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Abstract Animals must balance needs to approach threats for risk assessment and to avoid

danger. The dorsal periaqueductal gray (dPAG) controls defensive behaviors, but it is unknown how

it represents states associated with threat approach and avoidance. We identified a dPAG

threatavoidance ensemble in mice that showed higher activity farther from threats such as the

open arms of the elevated plus maze and a predator. These cells were also more active during

threat avoidance behaviors such as escape and freezing, even though these behaviors have

antagonistic motor output. Conversely, the threat approach ensemble was more active during risk

assessment behaviors and near threats. Furthermore, unsupervised methods showed that

avoidance/approach states were encoded with shared activity patterns across threats. Lastly, the

relative number of cells in each ensemble predicted threat avoidance across mice. Thus, dPAG

ensembles dynamically encode threat approach and avoidance states, providing a flexible

mechanism to balance risk assessment and danger avoidance.

Introduction
Behavioral variables and emotional states are thought to be represented in neural activity (for

review, see Salzman and Fusi, 2010; Anderson and Adolphs, 2014). Such representations must be

specific enough to differentiate across behaviors, yet general enough to maintain functional cohe-

sion across diverse threatening situations (Gründemann et al., 2019). A large body of evidence has

shown that defensive behaviors related to threat exposure are represented in dorsal periaqueductal

gray (dPAG) activity (Deng et al., 2016; Esteban Masferrer et al., 2020; Evans et al., 2018;

Watson et al., 2016), as dPAG activity correlates with escape and freeze. Additionally, dPAG opto-

genetic and electrical stimulation induce these behaviors, as well as aversion (Brandão et al., 1982;

Carvalho et al., 2015; Carvalho et al., 2018; Deng et al., 2016; Tovote et al., 2016). Furthermore,

pharmacological manipulations of dPAG activity impact open arm exploration in the elevated plus

maze (EPM), a traditional measure of rodent anxiety (Fogaça et al., 2012). Lastly, PAG activity in

humans correlates positively with threat imminence (Mobbs et al., 2007; Mobbs et al., 2010). These

reports show that the dPAG is a central node orchestrating defensive responses.

However, it is unknown how the dPAG represents moment-to-moment changes in brain states

during threat exposure. The two main behavioral states observed during exposure to threats are

approach and avoidance (Stankowich, 2019). In the approach state, animals voluntarily go near the

threat and perform risk assessment behaviors. In this state, the exploratory risk evaluation drive is
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stronger than the motivation to avoid danger. By contrast, in the avoidance state, animals perceive

high risk, and thus attempt to minimize exposure to danger by escaping, freezing, and maintaining

distance to the threat. No reports to date have investigated whether the dPAG consistently encodes

approach and avoidance states across distinct threats.

Key questions regarding the neural representation of approach and avoidance states remain

unanswered. Do dPAG cells respond uniformly to transitions between higher and lower threat immi-

nence? What is the overlap between the dPAG encoding of two completely distinct threats? Does

dPAG neuronal activity encode moment-to-moment changes regarding defensive approach and

avoidance states? Addressing these questions would require population-level analysis of dPAG cells

recorded longitudinally across threat modalities. Here, we report experimental data and analyses

that directly address these questions.

Results and discussion
We performed microendoscopic calcium imaging of dPAG neurons expressing GCaMP6s

(Figure 1A and Figure 1—figure supplement 1; Cai et al., 2016) during EPM and rat exposure

assays. During the EPM test, we recorded 107 ± 19 cells per mouse (n = 8 mice; 857 cells were

imaged; see Materials and methods). As expected, mice spent more time in the closed arms of the

EPM (Figure 1B). They also displayed exploratory head dips (average frequency of events = 27.0 ±

9.7; n = 8 mice) over the edges of the open arms (Figure 1B–C). During EPM exploration cells often

showed preferential activity either in closed or open arms (Figure 1D–E). To identify EPM arm-type

modulated neurons, we defined an ‘arm score metric’ ranging from �1 to +1, in which the +1 indi-

cates that cell activity in the open arm is greater than activity in the closed arm, and vice versa. The

arm score distribution in the observed data is wider than expected by chance, indicating that dPAG

cells show robust preference for EPM arm types (Figure 1F, left panel). We defined neurons as

belonging to one of the ensembles if activity in each arm-type was significantly greater than the

pooled activity in the opposite arm type (Figure 1F, right panel, see Materials and methods). The

results showed that cells fired similarly in arms of the same type, as cell activity in one open arm was

highly correlated to activity in the other open arm (Figure 1G, top panel). Conversely, cell activity in

closed and open arms was negatively correlated (Figure 1G, bottom panel).

Based on the distribution of cells per arm score, roughly half of the dPAG neurons were classified

as arm-modulated cells (49%, with 26% closed- and 23% open-modulated cells) (Figure 1H), which

suggests these ensembles are functionally relevant dPAG populations. During transitions between

arms, we identified opposite changes in activity levels of these two major, non-overlapping popula-

tions of dPAG neurons (Figure 1I and Figure 2A–B). To ensure that positive results were not due to

cell categorization itself, in Figure 2A–C,G, cell categorization was done on training data and results

were plotted for separate testing data (see Materials and methods). For example, the closed arm-

activated ensemble showed a decrease in activity when mice traversed from a closed arm to an

open arm. Moreover, open and closed cells showed increased and decreased activity, respectively,

during exploratory head dip behavior (Figure 2C). Aggregate activity of dPAG cells in the EPM did

not show significantly higher activity in the open arms, showing that in the entire population, the

closed and open cell patterns counterbalance each other (Figure 2—figure supplement 1C). Impor-

tantly, 95% of dPAG cells showed relatively low correlations of speed and neural activity, between

�0.17 and +0.2. These results suggest that arm-related activity preferences are not driven by varia-

tions in velocity (Figure 2D). Instead, if EPM arm type is prominently represented in dPAG ensemble

activity, then it may be possible to use dPAG activation patterns to differentiate mouse location in

the EPM. Indeed, upon training support vector machine (SVM) decoders on dPAG activity, we

obtained significantly higher than chance performance in identifying whether the mouse was in an

open or closed arm (Figure 2E, see Materials and methods).

Next, we investigated whether dPAG activity could also predict specific mouse positions within

the arms. An acceptable interpretation of EPM behavior is that mice avoid the open arms because

they are more vulnerable to potential threats in open spaces (Montgomery, 1955; Walf and Frye,

2007). This view suggests that the beginning of the open arms is only slightly threatening, as if a

dangerous stimulus is detected the mouse can quickly retreat to the safety of the closed arms. Con-

versely, it takes a longer time for the mouse to retreat to the closed arms if they are at the extreme

end of the open arms. Thus, we argue that distance from the center of the maze is related to a
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Figure 1. Dorsal periaqueductal gray (dPAG) neuronal ensembles encode arm type in the elevated plus maze (EPM). (A) Gradient refractive index

(GRIN) lens implantation, virus expression strategy, and example Ca2+ signals of neurons in the dorsal periaqueductal gray (dPAG). (B) Example mouse

exploration path recorded in the EPM. Mice spent significantly more time in the closed arms compared to the open arms (data are represented as

mean ± SEM; W = 0, p=0.012, Wilcoxon signed rank test, n = 8 mice). (C) Mean percentage of time in which mice engaged in head dips during the

Figure 1 continued on next page
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gradient of threat, with the highest threat levels at the end of the open arms. The animal’s behavior

supports this view, as mice avoid the extreme end of the open arm more robustly than the beginning

of the open arm (Figure 2—figure supplement 1B). We therefore defined the EPM location index

to be a linearly varying metric between �1 and +1 (at closed and open arms extremities, respec-

tively), assigning 0 to the center of the maze (Figure 2F, see Materials and methods). We then fitted

a linear regression model to predict the EPM location index from dPAG cell activity. Interestingly,

the model showed significantly higher than chance performance in predicting EPM location index,

suggesting that the identified dPAG ensembles may not only encode arm type, but rather a risk per-

ception and threat exposure gradient (Figure 2F–G and Figure 2—figure supplement 1A). Though

there are closed and open arm-preferring cells, aggregate bulk dPAG activity did not show different

activation levels across EPM arms (Figure 2—figure supplement 1C).

The above results show that the identified ensembles encode approach and avoidance toward

the threatening locations in the EPM. To investigate whether dPAG population coding of approach-

avoidance states generalizes to exploratory behavior across different threatening contexts, we

recorded the same dPAG neurons during exposure to a live predator (Figure 3A–B and Figure 3—

figure supplement 1). Mice were allowed to freely explore a context, a long chamber, in the pres-

ence of a rat, which was tethered with a harness to one end of the chamber (see

Materials and methods). All behavioral data from synchronized videos underwent automated behav-

ior scoring (Mathis et al., 2018). Mice spent most of the trial away from the rat (Figure 3A), indicat-

ing aversion from perceived threat. Consistent with previous threat imminence theories and the

array of defensive behaviors evoked in the presence of a predator (Blanchard et al., 2011;

McNaughton and Corr, 2004; Perusini and Fanselow, 2015; Stankowich, 2019), mice presented

defensive strategy repertoires composed of approach and avoidance-related behaviors (i.e., escape

and freeze) (Figure 3A). Freeze bouts lasted 2.1 ± 1.3 s on average. Notably, average dPAG activity

increased with rat proximity, rat movement onset, and escape, and decreased during approach,

while no significant change was observed during freezing (Figure 3C–E). Importantly, mice displayed

no signs of aversion nor differences in dPAG activity with proximity to a toy rat (Figure 3—figure

supplement 2).

We then explored whether the activity of dPAG closed and open cell ensembles identified in the

EPM also represent risk evaluation in the rat assay. A positive result would show that the ensembles

are likely responding not only to the original sensory biases (i.e., closed and open arms features),

but potentially representing behavioral states that generalize across threats. Indeed, open cells

showed higher activation than closed cells near the rat even though all cell types were positively acti-

vated (Figure 3F–H and Figure 3—figure supplement 3). These data agree with reports showing

dPAG activation with predator proximity (Deng et al., 2016; Esteban Masferrer et al., 2020). The

present results also showed that proximity to a live predator activated the neither cell ensemble. As

the relatively low threat open arms did not significantly activate it, this ensemble of neurons may

require a higher degree of threat to be activated relative to open cells.

Closed cells showed increased activity following onset of both escape and freeze, despite these

behaviors having opposite motor outputs (Figure 3I–K). Additionally, even though freezing and

approach onset occur similarly far from the rat (Figure 3A), open and closed ensembles showed

opposite activity patterns and different generalized linear model (GLM) weights (Figure 3I–K). The

Figure 1 continued

whole EPM session (n = 8 mice). (D) dPAG dF/F traces from the same mouse that display preferential activity in the closed (upper trace) and open

(lower trace) arms of the EPM (open and closed arm-preferring cells). Epochs corresponding to exploration of the closed and open arms are shown

respectively as green and blue shaded areas. (E) Activity heatmaps for corresponding example neurons shown in (D). (F) The open arm preference

score was calculated for each neuron (orange bars; see Materials and methods), as was the distribution of open arm preference score for shuffled data

(red line). Bars show the distribution of open arm preference score for open, closed, and neither cells (n = 857 cells). (G) Scatterplots showing

correlations between neural activity across the two open arms (top) and between open and closed arms of the EPM (bottom). Each point represents

one cell (n = 857 cells, r = Pearson’s correlation coefficient). (H) Pie chart shows the percent of all recorded neurons that were classified as open, closed,

or neither cells (n = 857 cells). (I) For each subplot, each row depicts the mean normalized activity of an open, closed, or neither arm-preferring cell

during behavior-aligned arm transitions (n = 857 cells).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Deep brain imaging of dorsal periaqueductal gray (dPAG) neurons and distribution of elevated plus maze (EPM) scores.
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Figure 2. Dorsal periaqueductal gray (dPAG) population activity predicts elevated plus maze (EPM) exploration. (A) Traces show the mean z-scored

activity (±1 SEM) of all open, closed, and neither cells, behavior-aligned to arm transitions (respectively the blue, green, and gray traces). Cell

categorization and calculated results were performed on non-overlapping training and testing data (n = 180 open cells, n = 513 neither cells, n = 164

closed cells). (B) Bars depict the change in z-scored dF/F for entries to closed left) and open (right) arms, separately for open, closed, and neither cells

Figure 2 continued on next page
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freezing data in Figure 3I excludes freeze bouts that happened within 10 s of an escape. Thus, the

activity patterns plotted during freezing cannot be attributed to slow decay induced by escapes. Rat

movement onset likely constitutes a threat signal and switches states from approach to avoidance,

as predator movement is indicative of increased threat imminence. Indeed, rat movement is a signifi-

cant predictor variable for less frequent approach and more occurrences of threat avoidance-related

behaviors, such as escape and freezing (Figure 3—figure supplement 4A). Interestingly, rat move-

ment bouts are not consistently directed toward the mouse, as it most often increases distance

toward the mouse (Figure 3—figure supplement 4B–C). Nevertheless, rat movements predict

escape and freezing, indicating it is perceived as a threat by the mouse. Accordingly, after rat move-

ment onset, the threat avoidance-related closed arm ensembles displayed higher activity (Figure 3I–

J). Notably, neither of the ensembles consistently resembled the overall average dPAG activity dur-

ing rat exposure (Figure 3E), as each ensemble had its own functional profile (Figure 3I). Further-

more, dPAG cells also used shared patterns of neural activity across rat and EPM assays to represent

threat imminence (measured as distance to threat) (Figure 3—figure supplement 5, see

Materials and methods). These results suggest that dPAG neuronal activity can represent internal

brain states using shared patterns of activity across different threats.

An approach state is associated with open arm entries, head dips in the EPM, and proximity to

threat. Conversely, an avoidance state would be expected far away from threats and during actions

that decrease threat exposure, such as closed arm exploration, escape, and freezing. Our results

showed that closed cells were more active during higher distance from threat and threat avoidance-

related behaviors, such as freezing and escaping, while open cells were more active during proximity

to threats and exploratory head dips in the EPM (Figure 2 and Figure 3). The consistency of these

results across behaviors and two different threat modalities indicates that dPAG closed and open

cells were encoding threat avoidance and threat approach states, respectively.

To further investigate how dPAG cells use a shared representation to encode approach and

avoidance states, we developed an avoidance/approach score ranging between �1 and 1 (see

Materials and methods). The score gradually increases during approach to threat and during EPM

head dips, reaching +1 when the mouse is adjacent to the rat or in the extreme end of the open

arms. The score decreases when the mouse is retreating from threat and is assigned a value of �1

when the mouse is furthest from the rat, freezing, or in the extreme end of the closed arms

(Figure 4A). To investigate how the avoidance/approach score is encoded in dPAG activity, we used

k-means clustering, an unsupervised approach, to group the data points into clusters (Figure 4B,

panel 1). We used the Akaike information criterion (AIC) to determine the optimal number of clusters

for each assay, which were two clusters for EPM and three for the rat assay (see the

Materials and methods section entitled ‘k-Means clustering of neural data’; see also AIC values for a

range of cluster numbers in Figure 4—figure supplement 1). We then calculated the avoidance/

approach score for each cluster (Figure 4B, panel 2). The clusters with the lowest and highest scores

Figure 2 continued

(data are represented as mean ± SEM; both closed and open arms; n of cells same as (A); closed arm U = 10.6, ***p<0.001, open arm U = 10.8,

p<0.001, Wilcoxon rank sum test, n = 8 mice). (C) Average activity traces for open, closed, and neither cells relative to onset of head dips in the EPM

and quantification of changes in activity for all cell types (0–2.5 s after minus 2.5–5.0 s before head dip onset) (data are represented as mean ± SEM; n

of cells same as (A); U = 3.9, ***p<0.001, Wilcoxon rank sum test). (D) Histograms depict the distribution of the Pearson’s correlation of dF/F with speed

for each cell type in the EPM (n of cells same as Figure 1I. (E) Prediction of arm-type mouse position in the EPM from neural data using a linear support

vector machine (SVM). The blue and green areas represent the actual arm-type occupancy label (open and closed arm, respectively), and the black

trace represents the prediction of arm location by the SVM hyperplane projection. If the trace was above 0 a.u., then that period was classified as open

arm exploration, otherwise, it was classified as closed arm occupancy. The pink and purple represent the data split (training and testing data,

respectively). The Matthews correlation coefficient for real and permuted shuffled training data are shown to the right (mean ±1 SEM; n = 8 mice,

U = 4.9, p<0.001, Wilcoxon rank sum test). (F) (Left) Example of EPM location index where 1 and �1 correspond, respectively, to the extreme end of the

open and closed arms and (right) prediction of labeled EPM location index from dPAG neural data for an example mouse (scatterplot displays testing

data that was not used for training, r = Pearson’s correlation coefficient). (G) (Left) Correlation of example closed and open cell activity and (right) mean

correlation of dF/F with EPM location index (data are represented as mean ± SEM; n of cells same as (A); U = 13.7, ***p<0.001, Wilcoxon rank sum test,

r = Pearson’s correlation coefficient).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Validation of linear regression to predict elevated plus maze (EPM) location index using dorsal periaqueductal gray activity.
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Figure 3. Arm-specific ensembles maintain functions across threatening situations. (A) Illustration of the rat exposure assay (top) and example track

(bottom), with labels depicting the area to which the rat is confined (rat zone) as well as areas near to and far from the rat (safe side). In all figures

depicting this assay the rat area will be shown to the right. (B) Example imaging field of view with dorsal periaqueductal gray (dPAG) cells co-registered

between elevated plus maze (EPM) and rat exposure sessions. (C) Heatmap depicts the mean z-scored dF/F at each position of the rat exposure assay

Figure 3 continued on next page
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were classified as the ‘avoidance’ and the ‘approach’ cluster, respectively. Experimentally observed

approach and avoidance clusters respectively had higher and lower scores than sampling distribu-

tions obtained from permuted behavioral labels, showing that our k-means approach identified activ-

ity patterns that strongly encode the avoidance/approach score (Figure 4C). The approach and

avoidance cluster centroids from one assay were then applied to the other assay (i.e., centroids were

defined by training on EPM and applied on previously unseen data from the rat assay, or vice versa).

Cluster centroids defined from the training data in one assay were applied to the data from the

other assay to assign cluster identity based on shortest Euclidean distance to the centroid. For exam-

ple, the points in the testing dataset that were closest to the avoidance centroid, previously defined

by the training dataset, were assigned to the avoidance cluster (Figure 4B, panels 3–4). Scores for

approach and avoidance clusters for shuffled data were used to create a sampling distribution.

Lastly, we show that approach and avoidance clusters trained on one assay and applied on the other

assay result in significantly different scores, despite the two assays having different geometries and

distinct threat modalities (Figure 4D). Importantly, these results were not found when computing

approach and avoidance cluster centroids defined on the control toy rat assay but applied to the rat

assay (Figure 4—figure supplement 2). These results indicate, using an unsupervised method, that

approach and avoidance states are encoded using shared patterns of neural activity across assays.

Similar results were also obtained by employing a hidden Markov model (HMM), showing that the

results in Figure 4 can be found using a diversity of computational approaches (Figure 4—figure

supplement 3). Importantly, dPAG activity reflects moment-to-moment changes in the behavioral

states of the animal. Rather than merely encoding the defensive behavior movements, these activity

patterns may indicate threat perception. Encoding of exploratory and defensive behavior has also

been reported in the amygdala (Gründemann et al., 2019), indicating that multiple defensive nodes

represent such brain states.

Finally, we investigated if ensemble composition was related to threat avoidance traits across

assays. Rat approach and open arm exploration were correlated across mice, indicating that these

measures also reflected trait avoidance levels (Figure 4—figure supplement 4A). We then found

that mice with a higher proportion of open cells in relation to closed cells displayed increased avoid-

ance of open arms and rat (Figure 4—figure supplement 4B–C). A possible interpretation for these

Figure 3 continued

(left, n = 713 cells). Mean dF/F is significantly greater in the threatening zone than in the safe zone (n = 713 cells, n = 7 mice, U = 2.24, p=0.03,

Wilcoxon rank sum test). (D) Change in dF/F (0–2.5 s after minus 0–2.5 s before) activity for all dPAG cells for behaviors in the rat exposure assay (data

are represented as mean ± SEM; n of cells for approach, rat movement, escape = 714, n of cells for freeze = 640; approach t = �2.65, **p=0.008, rat

movement t = 7.87, ***p<0.001, escape t = 3.28, **p=0.001, freeze t = 0.39, p=0.69, one-sample t-test). (E) Traces show the mean z-scored activity of all

cells (±1 SEM), aligned to onset of various behaviors (onset is indicated by the red vertical line) in the rat exposure assay (n of cells same as D). (F) Bars

depict the mean z-scored dF/F of cells on the safe side and threatening side of the enclosure (data are represented as mean ± SEM; n = 64 open cells,

n = 166 neither cells, n = 87 closed cells; n = 7 mice, safe U = �3.82, ***p=0.0001, threatening U = 3.05, **p=0.002, Wilcoxon rank sum test). (G) Traces

show the mean z-scored activity of open, closed, and neither cells (±1 SEM), aligned to exit of the safe side of the enclosure (far from the rat). (H) Bars

show the mean change in z-scored dF/F (0–2.5 s after minus 0–2.5 s before) aligned to safe side exit for open, closed, and neither cells (data are

represented as mean ± SEM; n = 64 open cells, n = 166 neither cells, n = 87 closed cells; U = 3.29, ***p=0.001, Wilcoxon rank sum test). (I) Traces show

the mean z-scored activity of open, closed, and neither cells (±1 SEM), aligned to behaviors in the rat exposure assay (approach, rat movement, escape:

n = 64 open cells, n = 87 closed cells, n = 166 neither cells; freeze: n = 50 open cells, n = 67 closed cells, n = 132 neither cells). Onset of behaviors is

indicated by a red vertical line. (J) Bars depict the change in z-scored dF/F (0–2.5 s after minus 0–2.5 s before) for behaviors in the rat exposure assay,

separately for open, closed, and neither cells (data are represented as mean ± SEM; n of cells same as (I); approach U = 2.45, *p=0.014, rat movement

U = �3.70, ***p=0.0002, escape U = �2.12, *p=0.034, freeze U = �3.62, ***p=0.0003, Wilcoxon rank sum test). (K) A generalized linear model (GLM) to

predict single-cell activity was constructed using approach, escape, and freeze behaviors as variables. Bar plots show average GLM weights for

approach and freeze for open, closed, and neither cells (data are represented as mean ± SEM; n = 62 open cells, n = 155 neither cells, n = 83 closed

cells; approach U = 4.17, ***p<0.001, p=0.11, freeze U = 3.02, ***p<0.0002, Wilcoxon rank sum test).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Validation of co-registration procedure.

Figure supplement 2. Behavioral and dorsal periaqueductal gray (dPAG) activity differences between rat and toy rat exposure.

Figure supplement 3. Correlation of dorsal periaqueductal gray cell ensembles with distance to a rat.

Figure supplement 4. Increased rat velocity predicts lower approach to rat and higher threat avoidance-related behaviors such as escape and freeze.

Figure supplement 5. Dorsal periaqueductal gray (dPAG) displays a shared neural representation of risk imminence across the elevated plus
maze (EPM) and rat exposure assays.

Reis, Lee, et al. eLife 2021;10:e64934. DOI: https://doi.org/10.7554/eLife.64934 8 of 22
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Figure 4. Dorsal periaqueductal gray (dPAG) displays a shared neural representation of avoidance and approach states across the elevated plus

maze (EPM) and rat exposure assays. (A) Example tracks in the EPM (left) and rat exposure assay (right), color-coded by avoidance/approach score (see

Materials and methods). The approach score increased during movements toward the threat, reaching +1 when the animal reaches the end of the open

arms or the rat. The score decreases during movement away from threat and reaches its minimum value of �1 when the mouse reaches the end of

Figure 4 continued on next page
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results is that, rather than causing open arm exploration, the open arm ensemble is highly responsive

to risk assessment and proximity to threat. Considering this hypothesis, our results suggest that

mice with more open arm cells display an increased sensitivity to risk evaluation reflected on

increased avoidance of threat. These data indicate that in addition to encoding moment-to-moment

changes in behavioral state, dPAG ensembles composition may integrate risk evaluation processes

and influence individual mouse differences in threat avoidance traits.

The dPAG’s role in defense has been described as restricted to the initiation of escape

(Evans et al., 2018). A proposed model is that excitatory neurons initiate escape (but not other

defensive behaviors) in response to imminent threat (Evans et al., 2018). Accordingly, optogeneti-

cally stimulating vglut2-positive cells in dPAG caused escape and presenting looming stimuli while

optogenetically inhibiting those cells caused freezing (Evans et al., 2018). Thus, threat information

would be transmitted to the dPAG, resulting in initiation of escape and inhibition of freezing

(Lefler et al., 2020; Tovote et al., 2016). However, recent data indicate that the dPAG’s influence

on defense is not restricted to escape initiation. For example, optogenetic activation of dPAG

CaMKIIa-positive neurons can cause both escape and freezing (Deng et al., 2016). Increasing the

optogenetic stimulation frequency of CaMKIIa-positive dPAG neurons switches responses from

freezing to escape (Deng et al., 2016). Supporting the view that the dPAG may promote freezing,

activation of excitatory ventromedial hypothalamus projections to the dPAG induces freezing

(Wang et al., 2015). Conversely, the hypothalamic dorsal premammillary nucleus projections to the

dPAG control escape elicited by numerous innate threats (Wang et al., 2021). Recent work shows

that the medial prefrontal cortex promotes aversion and might regulate defensive strategies through

projections to the dPAG (Vander Weele et al., 2018). These findings indicate that through different

inputs, the dPAG may integrate distinct aspects of emotional states, detect diverse threats, and

coordinate a range of defensive responses, including freezing and escape.

We propose that when the subject can voluntarily approach the threat, the dPAG has a broader

function in threat processing. It may then function as a risk estimator that represents approach- and

avoidance-related states, and consequently influences a wide range of behaviors related to both

approach and avoidance. In contrast, there are situations in which threats appear independently of

voluntary approach, such as during the presentation of looming stimuli. In such cases, approach can-

not be assessed as only avoidance behaviors such as freezing and escape are possible (Evans et al.,

2018; Salay et al., 2018). Hence, these situations only allow assessing the dPAG’s involvement in

avoidance, but not approach-related states.

Our study reveals novel features of dPAG neurons. First, dPAG cells differentiated between open

and closed spaces in the EPM. Second, we show that closed cell activity patterns were positively

Figure 4 continued

closed arms or the furthest point from the rat. This score was developed as a measure of avoidance/approach states. (B) Explanatory diagram depicting

steps of the clustering analysis (see Materials and methods). (1) k-Means was used to find clusters in the neural data in an unsupervised manner. (2) The

mean avoidance/approach score was calculated for each cluster defined in step 1. (3) The ‘avoidance’ and ‘approach’ clusters were identified as those

with, respectively, the minimum or maximum mean avoidance/approach score calculated in step 2. (4) The approach and avoidance centroids defined

in one assay were used to classify neural data from the other assay, based on the minimum Euclidean distance for each sample (as depicted by solid

arrow). (C) Arrow depicts the experimentally observed mean avoidance/approach score for avoidance and approach clusters (EPM k = 2; rat k = 3, see

Figure 4—figure supplement 1) across concatenated sessions (n = 7 mice). This mean was compared to a distribution of avoidance (top) or approach

(bottom) cluster means, calculated by permuting the neural data 100 times (EPM cells n = 734, rat assay cells n = 713; for all, p<0.01). (D) (Left) Bars

depict the mean rat and EPM avoidance/approach scores (±1 SEM) for approach and avoidance clusters across mice. (Right) As described in

Materials and methods and Figure 4B, these cluster centroid locations, trained on one assay, were then used to define approach and avoidance

timepoints in the other assay. Bars depict the corresponding mean avoidance/approach score (±1 SEM) for this testing data (train on EPM: avoidance

cluster n = 31,938, approach cluster n = 22,630; test on rat: avoidance cluster n = 30,245, approach cluster n = 24,412; train on rat: avoidance cluster

n = 14,658, approach cluster n = 10,514; test on EPM: avoidance cluster n = 15,319, approach cluster n = 2510 (n represents the number of timepoints,

not cells); co-registered cells n = 317; Wilcoxon rank sum test, ***p<0.001).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Determination of optimal number of clusters for elevated plus maze (EPM) and rat assay according to Akaike information
criterion (AIC).

Figure supplement 2. Dorsal periaqueductal gray (dPAG) ensembles do not encode avoidance and approach to a control toy rat.

Figure supplement 3. Hidden Markov models also differentiate avoidance and approach states.

Figure supplement 4. Fraction of open arm cells was negatively correlated with approach to threat across mice.
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correlated with threat perception represented by the predator’s movement. Furthermore, despite

having opposite motor outputs, escape and freezing correlated with increased closed cell activity.

Conversely, open cell activity was inversely correlated with distance to threat. Closed and open cells

show positive z-scored activity following escape onset. However, open cell activity starts decreasing

following escape onset, while closed cell activity increases after flight initiation (Figure 3J). Thus, our

data highlight the importance of considering activity dynamics rather than only analyzing if cells dis-

play high or low activity during a behavior. Our observations suggest that dPAG is not simply a pre-

motor area but rather reflects the subjects’ underlying emotional state, in agreement with previous

work (Carvalho et al., 2015; Carvalho et al., 2018; Johansen et al., 2010; Kim et al., 2013;

Kincheski et al., 2012; Nashold et al., 1969). This idea is consistent with the fact that dPAG activity

represented location within the EPM (Figure 2F), and that the dPAG used shared patterns of neural

activity across rat and EPM assays to represent threat imminence (Figure 3—figure supplement 5)

and behavioral states (Figure 4). The finding that the dPAG uses a conserved representation of

threat approach and avoidance across assays expands prior results using stimulation, calcium imag-

ing, electrophysiology, and c-fos expression (Bittencourt et al., 2005; Brandão et al., 1982;

Canteras and Goto, 1999; Deng et al., 2016; Esteban Masferrer et al., 2020; Evans et al., 2018).

A role beyond motor output execution has also been proposed for the ventral PAG, as its neural

activity reflects threat probability associated with specific cues (Wright and McDannald, 2019;

Wright et al., 2019).

A possible mechanistic explanation for the differences between open and closed ensembles is

that they might correspond to specific neural populations integrating different neurotransmitter sys-

tems with particular modulatory effects over defensive behaviors (e.g., glutamate, GABA, substance

P, nitric oxide, etc.). Alternatively, these ensembles may have distinct input connectivity, leading to

distinct activity patterns. Based on its connectivity, the dPAG is well positioned to have a privileged

role in computing threat imminence and threat probability, as it receives input from sensory, limbic,

and cognitive areas (Silva and McNaughton, 2019), and projects not only to centers that control

motor actions (Ferreira-Pinto et al., 2018; Marchand and Hagino, 1983) but also to prosencephalic

targets likely to mediate fear behavior (Gross and Canteras, 2012; Krout and Loewy, 2000;

Motta et al., 2017). Future studies are needed to further dissect dPAG cell types based on genetic

markers, connectivity, and functional differences. In summary, our study reveals two large functional

neuronal ensembles of the dPAG representing internal states. By performing population-level analy-

sis of dPAG neurons in two different threatening situations, we were able to demonstrate that dPAG

cells are not only encoding specific behaviors or threat imminence (Deng et al., 2016;

Esteban Masferrer et al., 2020; Evans et al., 2018; Watson et al., 2016), but also that dPAG

ensemble activity reflects moment-to-moment changes in the approach-avoidance state of the ani-

mal. These findings expand on the oversimplified view of dPAG as a premotor output region and

highlight it as a key node reflecting the internal brain states that prepare the organism to engage in

approach or avoidance of threat.

Materials and methods

Key resources table

Reagent type (species) or resource Designation Source or reference Identifiers Additional information

Strain, strain background
(Mus musculus)

C57BL/6J Jackson Labs RRID:IMSR_JAX:000664

Strain, strain background (Rattus norvegicus) Long-Evans Charles River Labs RRID:RGD-631593

Recombinant DNA reagent AAV9.Syn.GCaM
P6s.WPRE.SV40

Addgene 100843-AAV9

Software, algorithm MATLAB Mathworks RRID:SCR_001622

Mice
Mice (Mus musculus) of the C57BL/6J strain (Jackson Laboratory stock No. 000664) were used for all

experiments. Male mice between 2 and 5 months of age were used in all experiments. Mice were

maintained on a 12 hr reverse light-dark cycle with food and water ad libitum. Sample sizes were
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chosen based on previous behavioral studies with miniaturized microscope recordings on defensive

behaviors, which typically use 6–10 mice per group. All mice were handled for a minimum of 5 days

prior to any behavioral task. In this work, analyses of the EPM environment used eight mice, while

any analyses involving rat exposure used seven mice. Sample size was chosen based on prior dPAG

calcium transient recordings (Evans et al., 2018). All procedures have been approved by the Univer-

sity of California, Los Angeles Institutional Animal Care and Use Committee, protocols 2017–011

and 2017–075.

Rats
Male Long-Evans rats (250–400 g) were obtained from Charles River and were individually housed

on a standard 12 hr light-dark cycle and given food and water ad libitum. Rats were only used as a

predatory stimulus. Rats were handled for several weeks prior to being used and were screened for

low aggression to avoid attacks on mice. No attacks on mice were observed in this experiment.

Surgeries
Eight-week-old mice were anaesthetized with 1.5–3.0% isoflurane and placed in a stereotaxic appa-

ratus (Kopf Instruments). AAV9.Syn.GCaMP6s.WPRE.SV40 were packaged and supplied by UPenn

Vector Core at titers 7.5 � 1013 viral particles per ml and viral aliquots were diluted prior to use with

artificial cortex buffer to a final titer of 5 � 1012 viral particles per ml. After performing a craniotomy,

100 nl of virus was injected into the dPAG (coordinates in mm, from skull surface): �4.20 anterome-

dial, �0.85 lateral, �2.3 depth, 15-degree angle. Five days after virus injection, the animals under-

went a second surgery in which two skull screws were inserted and a microendoscope was

implanted above the injection site. A 0.5 mm diameter, ~4-mm-long gradient refractive index (GRIN)

lens (Inscopix, Palo Alto, CA) was implanted above the dPAG (�2.0 mm ventral to the skull surface)

(Resendez et al., 2016). The lens was fixed to the skull with cyanoacrylate glue and adhesive cement

(Metabond; Parkell, Edgewood, NY, USA). The exposed end of the GRIN lens was protected with

transparent Kwik-seal glue and animals were returned to a clean cage. Two weeks later, a small alu-

minum base plate was cemented onto the animal’s head on top of the previously formed dental

cement. Animals were provided with analgesic and anti-inflammatory (carprofen).

Behavioral timeline
Behavioral tests were combined in the following manner across days: EPM test, rat exposure envi-

ronment habituation (no rat), toy rat exposure, and rat exposure. Each mouse was only exposed to

each assay once, as fear assays cannot be repeated. Thus, there are no technical replicates. No out-

liers were found or excluded. Neural recordings were obtained from all mice in identical conditions,

and thus they were all allocated to the same experimental group. There were no experimentally con-

trolled differences across mice and there were no ‘treatment groups’.

EPM test
Mice were placed in the center of the EPM facing one of the closed arms and could freely explore

the environment for 20 min. The length of each arm was 30 cm, the width was 7 cm, and the height

of the closed arm walls was 20 cm. The maze was 65 cm elevated from the floor by a camera stand.

A total of eight mice were analyzed.

Rat exposure assay
Twenty-four hours after the EPM test, mice were habituated to a white rectangular box (70 cm

length, 26 cm width, 44 cm height) for a 20 min session. On the following day, mice were exposed

to the same environment for 20 min but in the presence of a toy rat. Twenty-four hours later, mice

were exposed to an adult rat in this environment. The rat was secured by a harness tied to one of

the walls and could freely ambulate only within a short perimeter. The mouse was placed near the

wall opposite to the rat and freely explored the environment for 20 min. No separating barrier was

placed between the mouse and the rat, allowing for close naturalistic encounters that can induce a

variety of robust defensive behaviors. One mouse was removed from the analysis due to poor

recording quality. This is why a total of seven mice were analyzed, instead of eight like in the EPM.
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Behavior and miniscope video capture
All videos were recorded at 30 frames/s using a Logitech HD C310 webcam and custom-built head-

mounted UCLA miniscope (Aharoni and Hoogland, 2019). Open-source UCLA miniscope software

and hardware (http://miniscope.org/) were used to capture and synchronize neural and behavioral

video (Cai et al., 2016; Schuette et al., 2020). Neural recordings were sampled at 7.5 Hz.

Perfusion and histological verification
Mice were anesthetized with Fatal-Plus and transcardially perfused with phosphate-buffered saline

followed by a solution of 4% paraformaldehyde. Extracted brains were stored for 12 hr at 4˚C in 4%

paraformaldehyde. Brains were then placed in sucrose solution for a minimum of 24 hr. Brains were

sectioned in the coronal plane in a cryostat, washed in phosphate-buffered saline, and mounted on

glass slides using PVA-DABCO. Images were acquired using a Keyence BZ-X fluorescence micro-

scope with a 10 or 20� air objective.

Data Analysis was performed using custom-written code in MATLAB and Python.

Miniscope postprocessing and co-registration
Miniscope videos were motion-corrected using the open-source UCLA miniscope analysis package

(https://github.com/daharoni/Miniscope_Analysis) (Aharoni and Hoogland, 2019). They were spa-

tially downsampled by a factor of 2 and temporally downsampled by a factor of 4, and the cell foot-

prints and activity were extracted using the open-source package Constrained Nonnegative Matrix

Factorization for microEndoscopic data (CNMF-E; https://github.com/zhoupc/CNMF_E)

(Zhou et al., 2018). Neurons were co-registered across sessions using the open-source probabilistic

modeling package CellReg (https://github.com/zivlab/CellReg) (Sheintuch et al., 2017). On aver-

age, 45.3 ± 19.4 cells (43.6 ± 15.9%) were co-registered across EPM and rat exposure assays for the

seven mice analyzed for both assays.

Artifact suppression
For suppression of long time scale artifacts, for example, long time scale fluctuations in calcium fluo-

rescence shared across many neurons due to bleaching or other factors, we used PCA (principal

component analysis) to identify large variance principal components (PCs) (�5% total variance)

where the projected data exhibited artifacts. Artifacts are typically large in magnitude and occur

across many neurons, resulting in dimensions of high variance that resemble artifacts. Cell activity

was then reconstructed by excluding these PCs from reconstruction (O’Shea and Shenoy, 2018).

This method was applied only to data for mouse 1 in the rat exposure assay.

Variance thresholding
A minority of recorded candidate cells had very small variance over the course of an experimental

session. To exclude these cells from analysis, we identified a reference cell for each trial. To choose

the reference cell, cell variances were first sorted in decreasing order and then plotted. By visual

inspection, the cell at the elbow of the plot was chosen as the reference cell. If there was no obvious

elbow, the cell with the highest variance was chosen. Candidate cells with less than 10% of the refer-

ence cell’s variance were discarded. The remaining cells were z-scored and used for further

analysis. Among the 375 total coregistered cells, 10 were excluded because of low variance in both

the EPM and Rat, 11 were excluded because of low variance in the EPM but were not excluded in

the Rat, and 38 were excluded in the Rat but not the EPM.

z-Scoring of activity
Cell activity was z-scored once for the whole trace prior to use of the neural activity data in any anal-

ysis. We denote the cell activity as x, and the mean and standard deviation of the cell’s activity over

the entire experimental session as � and s, respectively. The z-scored cell activity was then com-

puted as x� �ð Þ=s.

Behavior detection
To extract the pose of freely behaving mice in the described assays, we implemented DeepLabCut

(Mathis et al., 2018), an open-source convolutional neural network-based toolbox, to identify mouse
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nose, ear, and tailbase xy-coordinates in each recorded video frame. These coordinates were then

used to calculate velocity and position at each timepoint, as well as classify defensive behaviors in an

automated manner using custom MATLAB scripts. Freezing was defined as epochs when head and

tailbase velocities fell below 0.25 cm/s for a period of 0.33 s. Approach and escape were defined as

epochs when the mouse moved, respectively, toward or away from the rat at a velocity exceeding a

minimum threshold of 3 cm/s.

We also measured the onset of prominent rat movements, as predator motion elicited defensive

behavior in the mouse (Figure 3—figure supplement 4A). We identified all rat movements in which

rat motion was above the 99.5th percentile of rat speed during the session. This approach ensured

that only large predator movements were used, rather than minor changes in position, such as small

rat tail movements. If multiple rat movements occurred within 5.33 s of each other, only the first was

used for analysis. Rat movement direction was measured with respect to the position of the mouse

at movement initiation. A 0-degree movement was toward the mouse’s initial position and a 180-

degree movement was away from the mouse’s initial position; 90- and 270-degree movements were

sideways from the mouse’s initial position.

Categorization of open, neither, and closed arm-preferring cells
A cell was categorized as an open arm-preferring cell if activity in each individual open arm was sig-

nificantly greater than the pooled activity in the closed arms (Wilcoxon rank sum test, p<0.05). Like-

wise, a closed arm-preferring cell was identified as a cell whose activity in each individual closed arm

was significantly greater than the pooled activity in the open arms. The remaining cells were labeled

as neither arm-preferring cells. The activity and correlations of open, closed, and neither arm cells in

Figure 2A–C,G were computed on withheld data. The first 40% of each session was used for cell cat-

egorization while the last 60%, after a 10 s separation, was used to calculate activity traces and cor-

relations. All other results used data from the whole session for cell categorization.

Behavior-aligned trace and DdF/F activity
We calculated each cell’s behavior-aligned activity by computing the mean activity of the cell over

all behavior occurrences, aligned to behavior onset. The mean peri-behavior trace for an ensemble

(e.g., closed cells, open cells, or neither cells) was the average of peri-behavior activity across all cells

in the ensemble. Change in mean activity after and before behavior was calculated by first subtract-

ing the mean activity of each cell during the time frame [�2.5, 0] seconds relative to behavior onset

from the mean activity of each cell in the time frame [0, 2.5] seconds. The overall difference in an

ensemble, denoted DdF/F, was the average of the change in mean activity across all cells in the

ensemble. For head dips, DdF/F was calculated using windows of [�5,–2.5] (before) and [0, 2.5]

(after). In Figure 3, escapes and freezes which occurred within 10 s after the other behavior were

excluded to reduce confounding due to slow GCaMP decay.

Interleaved training and testing data
For analyses involving regression (EPM location index prediction, constrained correlation analysis

[CoCA]), as well as SVM classification, testing data were interleaved with training data, with 60 s for

each segment and 10 s of separation between data types, that is, [60 s training, 10 s excluded, 60 s

testing, 10 s excluded, 60 s training, etc.]. We included gaps to minimize overlapping activity in the

training and testing sets, which may arise due to dynamics in calcium activity.

Open arm preference score
Cells with strong preference for higher activity in the closed arms or open arms respectively have

open arm preference scores near �1 and +1. The arm score quantifies the separability of cell activity

between arm types and is invariant to shifting and scaling of the cell activity. Excluding times when

the mouse was in the center of the EPM, data points were labeled according to whether the mouse

was in an open arm (positive label) or a closed arm (negative label). The open arm preference score

was then defined as:

Open arm preference score¼ 2
�AUC� 1

where AUC is the area under the receiver operating characteristic (ROC) curve resulting from
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predicting which arm the mouse was in from single-cell activity. Predictions were made by threshold-

ing cell activity. Cell activity greater than or equal to the threshold was predicted as being in the

open arms while cell activity less than the threshold was predicted as the closed arms. We calculated

the true positive (open) and false positive (open) rates by varying the threshold across every value of

cell activity. These were then sorted to build the ROC curve and calculate the AUC. An open arm

preference score of exactly +1 indicates that cell activity in the open arms is strictly greater than

activity in the closed arms.

EPM score
The EPM score (Adhikari et al., 2011) quantifies how differently a cell fires between closed vs. open

arms. It is close to one when the cell has large differences in activity between arms of different types

but is negative if the cell’s activity is more similar between different arm types than between same

arm types. To calculate EPM score, we first compute the mean difference in z-scored activity

between arms of different types (A) and arms of the same type (B). These are defined as:

A¼ 0:25�ðjFC1�FO1j þ jFC1 �FO2jþ jFC2�FO1jþ jFC2�FO2jÞ

B¼ 0:5�ðjFC1 �FC2jþ jFO1�FO2jÞ;

where FO1 and FO2 are the mean z-scored activity of the cell in open arms 1 and 2, respectively, and

FC1 and FC2 are the mean z-scored activity in closed arms 1 and 2, respectively. The EPM score is

defined as:

EPM score¼ ðA�BÞ=ðAþBÞ:

Cells with high EPM score if they have large differences in activity in different arm types (large A)

and similar activity in same type arms (small B). The maximum score of 1.0 indicates no difference in

cell activity across arms of the same type (B = 0). Cells with negative EPM scores have more similar

activity across arms of different types than across arms of the same type.

EPM location index
The EPM location index quantifies the position of the mouse in the EPM. It is close to 1 when the

mouse is at the end of an open arm, and close to �1 when the mouse is at the end of the closed

arms. To calculate the EPM location index, we first normalized the x and y position of the mice in

the EPM to be in the range [�1, 1], where the x position is ±1 at the ends of the open arms and the

y position is ±1 at the ends of the closed arms. We defined the EPM location index as:

EPM location index¼ jxj� jyj:

The EPM location index is thus continuously varying between �1 and 1. Prediction of EPM loca-

tion index (Figure 2F–G) was performed using linear regression with interleaved training and testing

data. Outputs were clipped to the range [�1, 1] before final prediction was made.

Prediction of mouse position in the EPM from neural data using a linear SVM.

After z-scoring data, times when the mouse was in the center of the EPM were removed from

training. The remaining data were separated into alternating blocks of 60 s training data and 60 s

testing data with 10 s of separation between blocks. A linear SVM was fit on training using scikit-

learn’s SVC function with balanced class weights (Pedregosa et al., 2011). Significance testing was

performed using permutation tests with shuffled training labels for 100 random trials per mouse.

The Matthews correlation coefficient was used to quantify the relation between predicted and

observed arm-type occupancy because this metric was developed to assess correlations between

binary values (such as arm type, which can only be closed or open arms).

Zones in the rat assay
The safe zone was defined as the left 20% of the rat environment, based on x position. A mouse was

labeled as being in the threatening zone whenever the distance to the rat was 14 cm or less.
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Generalized linear model
A GLM was fit for each cell. Each GLM mapped behavior variables to the cell’s z-scored calcium

activity. In total, there were eight behavior variables for rat: distance to rat, mouse velocity, rat

velocity, angle from mouse’s head to the rat, and occurrence of approaching, escaping, and freez-

ing. Discrete behaviors were binary, labeled as one at all times in which they occurred and 0 other-

wise. To enable behaviors to alter neural activity prior to and following the behavior, each binarized

behavior was convolved with a log-time scaled raised cosine basis, from 5 s before behavior onset to

5 s after behavior offset. This kernel had the form:

fj xð Þ ¼
1

2
cos px�’j

� �

þ 1
� �

;
1

p
’j � 1<x�

1

p
’j þ 1

x¼ log tþ bþ "ð Þ

’j ¼ log bþ "ð Þþ
1

2
j� 1ð Þp

These kernels are non-zero when x is between 1

p
’j � 1; 1

p
’jþ 1

� �

, and are zero otherwise. Further,

to enable historical kinematics to affect present neural data, the kinematics were convolved with a

kernel, which used the same set of bases as the behavior, but only had responses after the onset

within 5 s. These convolved behavior variables, denoted here as y1, y2, etc., were then modeled to

produce the cell’s calcium fluorescence as:

x¼ b1y1þb2y2 þ :::þbmymþ c;

where bi is the coefficient for the ith behavior variable. The GLM was optimized by minimizing the

mean-square error of the reconstruction between the GLM activity estimate, x, and the recorded cal-

cium activity.

Cross-assay constrained correlation analysis
To investigate if the dPAG uses shared patterns of neural activity to represent threat imminence

across assays, we developed Constrained Correlation Analysis (CoCA). This model identifies the fea-

tures used in a shared neural representation between different threatening situations. The CoCA

technique defined a shared neural projection as a linear combination of the activity of individual neu-

rons. Additionally, we constructed a behavioral projection for each assay, through a linear combina-

tion of each assay’s behavioral variables. Optimization via CoCA produced neural projection weights

that were compared across open and closed cell ensembles.

We denote calcium fluorescence neural data as X 2 Rk � T and externally observed behavioral

data as Y 2 Rp � T, where k is the number of recorded cells for the corresponding mouse, shared

across assays, p is the chosen number of behavioral variables for the corresponding assay, shared

across mice, and T is the length of a recording session, unique for each session, but shared between

neural and behavioral data for the same session. Behavioral variables contained both continuous

kinematic variables (such as speed and distance from rat) and binary defensive behavior variables

(such as the occurrence of freezing and escape). All variables were normalized to 0 mean and unit

variance, except normalized |x| and |y| position in the EPM, which were instead in the range [0, 1]

(variance < 0.25).

In order to find a common linear projection of threat across mice and assays, we performed the

following optimization with mouse IDs i = 1, 2,. . ., 7 and assay IDs j = EPM, RAT. Calcium fluores-

cence traces of dPAG cells for mouse i were linearly combined after multiplying each cell with

weights n1
i to nk

i , where k is the number of cells that were co-registered in both assays. Taking the

dot product of the calcium activity for mouse i in assay j, given by Xi,j, and the weights ni = [ni1...k]

defined a neural projection for mouse i and assay j, given by Ni,j = (ni)TXi,j, neural data projection in

red). For each mouse, the weights, ni, were the same across assays, so that each cell had the same

weight in both assays. The behavioral variables for the EPM (such as x and y position, speed, etc.)

were linearly combined with a set of weights b1 to b6 (as six behavioral variables were used for the

EPM). These weights, bEPM = [b1
EPM, b2

EPM, . . ., b6
EPM] were conserved across all mice. Linearly com-

bining the EPM behavioral variables resulted in a behavioral projection for mouse i and assay EPM,
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given by Bi,EPM = (bEPM)TYi,EPM. Similarly, nine behavioral variables from the rat assay were linearly

combined to produce a behavioral projection Bi,RAT = (bRAT)TYi,RAT using weights bRAT = [b1
RAT, b2

RAT,

. . ., b9
RAT]. We chose the neural weights, ni, and the behavioral weights, bEPM and bRAT, to optimize

the correlations across all mice and assays:

max
i

X

j

X

corr Ni;j;Bi;j

� �

where corr() is the Pearson’s correlation coefficient, and Ni,j and Bi,j are the linear projections of neu-

ral and behavioral data, respectively, given by Ni,j = (ni)TXi,j and Bi,j = (bj)TYi,j. The optimization varia-

bles ni, i = 1, 2,. . ., 7 and bj, j = EPM, RAT were simultaneously optimized using gradient descent via

the Adam optimizer (Kingma and Ba, 2015) until convergence. Results presented use interleaved

training and testing data. This method was implemented using PyTorch.

CoCA significance testing
In order to test if correlations of testing data were better than expected by chance, correlations

were computed between projected behavioral data (using weights fit by training data) and random

projections of neural data (1000 trials). We emphasize that these correlations were applied to the

testing data, and therefore it was possible for a random projection to have higher correlation than

the CoCA projection. A one-tailed test was used (p<0.05).

Avoidance/approach score
To calculate the continuous avoidance/approach score for each assay, the distance from safety was

calculated (rat: distance from the safe wall; EPM: distance from the end of the closed arm) and nor-

malized such that it ranged from 0 to 1 in the rat assay and 0 to 0.9 in the EPM assay. A binarized

direction value was also assigned to each timepoint, indicating if the mouse was moving toward (+1)

or away from (�1) the threat. To incorporate categorized behaviors, the avoidance/approach score

for freeze samples equaled the minimum score of �1. For the EPM only, the avoidance/approach

score was multiplied by 1.11 for head dip samples, such that a head dip at the end of the open arm

would yield the maximum score of 1.

To calculate the score at each timepoint:

While approaching threat, avoidance/approach score = distance to safety � direction
While avoiding threat: avoidance/approach score = [1�distance to safety] � direction

k-Means clustering of neural data
To determine if the avoidance/approach score is represented in the neural data, the k-means algo-

rithm was used to cluster this data in an unsupervised manner. One of the simplest unsupervised

classification algorithms, this approach identifies groupings of activity that are strongly represented

in the neural data, without providing any additional information about animal behavior. If behavior

then shows a significant relationship to these clusters, it is clearly represented as a prominent net-

work motif.

For each assay, the Akaike information criterion (AIC) was calculated, which balances both the fit

of the data (log-likelihood) and the model complexity, resulting in an optimal number of clusters

that reasonably fit the data but are not too numerous. To measure AIC for k-means, we assumed the

clusters were Gaussian-distributed with identity covariance matrices. The formula was as follows:

AIC¼RSSmin Kð Þþ 2MK

where RSS is the residual sum of squares, M is the dimensionality of the dataset, and K is the number

of clusters.

For each implementation of k-means, clusters were identified using 10 different randomized initi-

alizations; the set with the minimum sum of Euclidean distances was used. The approach and avoid-

ance clusters then identified, for each session, as those with, respectively, the highest and lowest

mean avoidance/approach scores. The overall mean avoidance/approach scores for approach and

avoidance clusters were then calculated across mice. To determine if these approach and avoidance

cluster scores were statistically significant, the actual mean was compared to a sampling distribution
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of means, calculated in an identical manner with permuted behavioral labels over 100 iterations. If

the approach and avoidance score means were respectively greater than or less than 95% of this

sampling distribution, they were considered significant. For the training/testing analysis, k-means

was implemented on one assay as described above (the training assay), using only cells that co-regis-

tered between both assays. The cluster centroids identified in the training assay were then used to

categorize approach and avoidance samples in the withheld testing assay. The mean avoidance/

approach score was calculated for all approach and avoidance timepoints, across all training or test-

ing sessions.

In a similar way, avoidance/approach states were identified by Hidden Markov Models (HMMs (4

states), using the top principal components of the neural data as input (accounting for � 60% of the

total variance). Similar to k-means, this approach finds ‘hidden states’ or states represented by the

neural data in an unsupervised manner; unlike k-means, HMMs additionally consider the sequential-

ity of the neural data. The parameters of the HMM were found via expectation maximization. These

states were analyzed in an identical manner to the k-means clusters described above. For the code,

see ‘Expectation-Maximization for Hidden Markov Models using real-values Gaussian observations’

at Zoubin Ghahramani’s code base: http://mlg.eng.cam.ac.uk/zoubin/software.html.

Statistical analysis
Significance values are included in the figure legends. Unless otherwise noted, all statistical compari-

sons were performed by either nonparametric Wilcoxon rank sum or signed-rank tests. With the

exception of CoCA significance testing, all significance tests were two-tailed. Standard error of the

mean was plotted in each figure as an estimate of variation of the mean. Correlations were calcu-

lated using Pearson’s method. Multiple comparisons were corrected with the false discovery rate

method. All statistical analyses were performed using SciPy (Virtanen et al., 2020) and custom

MATLAB scripts.
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