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Abstract

This paper addresses a question posed by Carmen Chicone and proves that an analytic vector field with a 
non-degenerate global center can be transformed into a classical Newtonian equation ẍ = −V ′(x).

Additionally, we establish a global Poincaré normal form for planar centers. We also demonstrate the 
global analytic integrability of the equation ẍ = F(u, u̇), where F(u, v) = F(u, −v), under some additional 
conditions.
© 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and 
similar technologies.

1. Introduction

In this paper we give an answer to the following question in the last paragraph of [4]:
If the differential equation

u̇ = P(u, v)

v̇ = Q(u,v)
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has a center at the origin surrounded by a region R consisting of periodic orbits, when is there 
a change of coordinates defined on R such that in the new coordinates the differential equation 
is in Hamiltonian form with Hamiltonian

H(x,y) = y2

2
+ V (x) ?

The region R is termed as the period annulus of the center. A center is non-degenerate if the 
vector field’s linearization at equilibrium has a non-zero determinant. We always assume that the 
center is located at the origin. Theorems 1.1 and 1.2 provide an answer to Chicone’s question 
when the center is non-degenerate.

Theorem 1.1. Suppose the real analytic vector field X(u, v) = P(u, v)∂u +Q(u, v)∂v has a non-
degenerate center. For a periodic orbit γ in the center’s period annulus, let Dγ denote the open 
disk bounded by γ . There exists an analytic change of variables �(u, v) = (x, y) for (u, v) ∈ Dγ , 
so that in the new variables, X(x, y) = y∂x − V ′(x)∂y .

Theorem 1.2. Suppose that X(u, v) (real analytic) has a non-degenerate global center, meaning 
the period annulus is R2 − (0, 0). An analytic diffeomorphism exists,

� : R2 → (−a, a) ×R with 0 < a ≤ ∞ and �(u,v) = (x, y),

so that in the new variables,

X(x,y) = y∂x − V ′(x)∂y.

Before proving Theorems 1.1 and 1.2, we establish an auxiliary theorem of interest: a global 
version of Poincaré’s local normal form [20].

Theorem 1.3 (Global Poincaré normal form). Assume that the real analytic vector field 
X(u, v) = P(u, v)∂u + Q(u, v)∂v has a non-degenerate center. An analytic change of vari-
ables exists from the period annulus to a disk such that in the new variables, X(q, p) =
�
( q2+p2

2

)(
p∂q − q∂q

)
, with � > 0. If the period annulus is R2 − (0, 0), the change of vari-

ables is from R2 to R2.

We could not locate a written proof of this theorem, although it is an anticipated result, and a 
proof might already exist. If the vector field X is expressed in Hamiltonian form, which is possi-
ble after identifying a global integrating factor, then the theorem results from the construction of 
“action-angle variables” (see [8], Section 6).

Consider the second-order equation

ü = F(u, u̇), where F(u, v) = F(u,−v),

and F : R2 → R is analytic. F can be expressed as F(u, v) = f (u, v2/2), where f : R2 → R
(see [11], Theorem 6.1.3). Consider the following system of ordinary differential equations:
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u̇ = v,

v̇ = f (u, v2/2), (1.1)

and the associated vector field

X(u,v) = v∂u + f (u, v2/2)∂v. (1.2)

Dividing the two components of X yields

v̇

u̇
= f (u, v2/2)

v
⇒ dv2/2

du
= f (u, v2/2),

which leads to the definition of another vector field

W(u, z) = ∂u + f (u, z)∂z, (1.3)

where z ∈R replaces the variable v2/2.
The flow of W is complete if all solutions of the corresponding differential equation are de-

fined for all t ∈ R. The following theorem, which is a minor extension of Theorem 1.1 in [21], is 
presented:

Theorem 1.4. Let X(u, v) = v∂u + f (u, v2/2)∂u be an analytic vector field. Assuming that 
the flow of W(u, z) = ∂u + f (u, z)∂z is complete, there exists an analytic change of variables 
�(u, v) = (u, p) onto R2 such that in the new variables:

X(u,p) = a(u,p)
(
p∂u − G′(u)∂p

)
, with a(u,−p) = a(u,p). (1.4)

Theorem 1.4 asserts that, barring time parameterization, the vector field X is equivalent to the 
same type of vector field p∂u − G′(u)∂p as presented in Theorem 1.2.

These findings build on a substantial body of prior work. The following references are recom-
mended for further reading. For results on global centers for polynomial systems, see [14] and 
references therein. For the relationship between non-degenerate centers and reversibility, refer to 
[26] and for degenerate centers and reversibility, see [9]. For the intricate relationship between 
degenerate centers and analytic integrability, consult [3] and references therein. For isochronous 
centers, see [16], [2], and references therein. For the period function and its relation to partial 
differential equations, refer to [25], and for the variation of the period function, see [24] and 
references therein. Some of the questions examined in this paper are also explored in the Ph.D. 
Thesis (in Portuguese) of one of the authors (FJSN) using different mathematical tools, particu-
larly a theorem in [10]. The thesis contains many examples but the transformations of variables 
between the several vector fields are less regular than here.

The organization of this paper is as follows:
In Section 2, we provide a proof for Theorem 1.3.
In Section 3, we present a proof for Theorem 1.2.
Most of the mathematical concepts utilized in this paper are standard, with the exception of 

the part extending from Proposition 3.1 to the end of Section 3. This section is dedicated to the 
construction of a diffeomorphism that displaces the periodic orbits of the vector field X, which 
is our key idea. The principal contribution of this paper is Theorem 1.2.
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In Section 4, we sketch the proof of Theorem 1.4. The proof resembles that of Theorem 1.1 
in [21], thus we only highlight some points pertaining to the analyticity and the domain of the 
transformation of variables.

Section 5 concludes the paper, where we discuss the motivations for Ragazzo [21] and propose 
questions.

2. Proof of Theorem 1.3

We will prove Theorem 1.3 in the case where the period annulus is R2 − (0, 0). The proof for 
other cases is essentially the same.

After a linear change of variables, we can assume that

X(u,v) = P(u, v)∂u + Q(u,v)∂v = (
ωv + . . .

)
∂u − (ωu + . . .

)
∂v , (2.5)

where ω > 0 and the dots represent terms of quadratic order.

We denote the flow operator of the vector field X as φt (u, v) =
(
φ1t (u, v), φ2t (u, v)

)
. The 

functions φ1 and φ2 are analytic for all variables (t, u, v).
Let T (u, v) represent the period of the orbit that begins at (u, v) ∈R2 − (0, 0). We extend the 

period function to the origin defining T (0, 0) = 2π/ω. As a consequence of a Theorem due to 
Poincaré [20], this extension is analytic everywhere (see also [27], Proposition 3.1). Note that T
is a first integral of X.

We denote I (u, v) as the Euclidean area inside the periodic orbit that begins at (u, v), i.e.,

I (u, v) = 1

2π

∮
udv = − 1

2π

T (u,v)∫
0

φ1t (u, v)Q
(
φ1t (u, v),φ2t (u, v)

)
dt . (2.6)

The negative sign in front of the integral results from the clockwise orientation of the periodic 
orbits, which opposes the usual orientation of the boundary of a disk. Given the analyticity of 
the functions used in the definition of I , I is also analytic on R2. As the orbits of X are almost 
circular near the origin, we obtain

I (u, v) = u2 + v2

2
+ higher order terms. (2.7)

Note that I is not the “action variable” Arnol’d [1] associated with the vector field X, because in 
general, d

(
ιXdu ∧dv

)
is not zero, i.e., there is no Hamiltonian function H such that ιXdu ∧dv =

dH . However, the area function I is a first integral of X.
Let Y(u, v) = ∇I = (∂uI )∂u + (∂vI )∂v be the Euclidean gradient vector field of I . Each 

integral curve of Y is asymptotic to the origin as t → −∞, and intersects each periodic orbit of X
exactly once. Furthermore, there always exist regular analytic curves through the origin such that 
each open half-branch of the curve is a gradient trajectory. This holds even when the equilibrium 
is degenerate [19]. After applying a rigid rotation to the coordinates (u, v), any integral curve of 
Y close to the origin can be described by a graph u → v tangent to the u-axis:

u → v = h(u) = a0u
k + a1u

k+1 . . . = ukχ(u) , 2 ≤ k ≤ ∞ , (2.8)
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where χ(u) = a0 + a3u + . . . is analytic.
We denote by γ+ the curve given by the trajectory of Y , for t ∈ (−∞, ∞), that starts at 

(u, h(u)) with u > 0. Similarly, we define γ− as the trajectory that starts at (u, h(u)) with u < 0. 
We denote γ = γ− ∪ (0, 0) ∪ γ+ as the analytic arc that extends infinitely in both directions.

Proposition 2.1. The curve γ = γ− ∪ (0, 0) ∪ γ+ can be parameterized by an analytic function 
β : (−∞, ∞) → R2 such that: β(0) = (0, 0), β̇(0) = (1, 0), and

I ◦ β(r) = r2

2
. (2.9)

Let γ (r) be the periodic orbit corresponding to the parameter r . The definition of I in equa-
tion (2.6) implies

I ◦ β(r) = 1

2π

∫
Dγ (r)

du ∧ dv = r2

2
⇒

∫
Dγ (r)

du ∧ dv = πr2 . (2.10)

Therefore, r is the radius of a circular disk with the same area as the topological disk bounded 
by the periodic orbit γ (r).

Proof. To prove this proposition, we rescale the vector field Y restricted to γ as follows:

Y (u, v) =
⎧⎨
⎩

√
2I ∇I

|∇I |2 if (u, v) ∈ γ+
−√

2I ∇I
|∇I |2 if (u, v) ∈ γ−

(2.11)

We denote by r the parameter of the integral curves of Y . On γ+,

d

dr

√
2I =

d
dr

I√
2I

= ∇I · Y√
2I

= 1 (2.12)

and on γ−, d
dr

√
2I = −1.

The vector field Y in the coordinates u determined by the graph u → v in equation (2.8) is 
given by du

dr
∂u with

d

dr
u = u

|u|
√

2I (u, v)
∂uI (u, v)

|∇I (u, v)|2
∣∣∣
v=ukχ(u)

, for u �= 0 small. (2.13)

Using that k ≥ 2 and I (u, v) = u2+v2

2 + . . . > 0 for u �= 0, we obtain

I (u,ukχ(u)) = u2

2

(
1 + R1(u)

)
, |∇I (u,ukχ(u))|2 = u2(1 + R2(u)

)
,

and ∂uI (u,ukχ(u)) = u
(
1 + R3(u)

)
,

where R1, R2, and R3 are analytic functions of order O(|u|). The substitution of these relations 
into equation (2.13) gives
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Fig. 1. The elements used in the construction of the curve α(r).

du

dr
= 1 + R3(u)

1 + R2(u)

√(
1 + R1(u)

)
. (2.14)

Therefore, the vector field Y on γ extends analytically to u = 0 with the value u̇ = 1. If 
β : R → R2 is the solution to β̇ = Y ◦ β with β(0) = (0, 0), then β̇(0) = (1, 0) and equation 
(2.12) implies I ◦ β(r) = r2/2, as we aimed to demonstrate. �

Let T ◦ β(r) represent the period of the orbit of X(u, v) through β(r). The function T ◦ β is 
even because T is constant on the level sets of I and I ◦ β(r) = r2

2 . As T ◦ β(r) is analytic, we 
can define an analytic function τ such that

τ(r) := T ◦ β(r). (2.15)

Theorem 1.3 follows from the following lemma:

Lemma 2.1. An analytic change of variables �(u, v) = (q, p) exists that transforms X(u, v) =
P(u, v)∂u + Q(u, v)∂v into �

( q2+p2

2

)(
p∂q − q∂p

)
, where �

( q2+p2

2

) := 2π/τ
( q2+p2

2

)
.

Proof. Let φt and ψt be the flow functions of the vector fields X(u, v) and �
( q2+p2

2

)(
p∂q −

q∂p

)
, respectively. Let ν(r) > 0, r �= 0, be the time to transition from β(r) to β(−r), namely 

φν(r) ◦ β(r) = β(−r), with ν(r) + ν(−r) = τ(r), see Fig. 1. We define

δ(r) :=
τ(r)

2 − ν(r)

2
= ν(−r) − ν(r)

4
. (2.16)

As ν is analytic for r �= 0, δ(r) is also analytic for r �= 0. The function δ(r) = −δ(−r) is odd and 
|δ(r)| < τ(r)

4 .
Let α : R →R2 be the curve on the (q, p)-plane, given by (see Fig. 1):

(
q(r),p(r)

)= α(r) := ψδ(r)(r,0). (2.17)

This curve is analytic for r �= 0.
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Fig. 2. Construction of βR .

Considering the flow expression

ψt(q,p) =
[

cos(�t) sin(�t)

− sin(�t) cos(�t)

][
q

p

]
, � = �

(
q2 + p2

2

)
, (2.18)

and the properties of δ(r), we have:

q(r) = −q(−r), p(r) = p(−r), and
q2(r) + p2(r)

2
= r2

2
. � (2.19)

We begin the construction of � by imposing

� ◦ β(r) := α(r) . (2.20)

To extend this definition to the plane, we define PβR as {(u, v) ∈ R2} − {β(r) : r ≤ 0} and 
PβL as {(u, v) ∈ R2} − {β(r) : r ≥ 0}.

For a specific point (u, v) in PβR , we determine tR(u, v) as the value of time at which 
φtR (u, v) = β(r+), r+ > 0, and φt (u, v) ∈ PβR for all t ∈ (0, tR) (see Fig. 2). Note that 
tR : PβR → R is Cω and

−ν(r+) < tR(u, v) < ν(−r+) . (2.21)

Similarly, for a specific point (u, v) in PβL, we determine tL(u, v) as the value of time at 
which φtL(u, v) = β(r−), r− < 0, and φt (u, v) ∈ PβL for all t ∈ (0, tL) (see Fig. 3). Note that 
tL : PβL →R is Cω and

−ν(r−) < tL(u, v) < ν(−r−) . (2.22)

We then define the analytic map βR : PR → R2 as (see Fig. 2)

(q,p) = βR(u, v) := ψ−tR(u,v) ◦ � ◦ φtR(u,v)(u, v) . (2.23)

The definition of α(r) implies that ψt ◦ α(r) �= α(−r) for all −ν(−r+) < t < ν(r+). Given 
this, and considering equation (2.21), we can infer that βR(u, v) does not intersect the curve 
{α(r) : r ≤ 0} for any value of (u, v) ∈ PβL. By defining PαR as {(q, p) ∈ R2} − {α(r) : r ≤ 0}, 
we can conclude that βR : PβR → PαR .
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Fig. 3. Construction of βL .

To construct the inverse of βR , we let (q, p) ∈ PαR and denote t̃R(q, p) as the time value for 
which ψt̃R

(q, p) = α(r+), r+ > 0, and ψt(q, p) ∈ PαR for all t ∈ (0, ̃tR). Given that tR(u, v) =
t̃R ◦ βR(u, v), we derive:

φ−t̃R◦βR(u,v) ◦ �−1 ◦ ψt̃R◦βR(u,v) ◦ βR(u, v) = (u, v) ,

implying that β−1
R (q, p) = φ−t̃R(q,p) ◦ �−1 ◦ ψt̃R(q,p)(q, p).

Given that both βR and its inverse are combinations of analytic functions, we can conclude 
that βR : PR → PR is an analytic diffeomorphism.

For a specific point (u, v) in PβL, we define tL(u, v) as the time value such that φtL(u, v) =
β(r−), r− < 0, and φt (u, v) ∈ PβL for all t ∈ (0, tL). We then define PαL as {(q, p) ∈ R2} −
{α(r) : r ≥ 0} and similarly establish the analytic diffeomorphism βL : PβL → PαL as depicted 
in Fig. 3:

(q,p) = βL(w,p) := ψ−tL(u,v) ◦ � ◦ φtL(u,v)(u, v) .

We claim that the two mappings βR and βL agree in PβL ∩ PβR . Indeed, if (u, v) is a point 
where tR(u, v) > 0, then tR(u, v) − tL(u, v) = ν(−r+) = ν(r−), and we deduce that:

βR(u, v) = ψ−tR(u,v) ◦ � ◦ φtR(u,v)(u, v)

= ψ−tL(u,v) ◦ ψ−ν(r−) ◦ � ◦ φν(r−) ◦ φtL(u,v)(u, v)

= ψ−tL(u,v) ◦ � ◦ φtL(u,v)(u, v) = βL(u, v) .

The same reasoning applies to a point (u, v) with tR(u, v) < 0, verifying that βR and βL coincide 
in PβL ∩ PβR .

We define the global homeomorphism � onto R2 as follows:

�(u,v) =
⎧⎨
⎩

βR(u, v) if (u, v) ∈ PβR

βL(u, v) if (u, v) ∈ PβL

(0,0) if (u, v) = (0,0) .

This is the aimed extension of � from the curve β , as given in equation (2.20), to the whole 
plane.
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Fig. 4. In general r �= r1, which shows that � �= �1.

For (u, p) ∈ PβR and sufficiently small times t , tR ◦ φt (u, v) = tR(w, p) − t and we have

βR ◦ φt (u, v) = ψ−tR◦φt (u,v) ◦ φtR◦φt (u,v) ◦ φt (u, v) = ψt−tR(u,v) ◦ φtR (u, v) = ψt ◦ βR .

The same is valid in PβL. This leads to the following equation:

�

(
q2 + p2

2

)(
p∂q − q∂p

)= (D�)X ◦ �−1 ,

which is applicable on R2 − (0, 0).
Our next step is to demonstrate the analyticity of � at the origin. A theorem by Poincaré 

[20] and Liapounoff [13], see e.g. Manosas and Villadelprat [15], asserts that there exists an 
analytic change of variables (q1, p1) = �1(u, v), defined near the origin, that transforms φt into 
the normal form:

φ1t (q1,p1) =
[

cos(�1t) sin(�1t)

− sin(�1t) cos(�1t)

] [
q1
p1

]
, (2.24)

where �1 = �1(
q2

1 +p2
1

2

)
. Generally, �1 does not coincide with � (see Fig. 4). We will subse-

quently show that if �1 �= �, it is possible to transform �1 into another normalizer that matches 
�.

The function 
q2

1+p2
1

2 ◦ �1 ◦ β(r) is even because I ◦ β(r) = r2/2, and �1 maps level sets of 

I into level sets of 
q2

1+p2
1

2 . Therefore, there exists an analytic function ξ̃ such that 
q2

1 +p2
1

2 ◦ �1 ◦
β(r) = ξ̃ (r2/2). As ξ̃ (0) = 0, ξ̃ (r2/2) > 0 for r �= 0, and D�1 is non-singular at the origin, there 

exists an analytic function ξ near zero such that 
q2

1+p2
1

2 ◦�1 ◦β(r) = r2

2 ξ(r2/2) and ξ(r2/2) > 0.

Equation (2.19) implies that q2+p2

2 ◦ � ◦ β(r) = r2

2 . If r2

2 ξ(r2/2) �= r2/2, then �1 cannot 
coincide with � near zero.
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We start by defining a change of variables as follows:

h1(q2,p2) =
[

q1
p1

]
=
(

ξ

(
q2

2 + p2
2

2

))1/2 [
q2
p2

]
(2.25)

This change leaves the Poincaré normal form (2.24) invariant, resulting in:

φ2t (q2,p2) := h−1
1 ◦ φ1t ◦ h1(q2,p2) =

[
cos(�2t) sin(�2t)

− sin(�2t) cos(�2t)

] [
q2
p2

]
, (2.26)

where �2 = �2

(
q2

2 +p2
2

2

)
is analytic. Equation (2.25) implies

q2
1 + p2

1

2
=
(

ξ

(
q2

2 + p2
2

2

)
q2

2 + p2
2

2

)
◦ h−1(q1,p1) (2.27)

We then define the local change of variables �2(u, v) = (q2, p2) by �2 = h−1
1 ◦ �1. With 

these variables, the flow φt is presented in equation (2.26).
The curve β in the new coordinates is

(
q2(r),p2(r)

)= �2 ◦ β(r) = h−1
1 ◦ �1 ◦ β(r). (2.28)

Equation (2.27) then leads to

q2
2 (r) + p2

2(r)

2
ξ

(
q2

2 (r) + p2
2(r)

2

)
=
(

q2
2 + p2

2

2
ξ

(
q2

2 + p2
2

2

))
◦ h−1

1 ◦ �1 ◦ β(r)

= q2
1 + p2

1

2
◦ �1 ◦ β(r) = r2

2
ξ(r2/2) .

Because r → r2

2 ξ(r2/2) increases for r > 0, we get

q2
2 (r) + p2

2(r)

2
= q2

2 + p2
2

2
◦ �2 ◦ β(r) = r2

2
. (2.29)

So, � and �2 map the periodic orbit γ (r), starting at β(r), to circles of radius r in the 
(q, p) and (q2, p2) planes, respectively (see Fig. 5). Therefore, �2

(
r2/2

) = � 
(
r2/2

)
, making 

the expressions of φ2t and ψt identical.
Even though α2(r) :=

(
q2(r), p2(r)

) = �2 ◦ β(r) shares with α(r) the same property ex-
pressed in equation (2.29), these two curves are generally different (see Fig. 6).

Equation (2.29) implies

d2

2

q2
2 (r) + p2

2(r)
∣∣∣∣ = q̇2

2 (0) + ṗ2
2(0) = 1
dr 2 r=0
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Fig. 5. h−1
1 maps a circle of radius r1 to a circle of radius r , such that �2 = h−1

1 ◦ �1 maps a circle of radius r onto a 
circle of radius r .

Fig. 6. In general the curves r → α(r) = � ◦ β(r) and r → α2(r) = �2 ◦ β(r) do not coincide, which implies � �= �2.

Thus, by using a rigid rotation of the coordinate system (q2, p2), we can always make 
d
dr

α2(r)
∣∣
r=0 = (1, 0). We will assume that this is the case.

Define

θ(r) = arctan

(
p2(r)

q2(r)

)

as the angle that the point 
(
q2(r), p2(r)

)
makes with the horizontal axis. This function θ(r) is 

analytic in a neighborhood of the origin, and θ(0) = 0.
We decompose θ(r) into even and odd parts

θ(r) = θ(r) + θ(−r)

2︸ ︷︷ ︸
θe(r2/2)

+ θ(r) − θ(−r)

2︸ ︷︷ ︸
θo(r)

.

Both θe and θo are analytic.
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Fig. 7. The function h2 was defined to eliminate the discrepancy observed in Fig. 6 between curves α and α2, i.e., 
α3 = h−1

2 ◦ α2 results in α3 = α.

Next, we define an analytic change of coordinates

h2(q3,p3) =
[

q2
p2

]
=
[

cos θe − sin θe

sin θe cos θe

] [
q3
p3

]
, (2.30)

where θe = θe

( q2
3 +p2

3
2

)
. Since 

q2
3 +p2

3
2 = q2

2 +p2
2

2 , the map h2 commutes with the flow operator φ2t =
ψt .

Define the change of variables (q3, p3) = �3(u, v) = h−1
2 ◦ �2(u, v) for (u, v) in a neighbor-

hood of the origin. �3 is analytic. In the new variables, the flow operator is represented by ψt

and 
q2

3 +p2
3

2 ◦ �3 ◦ β(r) = r2

2 .

Let 
(
q3(r), p3(r)

)= α3(r) := �3 ◦ β(r) = h−1
2 ◦ α2(r). Using that

[
q2(r)

p2(r)

]
=
[

cos θ(r) − sin θ(r)

sin θ(r) cos θ(r)

] [
r

0

]
⇒ q2

2 (r) + p2
2(r)

2
= r2

2

and [
q3(r)

p3(r)

]
= h−1

2

(
q2(r),p2(r)

)=
[

cos θe(r
2/2) sin θe(r

2/2)

− sin θe(r
2/2) cos θe(r

2/2)

] [
q2(r)

p2(r)

]

=
[

cos
(
θ(r) − θe(r

2/2)
) − sin

(
θ(r) − θe(r

2/2)
)

sin
(
θ(r) − θe(r

2/2)
)

cos
(
θ(r) − θe(r

2/2)
) ] [r

0

]

=
[

cos
(
θo(r)

) − sin
(
θo(r)

)
sin
(
θo(r)

)
cos

(
θo(r)

) ] [r

0

]
= r

[
cos

(
θo(r)

)
sin
(
θo(r)

) ] ,

we find

q3(r) = −q3(−r) and p3(r) = p3(−r) . (2.31)

Therefore, α3(r) satisfies the same properties (2.19) as α(r). Since in the coordinates (q3, p3)

the flow φt is given by ψt , the definitions of ν(r), and equations (2.16) and (2.17) imply that 
α3(r) = α(r) (see Fig. 7) after the identification (q3, p3) = (q2, p2).
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Finally, the identity �3 ◦ φt ◦ �−1
3 = ψt = � ◦ φt ◦ �−1 and the definition of � restricted to 

PR in equation (2.23) imply that �3 = � in a neighborhood of the origin. Since �3 is analytic, 
� is analytic at the origin. �
3. Proofs of Theorems 1.1 and 1.2

The proof of Theorem 1.1 is similar to, and easier than, that of Theorem 1.2. In the following, 
we present only the proof of Theorem 1.2.

Consider a Hamiltonian system with Hamiltonian function H = (y2 + ρ2)/2 and symplectic 
form σ = �(ρ)dρ ∧ dy. Let X� = 1

�(ρ)

(
y∂ρ − ρ∂y

)
denote the vector field associated with H

and σ . Given that �(ρ)ρ̇ = y and, for an orbit with energy H = η, y = ±√2η − ρ2, the period 
of the orbit is

T�(η) = 2

√
2η∫

−√
2η

�(ρ̃)√
2η − ρ̃2

dρ̃ = 4

√
2η∫

0

�(ρ̃)√
2η − ρ̃2

dρ̃ . (3.32)

Multiplying both sides of this equation by 1/
√

2(E − η) and integrating over η from zero to E, 
then changing the order of integration in the double integral (first integrating on η), and using the 

fact that 
E∫

ρ̃2/2

[(E − η)(η − ρ̃2/2)]−1/2dη = π , we obtain

√
2E∫

0

�(ρ̃)dρ̃ = 1

2π

E∫
0

T�(η)√
2(E − η)

dη . (3.33)

Equation (3.32), where � is unknown, is referred to as the Abel equation in honor of N. H. Abel, 
who solved it in 1823.

Given that H = (y2 + ρ2)/2, the periodic orbits in the plane (ρ, y) are circular. In this case, 
the parameter r defined in Proposition 2.1 is the radius of an orbit and η = r2/2. The function 
τ = τ� that appears in Proposition 2.1 satisfies

τ�(r) = T�(r2/2) . (3.34)

Substituting ρ = √
2E and η = s2/2 into equation (3.33), we derive

ρ∫
0

�(ρ̃)dρ̃ = 1

2π

ρ∫
0

T�(s2/2)s√
ρ2 − s2

ds = 1

2π

ρ∫
0

τ�(s)s√
ρ2 − s2

ds . (3.35)

As in [25] (equation 4-2-11), we change variables to s = ρ sin θ , yielding

ρ∫
�(ρ̃)dρ̃ = 1

2π

π/2∫ (
sτ�(s)

)
s=ρ sin θ

dθ . (3.36)
0 0
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Differentiating equation (3.36) with respect to ρ, we obtain

�(ρ) = 1

2π

π/2∫
0

(
sτ�(s)

)′
s=ρ sin θ

sin θdθ

= 1

2π

π/2∫
0

(
τ�(s) + sτ ′

�(s)
)

s=ρ sin θ
sin θdθ .

(3.37)

The proof of Theorem 1.2 is essentially elucidated in the following two paragraphs.
Given a vector field X(u, v) with a non-degenerate global center, an analytic change of vari-

ables �(u, v) = (q, p) exists that transforms it into the Poincaré normal form according to Theo-
rem 1.3. Associated with this normal form is a period function τ(r) := 2π/�

(
r2/2

)
. Initially, we 

assume τ ′ ≥ 0. Under this assumption, we impose τ�(r) = τ(r). Consequently, equation (3.37)
yields �(ρ) = �(−ρ) > 0 for all ρ ≥ 0. Theorem 1.3, with β(r) = (r, 0) = (ρ, y), implies the 
existence of an analytic change of variables �� that transforms X� into the same normal form 
as X. Therefore, (y, ρ) = �−1

ψ ◦�(u, v) is an analytic change of variables that transforms X into 
X�.

Subsequently, we define a new variable:

x = λ(ρ) =
ρ∫

0

�(ρ̃)dρ̃ , with x ∈ (−a, a) , (3.38)

where:

a =
∞∫

0

�(ρ̃)dρ̃ , possibly a = ∞. (3.39)

The map (x, y) = �λ(ρ, y) := (
λ(ρ), y

)
is an analytic diffeomorphism from R2 to (−a, a) ×R. 

In these new variables, σ = dx ∧ dy and H = y2

2 + V (x), where V (x) = (
λ−1(x)

)2
/2. The 

change of variables � = �λ ◦ �−1
ψ ◦ � is as stated in Theorem 1.2.

The above proof is incomplete due to the additional hypothesis τ ′ ≥ 0. If τ ′(r) < 0 for certain 
values of r and we maintain τ� = τ , then �(ρ) can become negative. To overcome this, we 
utilize the fact that the Poincaré normal form is not unique and τ(r) can be altered through a 
change of variables as in equation (2.25).

Proposition 3.1. Let ζ : R → (−r, r), 0 < r ≤ ∞, be an analytic diffeomorphism of the form:

s = ζ(r) = rb
(
r2/2

)
,

where b is an analytic function. Then, there exists an analytic diffeomorphism �ζ : R2 → Dr , 
where Dr is the open disk of radius r , that transforms the vector field X = 2π

/
τ
(√

q2 + p2
)(

p∂q
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− q∂q

)
into X̃ = 2π

/
τ̃
(√

q̃2 + p̃2
)(

p̃∂q̃ − q̃∂q̃

)
, i.e. �ζ preserves the Poincaré normal form, 

such that:

τ(r) = τ̃
(
ζ(r)

)
. (3.40)

Proof. Consider the analytic diffeomorphism defined as follows:

[
q

p

]
→ b

(
p2 + q2

2

)[
q

p

]
=
[

q̃

p̃

]
⇒

√
q̃2 + p̃2 =

√
q2 + p2 b

(
p2 + q2

2

)
= ζ

(√
p2 + q2

)
.

(3.41)

The transformation from variables (q, p) to (q̃, p̃) is analytic and changes the vector field 
X(q, p) into X̃(q̃, p̃). �

If τ ′ is not positive, we then enforce τ� to adopt the following form:

τ�(s) := τ ◦ ζ−1(s) .

Here, ζ represents an analytic diffeomorphism that awaits construction. We necessitate that ζ
satisfies the following:

0 <
d

ds

(
sτ�(s)

)= d

ds

(
sτ ◦ ζ−1(s)

)
= d

ds

(
ζ(r)τ (r)

)
r=ζ−1(s)

= d

dr

(
ζ(r)τ (r)

)∣∣∣∣
r=ζ−1(s)

d

ds
ζ−1(s) ,

(3.42)

s > 0. This is equivalent to the following:

d

dr

(
ζ(r)τ (r)

)
> 0 , r > 0 .

By defining

A(r) := ζ(r)τ (r) =⇒ ζ(r) = A(r)

τ(r)
, (3.43)

we are able to recast the four conditions:

ζ(r) = −ζ(−r), ζ(r) ≥ 0, ζ ′(r) > 0, and
d

dr

(
ζ(r)τ (r)

)
> 0,

for r > 0, in the following manner:

A(r) = −A(−r), A(r) ≥ 0, A′(r)τ (r) − A(r)τ ′(r) > 0, and A′(r) > 0. (3.44)
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To fulfill the four conditions, we impose the following:

A′(r)τ (r) − A(r)τ ′(r) = M(r)A(r) + τ(r), (3.45)

where M : R → R is an analytic function satisfying the below conditions for r > 0:

M(r) = −M(−r), M(r) > 0, and τ ′(r) > −M(r). (3.46)

Here, −M(r) is a lower bound of τ ′(r).
If we can find a function M that meets the required properties and a solution to equation 

(3.45) with A(0) = 0 and A(r) > 0 for r > 0, then the right-hand side of equation (3.45) will be 
positive. Subsequently,

A′(r)τ (r) = (
M(r) + τ ′(r)

)
A(r) + τ(r) > 0, (3.47)

since M(r) + τ ′(r) ≥ 0.
The solution to equation (3.45) with A(0) = 0 is given as:

A(r) = τ(r)

r∫
0

exp
(∫ r

ξ
M(η)
τ(η)

dη
)

τ(ξ)
dξ > 0 , (3.48)

for r > 0. Utilizing the fact that M is odd, we find that A is also odd.
In the following Proposition, which adapts Theorem 2 in [12], we construct a function M that 

possesses the properties (3.46).

Proposition 3.2. Let m(r) = sup0≤η≤r |τ ′(r)|. There exists an entire function M(z), z ∈ C, with 
nonnegative coefficients such that

M(r) > m(r) ≥ |τ ′(r)| for all r > 0

and M(−z) = −M(z).

Proof. Since τ ′(0) = 0 and τ ′ is analytic, there exists a constant c > 0 such that m(r) < cr for 
0 < r ≤ 2.

Consider {λk}, an increasing sequence of positive odd integers such that for every positive 
integer k, we have

(
k + 1

k

)λk

> m(k + 2).

We then define

M(z) = cz +
∞∑( z

k

)λk

,

k=1
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which is an entire function that satisfies M(−z) = −M(z). For r > 2, let j be the integer such 
that j + 1 ≤ r < j + 2. Then

M(r) >

(
r

j

)λj

≥
(

j + 1

j

)λj

> m(j + 2) > m(r),

while for 0 < r ≤ 2, M(r) > cr > m(r). �
We still need to demonstrate that limr→∞ ζ(r) = ∞ to ensure that �ζ in Proposition 3.1 maps 

R2 onto R2.
Equations (3.43) and (3.48) lead to

ζ(r) = A(r)

τ(r)
=

r∫
0

exp
(∫ r

ξ
M(η)
τ(η)

dη
)

τ(ξ)
dξ >

r∫
0

1

τ(ξ)
dξ,

for r > 0. If 
∞∫
0

1
τ(ξ)

dξ = ∞, then limr→∞ ζ(r) = ∞.

Otherwise, if 
∞∫
0

1
τ(ξ)

dξ = c < ∞, there must exist a sequence r1 < r2 < . . . with limk→∞ rk =
∞ such that τ(r1) < τ(r2) < . . . and limk→∞ τ(rk) = ∞. From equations (3.43) and (3.45), we 
infer

d

dr
ζ(r) = M(r)

τ(r)
ζ(r) + 1

τ(r)
> 0.

Upon integrating and using the fact that ζ(r) is increasing, we deduce

ζ(r) =
r∫

0

M(s)

τ(s)
ζ(s)ds +

r∫
0

1

τ(s)
ds >

r∫
0

M(s)

τ(s)
ζ(s)ds

=
1∫

0

M(s)

τ(s)
ζ(s)ds +

r∫
1

M(s)

τ(s)
ζ(s)ds > ζ(1)

r∫
1

M(s)

τ(s)
ds.

In this last integral, by using M(r) > τ ′(r), we find

ζ(rk) > ζ(1)

rk∫
1

M(s)

τ(s)
ds > ζ(1)

rk∫
1

τ ′(s)
τ (s)

ds = log
τ(rk)

τ (1)
,

which implies limrk→∞ ζ(rk) = limr→∞ ζ(r) = ∞ as ζ ′(r) > 0.
The remainder of the proof aligns with the case when τ ′ ≥ 0.
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Fig. 8. Construction of h.

4. Proof of Theorem 1.4

Consider the vector field W(u, z) = ∂u +f (u, z)∂z, as defined in Equation (1.3). If the flow of 
W is complete, an integral curve of W passes through every point (u, z), intersecting the z-axis 
exactly once at a value z0. We define the function h(u, z) := z0, which is an analytic first integral 
of W , that is,

∂uh(u, z) + f (u, z)∂zh(u, z) = 0 . (4.49)

This first integral meets the condition ∂zh(u, z) > 0, as illustrated in Fig. 8 and discussed in detail 
on page 283 of [21].

Introducing the notation ∂2h(u, v2/2) := ∂zh(u, z)
∣∣
z=v2/2, we express the differential of h as

dh(u, v2/2) = ∂uh(u, v2/2)du + v∂2h(u, v2/2)dv

(4.49)= ∂2h(u, v2/2)
(− f (u, v2/2)du + vdv

)
.

Given that ∂2h(u, v2/2) > 0, we infer that the vector field X = v∂u + f (u, v2/2)∂v is Hamil-
tonian:

ιX
{
∂2h(u, v2/2)du ∧ dv

}= dh(u, v2/2) ,

with symplectic form μ and Hamiltonian function h(u, v2/2).
Theorem 1.4 ensues from the following proposition:

Proposition 4.1. We define

p(u, v) = v

a(u, v)
:= v

⎧⎨
⎩

1∫
0

∂2h(u, sv2/2)ds

⎫⎬
⎭

1/2

. (4.50)

The analytic transformation �(u, v) = (
u, p(u, v)

)
maps R2 onto itself such that:

H(u,p) = p2

+ G(u) = h(u, v2/2) with G(u) = h(u,0) ,

2
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μ(u,p) = 1

a(u,p)
du ∧ dp where a(u,p) := a

(
u,v(u,p)

)
, (4.51)

X = a(u,p)
(
p∂u − G′(u)∂p

)
with a(u,−p) = a(u,p) .

Proof. The fundamental theorem of calculus combined with ∂zh(u, z) > 0 results in

h(u, v2/2) = h(u,0)︸ ︷︷ ︸
≡G(u)

+
v2/2∫
0

∂2h(u, z)dz

︸ ︷︷ ︸
≡p2/2

≡ H(u,p) . (4.52)

Subsequently, we define the new variable p according to equation (4.50).
Differentiating the equation h(u, v2/2) = G(u) + p2(u, v)/2 with respect to v results in

∂vp(u, v) = v

p(u, v)
∂2h(u, v2/2) = ∂2h(u, v2/2){

1∫
0

∂2h(u, sv2/2)ds

}1/2 > 0 .

This equation implies that �(u, v) = (
u, p(u, v)

)
is a local analytic diffeomorphism.

We claim that p → ∞ as v → ∞ for any fixed u. Given that h(u, v2/2) = G(u) +p2(u, v)/2, 
it is sufficient to demonstrate that limz→∞ h(u, z) = ∞. If this was not the case, û would exist 
such that lim

z→∞h(û, z) = ẑ0 < ∞ and all integral curves starting at u = 0 with z > z0 would 

diverge in the interval (0, û). This would contradict the completeness of the flow of W .
The symplectic form in the proposition statement follows from

pdu ∧ dp = du ∧ d
p2

2
= du ∧ dh(u, v2/2) = v∂2h(u, v2/2)du ∧ dv = vμ

and the relationship p/v = 1/a(p, v). �
Remark a: The class of equations ü + a(u)u̇2 + b(u) = 0 has been analyzed in [23]. In this 

case, W = ∂u + (
a(u)z + b(u)

)
∂z can be integrated (see [21], Section 2.1, for the computations).

Remark b: The completeness of the flow W , as assumed in Theorem 1.4, can be replaced by 
the existence of a first integral h on the upper-half plane. The example below illustrates this.

The vector field X = v∂u − 2u
1+v2 ∂v possesses a global center at the origin. This vector field 

corresponds to W(u, z) = ∂u −
(

2u
1+2z

)
∂z, which is undefined at z = − 1

2 and is not complete. 

However, for any (u, z) ∈ R2
z≥0, there is a trajectory of W that intersects the z-axis only at 

z0 ≥ 0, as shown in Fig. 9. This permits the definition of a first integral z0 = h(u, z) of W on the 
upper half plane that satisfies ∂zh(u, z) > 0.

See [17] and [18] (pg. 131) for the existence of global first integrals of W .
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Fig. 9. The integral curves of W in the case where X has a global center.

5. Conclusion

The primary motivation for Ragazzo [21] was a query posed by C. Rocha relating to partial 
differential equations of the parabolic type ut = ∂xxu − F0(u, ux), x ∈ R/Z (the notation used 
in this paragraph differs from that used in the remainder of the paper). Under certain conditions, 
these equations exhibit global attractors composed of equilibria and connecting orbits. Peri-
odic solutions of uxx = F0(u, ux) with period one are the equilibria for the parabolic equation. 
As noted in [22], “When the global attractor is Morse-Smale, there exists a smooth homotopy 
Fτ (u, ux), τ ∈ [0, 1], which preserves the hyperbolicity of all the equilibria and periodic orbits, 
and reduces uxx = F0(u, ux) to a problem uxx = F1(u, ux), where F1(u, ux) is an even function 
of the second variable” (see [5], [6], and [7]). The understanding of the ‘period map’ of the equa-
tion u′′ = F1(u, u′) is crucial for the description of the global attractor of the parabolic problem. 
This paper’s findings show that if u′′ = F1(u, u′) has a non-degenerate global center, then the 
period map of u′′ = F1(u, u′) is always equivalent to the period map of an equation in the form 
u′′ = −V ′(u).

Theorem 1.2 asserts that if X(u, v) = P(u, v)∂u + Q(u, v)∂v possesses a global center, it can 
be transformed into y∂x −V ′(x)∂y . Theorem 1.4 stipulates that if X(u, v) = v∂u +f (u, v2/2)∂v

and the flow of the associated vector field W(u, z) = ∂u + f (u, z)∂z is complete, then X can 

be converted into a(u, p)
(
p∂u − G′(u)∂p

)
without any assumptions on the singularities of X. 

Aside from time parameterization, this vector field is equivalent to p∂u − G′(u)∂p.
Two natural questions arise from the results presented in this paper:

1) Does the question posed by C. Chicone have a positive answer when the center is degenerate?
2) Is it possible to analytically transform the vector field X(u, v) = v∂u + f (u, v2/2)∂v into 

y∂x − V ′(x)∂y when X(u, v) has not only a center but also finitely many non-degenerate 
centers and saddles?

Data availability

No data was used for the research described in the article.
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