
llT-MAJ:,aJO 

ONmEAl'ERAGEDDYNAMICSOFmE 
RANDOM FIELD CURIE-WEISS MODEL 

by 

LR. Fontff, P. M,,thleu 
and 

P.Plcco 

Palavru-Cl>avo: Mdutabwty; Raad- .... lie lield, Raado• Spia S71kms, 

~ Dyaaaia, CuieWeiaMedd. 

Oaair&Qfh AMS: Qll05, 12844, 12D30, llC44. 

(AMS Ourillcalioa) 

- Setemllfl de t,,a -



On th1e Averaged Dynamics 
of the Rando,m Field Curie-Weiss model 

L.R. Fontes 1 , P. Mathieu 2 , P. Picco 3 • 

Abstract: We de1cribe an 'avero~red over d~order' dynamics for the magnetization of 

the random field Curie-Weis, mode,l. Our approach is based on spectral asymptotics and 

include, results on the random fluctuation, of eigenvalues and eigenvector,. 

Key Words: Metastability, Random magnetic field, Random Spin System,, Glau.her Dy­
namics, Curie Weiss Model. 

AMS Classification Numbers: 60K35, 82B44, 82D30, 82C44. 

Abbreviated tittle: Random Curie-Weiss model. 

1 IME.USP. Caixa Postal 16218, 05315-970, Sio Paulo, SP, Brazil lrenatoOime.usp.br 
2 CMI, Universite de Provence, 39 Rue F. J.oliot Curie, 13453 Maneille Cedex 13, France. 

PMathieuOgypti.s.univ-mn.fr 
s CPT.CNRS Luminy, caae 907, 13288 Manieille Cedex 9, France. Picco@cpt.univ-nus.fr 

1 



I. Introduction 

In spite of its lack of physical significance, the Curie-Weiss model is often considered a 

useful toy model for testing ideas in statistical mechanics. In particular the rigourous 

formulation of the notion of 'metastability' - the so called 'pathwise approach'- was first 
introduced to describe the evolution of the magnetization of the Curie-Weiss model in [3]. 

Metastability was later proved for various systems in statistical mechanics and it became 
one of the most powerful tools to describe the evolution towards equilibrium of a Markov 

process. 

Following this line, we initiated the study of the random field Curie-Weiss model in [8] as 
an attempt to get some insight in the dynamical properties of disordered systems. Indeed, 

although the statics of disordered mean field modelB has been the object of vapous papers, 
see [9] for instance, the investigation of dynamical properties is at its beginning. (See 

[6] for the R.E.M. process). We refer to [2] for a general overview of the field. In [8] 
we focused on the description of the almost sure behaviour of the magnetisation for the 
Glauber dynamics. In this context, 'almost sure' means for a given realization of the 
external field. We obtained a kind of metastability property for the magnetization via 
spectral methods. The aim of this paper is to extend the spectral approach to describe 
the 'averaged over the disorder' dynamics. 

Our approa.ch is based on an approximation of the law of the magnetization by the first 
terms in the spectral decomposition. In [8) we derived the metastability statement from 
the asymptotics of the eigenvalues of the generator on the exponential scale. This scale 
corresponds to the law of large numbers for the free energy or, equivalently, for the random 
field. It allows one to describe the approa.ch to equilibrium on a disorder dependent time 
scale. For instance the law of the first time the magnetization changes sign is proved to be 
close to an exponential law with a disorder dependent parameter. The estimates we had on 
the random parameter were actually quite poor. For instance computing the probability 
- w.r.t. the disorder of the external field - that the sign change in the magnetization has 
taken place before some given time is not possible with the only results of [8). To answer 

this type of questions, one haa to go one step further and prove a central limit theorem 
for the partition functions ( See Proposition 2.1) and for the eigenvalues (See Theorem 
2.7). We therefore obtain the description of the 'averaged over the disorder' dynamics (See 
Theorem 2.4) which allows one to compute the probability that the system is in a given 
state at any (deterministic) time. Note that the averaged and almost sure behaviours are 
different: the limiting dynamics for the averaged problem turns out to be non Markovian 

i.e. the process is not self-averaging. We also prove that the law of the first time the 
process shifts from a positive magnetization to a negative one is close to a log-normal law. 

Actually we shall obtain estimates of the eigenvalues that a.re much more precise than a 
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mere central limit theorem. As a consequence of our .sharp lower bound on the spectral gap 

of the dynamics, we derive a precise estimate of the rate of convergence of the magnetization 

towards equilibrium in Proposition 2.3. It shows in particular that the time needed for the 

magnetization to reach equilibrium is shorter when the fluctuations of the random field 
are bigger: fluctuations help the process to converge. This result is extended to the full 
spin dynamics in the next paper. 

We use geometrical tools to bound eigenvalues. As explained in (10], one can estimate the 
spectral gap in terms of the variations of the free energy along paths in the state space. 

Instead of applying directly the results of (10), we use a combination of geometrical and 

probabilistic arguments in order to estimate both eigenvalues and eigenvectors. We believe 

this trick yields shorter proofs. (See Lemma 4.1 in part IV). 
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II. The model and main results 

In this section we describe our model, recall the results from (8) that we shall need and 
state our results. The ma.in results are Theorems 2.4 and 2.7. 
• The random field Curie-Weiss model: let h = (h;);eiv be a sequence of independent 
symmetric Bernoulli random variables defined on some probability space, say (n, A, Q). 
That is Q[h; = 1] = Q[h; = -1) = 1/2, for any i. Define SN = E!1 h;. _ 
Let /3 > 0 and 8 E m.. Later we shall assume that /3 > coah2 ({38). 
Most of the quantities that we Fe going to define depend on h. Usually we shall drop this 
dependence in the computatioI1.S. In the sequel, we denote by C a constant which depends 
on /3 and 8 only. Its value may change from line to line. No is ~ integer that depends 
also on /3 and (J only. Its value may change from line to line.· In piuticular C and 'No do 
not depend on h. 
- Equilibrium: let SN= {-1,+l}N. We denote by u = (u;); .. i .. N some element in SN. 
We define on SN the following Hamiltonian: 

Let µN = µi, be the Gibbs measure on SN defined by: 

where 

is a normalizing coll.Stant. 

KN = K1 = L e-llHN(a) 

trESN 

(2_. 1) 

(2.2) 

• Magnetization: for any u E SN, let mN(u) = i:, E;:.1 u; be the empirical mean or 
magnetization. We also define 

mt(u) = m~+(u) = ! L u; 
i;A1=+l 

and 

m;(u) = m~r<u) = ! E u; 
i;l;z:::-1 

and mN(a) = (mt(a), mjy-(u)). Therefore ffiN(u) = mt(u) + miv(u). 
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mN clearly takes its values in (-1,+1)2 • We denote by MN the image of SN by mN. 

Denoting N+ = N"•+ = #{i: h; = +l} and N- = N"•- = #{i: h; = -1}, we have 

The Hamiltonian can be written in terms of mN: 

With a little abuse of notation, we shall also denote by HN the function defined on MN 

by 

(2.4) 

We are interested in the behavior of the magnetization under the law µN; let 9N = 9K, 
be the image of µN by mN. QN is a probability measure on MN . We have, form = 
(m+,m-) E MN, 

where 

ZN = zA, = L e-flN7'N(m) 

mEMN 

is a normalizing constant and 

satisfies 
e-/JN7'N(m) = L e-/JHN(tr) 

,r;m,v(tr)=m 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

- Free energy: it is not difficult to see that, as a consequence of the law of large numbers, 

J:N converges Q-almost surely, as N ➔ +oo, to the function 
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Here, for x E [-1,+1], I(x) = 1t£log1¥-+ 12"log 12", and for lxl ~ 1, I(x) = 0, is the 
entropy of Bernoulli random variables. 
The function :Fis symmetric w.r.t. the diagonal. It has three critical points when {J > 
cosh2({JO): let m 0 be the unique positive solution of the equation: 

1 
m. == 2 [tanh(,Bm. + {JO) + tanh({Jm. - {JO)] 

The critical points of :F are 

mo = G tanh(,89), - ~ tanh(,80)) 

m1 = ( ½ tanh({Jm. + {JO), ½ tanh(,0m0 - {JO)) 

m2 = ( ½ tanh(-,Bm. + ,89), - ~ tanh(,Bm. +,BO)) 

mo is a saddle point. m1 and m2 are two minima. 
Let 

Tf =MNn{m++m- >0} 

T~ = MN n {m+ + m- ~ -·M 
8Tf = MN n {O ~ m+ + m- ~ --k} 

N -N and define T2 and T 2 analogously. 
Let 9}. = 9~1 be the restriction of YN to T1N, i.e. 

Define {}'j. analogously and 

Define also 

zJ, = L e-/JN:1'N(m) 

meT:' 

zJ, = L e-/JN:1'N(m) 

mE~ 

z}. = L e-/JN:1'N(m) 

mE8Tf" 
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Clearly, as N tends to +oo, under () N, the magnetization m N gets close to one of the two 

values m1 or m2. The asymptotic support of the law of mN is therefore deterministic. We 
have the 

Proposition 2.1 (Static asymptotics). Define 

1 oosh(,Bm. + /39) 
a = a(/3, 9) = 2/3 log cosh(,Bm. - /39) 

Then, for N?: No, on the set ISNI $ 2✓Nlog N, we have: 

I log ZN+ /3N.r(m1) - /3a/SNII S ClogN 

llogZ),, + ,BN.r(mi) -,BaSNI $ ClogN 

llogz}. +,BN.r(mo)I S ClogN 

for some positive constant C. 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

Besides, for Q-almost all realizations of h, /or any continuous /unction tj) defined on 

[-1,+1)2, we have 

(2.19) 

where 

(2.20) 

(2.19) is actually proved in [8], Lemma 4.1. 
Note that Q[ISNI?: 2✓NlogN] $ 2exp(-2logN). Therefore the Borel-Cantelli lemma 
implies that the difference ()N - (aNOm1 + (1- O:'N)Om2 ) weakly converges to O for almost 

all realizations of h. Note however that O:'N itself does not converge almost surely but only 

in distribution. The equilibrium measure keeps oscillating as N tends to +oo. A more 

detailed description of these oscillations is given in [7]. 
- Dynamics: for a given realization of h, we define the dynamics, first on the spins u, 

then on the magnetization mN. For 1 Si SN, let Ti be the map from SN to SN defined 

by Ti(a); = a; for j i= i, r(u); = -a;. Consider the following operator acting on real 

valued functions </> on SN: 

N 

LNtf>(u) = Ltef>(u) = ! E (</>(T(u)) - q,(a)) e-{[H,.(T(cr))-H,.(cr)) (2.21) 
i=l 

LN is the generator of a Markov process which we denote by uN(t) = uMt). µN is the 

unique invariant probability measure for UN. It is also reversible. 
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Now let mN(t) = mN(uN(t)). It turns out that ffiN is also a Markov process with invariant 
probability measure YN• Let CN = ct be the generator of mN. According to formula 
(2.24) of (8] we have 

CN<J>(m) = L [<J>(m) -</,(m)]NN(m,m)e-![HN(m)-HN(m)) (2.22) 

where m ~ m means that m and mare neighbors in MN andNN(m,m) is some correction 
factor which is between 2/N and 1 (See [8]). Call Pf = P,",N = e•c.N the semi-group 
generated by fflN, We shall use the notation Pm = P::. to denote the law of the process 
mN when mN(O) = m and Em to denote the expectation w.r.t. Pm, We insist on the fact 
that, since his kept fixed, the measure Pm is Markovian. 
We aim at describing the way the lawof mN(t) approaches gN, Due to the concentration of 
the measure <JN on {m1,m2}, we expect the process fflN to spend most of its time around 
these two points. It suggests that the dynamics can be approximated by a Markovian 
process with state space {m1,m2}. Let TN= inf{t > 0: mN(t) E 8Tf"} be the hitting 
time of 8T/'. 
The main result of [8] is the 

Proposition 2.2 (Almost sure metastability). For almost all realizations of h, 
there eziat two sequences Ai' = A~•N and Lf = L~•N auch that, for all sequencea mN E Tf 
with limsup.r(mN) < .r(mo), we have: 
for all t > 0, 

(2.23) 

and, for any continuous fenction q,, 

EmN[</,(mN(t/Af"))] 

- (e-1ef,(m1) + (1 - e-1)(aN</,(m1) + (1- aN)<P(m:2)))-+ 0 
(2.24) 

We define the activation energy: A:F = :F(mo) - :F(m1) = :F(mo) - :F(m1). It follows 
from Propositions 2.5 and 2.6 below that i, logLf and /., logAf" both tend to -/36..r as 
N -+ +oo. Nevertheless the two normalizing constants Af and Lfl do depend on h. 
(2.23) implies that TN is roughly speaking of order 1/ Lf i.e. of order exp({JN A.r), pro­
vided the process starts inside Tf. Furthermore the law of TN is close to an exponential 
law of parameter Lfl. Roughly speaking, the evolution of the magnetization is: until 
time TN, mN stays close to m1, and after time TN, it reaches its equilibrium: YN• Since 
i, logAf" -+ -/3M, we deduce from (2.24) that, for any a > /36..r, the law of mN at time 
exp(aN) is close to the equilibrium. We shall obtain a more precise result: 
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Proposition 2.3 There ezist deterministic comtants K and K' such that, for any 

N 2: No, for almost all realizations of h, for any continuous function 4> bounded by 1, for 
any m E MN, if we let tN = NK exp({3NC1F - ,BalSNI), where the constant a is defined 

by equation {2.15}, then, on the set ISNI ~ 2JNlogN, we have 

(2.25) 

Proposition 2.3 implies in particular that a time of order exp(,BN t:i.:F) is more than suf­

ficient to reach equilibrium, provided we restrict ourselves to a sub sequence Nn s.t. 

,BISNJ 2: KlogNn. In some sense the fluctuations of the external field h in the free 

energy help the process to reach equilibrium. 

We now turn to the description of the law of mN averaged over the realizations of h. Let 

us define the measure IP m = P/:. X Q. IEm stands for the expectation w.r.t. IP m• By 

definition, if ~ is a measurable function on the paths space, IEm[t] = J P:,[~]Q(dh). 
Under IP,,., ffiN is not a Markov process anymore. We prove the 

Theorem 2.4 (Asymptotics for the averaged dynamics). Let /II be a normal­

ized Gaussian random variable. Let a be the constant defined in formula {2.15}. For all 

sequences mN E Tr with limsup.r(mN) < :F(mo), and for all a Em, we have: 

(2.26) 

and, for any continuou6 function t/>, 

IEmN [ip(mN( eflN tJ.Ho../N) )] 

1 1 
➔ ( 2 + P(O ~ ,Ba.N ~ a])ip(mi) + (2 - P[O ~ /3a.N ~ a])ip(m2) 

(2.27) 

Note that the expression {2.27) implies that, after renormalization, the magnetization 
only takes the two values m 1 and m 2 . But (2.27) does not define a Markovian evolution 
i.e., even in the large N limit, the dynamics remains non Markovian. It reveals the non 

self-averaging behavior of the process. 
Spectral decomposition: the proof of Proposition 2.2 is based on estimates of the 

eigenvalues of CN. Since the operator CN is symmetric in L2(MN,(iN), we can consider a 

spectral decomposition: let (Af' = A~•N)i=O ... denote the eigenvalues of -,C,N in increasing 
order, with ~ = 0. Let ¢;' = tp~•N be the corresponding eigenvectors. We have t/Jf/ = 1. 

We assume that the ipf form an orthonormal basis of L2(MN,(iN)- We can now express 

the law of mN at time t on this basis: 

(2.28) 
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Similarly let r, i be the generator of the process m N killed at time TN. In other word Ci 
is the restriction of lN to functions ,p E L2('.f;',CJ.,) with ,p(m) = 0 form E 81'{'. -ci 
is a symmetric operator on L2(T~,Q}v). We denote by Lf its eigenvalues, and ,pf the 
corresponding normalized eigenfunctions. We then have 

(2.29) 

Remark: it follows from the results of [8] that the constants in Proposition 2.2 are indeed 

the eigenvalues we have just defined. 

i,From [8] we know that 
Proposition 2.5 (Estimates of eigenvalues). For almost all realization., of h, 

(2.30) 

Estimating the eigenvalues Af and Lf, one checks that only the first terms really con­
tribute in (2.28) and (2.29). The next result is a consequence of the computation of [8], 
part 3. ( See part IV for the details). 

Proposition 2.6 (Spectral approximation). There exisu a deterministic con.,tant 

K such that, fort> 0, if we define T = texp(-K./NlogN) - KlogN, then, for any 
realization of h and any N ~ No s.t. ISNI :5 2v'N!og N , for any m E Tf, we have 

(2.31) 

Besides, for any continuom function tp bounded by 1, and form E MN, we have 

(2.32) 

Proposition 2.2 is a consequence of the Propositions 2.5 and 2.6. Note that the expressions 
(2.31) ( resp. (2.32) ) do look like (2.23) ( resp. (2.24)). The only additional information 
we would need is some estimate of the eigenfunctions ( See [8) for the proof). We sha.11 
deduce Theorem 2.4 from the fluctuations of the eigenvalues: 

Theorem 2.7 (Fluctuations of the eigenvalues). Let a be the constant defined in 

{!U5}. For any N ~ No, for almost all realizationa of h, on the set ISNI :5 2,/N!ogN, 
we have: 

llogLf" +f3N!!,,.:F+f3aSNI :5 ClogN 

10 

(2.33) 



and 

jlogAf +,0N~.1"-,0alSNII ~ ClogN (2.34) 

As a consequence, if N' is a normalized Gaussian random variable, then the following 

convergences hold in law w.r.t. Q: 

N-1
/

2 (log Lf + (3N Ll.r) ➔ -/3a.N 

N- 1! 2 (log Af + /3N Ll.r) -+ /3a1Af'I 

(2.35) 

(2.36) 

- Prerequisites: Here we recall some of the estimates proved in [8] that we shall need in 

the sequel. These are rough bounds on the exponential scale. 

Let us choose N ~ No and a realization of h s.t. ISNI :5 2✓NlogN. Using Stirling's 
formula as in [8] part 4, it is not difficult to see that, for any m E [-1, +1]2, 

(2.37) 

It is proved in [8] that, for any i, the following convergences hold almost surely: 

1 N 
N IogL; ➔ -c; 

1 N 
N log A; ➔ -c; 

where c1 = /36.r and c; = 0 for i ~ 2. Talcing into account (2.37), it is immediate to prove 
that in fact 

llogLf +Nc;I S CVNlogN 

llogAf +Nc;I S C-/NlogN 

Finally we also have some estimates of ¢f: 

and, for any deterministic compact set A s.t. sup.,eA.r(x) < .r(mo), Q.a.s. 

sup 11-¢{" (m)I S e-C'N 
meAnT[" 

(2.38) 

(2.39) 

(2.40) 

where C' is a deterministic constant that depends on A. (2.39) and (2.40) can be proved 

as in [8] part 3.3. with the help of (2.37). 
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III. Static estimates 

Partition functions. 
Proof of Proposition 2.1: the proof of Proposition 2.1 is inspired by the arguments of 

[4]. Let us first note that, by symmetry and because the spins are exchangeable, we may 

assume without loss of generality that SN ~ D and that h; = +l, for i = I, ... , (N + SN )/2 
and h; = -1 for i = (N + SN)/2 + 1, ... ,N. Let M = [N/2], where(.] denotes the integer 

part. Following [4], we introduce a different parametrization of the magnetization: for a 

configuration u € SN, define: 

We use the notation mN(u) = (mt(u), mjy-(u)), and we denote by MN the image of SN 

by the application "'N• MN is therefore a deterministic subset of [-1/2, 1/2]2. We have 
mN(u) = m"t.(u) + mjv(u). Let D = {i 2: M + 1: h; = l}. Note that the cardinality of D 

satisfies IDI = (N + SN)/2 - M :S (1 + SN )/2. The Hamiltonian HN can be expressed in 
these new coordinates as: 

and 

i.e. 

ZJ. = L ll{mN(")~-3/N}e-PHN(O') 
O"ESN 

ii 

ZJ. = L llrm~-3/NJ#{u;mN(u) = m}ePN(fm2+1cm+-,;,-» 

mEMN 

X #{u;mN(u) = m} 

In this last expression, the only term that depends on his the set D. 

Let j:N(m) = -½m2 -6(m+ -m-)-ivlog#{u;mN(u) = m} and note that 

IFN(mN) - .r(m)I :S C(
101N + llmN - mll) 

for any mN e MN,m e (-1/2,1/2]2. 
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The minimum of :F in the set ffi ~ 0 is achieved at the only point m1. Since we have 
assumed that ISNI ~ 2y'NlogN, we have I EiEDo-;I ~ v'NlogN. Taking into account 
the estimate (3.2), one deduces that there exists a small enough ball, B, centered at point 
m1 such that, if we define 

then, for some deterministic constant C depending on the choice of B, we have log Z1 ~ 
log Z1 :5 log ZJ.., - log(l - e-CN). It is therefore enough to prove the Proposition 2.1 for 
ZJ.., instead of Z;.,. 
For V E m, define the probability measure 

Note that 

E.,[f] = EaESN f(u)e" ~~•M+• a; 

"' s e" E, • .v+1 a; L..a-e N 

_L e" L~-M+• a; = 2N cosh(v)N-M 
tTESN 

For any choice of v2 and Vt, .Z},, can be rewritten as 

' e-.8NTN(m)(cosh "2 )N-M e-Nm-("2-111) 
~ coshv1 

mEMNnB 

E [ 2,111:E. D tT;:n l 
112 e •E mj,(a)=m-

X ------ -~---
E,,, (Il,..i,(,,)=m-1 

= , e-llNFN(m)( cosh V2 )N-M e-Nm-(112-11,) 

~ coshvt 
mEMNnB 

( cosh(P2 + 2,88) )IDI w(v2, 8)(m-) 
X coshv2 w(v1,0)(m-) 

where 

E [ 2pe I:. "• n I " e •ED ,..-(,,)=m-
'1l(i,, 8)(m-) = 211,t ,,,,_ 

E.,[e •ED '] 

Let a= SN/(N - M). We now choose for Pt and v2 the solutions of the equations: 

tanh(v1) = 2m-

atanh(v2 + 2/38) + (1 - a)tanh(P:.i) = 2m-

13 

(3.3) 

(3.4) 

(3.5) 



Since we are only interested in estimates form EB, and since ial $ 2.jiogN/N, then VJ. 

and v2 are uniformly bounded as SN and m vary. Besides we deduce from equation (3.5) 

that 

a 1-a 2 
ia(tanh(v1 + 2/38) - tanh(v1)) + (v2 - v1)( h2 ( 

2
/3

8
) + h2 ( ) )I $ C(v2 - v1) 

COS V1 + COS V1 

Therefore 

2 logN 
l(v2 - vi)- acosh (vi)(tanh(VJ.)- tanh(VJ. + 2/38))1 $ C-W-

and 
cosh va cosh( va + 2/38) 

(-Nm-(v2 -vi)+(N-M)log - h- +1Dllog h ) 
COB V1 COS J/2 

_ SN log cosh(v1 + 2/38) I :$ Clog N 
2 coshv1 

and 

llogZ).-log 

It now only remains to estimate '1>'. This can be done through a local central limit theorem 
just as in [4]. Repeating the arguments of Proposition 3.2 of [4], we get that 

i,.From this last expression, following the estimates (3.36) to (3.44) in [4], one deduces that 
C/'1fi $ ilt(v,O)(m-) $ 1 provided that 2m- = atanh(v + 2/38) + (1 - a) tanh(v). The 
constant C is chosen deterministic and independent of m EB. Therefore 

llogzi - log (3.7) 

i,From the estimate (3.2), it is easy to deduce that one 'can replace :FN by :F in this 
expression i.e. 

llogzi-log (3.8) 
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Let us denote by vj the solution of equation (3.5) for the value m- = m;- = ½ tanh(/jm. -
/39) i.e. 11j = /3m. - /36. By standard Laplace arguments, we deduce from (3.7) that 

llogZJ. + /jN.r(mi) - s2N log cosh(vi/ ;.89
) I$ ClogN (3.9) 

cos 111 

(2.17) is proved with a = ...L log cooh flm,+{JB). 2/J cos /Jm,-
By symmetry, we also have 

Since ZN= Z}., + Z'j.,, we clearly have ZJ., V Z'fv::; ZN$ 2(ZJ., V Z'j.,). It yields (2.16). 
Let us prove (2.18). As before we can assume that SN :::: 0. As in the proof of (3.9), one 
gets that 

II 1 aN,,..() SN 1 cosh(v;+2/j6)I Cl N ogzN+,-, .r mo --
2 

og h $ og cos vj (3.10) 

where vi is now solution of the equation tanh( vi) = 2m;;-. i,Frnm (2.11), we therefore 
have vi = -/j6 and cosh(11i + 2(39) = cosh(11j). 
This entails (2.18). ■ 

Let us conclude this section by the following corollary: 
Lemma 3.1 . On the set ISNI $ 2./NlogN, we have 

logN 
I inf .1'N(m) - .r(mo)I $ c - N 
mE8Tf' 

Proof: : The number of points in MN being bounded by ( N + 1 )2, we have 

(3.11) 

(3.12) 

(3.13) 

Combining this inequality with (2.17) yields (3.12). The proof of the (3.11) and (3.13) is 
identical. ■ 

Paths. 
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We now derive some a priori estimates on the landscape of the graph of :F N that will be 

used in the proof of Theorem 2.7. Let A be a subset of MN- By definition, a path, -yin A 

is a sequence (zo,zi,,,,,z1,) of points belonging to A such that z; and Z;+1 are neighbors 

and z; -::/- z; for i -:f. j. The length of a path is therefore always bounded by N2 • 

Since m1 is an absolute minimum of :F and mo is the unique saddle point, we know that 

there exists a continuous function -y : [O, l] ➔ [-1/2, 1/2]2 s.t. 1 (0) = m1, 1 (1) = mo 

and the function t ➔ :F(,(t)) is increasing. We further assume that the curve 1 ([0, 11) lies 

in] - 1/2, 1/2[1. Let mf (resp. mf) be a point in MN s.t. the distance llmf - m111 

(resp. llmf-moll) is minimal. There exists a path in tr, say ,f = (zo, .. . ,z1,), such 

that zo = mf, z1, = mf and the distance between z; and the curve 1{[0, l]) is less than 

../2/N. Furthermore we have the: 

Lemma 3.2. For N 2: No, on the set ISNI :S 2../NlogN, we have 

logN 
sup :FN(z) $ :F(mo) + C- N 

.,e-,:, 
(3.14) 

Proof: : Let K be a compact subset of J - 1/2, 1/2[2 that contains the paths ,f for all 
N ~ No and all realizations of h. mo is a critical point of :F. Therefore 

l:F(m) - :F(mo)I :S Cllm - moll 2 (3.15) 

Using Taylor expansions and Stirling formula, one immediately gets that, for m E MN n K, 

l:F (m)-:F(m)-.!.l (½+m+)(½-m+)sNl<ClogN 
N {J og(½+m-)(½-m-) N - N (3.16) 

Let A> o. Let z E -yf. First assume that llz - molls A.jiogN/N. Since mt= -mo, 
(3.16) implies that 

on the set ISNI :S 2../NlogN. 
Then, from (3.15), we deduce that 

:FN(z) = F(mo) + FN(z) - F(z) + :F(z) - F(mo) 

$ :F(mo) + C(l + A) lotN + C(v'l:Jt )2 

< :F( ) C(2 A)logN - mo+ + N 
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Assume now that llx-moll ~ A✓logN/N. Using (3.16) and the fact that since mo is non 
degenerate, there exists a constant C' > 0 such that 

:FN(x) = :F(mo) + :FN(x) - :F(x) + :F(x) - F(mo) 

~ logN , 2 ~ :F(mo) + Cllx- molly-y + Cl{ - C llx - moll 

, ✓logN logN ~ :F(mo) + llx - moll(C - AC) I{+ C-y 

logN 
~ :F(mo) + cl{ 

provided that we choose A> C/C'. ■ 
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IV. Spectral estimates 

Proof of Proposition 2.6: we first prove (2.32). For any continuous function <p bounded 

by 1, we have 

J gN(IE.[<t,(mN(t)}-{gN(ef>) + v,f (.)QN(#f)e-Af t}l2) $ e-A:t✓gN(tfil) $ e-cA: 
(4.1) 

Since, for any m E MN, 1.rN(m)I $ C, we have, for any function f/,, v,(m)2 :5 e0 NgN("72
). 

From (2.38), we deduce that 
(4.2) 

Therefore ( 4.1) implies that 

for the correct choice of the constant Kin Proposition 2.6. The proof of (2.31) is identical: 

one has to consider the spectral decomposition of the process mN killed at time TN (See 
(2.29)). ■ 

Proof of Theorem 2.7: (2.35) and (2.36) clearly follow from (2.33) and (2.34). 

Following [8], let us introduce the following Dirichlet forms: for any function</, defined on 

MN, we denote by EN the Dirichlet form of the operator £N w.r.t. gN i.e.: 

According to formula (2.25) in [8], EN can also be written: 

EN(<P) = 2~N L (<t,(m) -</>(m))2(NN(m, m))1l 2e-!f[-"N(m)+-"N(m)) (4.4) 
m 1fflEMJ11 

m-m 

where NN is a correction factor bounded from below by 2/N and bounded from above by 

1. Similarly let EJ. be the Dirichlet form of the process mN killed when reaching 8Tf: 
the domain of EJ. is the set of functions </, defined on 'f'f vanishing on EII'1N, and we have 

E"f.,(<J,) = - (i}.,(ef>[.CN(ef>)l) 

= 2~1 :E (ef,(m) - ef>(m))2(.N' N(m, m))lf2e-t;-l-"N(m)+FN(m)] (4.5) 

N m,me1'f' 
m-m. 
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Upper bound for Lf": Lf is given by the variational principle: 

N 'nf eMc/>) 
L1 = I 9}.(ef>2) (4.6) 

where the inf is taken on the domain of£;.. Choose as a trial function ef>(m) = ll(m E Tf) 
in (4.6). The only non zero terms in (4.5) come from neighboring points (m, m) such that 
m E Tf and m E &Tf. For such points we have 3/N ~ m ~ -3/N. Therefore 

fl(</>) < N
2 

e-flNinC :Fiv(m) 
N - ZJ. 

where the inf .rN(m) is computed for points m E MN s.t. 3/N ~ m ~ -3/N. From 
(3.13), we know that 

. logN 
inf .rN(m) ~ .r(mo)- C- N 

mEllT{' 

(The same holds true for &Tf) a.nd therefore 

Using (2.17), we get that 

fl (q,) < N
2 

e-PN:F(mo) NC 
N - ZJ. 

£}.(ct,) ~NC ePN:F(m1)-fJ,.Siv e-PN:F(mo) 

=NC e-fJNt,.:F-ffoSiv 
(4.7) 

We also have 9h(ef>2 ) = 1 - z},,/Z]. ~ 1/2 provided that No is chosen big enough (See 
Proposition 2.1. 
Therefore 

Lf" ~ Nce-{JNt,.:F-{JaSiv 

Lower bound for Lf": by definition of the eigenfunction ef>f", we have 

Lf" = £1{</>f") 
Let ,-f = (x0 , ... ,x.1;) be the path defined before Lemma 3.2. We have 

lct,f'(mf)l2 = I L<Pf(x;) -ef>f' (x;+1)12 
i 

~ L l4>f' (x;)-4>f'(x;+1)l2(.N'N(x;,x;+1))1f2e-lfl:Fiv(.r,)+:FN(.r,+1>l 
i 

~ 2z"].£1(¢>f)/!f N2/N•uP.e,f' 7'°N(.r) 

_:::; NC Lf ePNF(mo)-fJN:F(m1)+fJaSN 
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We used the results of Lemma 3.2 and Proposition 2.1. It only remains to note that, 

provided that No ie chosen big enough, we have <t>f (mf) ~ 1/2. This follows from (2.40). 

Upper bound for Af": Af' is given by the variational principle: 

(4.9) 

Choose as a trial function </>(m) = JztJZ11I.(m E 'i'f) - JZ1/Ztll(m E 'i'.f). Then 

YN(<I>) = 0 and 

9N(</,2) Z).+z1 -2YN(Tj.n'i'J.) 
ZN 

Zl l + z2 2 > N - zN N - zN > 1- e-CN 
- zN -

according to Proposition 2.1. 
Using formula {4.4), we get that 

eN(<I>) :S z~(~ + ~)2Nce-t./-inl_E .. }.-, ....... i.--... 1F.,(m)+FH(m)) 

< NC ~e -!f[inf_eorf' F,.(m)+inf..,ear: FN(m)] 

- ZJ.Zh 

Using the results of Proposition 2.1 and Lemma 3.1, we therefore get that 

Lower bound for Af": to use the same strategy to bound Af as we did for Lf, we need some 
estimates on the eigenfunction iJ,,['1. This is the content of the next lemma: we choose for 

iJ,,f the normalized eigenfunction corresponding to Af such that YN(JI.-r,.'I/Jf'1) > 0. This 
l 

last condition imiquely determines 'I/Ji'. (When N is big enough, Af has multiplicity 1 as 

follows from our estimates of Af and Af.) 
Lemma 4.1 On the aet ISNI ~ 2J-N~1-og-N~, we have 

(4.10) 

and 

(4.11) 
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This lemma will be proved later. We first proceed to the end of the proof of Theorem 2. 7. 
Let ,yf be the path defined in Lem.ma 3.2. Define similarly a path ,yf in i'.f from mf 
to mr such that SUPzE-rf .FN(x) $ .F(mo) + ClogN/N. Let 'YN be the path from mf" to 
mf obtained by gluing together ,yf and ,f. Say 'YN = (xo, ... ,x1:). We therefore have 

logN 
sup .FN(x) $ .F(mo) + C-N 

rE-yN 

As in (4.8), we have 

!'Pf (mf) - ipf (mf)l2 

= IL iJ,f (x;) - ipf (x;+1)12 

$ L liJ,f (x;) - ,pf (x;+1)12(NN(x;, X;+1))1/2e-~[FN(x;)+FN(x;+1ll ... 

i 

$ 2ZNEN(t/if')/!::N2efJNoup.e,N .r'N(a-) 

$ Ne Af e/JN.1'(mo)-/JN.1'(m1)+/JalSNI 

= NC Af e/JN.O.F+fJalSNI 

i,From Lemma 4.1 and Proposition 2.1, we have 

l,t,N(mN) - ipN(m"")l2 > (ZN)2 (1-~ e-2CN)2 
1 l 1 2 - Z}.ZJ. ZN 

~ N-Ce2/JalSNI 

Therefore 
Af ~ N-ce-fJN.O.F+fJ,.ISNI 

(4.12) 

( 4.13) 

Proof of Lemma 4.1: : the proof relies on Proposition 2.6 and the fact that </,f converges 
to 1. Let O <a< a' < t::...F and t = exp(a'{)N). Define T as in Proposition 2.6. Clearly 
T ~ eo./JN for N big enough. From (2.32) applied with the function </,(m) = ll(m E Tf), 
we get that 
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In particular 

t/Jf" (m)gN(lJ.rf'Pf') :5 eAf t(e-T + Pm[mN (t) E Tf] - gN(Tf)) 

:5 eAf t(e-T + l -QN(T1N)) 

:5 eAf t(e-T + gN(Tf)) 

,, z2 
:5 eA1 t(e-T + j;) 

Taking into account that T 2='. ea/JN, a' < 6-F and the estimates (2.38) for .t\f and 

Proposition 2.1, we obtain 

In particular, integrating over Tf, 

and 

ipf"(mf')gN(lIT{"'Pf) ~ !: {1 + e-CN) 

l,From (4.14), we also get that, form E Tf, 

t/Jf'(m}gN(lJ.r[',/,f') °?:. eAf't(-e-T +Pm[mN(t) E Tf]-gN(T.f')) 

"?:. -e-T + P.,,[rN > t] - QN(Tf) 

2:: -2e-T + <t>f' (m)g}_,(<t>f')e-Lf' t - (iN(T{') 

= -2e-T + <t>f (m)g}.,(<f>f)e-Lf't - 1 + QN(Tf) 

where we used {2.31). In particular 

(4.15) 

(4.16) 

it,f' (mf')QN(Ilrt"Pf") "?:. -2e-T + <l>f' (mf'H,1{<t,f')e-Lf' t - 1 + QN(Tf) (4.17) 

and, integrating over T1N, 

QN(lirrT/Jf')2 "?:.QN(T{')(-2e-T + g~~7I!t g}_,(<t>r')e-Lf' t -1 + gN(Tf)) 

=QN(T{')(-2e-T + ZN~rT[') (Q}.-(<t,f))2e-Lf' t - 1 + QN(f'f)) 
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Use now (2.38) and (2.40), to deduce from (4.17) that 

(4.19) 

Use (2.38) and (2.39), to deduce from (4.18) that 

But 

by Proposition 2.1. Therefore 

(4.20) 

One can now solve equations (4.15) (4.16) (4.19) and (4.20) to conclude the proof of (4.10). 
The proof for ( 4.11) is identical. ■ 

Proof of Proposition 2.3: : for any continuous function ,f> bounded by 1, we have 

Since, for any m E MN, IFN(m)I :o::; C, we have, for any function t/J, t/J{m)2 :o::; eCNQN(t/J2). 
From Theorem 2.7, we deduce that 

hence 

Therefore (4.21) implies that 

(2.25) follows by choosing K > C. ■ 
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V. The averaged dynamics 

We now turn to the proof of Theorem 2.4. 

Proof of (2.28): : Let a E m and tN = exp(/JN M + a-./N). We have 

PmN[N-1l2 (logTN -fJNM) ~ a] 

=PmN[TN;?: tN] 

=P mN[TN ~ tN] - cpf (mN)Q}.(cpf)e-Li'tN + (cpf (mN)Q1(c/>f) - l)e-Li' tiv + e-Li' tiv 

Therefore 

IP mlV [TN ~ tN] 

=1Pmiv[TN;?: fN;ISNI;?: 2✓NlogN] 

+ Q[:U:1Sivl9JN1og N(PmN [TN~ tN] - cpf' (mN)Q}_(</,f')e-Lf tN)j 

+ Q[:n,sN19JNlogN(<Pf'(mN)gJ..,(4>f')- l)e-Lf'tN] + Q[n,sN1::;2JNlogNe-LftN] 

(5.1) 

In (5.1), the first term tends to O since Q[ISNI ~ 2JNlogN] :5 2/N'l , By Proposition 2.6, 

the second term is bounded byexp(-T) with T = tNexp(-K✓JilogN)-KlogN ➔ +oo. 

Therefore the second term also tends to 0. i,From (2.39) and (2.40), it follows that the 

third term is bounded by exp(-CN) and therefore tends to 0. Thus 

IP mN[TN ~ tN] - Q[:U:ISivl::.2JNlogNe-Lf'tN] ➔ 0 

For any f > 0, write 

Q[1llSNi9JNlogNe-LftNJ 

-Q[lI -Lf IN ]I I 
- 1s ... 19JN1ogNe a,IN-p,.SNS-•../N 

+Q[:n,sN 1::;2JN log Ne-Li' fiv :u:a-../N-p11s.,. ?:•v'Nl 

+Q[ll,s.,., 1::;2JN log Ne-Lf 
1
"' lI-•v'N -s,a-../N-p,.sN::;+,../Nl 

(5.2) 

Note that, from Theorem 2.7, on the set where ISNI :5 2JNlogN and a-./N - (3aSN :5 
-E-./N, we have jexp(-Lf'tN) - lj $ N°exp(-f✓N) ➔ 0. Therefore the first term 

in (5.2) is close to Q[ISNI $ 2JNlogN;a✓N - (3aSN :5 -E✓N]. On the set where 

ISNI $ 2,JNlogN and a✓N-f3aSN ~ E✓N we have Lf'tN ~ N-c exp(E✓N) ➔ +oo. 
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Therefore the second term in (5.2) converges to 0. The third term in (5.2) is bounded by 
Q[-t../N $ o./N - /3aSN $ +E./N]. Thus so far we have proved that 

limsupjJP mN[TN ~ tN] - Q[ISNI $ 2JN1ogN; a../N -/3aSN $ -t.v'N]I 

$ limsupQ(-t.../N $ o../N - f3aSN ~ +t.v'N] 

Apply the central limit theorem to SN to deduce that 

Since (5.3) holds for any t. > O, we also have 

■ 

Proof of (2.27): : let O < o' < t:i.:F and define s = exp(/301 N) and 

S = sexp(-Kv'NlogN) -KlogN 

where K is the constant in Proposition 2.6. Then S tends to +oo and, from (2.38), we 
have 

on the set ISNI ~ 2./N Iog N. ef, being bounded by 1, we deduce from Proposition 2.6 that, 
on the set ISNI ~ 2./N!ogN, we have, for N ~ No, 

Proceeeding as in the proof of (2.26) and using (5.4), it is easy to see that 

limsup l1EmN [¢,(mN(tN ))] 

- Q[lllSNl:S:Z./Nlog N (Q N(t/i) + t/li' (mN)QN(#f)e-Af IN )JI = 0 

Using Theorem 2.7 and (5.4), we therefore have 

limsup l1E'mN [¢,(mN(tN ))] 

(5.4) 

(5.5) 

- Q[lllSNl52VNlogN (QN(¢,) + t{if (mN)QN(q,1/Jf)ll_s,ISNl+a-./N5-•v°N )JI (5.6) 

~ClimsupQ[-t.v'N ~ ,BalSNI +av'N ~ t.v'N] 
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l,From [8] formula (5.25), we know that, for almost all realization of h, 

Using the bounded convergence Lemma (which is justified by (5.4)), we deduce from (5.6) 

that 

limsup l1EmN[t/>(mN(tN))] 

- Q[9N(4>) + (4>(m1) - gN(tJ>))lli'•ISNl+crv'NS-•vW] j (5.7) 

:5ClimsupQ[-fvlV :5 /JalSNI + avlV :5 EVM) 

Let AN be the set ,BalSNI + a,/N :5 -t../N. iFrom. Proposition 2.1, we have 

By symmetry 

Therefore 

Use now the central limit theorem for SN to conclude that 

limsup l1EmH {tJ>(mN(tN ))] 

- G(tJ>(mi) + tJ>(m2)) + ½(cp(m1) - ',6(m2))Q[,Ba1Afl :5 -a - eJ) j (5.8) 

:5 Q[-t. - a :5 ,BalAfl :5 -a+ f] 

And since (5.8) is true for all f > 0, we have 

■ 
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