





I. Introduction

In spite of its lack of physical significance, the Curie-Weiss model is often considered a
useful toy model for testing ideas in statistical mechanics. In particular the rigourous
formulation of the notion of *metastability’ - the so called ’pathwise approach’- was first
introduced to describe the evolution of the magnetization of the Curie-Weiss model in [3].
Metastability was later proved for various systems in statistical mechanics and it became
one of the most powerful tools to describe the evolution towards equilibrium of a Markov
process.

Following this line, we initiated the study of the random field Curie-Weiss mode! in [8] as
an attempt to get some insight in the dynamical properties of disordered systems. Indeed,
although the statics of disordered mean field models has been the object of various papers,
see [9] for instance, the investigation of dynamical properties is at its beginning. (See
[6] for the R.E.M. process). We refer to [2] for a general overview of the field. In [8]
we focused on the description of the almost sure behaviour of the magnetisation for the
Glauber dynamics. In this context, ’almost sure’ means for a given realization of the
external field. We obtained a kind of metastability property for the magnetization via
spectral methods. The aim of this paper is to extend the spectral approach to describe
the ’averaged over the disorder’ dynamics.

Our approach is based on an approximation of the law of the magnetization by the first
terms in the spectral decomposition. In [8] we derived the metastability statement from
the asymptotics of the eigenvalues of the generator on the exponential scale. This scale
corresponds to the law of large numbers for the free energy or, equivalently, for the random
field. It allows one to describe the approach to equilibrium on a disorder dependent time
scale. For instance the law of the first time the magnetization changes sign is proved to be
close to an exponential law with a disorder dependent parameter. The estimates we had on
the random parameter were actually quite poor. For instance computing the probability
- w.r.t. the disorder of the external field - that the sign change in the magnetization has
taken place before some given time is not possible with the only results of [8]. To answer
this type of questions, one has to go one step further and prove a central limit theorem
for the partition functions ( See Proposition 2.1) and for the eigenvalues (See Theorem
2.7). We therefore obtain the description of the ’averaged over the disorder’ dynamics (See
Theorem 2.4) which allows one to compute the probability that the system is in a given
state at any (deterministic) time. Note that the averaged and almost sure behaviours are
different: the limiting dynamics for the averaged problem turns out to be non Markovian
i.e. the process is not self-averaging. We also prove that the law of the first time the
process shifts from a positive magnetization to a negative one is close to a log-normal law.

Actually we shall obtain estimates of the eigenvalues that are much more precise than a
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mere central limit theorem. As a consequence of our sharp lower bound on the spectral gap
of the dynamics, we derive a precise estimate of the rate of convergence of the magnetization
towards equilibrium in Proposition 2.3. It shows in particular that the time needed for the
magnetization to reach equilibrium is shorter when the fluctuations of the random field
are bigger: fluctuations help the process to converge. This result is extended to the full
spin dynamics in the next paper.

We use geometrical tools to bound eigenvalues. As explained in [10], one can estimate the
spectral gap in terms of the variations of the free energy along paths in the state space.
Instead of applying directly the results of [10], we use a combination of geometrical and
probabilistic arguments in order to estimate both eigenvalues and eigenvectors. We believe
this trick yields shorter proofs. (See Lemma 4.1 in part IV).



II. The model and main results

In this section we describe our model, recall the results from [8] that we shall need and
state our results. The main results are Theorems 2.4 and 2.7.
- The random field Curie-Weiss model: let h = (h;)iemv be a sequence of independent
symmetric Bernoulli random variables defined on some proba.bi]ity space, say (2, 4,Q).
That is Q[h; = 1] = Q[h; = —1] = 1/2, for any i. Define Sy = ", b
Let 3 > 0 and 6 € IR. Later we shall assume that 3 > cosh?(38).
Most of the quantities that we are going to define depend on h. Usually we shall drop this
dependence in the computations. In the sequel, we denote by C' a constant which depends
on § and @ only. Its value may change from line to line. N is an integer that depends
also on § and ¢ only. Its value may change from line to line. In particular C and Ny do
not depend on A.
- Equilibrium: let Sy = {~1,+1}¥. We denote by ¢ = (0:)i=1..n some element in Sy.
We define on Sy the following Hamiltonian:
N
Hy(o) = Hi (o) = __2_( E o) — 92 hio; (2.1)

=1

Let uny = pl be the Gibbs measure on Sy defined by:

—BH,
(o) = HLENCo)
N
where
Ky=K}= Y e #Hn) (2.2)
OESN

is & normalizing constant.
- Magnetization: for any ¢ € Sy, let my(o) = %,—Eil oi be the empirical mean or
magnetization. We also define

> o

sihi=+1

mi(o) = mhit(o) =

ZIH

-

my(o) = my (o) =l E g;

;hi=

and

2

and my(o) = (m} (o), my(c)). Therefore mn(s) = m} (o) + my(o).
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mpy clearly takes its values in [—1,+1]>. We denote by My the image of Sy by my.
Denoting N* = N** = #{i: h; = 41} and N~ = N*~ = #{i : h; = ~1}, we have

Nt —-Nt+2 Nt N~ =N— 42 N~

My = {—T’ T;"'w—} X {_W’ N "N

The Hamiltonian can be written in terms of my:

Hn(o) =~ (5(m () + (o)) + 8mk (o) = m3(o)) (23)

With a little abuse of notation, we shall also denote by Hy the function defined on My
by

Hy(m)=-—-N ( (m*+m™ ) +8m* —m )) (24)

We are interested in the behavior of the magnetization under the law pn: let Gy = G
be the image of uy by my. Gn is a probability measure on My. We have, for m =
(m*,m™) € My,

xp(—BNFn(m))

Gn(m) = Zn (2.5)
where
In=2h= Y e PNTWim (2.6)
meEMn
is a normalizing constant and
1 -
F(m) = Fiy(m) = — S(m* +m™)? - 6(m* —m")

(2.7)

o8 (a2 L) (2 2 y)
- s Bt 8\ 4mod

e PNTNIm) = R AN (28)

a;mpy(o)=m

satisfies
- Free energy: it is not difficult to see that, as a consequence of the law of large numbers,
Fn converges Q-almost surely, as N — +00, to the function

F(m) = —%(m+ +m™)2 —f(mt —~m™) +355 (I(2m+) +I(2m™)) (2.9)
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Here, for z € [~1,+1], I(z) = £ log 4= + 122 log 152, and for |z| 2 1, I(z) = 0, is the
entropy of Bernoulli random variables.

The function F is symmetric w.r.t. the diagonal. It has three critical points when § >
cosh?(88): let m, be the unique positive solution of the equation:

e B % [tanh(Bm. + B8) + tanh(Bm, — B6)] (2.10)

The critical points of F are
= (% tanh(g6), — 1 tanh(s0
mo = ( taah(98), - taah(56) )
my = (% tanh(fm. + (9), % tanh(fm, — [39)) (2.11)
my = (% tanh(—Bm. + 36), --;- tanh(Am, + ﬂO))

my is a saddle point. m; and m, are two minima.
Let .
TV = Myn{m* +m~ >0}

T} = Myn{m* +m~ > -3}
MY =Myn{0zm*+m~>-3})
and define T¥ and T;v analogously.

Let G} = G} be the restriction of Gn to TV, i.e.

zZ _
Gi(m) = %an(m)n(m eTy)

Zy= ) e #NFn(m) (2.12)
mefiv
Define G%, analogously and
Zh =) e PNFN(m (2.13)
me-f';v
Define also
dh= 3 eANFNm (2.14)
meaTy
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Clearly, as N tends to +oo, under Gy, the magnetization my gets close to one of the two
values my or m;. The asymptotic support of the law of my is therefore deterministic. We
have the

Proposition 2.1 (Static asymptotics). Define

a=a(3,60)= 5% log % (2.15)
Then, for N > Ny, on the set |Sy| < 2¢/Nlog N, we have:
|log Zy + BN F(my) — Ba|Sn|| < Clog N (2.16)
|log Z} + BNF(my) — BaSn| < ClogN {2.17)
llog z}y + BN F(mo)| < Clog N (2.18)

for some positive constant C.
Besides, for Q-almost all realizations of h, for any continuous function ¢ defined on
(-1, +1]?, we have
Gn(4) — (ang(mi) + (1 — an)$(m2)) = 0 (2.19)
where
N eﬂaSN
ON = _FaSw 4 o-BaSn

i}

apy (2.20)

(2.19) is actually proved in [8], Lemma 4.1.
Note that Q[|Sn| > 2/Nlog N] < 2exp(—2log N). Therefore the Borel-Cantelli lemma
implies that the difference Gy — (andm, + (1 — an)dm,) weakly converges to 0 for almost
all realizations of h. Note however that o itself does not converge almost surely but only
in distribution. The equilibrium measure keeps oscillating as N tends to +oco. A more
detailed description of these oscillations is given in [7}.
- Dynamics: for a given realization of h, we define the dynamics, first on the spins o,
then on the magnetization my. For 1 < < N, let T* be the map from Sx to Sy defined
by T#(0); = o for j # i, T(a)i = —oi. Consider the following operator acting on real
valued functions ¢ on Sy:
N .
In(0) = Lh(0) = 13 (4(T¥(0)) - b(0)) e SUNT@-En@)  (21)

=]

Ly is the generator of a Markov process which we denote by on(t) = o} (t). pn is the
unique invariant probability measure for on. It is also reversible.
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Now let my(t) = mn(on(t)). It turns out that my is also a Markov process with invariant
probability measure Gn. Let Ly = L% be the generator of my. According to formula
(2.24) of [8] we have

Lag(m)= Y [p(h) - §(m)] Ny (1h, m)e~ BN ()~ Hr(m) (2.22)
MmEMN
mn~m
where 1 ~ m means that /2 and m are neighbors in My and ANy (7, m) is some correction
factor which is between 2/N and 1 (See [8]). Call P¥ = P*M = ¢'£¥ the semi-group
generated by my. We shall use the notation P, = P2 to denote the law of the process
my when my(0) = m and E,, to denote the expectation w.r.t. P,,. We insist on the fact
that, since h is kept fixed, the measure P,, is Markovian.
We aim at describing the way the law of my(t) approaches Gy. Due to the concentration of
the measure Gy on {my,m;}, we expect the process my to spend most of its time around
these two points. It suggests that the dynamics can be approximated by a Markovian
process with state space {m1,m2}. Let ry = inf{t > 0 : my(t) € 8T} be the hitting
time of 8T,
The main result of [8] is the
Proposition 2.2 (Almost sure metastability). For almost all realizations of h,
there ezist two sequences A = AMY and LV = L;"N such that, for all sequences m" € T
with lim sup F(m¥) < F(myg), we have:
for allt >0,
Pon[Litn >t] et (2.23)

and, for any continuous function ¢,

Epn[p(mn(t/AY))] (2.24)
= (¢7*¢(m1) + (1 — ™) (an(m1) + (1 = an)é(ma))) =0 '
We define the activation energy: AF = F(mo) — F(m;) = F(mg) — F(my). It follows
from Propositions 2.5 and 2.6 below that # log LY and 4 log AY both tend to —SAF as
N — +oo. Nevertheless the two normalizing constants AY and L¥ do depend on h.
(2.23) implies that 7 is roughly speaking of order 1/L{ i.e. of order exp(GNAF), pro-
vided the process starts inside T{¥. Furthermore the law of Ty is close to an exponential
law of parameter LY. Roughly speaking, the evolution of the magnetization is: until
time Ty, my stays close to my, and after time Tx, it reaches its equilibrium: Gx. Since
FlogAY — —BAF, we deduce from (2.24) that, for any a > SAF, the law of my at time
exp(aN) is close to the equilibrium. We shall obtain a more precise result:
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Proposition 2.3 There ezist deterministic constants K and K' such that, for any
N > Ny, for almost all realizations of h, for any continuous function ¢ bounded by 1, for
any m € My, if we let ty = NX exp(BNAF — Ba|Sy|), where the constant a is defined
by equation (2.15), then, on the set |Sn| < 2¢/Nlog N, we have

|Emlé(mn(tn))] - Gn(8)] < exp(-N¥") (2.25)

Proposition 2.3 implies in particular that a time of order exp(8NAF) is more than suf-
ficient to reach equilibrium, provided we restrict ourselves to a sub sequence N, s.t.
B|Sn.| > KlogN,. In some sense the fluctuations of the external field h in the free
energy help the process to reach equilibrium.
We now turn to the description of the law of my averaged over the realizations of h. Let
us define the measure IP,, = P,’," x Q. IE,, stands for the expectation w.r.t. P,. By
definition, if ® is a measurable function on the paths space, [En[®] = [ P[2]Q(dR).
Under IP ., my is not a Markov process anymore. We prove the

Theorem 2.4 (Asymptotics for the averaged dynamics). Let A be a normal-
ized Gaussian random variable. Let a be the constant defined in formula (2.15). For all
sequences m~ € T with limsup F(m") < F(mo), and for all o € IR, we have:

P .~ [N"?(logry — BNAF) > a] = P[BaN > a] (2.26)
and, for any continuous function ¢,

B [¢(mu(ePVOF+aVN)))
. . (2.27)
- (E + P[0 2 BaN > a])¢(mi) + (5 — P[0 > Ba/N > a])d(m2)

Note that the expression (2.27) implies that, after renormalization, the magnetization
only takes the two values m; and my. But (2.27) does not define a Markovian evolution
i.e., even in the large N limit, the dynamics remains non Markovian. It reveals the non
self-averaging behavior of the process.

Spectral decomposition: the proof of Proposition 2.2 is based on estimates of the
eigenvalues of L. Since the operator Ly is symmetric in Lz(Mny,Gx), we can consider a
spectral decomposition: let (AN = A?'N).-=o,_, denote the eigenvalues of —Ly in increasing
order, with AY = 0. Let l/JlN = tb:' N be the corresponding eigenvectors. We have ¢’ = 1.
We assume that the v/;,N form an orthonormal basis of Lz(Mn,Gn). We can now express
the law of my at time ¢ on this basis:

Emld(mn(®) = 3 o¥ (m)Gn(gpM)e 't (2.28)



Similarly let £§ be the generator of the process my killed at time 7. In other word Eﬁ
is the restriction of Ly to functions ¢ € Ly (T, ,Gk) with ¢(m) = 0 for m € OTN. —L¥
is & symmetric operator on L,(Tf’,g;,). We denote by LY its eigenvalues, and ¢} the
corresponding normalized eigenfunctions. We then have

Pulr > = 32 ¢Y(m)gh (¢l )e (2:29)

Remark: it follows from the results of [8] that the constants in Proposition 2.2 are indeed
the eigenvalues we have just defined.
iFrom [8] we know that

Proposition 2.5 (Estimates of eigenvalues). For almost all realizations of h,

—;—rlog LY & _BAF
X (2.30)
N logAN - —BAF

Estimating the eigenvalues AY and LY, one checks that only the first terms really con-
tribute in (2.28) and (2.29). The next result is a consequence of the computation of [8],
part 3. ( See part IV for the details).

Proposition 2.6 (Spectral approximation). There ezists a deterministic constant
K such that, for t > 0, if we define T = texp(—KvNlogN) — KlogN, then, for any
realization of h and any N > Nj s.t. |Sy| < 2/NTogN, for any m € TF, we have

|Palry > 1) = Y (m)GL (1)1 Y < T (2.31)

Besides, for any continuous function ¢ bounded by 1, and for m € My, we have

|Enlé(mn®)] - (Gn(#) +¥1 (m)Gn(#pl)e2T1) | < &7 (2:32)

Proposition 2.2 is a consequence of the Propositions 2.5 and 2.6. Note that the expressions
(2.31) ( resp. (2.32) ) do look like (2.23) ( resp. (2.24)). The only additional information
we would need is some estimate of the eigenfunctions ( See [8] for the proof). We shall
deduce Theorem 2.4 from the fluctuations of the eigenvalues:

Theorem 2.7 (Fluctuations of the eigenvalues). Let a be the constant defined in
(2.15). For any N > Ny, for almost all realizations of h, on the set |Sn| £ 2/NlogN,
we have:

|log LY + BNAF + BaSn| < Clog N (2.33)
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and
|log AY + BNAF — Ba|Sy|| < Clog N (2.34)

As a consequence, if N is a normalized Gaussian random variable, then the following
convergences hold in law w.r.t. Q:

N=2(log LY + BNAF) - —faN (2.35)

N712(log AY + BNAF) — Ba|N| (2.36)
- Prerequisites: Here we recall some of the estimates proved in [§] that we shall need in
the sequel. These are rough bounds on the exponential scale.

Let us choose N > Np and a realization of h s.t. |Sn| < 2/NTogN. Using Stirling’s
formula as in [8] part 4, it is not difficult to see that, for any m € [-1, +1]%,

log N

vN

It is proved in (8] that, for any i, the following convergences hold almost surely:

|Fx(m) - F(m) < C

(2.37)

%log L:v — —¢;

%logAfv — —¢;

where ¢; = SBAF and ¢; = 0 for 1 > 2. Taking into account (2.37), it is immediate to prove
that in fact
|log LY + N¢;l < CVNlog N

[log AN + Nei| < CvVNlog N (2:38)
Finally we also have some estimates of ¢{':
1-Gy(g1) e N (2.39)
and, for any deterministic compact set A s.t. sup ¢4 F(z) < F(mo), Q.a.8.
sup [1-of(m)| < e O (2.40)

meANTN

where C’ is a deterministic constant that depends on A. (2.39) and (2.40) can be proved
as in [8] part 3.3. with the help of (2.37).

11



III. Static estimates

Partition functions.

Proof of Proposition 2.1: the proof of Proposition 2.1 is inspired by the arguments of
[4]. Let us first note that, by symmetry and because the spins are exchangeable, we may
assume without loss of generality that Sy > 0 and that h; = +1,fori =1,...,(N + 5n)/2
and h; = —1 for i = (N + Sn)/2 +1,...,N. Let M = [N/2], where [] denotes the integer
part. Following [4], we introduce a different parametrization of the magnetization: for a
configuration ¢ € Sy, define:

,;,N<a)_l_§:a..
1 N
(o) = & i

We use the notation ran(o) = (i} (0), (o)), and we denote by My the image of Sy
by the application iiy. My is therefore a deterministic subset of [—1/2,1/2]2. We have
mn(o) = mf(o) + my(e). Let D= {i 2 M +1: h; = 1}, Note that the cardinality of D
satisfies |D| = (N + Sn)/2 — M < (1+ Sn)/2. The Hamiltonian Hy can be expressed in
these new coordinates as:

Hy(o) = ~ 5 (mn(0))} — No((0) - (o) — 203 oy
€D

and

Zh = )Y Ump)z-amye PN

eESN
|

ie.
Zy = Z Uimy-3/Ny#{o;mn(o) = 1m}ePNGT+O0mt —7))

mEMN
) (3.1)
Ec;mﬂ(,)=,ﬁ e"”E;ep i
#{o;mn(o) = m}
In th_is last expression, the only term that depends on h is the set D.
Let Fy(h) = —{m? — §(mt — ) — 75 log #{a;n(0) = @} and note that
-~ ~ N n logN - N -
|Fn (™) — F(m)l < C( + |Im” — ) (3.2)

N
for any N € My, € [-1/2,1/2]%.
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The minimum of F in the set M > 0 is achieved at the only point m;. Since we have

assumed that [Sy| < 2/NTog NV, we have |}, 0i| < vVNTogN. Taking into account
the estimate (3.2), one deduces that there exists a small enough ball, B, centered at point

my such that, if we define

2ﬁ0 N o
By= Y etwim Demnioz=nt 2ieo
#{oimn(o) = m}

REMyNB

then, for some deterministic constant C' depending on the choice of B, we have log 21{, <
log Z} < log Z}, — log(1 — e~V ). It is therefore enough to prove the Proposition 2.1 for
Z}, instead of Z},.

For v € IR, define the probability measure

N
ZUGSN f(o-)e" z-’=u+1 i
ZOGSN e” ziu*" ”

E,[f]= (3.3)

Note that
Z z:-=M+1 7 = 2N cosh(v)N-M

oESN

For any choice of v, and vy, Z 1, can be rewritten as

5 - . hez \N_ar _Nm—(v3—
71— BN Fy (i) €08 N—M_~Nm~(r3=-»1)
N Z € (coshul) €
MmEMyNNB
288 . f
Ey,le P e ® n'_(g)_.fn‘]
B, [1

m(@r=n-] (3.4)
= Z e—ﬁNJ'fn(v'n)( coshy YV -M = Nm™(a=m)
= cosh 151
mEMpyNB

cosh(vz + 236) 1) ¥(vz, 0)(r7")
x (— T(v1,0)(m-)

cosh vy

where
E, [ 2502 en T _(c)—m-]

Ev [6250 Z'ED 7

Let o = Sy /(N — M). We now choose for vy and vy the solutions of the equations:

¥, 0)(7) =

tanh(v;) = 2/~

(3.5)
atanh(v; + 286) + (1 — o) tanh(vy) = 2R~
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Since we are only interested in estimates for 7 € B, and since |a| < 21/log N/N, then 1,
and v, are uniformly bounded as Sy and /i1 vary. Besides we deduce from equation (3.5)
that

a l-a

cosh?(1; + 236) + ccshz(ul))l $Clrz =)

|a(ta.nh(u1 + 2,39) - ta.nh(ul)) + (V2 - 1/1)(

Therefore
[(v3 — 1) — @ cosh?(on) taah(y) — tanh(oy +260))] < O8N
and
(= Niw~(s = ) + (N = M)log 22 + |Dllog =2 222
- N iog m*hc(:;htfﬁ 9| <clogn
and
logZY —log Y emoMIn( LB s LUBAET < Clog N (36)

meMynB

It now only remains to estimate ¥. This can be done through a local central limit theorem
just as in [4]. Repeating the arguments of Proposition 3.2 of [4], we get that

cosh(2ﬁ0 + v+ lk) )IDI(COSh(V + ik_))N—M—lD|

(v, 0)(R") = — / " dke— VAT
: o), &€ cosh(268 + v) cosh(v)

iFrom this last expression, following the estimates (3.36) to (3.44) in [4), one deduces that
C/VN < ¥(1,0)(1h~) < 1 provided that 2~ = a tanh(v + 206) + (1 — a) tanh(v). The
constant C is chosen deterministic and independent of s € B. Therefore

cosh(yy + 206)

Sni2) < .
= ) | < ClogN (3.7

|log Z}, — log Z e'ﬂNi”(ﬁ')(
MEMyNB

(From the estimate (3.2), it is easy to deduce that one can replace Fnx by F in this
expression i.e.

51 —BNF(m) 0sh(1 +206) sy 2y
|log Z% logﬁ.eg:nge (7&“”1 yS#/? < Clog N (3.8)
N
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Let us denote by 1] the solution of equation (3.5) for the value i~ = m] = %ta.nh(ﬁm. -
f9) i.e. v} = Bm, ~ (6. By standard Laplace arguments, we deduce from (3.7) that

5 SN COSh(U‘ + 2,30)
1 1
VA BNF —— — = <L
I log N + (7711) D) log ol f | C log N (39)

(2.17) is proved with a = 75 log S2fmetEy,

By symmetry, we also have
llog Z} + BNF(my) + BaSn| < Clog N

Since Zn = Z} + Z%;, we clearly have Z} V Z} < Zy < 2(Z} V Z}). It yields (2.16).
Let us prove (2.18). As before we can assume that Sy > 0. As in the proof of (3.9), one
gets that

SN log cosh(vf + 246)

cosh vy

|log 2 + BNF(mg) — | < ClogN (3.10)
where v] is now solution of the equation tanh(v}) = 2mg. ;From (2.11), we therefore
have v{ = —(36 and cosh(v{ + 238) = cosh(v7).

This entails (2.18). m

Let us conclude this section by the following corollary:
Lemma 3.1 . On the set |Sy| < 2+/Nlog N, we have

| mf Fn(m) —F(mi)+ — 5N|<CIOgN (3.11)
| st Fu(m) — Flm) + sl < 08 (3.12)
meEMpy

| int, Fa(m) - Flmo)| < 0B (3.13)

Proof: : The number of points in My being bounded by (N + 1)2, we have

AN B e rn Frv(m) <zZh<(N+ 1)2e—ﬁNinfm€T{v Fr(m)

Combining this inequality with (2.17) yields (3.12). The proof of the (3.11) and (3.13) is
identical. m

Paths.
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We now derive some a priori estimates on the landscape of the graph of F that will be
used in the proof of Theorem 2.7. Let A be a subset of My. By definition, a patk, vy in A
is a sequence (2o, Z1, ..., zx) of points belonging to A such that z; and z;4, are neighbors
and z; # z;j for i # j. The length of a path is therefore always bounded by IV 2,

Since my is an absolute minimum of F and mq is the unique saddle point, we know that
there exists a continuous function v : {0,1] = [-1/2,1/2]* s.t. 7(0) = my, ¥(1) = mo
and the function t — F(¥(t)) is increasing We further assume that the curve ([0, 1]) lies
in]—1/2,1/2[%. Let m¥ (resp. m}) be a point in My s.t. the distance lmd — my|
(resp. ||mY — mol}) is minimal. There exists a path in TV, say v = (zo,..., 7x), such
that zp = m{¥, z;z = m}’ and the distance between z; and the curve ([0, 1]) is less than
v2/N. Furthermore we have the:

Lemma 3.2 . For N > Ny, on the set |Sy} < 2¢/Nlog N, we have

log N

sup Fn(z) < F(mo)+C

a:€‘Y1

(3.14)

Proof: : Let K be a compact subset of ] — 1/2,1/2[% that contains the paths 4}¥ for all
N > Np and all realizations of h. mg is a critical point of F. Therefore

|F(m) = F(mo)| < Cllm — mo|® (3.15)
Using Taylor expansions and Stirling formula, one immediately gets that, form € MyNK,

(G+mt)(G - mt) S < clos

|Fn(m) — f(m)—_l (1 —)(%_m—)T =~ N

(3.16)

Let A > 0. Let z € vJ¥. First assume that ||z — mo|| < A\/log N/N. Since m} = —mg,
(3.16) implies that

log N

(@) - (o) <Clle - mol 52 4 ¢
logN

<C(1+ 4)

on the set |Sny| < 2¢/NlogN.
Then, from (3.15), we deduce that

F(z) = F(mo) + Fn(z) — F(z) + Fz) — F(mo)

< Fmo) + 01+ 4) BN 1 ¢( VI°5N

log N

F(mo) +C(2+ 4)

16



Assume now that ||z —mo|| > Ay/log N/N. Using (3.16) and the fact that since mg is non
degenerate, there exists a constant C’ > 0 such that

Fn(z) = F(mg) + Fn(z) — F(z) + F(z) — F(mo)

lgN _logN
< F(mo) + Cl|z — mo| % +C °§V — C'llz = molf?
1 log N
< Flmo) + ||z — mol|(C - AC”) °]ng +c°§V
log N
Sf(mg)+Cngv

provided that we choose A > C/C'. m
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IV. Spectral estimates

Proof of Proposition 2.6: we first prove (2.32). For any continuous function ¢ bounded
by 1, we have

SO b (] —On(®) + 5T OOn (@) < et /BT < e
(4.1)
Since, for any m € My, |Fn(m)| < C, we have, for any function 3, w(m)? < eCNGn(¥?).

From (2.38), we deduce that
A;V > e-C\/lvlogN (4-2)

Therefore (4.1) implies that

—CVNlogN -7

|Em[d(mn(2)] - {Gn(8) + N (m)Gn (g9 )e AT 1} < NCet =e T (43)

for the correct choice of the constant K in Proposition 2.6. The proof of (2.31) is identical:

one has to consider the spectral decomposition of the process m” killed at time 7n (See
(2.29)). m

Proof of Theorem 2.7: (2.35) and (2.36) clearly follow from (2.33) and (2.34).
Following [8), let us introduce the following Dirichlet forms: for any function ¢ defined on
My, we denote by Ex the Dirichlet form of the operator Ly w.r.t. Gn te.:

En(¢) = —Gn(dlLn9))
According to formula (2.25) in (8], Ex can also be written:

ENB) =gy . (800) = B(m)(Hin(i, m) 2e FIMHZAIL (4

mMmEMN
m~m

where Ny is a correction factor bounded from below by 2/N and bounded from above by
1. Similarly let £}, be the Dirichlet form of the process m" killed when reaching TN
the domain of £}, is the set of functions ¢ defined on T{¥ vanishing on 8T}, and we have

En(¢) =~ gz‘v(tﬁ[CN(fﬁ ))
—= Y ($() — $(m))H(Nn(h, m))/2e= FIFNCR+ Fu(m)] (4.5)

N mmGT

me~m
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Upper bound for LY: LY is given by the variational principle:
Ex(9)
LY = inf AL 4.6
PTG “o
where the inf is taken on the domain of £}. Choose as a trial function $(m) = I(m e T{)

in (4.6). The only non zero terms in (4.5) come from neighboring points (m, ) such that
m € T} and i € 8TN. For such points we have 3/N > 7 > —3 /N. Therefore
2
821\((¢) < N BNinf Fy(m)

—_
1
ZN

where the inf Fy(m) is computed for points m € My s.t. 3/N > m > —3/N. From
{3.13), we know that

. log N
mérsx;{vfn(m) > F(ma)-C N

(The same holds true for 87}") and therefore

NZ
gzlv(¢) < Z_le—ﬂNf(mo) NC
N

Using (2.17), we get that

S}V(tﬁ) S NC ANF(m1)=paSn o—BNF(mo)

—NCe—BNAF—BaSx (4.7)

We also have Gy (¢%) = 1 — zj/Z) > 1/2 provided that N, is chosen big enough (See

Proposition 2.1.
Therefore

LiV <Nce—ﬂNA7"-—ﬂa$)v
Lower bound for LY : by definition of the eigenfunction ¢, we have
LY = Ex(41)
Let vV = (2o, ..., 1) be the path defined before Lemma 3.2. We have

o ()P =1 68 (z:) — 67 (is1)?
i
<D 18N (zi) - Y (2ia1) P (Wi (23, 2041)) 26 B PR )+ Fntziga]
i
X 3 (Wnlas, iq1)) M2 PN Fn il (48)
< 223 El(gl )| J NN et T
< NCLN PNF(mo)=ANF(ma)+BaSw
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We used the results of Lemma 3.2 and Proposition 2.1. It only remains to note that,
provided that Np is chosen big enough, we have ¢ (m{) > 1/2. This follows from (2.40).
Upper bound for AY: AY is given by the variational principle:

N_: En(4) 49
A =il g i@ - Gn @] (49)
Choose as a trial function ¢(m) = /2% /25 L(m € T]) — /Z5[Z%U(m € T}). Then
Gn(¢) =0and
ZN +Z2

Gn(8®) = —2Gn(T) NTR)

1 1 K 3
>ZN_ZN+ZN-ZN >1_¢=ON

according to Proposition 2.1.
Using formula (4.4), we get that

—1 A ‘2“ — & inf 1 2 [Fn (m)+Fnulm)]
£ < 2N ___:! 2y & mETL M, -
N(¢)_Z (”Zz +VZ}V) € N FJ

Zn —E;![infmeu.:v }'N(m)+infme".;4 Fn(m))

< N©
2%

Using the results of Proposition 2.1 and Lemma 3.1, we therefore get that

AN < NCem#NAF+palSN]

Lower bound for AV : to use the same strategy to bound AY as we did for LY, we need some
estimates on the eigenfunction 1. This is the content of the next lemma: we choose for
%N the normalized eigenfunction corresponding to AY such that G N(ITN %) > 0. This
last condition uniquely determines %{¥, (When N is big enough, AY has multxphcn:y 1as
follows from our estimates of Al and Af))

Lemma 4.1 On the set |Sy| < 2¢/Nlog N, we have

1 z3

ol () -4zl < =C (4.10)
and

—l—log [l (md) + ﬁ| <-C (4.11)

N 1R zy' - )

20



This lemma will be proved later. We first proceed to the end of the proof of Theorem 2. 7.
Let 7 be the path defined in Lemma 3.2. Define similarly a path 7§ in T from my
to mo such that sup e,y Fn(z) < }'(mo) + Clog N/N Let vV be the path from m¥’ to
ml¥ obtained by gluing together ¥ and 4§, Say 4N = (2o, ...,z1). We therefore have

53 Fn(z) < F(mo) + cl°gN (4.12)
As in (4.8), we have
[y (mi) — 1 (mg)?
= |Z¢{V(Ii) — 4 (zis1)|?
< D18 (@) = 9l (e PN (i, 2ig)) 26 F PN+ Fwloaaa]
25( Nn(@i, wig1)) 2T 1PN @+ Fx (200)] (4.13)

< 2ZN5N(¢'fV)V %N"’e""’“"-a" Fula)

< NOAY ANF (ma)—pNF(m1)+0al SN

— NCA{VeﬂNA}'-l-ﬁﬂSN]

(From Lemma 4.1 and Proposition 2.1, we have

(Zn)? 1=V ZnZy ¢~2CNY2

"r”{v(ml )_‘I’{v(m )|2 = Zl Z2 ZN

> N—Ce2ﬂu|SN]

Therefore
A{V > N—Ce—ﬂNAT+ﬂa|SN|

Proofof Lemma 4.1: : the proof relies on Proposition 2.6 and the fact that ¢ converges
tol. Let 0 < a < @' < AF and ¢ = exp(e/GN). Define T as in Proposition 2.6. Clearly
T > e*?N for N big enough. From (2.32) applied with the function ¢(m) = I(m € TY),
we get that

Palm®(#) € T = Gn(T) — ¢ (m)Gn (Tl )e M < T (424
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In particular
N m)Gn(Ippl) < (e + Pulm™ (1) € TV'] - GN(TY))
<eMH(e™T +1-Gn(T))
< MY (e=T 4 gn(TF))

Z

N
< At -T
et f(e +-——Z

Taking into account that T > e*#¥, o’ < AF and the estimates (2.38) for A}’ and
Proposition 2.1, we obtain

2
W (mion (o) < 21+ 7%

In particular, integrating over Ty,

On(Irnol) < ——-—E-'ZZILZ(I + e~ CN) (4.15)
and
Zﬁ
ol (mi)Gn (T 9f') < ZR(1+e7N) (4.16)

;From (4.14), we also get that, for m € T},
$I (m)Gn Iz ol') 2 €M (=T + Pulm™ (1) € T] - Gn(TY))

> e T+P, [t >t - gN(T]N)
> ~2¢7T + ¢l (m)G(ed)e ™t — G (T)
= =267+ Y (m)Gh () )e Tt — 14+ Gn(T])

where we used (2.31). In particular

N(md)Gn(Tgnpl) 2 —2¢7T + ¢ (mI )G (1) — 14 Gn(TY)  (417)
and, integrating over T},

On(Lp~ #Y)

Ny, -LVt _ FN
gN(T]N) gIIV(¢1 )6 3 1+gN(T2 ))

gN(an'l’lN Y >Gn(TF)(—2¢~T +
(4.18)

1 ~ _
=GN(T) 26T + s Gh T — 1+ Gw(E})
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Use now (2.38) and (2.40), to deduce from (4.17) that

]

2
P (my )G (Tpn ) 2 ﬁ(l - e °F) (4.19)

Use (2.38) and (2.39), to deduce from (4.18) that

2
Gn(Lry bl )? > (T )g—:u _eCmy

But
ZN—ZN A
Ny _ €1 1 5 ZN(1_.—CN
On(T) = S 2 N1 eoN)
by Proposition 2.1. Therefore
VZLZ32
On(Ipwipl) > YED=N (1 g=CN) (4.20)

Zn

One can now solve equations (4.15) (4.16) (4.19) and (4.20) to conclude the proof of (4.10).
The proof for (4.11) is identical. m

Proof of Proposition 2.3: : for any continuous function ¢ bounded by 1, we have

\/gN(|E.[¢(mN(tN)] —Gn(B)2) < e Mt JG(P) < et AT (4.21)

Since, for any m € My, |Fn(m)| < C, we have, for any function 1, (m)? < eSNGn(y?).
From Theorem 2.7, we deduce that

A;V > e—ﬂNA.7"+ﬁu|SN|N—C

hence
ANty > NK-C

Therefore (4.21) implies that
|Em[é(mn(tn)] — Gn()| < e~V °

(2.25) follows by choosing K > C. =
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V. The averaged dynamics

We now turn to the proof of Theorem 2.4.
Proof of (2.26): : Let a € IR and ¢y = exp(BNAF + av/N). We have

Px[N"Y*(logry — BNAF) > a]
=L'mN [TN 2z tN]

=Powlry 2 tn] - g (mN)GL (M) B 1 (8N (mM)GH(4Y) — De i eI
Therefore

P [TN > tN]
=P .~ [rn 2 tn;|SN| 2 2¢/Nlog N)
+ Qg cp g Prbrn 2 8] = 81 (™ GH (81 )2 )

Ly N
+ Qg < /g W8T ()G (BY) — D+ QMo e ]
(5.1)
In (5.1), the first term tends to 0 since Q[|Sn| > 2¢/NTog N] < 2/N2. By Proposition 2.6,
the second term is bounded by exp(—T) with T = tn exp(-KvVNlog N)~Klog N = +oo.
Therefore the second term also tends to 0. ;From (2.39) and (2.40), it follows that the
third term is bounded by exp(—CXN) and therefore tends to 0. Thus

N
P,.~[rN 2 iN]— Q[IIISNE?\/Wg_NC Ly tN] -0
For any € > 0, write

—Lffx]

Qs <oy /Fieg Ve

- —-Ly

_Q[HISNISZ“/N‘OS NE ! w nawfﬁ—ﬂanS-—e\/N] (52)
LN L
+Q[“|Sn |<2/Niog N© W na\/ﬁ-p.sﬂge\/ﬁ]

LMt
VNI /R <avN-Basn <HeVR)

+Q[n|$u|52\/NlogNe—
Note that, from Theorem 2.7, on the set where |Sy| < 2/NTog N and aVvN - faSy <
~ey/N, we have |exp(—LNty) - 1| £ NCexp(—eVN) — 0. Therefore the first term
in (5.2) is close to Q[|Sn| < 2N TogN;av/N — faSy < —eV/N]. On the set where
ISn| € 2/NTog N and av'N — BaSy 2> eV/N we have LIty > N~Cexp(eV/N) - +oo.
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Therefore the second term in (5.2) converges to 0. The third term in (5.2) is bounded by
Q[—e\/lv <aVN - BaSy < +e\/]7]. Thus so far we have proved that

limsup |IP ,,n [w > tn] — Q[|Sn| < 24/Nlog N; oV N — faSy < —eV'N||
<limsupQ[-evV'N < aV/N — BaSy < +ev/N]

Apply the central limit theorem to Sy to deduce that
limsup [P o [ry > tv] — Q[BaN 2 a+ €]} < Qla— e < faN < a+¢ (5.3)
Since (5.3) holds for any € > 0, we also have
P~ [N > tn] = Q[BaN > ]
[ ]
Proof of (2.27): : let 0 < o' < AF and define s = exp(Ba’N) and
S = sexp(~KvVNlogN) — Klog N

where K is the constant in Proposition 2.6. Then § tends to +co and, from (2.38), we
have
Af’s < NCela'—am)AN+CVNlog N 50

on the set |Sy| < 2,/NTogN. ¢ being bounded by 1, we deduce from Proposition 2.6 that,
on the set [Sn| < 2¢/Nlog N, we have, for N > Ny,

e’ (m™)Gn (d97")] < © (5.4)

Proceeeding as in the proof of (2.26) and using (5.4), it is easy to see that
limsup [IE ~ [¢(mn(tN))] 55
. 5.5
— Qs /g (G3(8) + ¥ (MG (gl )e )] = 0

Using Theorem 2.7 and (5.4), we therefore have
lim sup | IE o [$(mn(EN))]
—Qlls, |2 /Nig W (gN(¢) + 97 (mN)Gn(dyl )113.|s~|+a\/1v5-¢m)]| (56)
<ClimsupQ[—eV'N < Ba|Sn| + aVN < eV/N]
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{From [8] formula (5.25), we know that, for almost all realization of k,
N (m™M)Gn(#9) +Gn(d) — (m1) = 0

Using the bounded convergence Lemma (which is justified by (5.4)), we deduce from (5.6)
that

limsup | I [$(mn(tn))]
— QIGn(®) + (é(my) — GN(¢))np.|sN|+m/ﬁs_ﬂ/ﬁ]| (5.7)
<Climsup Q[-eVN < Ba|Sn| + aVN < eVN)

Let An be the set BalSn| + av'N < —e/N. yFrom Proposition 2.1, we have
QISn($)Tay] — $(m1)QlanTay] - $(m2)Q[(1 — an)Lay] -0

By symmetry
QlanTan] = Q1 - an)la] = 3QAn]
Therefore

QUGN () Tyujsysavig—evl = 5(80m) + $(m2))QlBalSn| + oV < V] +0
Use now the central limit theorem for Sy to conclude that
lim 5up | IE o [$(m (2]
= (%(qs(ml) +9(m) + 5(#(m) — fm)QUaV| < —a= )| (9)

S Q-e—a<faN|< —a+¢

And since (5.8) is true for all € > 0, we have

[l (tn))] = 5(#(m1) + $(ma) + 3($m) - $(ma))QIBaN] < —a]
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