) x Sp(q), where Sp(1) C Sp(2) via the irreducible representation of
degree 4.

3.2.2. G = p(G1), where Gy = Sp(p) x K, and K C Sp(q) is a mazimal connected subgroup.
According to Theorem 4, we need to consider two cases.
(a) K = p(K;), where K, is simple and pisa complex irreducible representation of degree 2¢
of quaternionic type. We may assume p < q. Remark 8(a) gives that 4p® < 4pq < 2p?+2p-+-r,
where r = dim K; + rk K, (note that r > 4). This implies that
p< L= T .21+2r and 2p*+2p(1—-2¢)+r>0.
8



From this we get that

) g<T+1,
and
(10) if g > YT then p< g1 -1/ @g—1)7 - 2r.

Running through the compact simple groups K; that admit quaternionic representations
(see table in section 3.2.1) and using (9) and (10), we get the following admissible cases:
K, = Sp(l): p=1l4q¢=2 K = Sp(3)7 p=14qg="T K = Spin(ll), p=1,¢=16
K, =Spin(12), p=1,¢=16; K, =SU(6), p=1,¢=10; K; = E7,p=1, ¢ =28. Al
cases but that of K; = Spin(11) come from isotropy representations of symmetric spaces.
(b) K = p{SO(k) x Sp(l)), where ¢ = kl, and p is the real tensor product of the vector
representations. We postpone this case to section 3.4.

3.23. G = {(z,0(z)) : z € Sp(p)}, where p = q and o is an sutomorphism of Sp(p). Here
Remark 8(a) immediately implies that (@, V) can have vanishing homogeneity rank only if
p = 1, so this case is out.

3.3. The case of p(G,). Here G, is a compact simple Lie group and p is an absolutely
irreducible representation of G, of degree 2n. Remark 8(a) says that 2n < dim G, +rk G;.
In particular, this implies that 2dimG; > 2n — 2, so we can use Lemma 2.6 in [Kol02] to
deduce that (G, V) is orbit equivalent to the isotropy representation of a symmetric space.

3.4. The case of p(SO(m) x Sp(p) x Sp(g)), where p is the real and quaternionic
tensor products of the vector representations. Here 2n = 4mpg, m > 3 and p < ¢.
By direct computation or using Theorem 1.1 in [HH70], we see that:
(i) if m > 4pg + 2, then the connected principal isotropy is given by SO(m — 4pg);

(ii) if ¢ > mp + 1, then the connected principal isotropy is given by Sp(g — mp);

(iii) in all other cases the connected principal isotropy is trivial.
In case (i) the condition of vanishing homogeneity rank reads

e ="+ +p+g< 2"+ 2,

and this implies p = ¢ = 1. In case (ii) we have
4p%(1 = m?) + 4p(1 + m) +mE —m + 2 [g] = 0.
If m = 21, then we have p?(1 — 412) 4 p(1 + 2I) + [? = 0, which implies that 1+ 2] divides 2,
impossible. If m = 21 + 1, then we have (4p? — 1)I = 2p, which is impossible. In case (i),
we have the equation
8mpg =m? —m +2 [g] +4p® +4p+4¢° + 4q.
If m = 2, this reads
(11) P-dpgi+p*+F+p+g=0,
subject to the constraints
L <icop, p<g 122
2p
while if m = 2/ + 1, we have
(12) P—(4pg-D)i+p+¢ - 2pg+p+g=0,
9



subject to the constraints

g 1
-2l < > 1.
% 2_1_217(1, p<gq 12

Consider first equation (11). It can be solved in ! to yield | = 2pg + VA, where A =
dp*® ~p? — @ —p—q. If | = 2pq + /A, using the fact that [ < 2pg we have A = 0 and
then ! = 2pq < p+ ¢, which gives p=¢ =1, and then | = 2, m = 4. If | = 2pg — V/A, then
51‘; < 1 implies that

7 (4p* - 1) — 4p*q - 4*(P* +p) <0,

207 + 2p+/p(4p® + 4p? — 1)
<g< 2.
psg=s 42— 1 <p+
It then follows that we only need to consider the possibilitiesg=pand g=p+1. If g=p,
then we have

and therefore

2<i=2p" - V4p' - 20> -2 <2,
sothat{=2,p=qg=1 Ifg=p+1, then
2<i=20+2p— \/Ap* + 8PP+ 2p> —4dp-2< 2,

which is impossible.

Next we consider equation (12). Here it is useful to note that Remark 8(b) applied to
G = SO(m) x Sp(p) x Sp(q) viewed as a subgroup of SO(m) x SO(4pq) gives the extra
condition

(13) (5] <p+e |
Equation (12) can be solved in { to yield { = ﬂ%@, where A; = 16p?q® — 4p® — 4p —
4 —dg+1. Ifi= 5"-’%, then (13) implies that

pg<li<p+g¢=<2,
whichgivss p=¢=1, A1 =1,l=2andm=25 Ifl= 99:12—'@, then the inequality

-2% - % <l implies that

g*(4p* — 1) ~ 4p*q — 4p* — 4p° + p? < 0,
which in turn implies

2% +p/16p* +16p3 —4p? —4p+ 1
4p2 -1
Therefore we need only to consider the cases g =p and g = p+ 1. If ¢ = p, then
l=4p2-1—\/16p4—8p2—8p+1 z
2
This gives l=1,m=3,p=¢g=1. fg=p+1, then

pLqg<s <p+2.

2.

i g
I=2p2+2p—§——2-\/16p‘+32p3+8p2—16p—7<1,

which is impossible.
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3.5. The examples and their subgroups. In this section we show that all candidates
G C 80(2n) found in the previous sections are actually examples of groups acting absolutely
irreducibly on V = R*™ with vanishing homogeneity rank, and these groups do not admit
subgroups with the same property. This will complete the proof of Theorem 1.

We first examine the representations that are not orbit-equivalent to isotropy representa-
tions of non-Hermitian symmetric spaces of inner type. We have three candidates:

(1) G = Sp(1) x Sp(g) (g = 2) acting on V = §%(C?) @ C* = R¥,

(2) G = SO(4) x Spin(7) acting on V = R* ® R® = R*, where Spin(7) acts on RS via
the spin representation;

(3) G = Sp(1) x Spin(11) acting on V = C? ®y C* = R™, where Spin(11) acts on
C?* via the spin representation.

We now show that in each case the representation has vanishing homogeneity rank. Indeed,
in case 1 we have that a connected principal isotropy is given by Sp(g — 2) (see [GT00],
Proposition 7.12), therefore the cohomogeneity is three and the homogeneity rank vanishes.
In case 2, a connected isotropy subgroup is trivial. This can be seen by selecting a pure
tensor v ® w with v € R* and w € R® and computing the connected isotropy, which is
SO(3) x Gy; then the slice representation is given by ROR*®R’; starting again with this new
representation, we eventually come up with a trivial isotropy. Therefore the cohomogeneity
is five and the homogeneity rank vanishes. In case 3, we also have trivial connected principal
isotropy and vanishing homogeneity rank. Indeed, if v € C* is a highest weight vector for
the spin representation of Spin(11), then the subgroup H C Spin(11) defined by H = {g €
Spin(11): g-v € C*-v} is given by U(5). Now if p : Sp(1) x Spin(11) — Spin(11) is the .
projection, then

p((Sp(1) x Spin(11)),) = {9 € Spin(11): g-v € Sp(1)-v} D> H.

Since H is maximal in Spin(11), we get that (Sp(1) x Spin(11)), is given by T* - SU(5),
where T? sits diagonally in the product of a suitable maximal torus in Sp(1) and the center
of H. From this we see that the slice representation at v is given by R ® C® & A2C® and the
connected principal isotropy is trivial. The cohomogeneity is six and the homogeneity rank
vanishes.

We now examine subgroups of the previous examples. In case 1, a maximal subgroup
of G leaving no complex structure on V invariant is of the form G' = Sp(1) x K, where
K C Sp(q) is maximal. Since Sp(2) x K does not have vanishing homogeneity rank on
V by the results of section 3.2.2, and G’ C Sp(2) x K, we have that G’ does not have
vanishing homogeneity rank on V. In cases 2 and 3, G admits no proper subgroups acting
with vanishing homogeneity rank because the connected principal isotropy is trivial and then
we may apply Remark 8(b).

We finally consider the representations (G, V) that are orbit-equivalent to isotropy repre-
sentations of non-Hermitian symmetric spaces of inner type, and we classify the subgroups
G' C G which still act absolutely irreducibly on V' with vanishing homogeneity rank. In the
following table we list the representations p which need to be examined; we denote by ¢ the
cohomogeneity of p, by d the dimension of V, and by [[W]] a real form of the G-module W'
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Case G p c¢| d | dimGprinc
1 Sp(1) - SU(6) CZeu ANC® |4 40 2
2 | Sp(1)-Spin(12) | C? ®y (half-spin) | 4 | 64 9
3 Sp(1) - Ey CPeyC® |4]112 28
4 Sp(1) - Sp(3) CleuyC* |4 28 0
5 S0(4) SHC?euC? |2 8 0
6 Spin(16) half-spin | 8128 0
7 SU(8) [[A*CE]| 7|70 0
8 |[SO(3) x Spin(7) R}*®R®? 3| 24 3
9 Spin(7) spin 1| 8 14
10 Spin(9) spin 1] 16 21

Cases 4 through 7 can be dealt with using Remark 8(b). We consider case 1. If G’ is
a maximal subgroup of G, we may assume that G’ is of the form G’ = Sp(1) - G”, where
G" is maximal in SU(6), since G’ does not leave any complex structure invariant. Now
Remark 8(a) implies that dimG” + rk G” > 36, and rk G" < 5 implies dimG"” > 31, so
that dimSU(6)/G” < 4. If G” is a proper subgroup of SU(6), then the left action of
SU(6) on SU(6)/G" is almost effective because SU(6) is simple. Therefore dim SU(6) is
less than the dimension of the isometry group of SU(6)/G", which is at most 10, but this is
a contradiction. Hence G” = SU(6).

In case 2, again we can assume that G’ is of the form G' = Sp(l) - G”, where G" is
maximal in Spin(12). We have dim G” + rk G” > 60; since G’ is supposed to act absolutely
irreducibly on V, its rank is not maximal by a theorem of Dynkin (see Theorem 7.1, p. 158
in [Dyn52b]), and therefore dimG” > 55 = dimSpin(11). It is known that a subgroup
of Spin(n) of dimension greater or equal to dim Spin(n — 1) is conjugate to the standard
Spin(n — 1) C Spin(n) if n # 4, 8 (see e.g. [Kob72], p. 49). So, G’ = Sp(1) - Spin(11),
which is indeed an example with trivial connected principal isotropy by the discussion above.

In case 3, using the same argument as in case 2, we see that G' = Sp(1) - G”, where
dimG” > 102. An inspection of the list of all maximal subalgebras of E; (see Table 12,
p- 150 and Theorem 14.1, p. 231 in [Dyn52b]) shows that there is no such proper subgroup.

In case 8, a maximal subgroup G” acting absolutely irreducibly on V must be of the form
G’ =S0(3) x K, where K C Spin(7) is maximal; arguing as above, we see that dim K > 18,
so that dim(Spin(7)/K) < 3 and this is impossible, because Spin(7) is simple.

In case 9, let K C Spin(7) be a maximal subgroup acting absolutely irreducibly on R®.
Since K cannot have maximal rank as above, and using Theorem 4, we see that K must be
simple of rank at most two and it must admit an irreducible representation of degree 7 and
of real type. Moreover, by Remark 8(a), we have dim K > 6, hence rk K = 2, and a direct
inspection of all such simple groups shows that none of them but G, admits an irreducible
representation of degree 7. But G does not admit an irreducible representation of degree 8.

In case 10, we consider a maximal subgroup K of Spin(9) acting absolutely irreducibly
on R'S. This means that tk K < 3 and dim K > 13. Looking at the list of all maximal
subgroups of Spin(9), we see that we can suppose K to be simple and to act irreducibly on
R?, via the embedding K C Spin(9). Therefore K must be one of Gy, SU(4), Spin(7) or
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Sp(3), but we immediately see that none of these groups admits an irreducible representation
of degree 9 and of real type.
This finishes the proof of Theorem 1.
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