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Abstract
The aim of this work is to present new spectral tools for studying the orbital
stability of standing waves solutions for the nonlinear Schrödinger equation
(NLS) with power nonlinearity on a tadpole graph, namely, a graph consisting
of a circle with a half-line attached at a single vertex. By considering δ-type
boundary conditions at the junction and bound states with a positive two-lobe
profile, the main novelty of this paper is at least twofold. Via a splitting eigen-
value method developed by the author, we identify the Morse index and the
nullity index of a specific linearized operator around of an a priori positive
two-lobe state profile for every positive power; and we also obtain new results
about the existence and the orbital stability of positive two-lobe states at least
in the cubic NLS case. To our knowledge, the results contained in this paper
are the first in studying positive bound states for the NLS on a tadpole graph by
non-variational techniques. In particular, our approach has prospect of being
extended to study stability properties of other bound states for the NLS on a
tadpole graph or on other non-compact metric graph such as a looping edge
graph, as well as, for other nonlinear evolution models on a tadpole graph.
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1. Introduction

In this paper we study the stability of specific standingwave profiles for the following nonlinear
vectorial Schrödinger equation (NLS)

iUt +∆U+(p+ 1) |U|2pU= 0, p> 0, (1.1)

on a tadpole graph or lasso graph, namely, a graph given by a ring with one half-line attached
at one vertex point as is shown in figure 1 below.

We recall that, a metric graph G is a structure represented by a finite number of vertices
V= {vi} and a set of adjacent edges at the vertices E= {ej} (for further details see [21]).
Each edge ej can be identified with a finite or infinite interval of the real line, Ie. Thus, we can
see the edges of G not as abstract relations between vertices, but rather as physical ‘wires’ or
‘networks’ connecting them. Now, the notation e ∈ E will be used to mean that e is an edge
of G. This identification introduces the coordinate xe along the edge e. Thus, if in the tadpole
graph, the ring is identified by the interval [−L,L] and the semi-infinite line with [L,+∞),
we obtain a metric graph G with a structure represented by the set E= {e0,e1} where e0 =
[−L,L] and e1 = [L,+∞), which are the edges of G and they are connected at the unique vertex
ν = L. G is also called a tadpole graph or lasso graph, which appears in quantum mechanics
and it is associated to the study of a nonrelativistic particle by a homogeneous magnetic field
perpendicular to the loop plane (see Exner [30] and references therein).

We identify any function U on G (the wave functions) with a collection U= (ue)e∈E of
functions ue defined on the edge e of G. Thus, each ue will be considered as a complex-valued
function on the interval Ie. In the case of the NLS in (1.1), we haveU(xe, t) = (ue(xe, t))e∈E and
the nonlinearity |U|2pU, p> 0, acting componentwise, i.e. for instance (|U|2pU)e = |ue|2pue.
The action of the Laplacian operator∆ on G is given by

−∆ : (ue)e∈E → (−u ′ ′
e )e∈E . (1.2)

Here, we will consider −∆ as being a self-adjoint operator on a specific domain of L2(G)
which will give the coupling conditions in the vertex ν = L. There are several domains that
make the Laplacian operator to be self-adjoint on a tadpole graph. Here, we will consider a
domain of interest in quantummechanics. Thus, if we denote a wave functionU on the tadpole
graph G as U= (ϕ,ψ), where ϕ : [−L,L]→ C and ψ : [L,+∞)→ C, we will be considering
the following domains (Z ∈ R) for −∆:

DZ =
{
U ∈H2 (G) : ϕ(L) = ϕ(−L) = ψ (L) , and, ϕ ′ (L)−ϕ ′ (−L) = ψ ′ (L+)+Zψ (L)

}
,

(1.3)

where for any n≧ 0, n ∈ N,

Hn (G) = Hn (−L,L)⊕Hn (L,+∞) .

The boundary conditions in (1.3) are called of δ-type if Z ̸= 0, and of Neuman–Kirchhoff type
if Z= 0. By using the extension theory for symmetric operators (see theorem A.6 in appendix
below), it follows that (−∆,DZ)Z∈R represents a one-parameter family of self-adjoint operat-
ors on the tadpole graph G. The parameter Z is a coupling constant between the disconnected
loop and the half-line. The choice of the coupling at the vertex ν = L corresponds to a con-
ceivable quantum-wire experiment (see [30, 31] and reference therein).

Nonlinear evolution models on metric graph arise as models in wave propagation, for
instance, in a quasi one-dimensional (e.g. meso- or nanoscale) system that looks like a thin
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Figure 1. Tadpole graph.

neighbourhood of a graph. These models provide a convenient means to study various phys-
ical effects in the real world, both from the theoretical and experimental points of view, and the
freedom in setting the geometry of the graph configuration allows us to create different dynam-
ics. Just to mention a few examples of bifurcated systems, we have the Josephson junction
structures, network of planar optical waveguides and fibre, branched structure associated to
the DNA, blood pressure waves in large arteries, nerve impulses in complex arrays of neurons,
conducting polymers, and Bose–Einstein condensation (see [21, 23, 24, 28–30, 32, 43, 45, 47,
48, 54] and reference therein). About non-linear models we have the NLS, the sine-Gordon
model, and the Korteweg–de Vries model (see [2, 3, 11, 12, 14–18, 32, 48] and references
therein). We recall that, from a mathematical viewpoint, the nature of an evolution model on a
graph is equivalent to a system of PDEs defined on the edges (intervals) in which the coupling
is given exclusively through the boundary conditions at the vertices (known as the ‘topology
of the graph’), which determines the dynamic on the network.

In the past years, evolution models on networks have attracted much attention in the context
of soliton transport. Soliton and other nonlinear waves in branched systems provide in-depth
informations about the dynamic of the model. To address these issues, in general the problem
is difficult to tackle because both the equations of motion and the topology of the graph can be
complex. Moreover, a central point that makes this analysis a delicate problem is the presence
of a vertex (or several vertices) where a soliton-profile coming into the vertex along one of the
bonds shows a complicated motion around the vertex such as reflection and emergence of the
radiation there. In particular, sometimes one cannot see easily how the energy travels across
the network. Thus, the study of soliton propagation through networks can become a challenge.
Results about the existence and stability (or instability) mechanism of soliton profiles are still
unclear for many type of graphs and models.

In the case of the NLS model (1.1) many dynamic issues have been studied for a variety of
metric graphs (see the review manuscript [40]), by instance, in a star graph ([1, 2, 14, 15, 38,
48] and reference therein), a looping edge graph ([8, 26, 49, 50] and reference therein), flower
graph, dumbbell graphs, double-bridge graphs and periodic ring graphs ([26, 39, 44, 49, 51]
and reference therein). One of the objectives of this work is to shed light on the existence and
stability of specific standing waves profiles (bound states) so called of two single-lobe states
in the case of the NLS model on a tadpole graph.

Here, we will consider standing wave solutions for NLS model in (1.1) posed on a tadpole
graph G and given byU(x, t) = e−iωtΘ(x), with ω< 0,Θ= (Φ,Ψ) ∈ DZ (real-valued compon-
ents), and satisfying the stationary NLS vectorial equation

−∆Θ−ωΘ− (p+ 1) |Θ|2pΘ= 0. (1.4)
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Figure 2. A positive two-lobe state profile on a tadpole graph.

More explicitly, Φ and Ψ satisfy the following system, one on the ring and the other one on
the half-line, 

−Φ ′ ′ (x)−ωΦ(x)− (p+ 1) |Φ(x) |2pΦ(x) = 0, x ∈ (−L,L) ,
−Ψ ′ ′ (x)−ωΨ(x)− (p+ 1) |Ψ(x) |2pΨ(x) = 0, x ∈ (L,+∞) ,
Φ(L) = Φ(−L) = Ψ(L) ,
Φ ′ (L)−Φ ′ (−L) = Ψ ′ (L+)+ ZΨ(L) , Z ∈ R.

(1.5)

It is clear that the delicate point in the existence of solutions for (1.5) is given for the component
Φ on (−L,L). The component Ψ will have obviously a soliton profile of the form

Qω (x) = (−ω)1/2p sech1/p
(
p
√
−ωx

)
, modulo translation and sign. (1.6)

Among all possible solutions for (1.5) (see [8, 26, 49, 50]), we are interested here in profiles
that we will call of positive two-lobe states (see figures 2 and 5). More exactly, we have the
following definition.

Definition 1.1. The standing wave Θ= (Φ,Ψ) ∈ DZ is said to be a positive two-lobe state
for (1.5) if Θ(x)> 0 for every x ∈ G, Φ is symmetric on [−L,L] with a single minimum at 0,
monotonically increasing on [0,L] and Ψ is of bump-type on [L,+∞).

We recall that a real-profile φ ∈ H2(L,+∞) has a bump-profile if there is a unique ζ ∈
(L,+∞) such that φ ′(ζ) = 0, φ ′(x)> 0 for x ∈ (L, ζ) and φ ′(x)< 0 for x ∈ (ζ,+∞).

For Θ= (Φ,Ψ) being a positive two-lobe state, we have that every profile Ψ has the bump
profile representation

Ψ(x) = (−ω)1/2pψ0
(√

−ω (x−L)+ a
)
, x≧ L, a< 0, (1.7)

with ψ0 = Q−1 giving by

ψ0 (y) = sech1/p (py) , ψ0 (0) = 1, ψ ′
0 (0) = 0, y ∈ R. (1.8)

For Z fixed, the shift parameter a= a(ω,Z)< 0 will be uniquely determined by the δ-
interaction boundary conditions in (1.5). Moreover, since Φ ′(L)> 0, it follows a priori the
following restriction about ω, Z>

√
−ωtanh(pa)>−

√
−ω.

The existence and dynamics of positive two-lobe state for (1.5) on a tadpole graph have been
studied very little in the literature, especially because a variational characterization of these
as a minimizer of a specific variational problem seems unlikely (see [5]). In general, positive
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two-lobe state profiles turn out to be of bound-state type (or excited states), namely, they are
solutions to the stationary equation (1.5) without being ground state (see [5, 26] and the review
in [40] for previous studies on specific excited states), that is, functions with a prescribed mass
such that are constrained critical points of the NLS energy functional and possibly without
being absolute minimizers.

Now, for Z= 0 and p= 1, in [26] was already proved the existence of positive two-lobe
states (Φ,Ψ) for (1.5) with a dnoidal-profile for Φ on the loop (see remark 4.5 below). This
type of profiles will be a main part of our study here. Indeed, based on the dynamical system
theory for orbits on the plane and from the period map associated to second-order differen-
tial equations, we get a C1-mapping ω ∈ (−∞,ω0)→ (Φω,Ψω), ω0 < 0, of positive two-lobe
states solutions for (1.5), and such that do not exist profiles of this type for (1.5) with ω > ω0

(see figure 5, lemma 4.1 and remark 4.5). Some references on the strategy of the period map
are contained in [33, 39, 40, 50].

Our main focus in this paper is at least twofold. To provide new spectral tools for studying
the orbital stability of a priori positive two-lobe states for every positive power p on a tadpole
graph G; and to obtain new results about the existence and orbital stability of positive two-
lobe states at least in the cubic NLS case, p= 1 and Z= 0 (we note that in [26] the stability
issue of these profiles was not studied). We are not aware of previous studies for NLS models
on our framework. Moreover, our analysis is not of variational type and so the results to be
established in this paper, can be seen as a first step towards studying stability properties of
other bound states for the NLS model on G (among which could be the multi-lobe profiles in
figure 3, see [26]), or on other non-compact metric graphs such as a looping edge graphs (a
graph consisting of a circle with N half-lines attached at a single vertex), as well as, for other
nonlinear evolution models such as the sine-Gordon and Korteweg– de Vries equations.

We note that the existence and stability of bound states to the NLS model (1.1) were con-
sidered via a energy minimization problem in the limit of large mass (large negative ω) in
the case of subcritical nonlinearities (p ∈ (0,2)) and Z= 0, for non-compact metric graphs
in [5] (see also [22, 37] and [40]-section 6), nonetheless, these results do not apply to our
case because the positive bound states obtained have a absolute maximum on a bounded edge-
localized (single-pulse). Additionally, in Angulo [8] was recently extended our approach to
the case of the NLS model (1.1) on looping edge graphs for positive bound states with a single
pulse. In this case, we know that for N≧ 3, Z= 0 and p ∈ (0,2], we can not obtain these pro-
files as being the ground states associated to a constraint variational problem (see theorem 2.5
of [3] and theorem 3.2 of [4]). As far as we know, the results in [8] are the first to establish
the existence and stability of positive single-lobe profiles for any N≧ 1, p> 0, Z≦ 0 and −ω
small enough (to compare with the results in [5]).

Next, by convenience of the reader, we establish the main points in the stability study of
standing waves solutions for NLSmodels onmetric graphs. After that, we give the main results
of our work. So, by starting, we note that the basic symmetry associated to the NLSmodel (1.1)
on a tadpole graph is the phase invariance, that means, if U is a solution of (1.1) then eiθU
is also a solution for any θ ∈ [0,2π). Thus, it is reasonable to define orbital stability for the
model (1.1) as follows (see [34, 35]).

Definition 1.2. The standing wave U(x, t) = e−iωt(Φ(x),Ψ(x)) is said to be orbitally stable
in a Banach space X if for any ε> 0 there exists η > 0 with the following property: if U0 ∈ X
satisfies ||U0 − (Φ,Ψ)||X < η, then the solution U(t) of (1.1) with U(0) = U0 exists for any
t ∈ R and

sup
t∈R

inf
θ∈R

||U(t)− eiθ (Φ,Ψ) ||X < ε.

5
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Otherwise, the standing wave U(x, t) = e−iωt(Φ(x),Ψ(x)) is said to be orbitally unstable
in X.

The space X in definition 1.2 for the model (1.1) and with the action of −∆ on DZ , will be
the continuous energy-space E(G) defined by

E (G) =
{
( f,g) ∈ H1 (G) : f(−L) = f(L) = g(L)

}
.

For other domain of −∆ on G, the energy space X in definition 1.2 can be different (see [11,
13, 14, 18]).

Next, we consider the following two conserved functionals for (1.1) defined in the energy
space E(G),

EZ (U) = ∥∇U∥2L2(G) −∥U∥2p+2
L2p+2(G) −Z|u(L) |2, (energy) (1.9)

and

Q(U) = ∥U∥2L2(G), (mass) (1.10)

whereU= (u,v). We observe that EZ,Q ∈ C2(E(G),R) because p> 0. Now, for a fixed ω< 0,
let U(x, t) = e−iωt(Φω(x),Ψω(x)) be a standing wave solution for (1.1) with (Φω,Ψω) ∈ DZ

being a positive two-lobe state. Then, for the action functional

S(U) = EZ (U)−ωQ(U) , U ∈ E (G) , (1.11)

we have S ′(Φω,Ψω) = 0. Next, forU= U1 + iU2 andW=W1 + iW2, where the vector func-
tions Uj, Wj, j = 1,2, are assumed to have real components, it is not difficult to see that the
second variation of S in (Φω,Ψω) is given by

S ′ ′ (Φω,Ψω)(U,W) = ⟨L+,ZU1,W1⟩+ ⟨L−,ZU2,W2⟩, (1.12)

where the two 2× 2-diagonal operators L±,Z are given by

L+,Z = diag
(
−∂2x −ω− (p+ 1)(2p+ 1)Φ2p

ω ,−∂2x −ω− (p+ 1)(2p+ 1)Ψ2p
ω

)
L−,Z = diag

(
−∂2x −ω− (p+ 1)Φ2p

ω ,−∂2x −ω− (p+ 1)Ψ2p
ω

)
. (1.13)

We note that these two last diagonal operators are self-adjoint with domain D(L±,Z)≡ DZ

(see A.6 in appendix). We also have that since (Φω,Ψω) ∈ DZ and satisfies system (1.5),
L−,Z(Φω,Ψω)

t = 0 and so the kernel of L−,Z is non-trivial.
Now, from [34, 35] we know that the Morse index and the nullity index of the operators

L±,Z are fundamental to decide on orbital stability of standing wave solutions for NLS models
(see theorem A.8 in appendix). Thus, in the following we study these indices in the case of
the profile (Φω,Ψω) to be an a priori positive two-lobe state. Indeed, the profile Ψω will be
determined by an unique member of the family of soliton-profiles a ∈ (−∞,0)→ ψa, namely,

ψa (x) = (−ω)1/2pψ0
(√

−ω (x−L)+ a
)
, x≧ L, (1.14)

with ω fixed and a= a(ω). Moreover, from (1.14) we get the existence of a unique a∗ < 0
such that ψ ′ ′

a∗(L+) = 0 (namely, a∗ such that (p+ 1)sech2(pa∗) = 1). Thus, ψ ′ ′
a (L+)< 0 if

6
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and only if a ∈ (a∗,0) (ψa is concave close to L), and ψ ′ ′
a (L+)> 0 if and only if a ∈ (−∞,a∗)

(ψa is convex close to L). As we will see below, the position of the shift a= a(ω,Z,p) with
regard to a∗ will induce the values of the Morse and nullity indices of operator L+,Z.

Our main results in this paper are the following.

Theorem 1.3. Let us consider the self-adjoint operator (L+,Z,DZ) in (1.13), for Z fixed,
determined by a positive two-lobe state (Φω,Ψω) where Ψω = ψa, with ψa in (1.14) and
a= a(ω,Z)< 0. Then,

(1) Perron-Frobenius property: let β0 < 0 be the smallest eigenvalue for L+,Z with associated
eigenfunction ( fβ0

,gβ0). Then, fβ0 is positive and even on [−L,L], and gβ0(x)> 0 with
x ∈ [L,+∞). Moreover, β0 is simple.

(2) We consider the mapping

γ (a)≡ ψ ′ ′
a (L+)

ψ ′
a (L+)

. (1.15)

Then, for γ ≡ γ(a) we have the following:
(a) if −Z≧ γ then n(L+,Z) = 1,
(b) if −Z< γ then 1≦ n(L+,Z)≦ 2. Moreover, for the operator

L0 =−∂2x −ω− (p+ 1)(2p+ 1)Φ2p
ω

with associated periodic boundary conditions (the only one possible in our framework),
we have n(L0)≦ 2 and,
(i) n(L+,Z) = 1 if and only if n(L0) = 1.
(ii) n(L+,Z) = 2 if and only if n(L0) = 2.

Theorem 1.4. Let us consider the self-adjoint operator (L+,Z,DZ) in (1.13), for Z fixed,
determined by a positive two-lobe state (Φω,Ψω) where Ψω = ψa, with ψa in (1.14) and
a= a(ω,Z)< 0, and the function γ = γ(a) in (1.15). Then, we have Ker(L+,Z) = {0} in the
following cases:

(1) if a ̸= a∗ and −Z ̸= γ.
(2) if a= a∗ and Z arbitrary.
(3) if a< a∗ and Z=−γ < 0.

Remark 1.5. From theorems 1.3 and 1.4 we have the following comments which will be useful
in our stability theory for the case p= 1 and Z= 0:

(a) In the following we give a naive argument for showing that the Morse index ofL+,Z is one,
in the case of Z≦ 0 and p> 0. Indeed, it supposes that for Z≦ 0 fixed, there is an open
interval I and a smooth-diffeomorphism mapping (real-analytic) ω ∈ I→ a(ω,Z) ∈ J of
shift-parameters, with a∗ ∈ J⊂ (−∞,0), which guarantees the existence of positive two-
lobe state solutions for (1.5). Then, for any ω ∈ I, we have that n(L+,Z) = 1. In fact, for
a(ω,Z)≧ a∗ we have γ(a(ω,Z))≦ 0≦−Z, and so by theorem 1.3, n(L+,Z) = 1. Next,
for any shift-parameter a(ω,Z), by theorem 1.4 we have always the non-degeneracy of the
kernel of L+,Z. Then, by using analytic perturbation theory around a∗ and a continuation
argument, we get that n(L+,Z) = 1 for any ω ∈ I (the former argument has been applied
for proving theorem 1.7 below in section 4).
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(b) The possible ‘threshold value’ γ(a) in (1.15) associated to the Morse index of L+,Z is
given explicitly in (3.36) (see figure 4). The only remains open case in theorem 1.4 is
exactly when for some Z> 0, the shift-parameter a (a> a∗) satisfies−Z= γ(a(ω,Z)) (see
remark 3.10).

Next, we have the spectral informations for the operator L−,Z.

Theorem 1.6. Let us consider the self-adjoint operator (L−,Z,DZ) in (1.13), for Z fixed,
determined by a positive two-lobe state (Φω,Ψω) with Ψω = ψa, ψa as in (1.14) and a=
a(ω,Z)< 0. Then,

(1) the kernel of L−,Z, ker(L−,Z), satisfies ker(L−,Z) = span{(Φω,Ψω)}.
(2) L−,Z is a non-negative operator, namely, L−,Z ≧ 0.

The strategy to show theorems 1.3 and 1.4 will be based in the splitting eigenvalue method
introduced by Angulo in [8] and it applied to L+,Z ≡ (L0,L1) on tadpole graphs (see lemma
3.4 below). More exactly, we reduce the eigenvalue problem associated to L+,Z with domain
DZ into two classes of eigenvalue problems, one for L0 with periodic boundary conditions on
[−L,L] and the second one for L1 with δ-type boundary condition on the half-line [L,+∞).
Thus, the use of tools of the extension theory of Krein& vonNeumann for symmetric operators
and the use of the theory of real coupled self-adjoint boundary conditions on [−L,L], of the
SturmComparison Theorem and the analytic perturbation theorywill imply our spectral results
associated to L+,Z.

We would like to point out that our splitting eigenvalue strategy was recently established in
Angulo [8] for studying the stability/instability of standing waves for the NLS model (1.1) on
looping edge graphs. In this case, the profiles of the standing wave were positive single-lobe
states satisfying (1.5) with −ω small enough.

Lastly, we give our results about the existence and stability of positive two-lobe states on
a tadpole graph in the case of the cubic NLS and Z= 0. As far as we know, our results in this
case are the first to be established in the literature.

Theorem 1.7. We consider p= 1 and Z= 0 in (1.5). Then,

(1) there is a C1-mapping ω ∈ (−∞,−ω0)→ (Φω,Ψω) ∈ D0, with ω0 > 0, of positive two-
lobe states for the cubic-NLS on a tadpole graph.

(2) For every admissible value of ω, e−iωt(Φω,Ψω) is orbitally stable in E(G).

The proof of the existence of a C1-mapping of positive two-lobe states in theorem 1.7 is
based in the periodic map (of truncated-type) for second-order differential equations (see also
[33, 39, 40, 50] for other applications of the period map in the case of graphs). The statement
of the orbital stability of these profiles follows from theorems 1.3, 1.4 and 1.6, theorem 2.1,
lemma 4.3, and from the abstract stability framework established by Grillakis et al in [34, 35].
By convenience of the reader (and for futures studies), we establish in theorem A.8 (appendix)
an adaptation of the abstract results in [35] for the cases of a tadpole graph and standing waves
with a profile giving by a positive two-lobe state. We believe that some arguments used for
studying the case p= 1 can be applied to other values of p, as well as, for Z ̸= 0.

The paper is organized as follows. In section 2, we establish a local and global well-
posedness results for the NLS model (1.1) on a tadpole graph. In section 3, we show theorems
1.3 and 1.4 via our splitting eigenvalue method (lemma 3.4). In section 4, we show theorem

8
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1.7. Lastly, in appendix we briefly establish some tools and applications of the extension the-
ory of Krein and von Neumann used in our study, as well as, we establish the orbital stability
criterion from Grillakis et al in [35] adapted to our interests.

Notation. Let −∞⩽ a< b⩽∞. We denote by L2(a,b) the Hilbert space equipped with the
inner product (u,v) =

´ b
a u(x)v(x)dx. ByH

n(Ω)we denote the classical Sobolev spaces onΩ⊂
R with the usual norm. We denote by G a tadpole graph parametrized by the set of edges E=
E0 ∪E1 with E0 = {e0}, e0 = [−L,L], E1 = {e1}, e1 = [L,+∞), and attached to the common
vertex ν = L. On the graph G we define the spaces

Lp (G) = Lp (−L,L)⊕Lp (L,+∞) , p> 1,

with the natural norms. Also, for U= (u1,v1),V= (u2,v2) ∈ L2(G), the inner product on
L2(G) is defined by

⟨U,V⟩=
ˆ L

−L
u1 (x)u2 (x)dx+

ˆ ∞

L
v1 (x)v2 (x)dx.

Let A be a closed densely defined symmetric operator in the Hilbert space H. The domain
of A is denoted by D(A). The deficiency indices of A are denoted by n±(A) := dimker(A∗ ∓
iI), with A∗ denoting the adjoint operator of A. The number of negative eigenvalues counting
multiplicities (or Morse index) of A is denoted by n(A).

2. Local and global well-posedness in E(G)

In this section we give informations about the well-posedness problem associated to the NLS
model (1.1) in the energy-space E(G),

E (G) =
{
( f,g) ∈ H1 (G) : f(−L) = f(L) = g(L)

}
. (2.1)

We emphasize that our results about the Cauchy problem for the NLS model play a main role
in the subsequent stability study of the positive two-lobe state profiles (see definition 1.2).
In particular, for possible future stability issues, we establish the C2-regularity property of
the mapping data-solution associated to (1.1) (see the comments following theorem A.8 in
appendix).

Theorem 2.1. (1) (Local well-posedness in E(G)) Let p> 0. For any U0 ∈ E(G), there exists
T> 0 such that the model in (1.1) has a unique solution U ∈ C([0,T] : E(G))∩C1([0,T] :
E(G)∗) satisfying U(0) = U0. Moreover, the mapping

U0 ∈ E (G)→ U ∈ C([0,T] : E (G)) ,

is at least of class C2 for 2p> 1.
(2) (Global well-posedness in E(G)) Let p ∈ (0,2). For any U0 ∈ E(G), the model in (1.1) has

a unique solution U ∈ C([0,+∞) : E(G))∩C1([0,+∞) : E(G)∗).

Proof. Local well-posedness statement was established in [27] via an application of Banach
fixed point theorem. The global result is an immediate consequence of the conservation laws
in (1.9)–(1.10) and from Gagliardo-Nirenberg inequality on tadpole graphs.

9
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Next, we give some highlights of the regularity property proof of themapping data-solution.
We consider the mapping JU0 : C([0,T] : E(G))−→ C([0,T];E(G)) given by

JU0 [U] (t) = ei∆tU0 + i
ˆ t

0
ei∆(t−s)F(U(s))ds,

where F(U(s)) = (p+ 1)|U(s)|2pU(s) and {ei∆t}t∈R is the unitary group determined by
(−∆,DZ). We recall that the argument based on the contraction mapping principle applied
to JU0 , for obtaining the local well-posedness statement above, has the advantage that if F(U)
has a specific regularity, then it is inherited by the mapping data-solution. Indeed, following
the ideas in [15, 27], we consider for (U0,V) ∈ B(U0;ϵ)×C([0,T],E(G)) the mapping

Γ(U0,V)(t) = V(t)− JU0 [V] (t) , t ∈ [0,T] .

Then by item (1) (local well-posedness statement) we have Γ(U0,U)(t) = 0 for all t ∈ [0,T].
Now, for 2p being even integer, F(U) = (p+ 1)|U|2pU is smooth, and for 2p not being even
integer and 2p> 1, F(U) = (p+ 1)|U|2pU isC[2p+1]-function. Therefore, we obtain that Γ is at
least of class C2 for any p such that 2p> 1. Hence, using the arguments applied for obtaining
the local well-posedness in E(G) (see proposition 2.3 in [27]), we can show that the operator
∂VΓ(U0,U) is one-to-one and onto. Thus, by the Implicit Function Theorem there exists a
mappingΛ : B(U0;δ)→ C([0,T],E(G)) at least of classC2, such thatΓ(V0,Λ(V0)) = 0 for all
V0 ∈ B(U0;δ). This argument establishes the regularity property of the mapping data-solution
associated to the NLS model in (1.1). This finishes the proof.

3. Spectral study associated to positive two-lobe states

In this section we show theorems 1.3, 1.4 and 1.6. In fact, for Z fixed, we consider ω< 0 and an
associated positive two-lobe state (Φω,Ψω)≡ (Φ,Ψ) of (1.5). Let (L+,Z,DZ) the associated
linearized operator in (1.13). In the following, we make a change of referential. For ( f,g) ∈
DZ, let us consider h(x) = g(x+L) for x> 0. Then h(0) = g(L) and h ′(0) = g ′(L). So, the
eigenvalue problem L+,Z( f,g)t = λ( f,g)t will be equivalent to the following one L0,+f(x) = λf(x) , x ∈ (−L,L) ,

L1,+h(x) = λh(x) , x ∈ (0,+∞) ,
( f,h) ∈ DZ,0,

(3.1)

where

L0,+ =−∂2x −ω− (p+ 1)(2p+ 1)Φ2p, L1,+ ≡−∂2x −ω− (p+ 1)(2p+ 1)ψ2p
0,a, (3.2)

with ψ0,a being the bump-soliton profile

ψ0,a (x) = (−ω)1/2pψ0
(√

−ωx+ a
)
, x> 0, a< 0,

and ψ0 as defined in (1.8). The domain DZ,0 is given by

DZ,0 =
{
( f,h) ∈ X2 (−L,L) : f(L) = f(−L) = h(0) and f ′ (L)− f ′ (−L) = h ′ (0)+ Zh(0)

}
,

(3.3)

withXn(−L,L)≡ Hn(−L,L)⊕Hn(0,+∞), n ∈ N. We note immediately that (Φ,ψ0,a) ∈ DZ,0.

10
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For convenience of notation, we will consider L0 ≡ L0,+, L1 ≡ L1,+, and ψa ≡ ψ0,a. Thus,
we defineL+ ≡ diag(L0,L1)with domainDZ,0. Therefore, the statements in theorems 1.3 and
1.4, for (L+,Z,DZ), will be sufficient to be proved for (L+,DZ,0).

3.1. Perron–Frobenius property for (L+,DZ,0)

Initially, we will see that n(L+)≧ 1. Indeed, since (Φ,ψa) ∈ DZ,0 and

⟨L+ (Φ,ψa)
t
,(Φ,ψa)

t⟩ =−2p(p+ 1)
[´ L

−LΦ
2p+1 (x)dx+

´ +∞
0 ψ2p+1

a (x)dx
]
< 0,

(3.4)

we obtain from the mini-max principle that n(L+)≧ 1.
In the following we prove the Perron-Frobenius property associated to the eigenvalue prob-

lem in (3.1) on DZ,0, for any Z ∈ R fixed. The use of the Sturm–Liouville theory for real
coupled self-adjoint boundary conditions associated to L0 together with oscillations results
for δ-interactions conditions on whole the line, will be essential in our analysis (see [19, 27,
31] for other strategies in obtaining this Perron-Frobenius property for the case Z≧ 0).

In this form, we consider the quadratic form QZ associated to L+ = diag(L0,L1) on DZ,0,
namely, QZ : D(QZ)→ R defined by

QZ (ϕ,ζ) =

ˆ L

−L
(ϕ ′)

2
+VΦϕ

2dx+
ˆ +∞

0
(ζ ′)

2
+Waζ

2dx−Z|ζ (0) |2, (3.5)

with VΦ =−ω− (p+ 1)(2p+ 1)Φ2p, Wa =−ω− (p+ 1)(2p+ 1)ψ2p
a and D(QZ) is defined

by

D(QZ) =
{
(ϕ,ζ) ∈ X1 (−L,L) : ϕ(L) = ϕ(−L) = ζ (0)

}
. (3.6)

Theorem 3.1 (Perron–Frobenius property). Fix Z ∈ R. Let λ0 < 0 be the smallest eigenvalue
for (L+,DZ,0) in (3.1) with associated eigenfunction (ϕλ0 , ζλ0). Then, ϕλ0 , ζλ0 are positive
functions. Moreover, ϕλ0 is even.

Proof. Based on some ideas laid down by Angulo in [8], we split the proof in several steps.

(1) The profile ζλ0 is not identically zero: Indeed, suppose ζλ0 ≡ 0, then ϕλ0 satisfies
L0ϕλ0 (x) = λ0ϕλ0 (x) , x ∈ (−L,L) ,
ϕλ0 (L) = ϕλ0 (−L) = 0
ϕ ′
λ0
(L) = ϕ ′

λ0
(−L) .

(3.7)

Next, from the Dirichlet condition (which implies that the eigenvalue λ0 is simple) and
from the evenness of the potential VΦ we need to have that ϕλ0 is odd or even. Now, from
oscillations theorems of the Floquet theory (which implies that the number of zeros of ϕλ0

is even on [−L,L)), we need to have that ϕλ0 is odd. Then, by Sturm–Liouville theory,
there is an eigenvalue θ for L0 such that θ < λ0, with associated eigenfunction ξ > 0 on
(−L,L), and with ξ(−L) = ξ(L) = 0.
Now, let QDir be the quadratic form associated to L0 with Dirichlet domain, namely,

QDir : H1
0(−L,L)→ R given by

QDir ( f) =
ˆ L

−L

(
f ′
)2

+VΦ f
2dx. (3.8)

11
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Then, QDir(ξ) =QZ(ξ,0)≧ λ0∥ξ∥2 and so, θ ≧ λ0. This implies a contradiction.
(2) ζλ0(0) ̸= 0: suppose ζλ0(0) = 0 and we consider the odd-extension ζodd for ζλ0 , and the

even-extension ψeven of the bum-profile ψa on whole the line. Then, ζodd ∈ H2(R) and
ψeven ∈ H2(R−{0})∩H1(R). Next, we consider the unfold operator L̃ associated to L1,

L̃=−∂2x −ω− (p+ 1)(2p+ 1)ψ2p
even (3.9)

on the δ-interaction type domain

Dδ,γ =
{
f ∈ H2 (R−{0})∩H1 (R) : f ′ (0+)− f ′ (0−) = γf(0)

}
, γ ∈ R. (3.10)

Thus, we get immediately that ζodd ∈ Dδ,γ for any γ and L̃ζodd = λ0ζodd on R. Next, for
βγ = inf σ(L̃) being the smallest eigenvalue for (L̃,Dδ,γ), we have that βγ is simple and
its corresponding eigenfunction ζβγ

can be chosen positive and even (see proposition A.4
in appendix). Therefore, we need to have λ0 > βγ .
Next, ϕλ0 satisfies

L0ϕλ0 (x) = λ0ϕλ0 (x) , x ∈ (−L,L) ,
ϕλ0 (L) = ϕλ0 (−L) = 0
ϕ ′
λ0
(L)−ϕ ′

λ0
(−L) = ζ ′

λ0
(0) ,

(3.11)

and so from step 1) above, we need to have ζ ′
λ0
(0) ̸= 0. Besides, we have that ϕλ0 is even

and so 2ϕ ′
λ0
(L) = ζ ′

λ0
(0). Now, let µ0 be the smallest eigenvalue for L0 with Dirichlet

conditions. Then, its corresponding eigenfunction ϕµ0 satisfies ϕµ0(x)> 0 for x ∈ (−L,L).
Furthermore, µ0 ≦ λ0. Suppose µ0 < λ0, then by the analysis in step 1) we get a contra-
diction. So, we need to have µ0 = λ0.
Now,we consider the following eigenvalue problem forL0 with real coupled self-adjoint

boundary conditions determined by α ∈ R,

(RCα) :

 L0y(x) = ηy(x) , x ∈ (−L,L) ,
y(L) = y(−L) ,
y ′ (L)− y ′ (−L) = αy(L) .

(3.12)

Also, by following the notations in [55], we consider the 2× 2-matrix associated to (3.12),
Kα = [kij] given by k11 = 1, k12 = 0, k21 = α and k22 = 1 (det(Kα) = 1), and the eigenval-
ues for the (RCα)-problem in (3.12) denoted by ηn = ηn(Kα), n ∈ N0. We also denote by
µn, the eigenvalues in (3.12) with only the Dirichlet condition y(−L) = y(L) = 0. Thus,
from theorem 1.35 in Kong et al [42] or theorem 4.8.1 in Zettl [55], we obtain that for
every α (fixed), η0(Kα) is simple and in particular η0(Kα)< µ0. So, for α≡ 2Z we have
clearly from the former paragraph that η0 = η0(K2Z) satisfies η0 < λ0 = µ0. Moreover, the
corresponding eigenfunction yη0 is even and strictly positive on [−L,L] (see theorem 4.8.5
in [55]).
Next, let γ = 2Z in (3.10) and β ≡ β2Z being the smallest eigenvalue of L̃ with corres-

ponding eigenfunction ζβ positive. Thus, by the analysis above we have λ0 > β. Define
g≡ ayη0 with a ∈ R chosen such that ayη0(L) = ζβ(0). Then, (g, ζ̃β) ∈ D(QZ) for ζ̃β ≡
ζβ |[0,+∞), and

QZ

(
g, ζ̃β

)
≧ λ0

(
∥g∥2 + ∥ζ̃β∥2

)
> η0∥g∥2 +λ0∥ζ̃β∥2. (3.13)

12
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Now,

QZ

(
g, ζ̃β

)
= 2Zg2 (L)− ζβ (0)ζ

′
β (0+)+ η0∥g∥2 +β∥ζ̃β∥2 −Z|ζβ (0) |2

= 2Zζ2β (0)−Zζ2β (0)−Z|ζβ (0) |2 + η0∥g∥2 +β∥ζ̃β∥2 = η0∥g∥2 +β∥ζ̃β∥2.
(3.14)

Therefore, from (3.13) follows β > λ0, which is a contradiction. Then, ζλ0(0) ̸= 0.
(3) ζλ0 : [0,+∞)→ R can be chosen strictly positive: without loss of generality we suppose

ζλ0(0)> 0. Then ϕ ′
λ0
(L)−ϕ ′

λ0
(−L) = ζ ′

λ0
(0)+ Zζλ0(0) implies

ζ ′
λ0
(0) =

[
ϕ ′
λ0
(L)−ϕ ′

λ0
(−L)

ζλ0 (0)
−Z

]
ζλ0 (0)≡ γ0ζλ0 (0) .

Next, by considering ζeven as being the even-extension of ζλ0 on whole the line, we
obtain ζeven ∈ Dδ,2γ0 (see (3.10)) and L̃ζeven = λ0ζeven. Suppose that there is s> 0 such that
ζλ0(s) = 0, then ζeven has at least two zeros (±s). Thus, by extending classical oscillation
results of the Sturm–Liouville theory to δ-interactions boundary conditions (see lemma
5.3 in [15], proposition 3.2 and theorem 3.5 in [20]), we obtain that for β2γ0 = inf σ(L̃)
on Dδ,2γ0 , there is an eigenvalue κ ∈ (β2γ0 ,λ0) for L̃ on Dδ,2γ0 , with corresponding odd-
eigenfunction χκ (χκ(x) = 0 if and only if x= 0). Then, for gκ = χκ|[0,+∞) we have that
(0,gκ) ∈ D(QZ) in (3.6) and

QZ (0,gκ) = κ∥gκ∥2 ≧ λ0∥gκ∥2.

Therefore, κ≧ λ0 which gives a contradiction. Thus, ζλ0 > 0 on [0,+∞).
(4) ϕλ0 : [−L,L]→ R can be chosen strictly positive: initially we have that ϕλ0 satisfies the

following relation

ϕ ′
λ0
(L)−ϕ ′

λ0
(−L) =

[
ζ ′
λ0
(0)

ζλ0 (0)
+Z

]
ζλ0 (0)≡ α0ζλ0 (0) = α0ϕλ0 (L) . (3.15)

Now, we consider the eigenvalue problem in (3.12) with α≡ α0. Then, the first eigen-
value η0 for (3.12) is simple (see [42, 55]). Moreover, since the pair (ϕλ0 ,λ0) is a solution
for (3.12), we have λ0 ≧ η0.
In the following we show λ0 = η0. Indeed, we consider the quadratic form, QRC, asso-

ciated to the (RCα0)-problem in (3.12),

QRC (h) =
ˆ L

−L
(h ′)

2
+VΦh

2dx−α0|h(L) |2, (3.16)

where for h ∈ H1(−L,L) we have h(L) = h(−L). Next, for h fixed as before, define
ξ = νζλ0 with ν ∈ R being chosen such that ξ(0) = νζλ0(0) = h(L). Then, (h, ξ) ∈ D(QZ)
in (3.6). Now, by using that L1ζλ0 = λ0ζλ0 on (0,+∞), we obtain

QRC (h) =QZ (h, ξ)−α0h
2 (L)−

ˆ +∞

0
(ξ ′)

2
+Waξ

2dx+Z|h(L) |2

=QZ (h, ξ)−α0h
2 (L)+ ν2ζ ′

λ0
(0)ζλ0 (0)−λ0ν

2∥ζλ0∥2 +Z|h(L) |2

=QZ (h, ξ)−
[
ζ ′
λ0
(0)h(L)+ Zh2 (L)

]
+ h(L)ζ ′

λ0
(0)+ Zh2 (L)−λ0∥ξ∥2

=QZ (h, ξ)−λ0∥ξ∥2 ≧ λ0
[
∥h∥2 + ∥ξ∥2

]
−λ0∥ξ∥2 = λ0∥h∥2.
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Figure 3. Multi-lobe profile solution for (1.5).

Then, η0 ≧ λ0 and so η0 = λ0.
Therefore, λ0 is the first eigenvalue for the problem (RCα0) in (3.12). Then, ϕλ0 is

odd or even. If ϕλ0 is odd, then the condition ϕλ0(L) = ϕλ0(−L) implies ϕλ0(L) = 0.
But, ϕλ0(L) = ζλ0(0)> 0. So, we need to have that ϕλ0 is even. Now, from Oscillation
Theorems for the (RCα0)-problem, the number of zeros of ϕλ0 on [−L,L) is 0 or 1 (see
theorem 4.8.5 in [55]). Since ϕλ0(−L)> 0 and ϕλ0 is even, we obtain necessarily that
ϕλ0 > 0 on [−L,L]. This finishes the proof.

Corollary 3.2. Let λ0 < 0 be the smallest eigenvalue for L+ on DZ,0. Then, λ0 is simple.

Proof. The proof is immediate. Suppose λ0 is double. Then, there is a ( f0,g0)-eigenfunction
associated to λ0 orthogonal to (ϕλ0 , ζλ0). By theorem 3.1 we have that f0,g0 > 0. So, we arrive
to a contradiction from the orthogonality property of the eigenfunctions.

Remark 3.3. From the splitting eigenvalue result in lemma 3.4 below, follows that α0 = 0
in (3.15) and so ϕ ′

λ0
(L) = ϕ ′

λ0
(−L) (ϕλ0 will satisfy periodic boundary conditions and so λ0

coincides with the first eigenvalue for L0 with periodic conditions) and ζ ′
λ0
(0) =−Zζλ0(0)

(ζλ0 will satisfy δ-interaction boundary conditions on (0,+∞) and so λ0 coincides with the
first eigenvalue for L1 on this domain). Lemma 3.1 and corollary 3.2 can be extended to the
case of Φ having ‘multiples lobes’ on [−L,L] (see figure 3 and [26]), or extended to other
metric graphs, such as, a looping edge graph (see Angulo [8]).

3.2. Splitting eigenvalue method on a tadpole graph

In the following we establish our main strategy for studying eigenvalue problems on a tadpole
graph G. More exactly, we reduce our eigenvalue problem for L+ ≡ (L0,L1) in (3.1) to two
classes of eigenvalue problems, one for L0 with periodic boundary conditions on [−L,L] and
the other one for the operator L1 with δ-type boundary conditions on (0,+∞).

Lemma 3.4. Let us consider the self-adjoint operator (L+,DZ,0) in (3.1) with Z fixed. Suppose
( f,g) ∈ DZ,0 with g(0) ̸= 0 and L+( f,g)t = γ( f,g)t, for γ ∈ R. Then, we obtain the following
two eigenvalue problems:{

L0f(x) = γf(x) , x ∈ (−L,L) ,
f(L) = (−L) , f ′ (L) = f ′ (−L) ,

{
L1g(x) = γg(x) , x> 0,
g ′ (0+) =−Zg(0+) .

14
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Proof. For ( f,g) ∈ DZ,0 and g(0) ̸= 0, one has

f(−L) = f(L) , f ′ (L)− f ′ (−L) =
[

1
g(0+)

g ′ (0+)+ Z

]
f(L)≡ θf(L) ,

and so f satisfies the real coupled problem (RCα) in (3.12) with α= θ and η = γ. In the fol-
lowing, we will see that θ= 0 which proves the lemma. We consider Kθ = [kij] the 2× 2-
matrix associated to (3.12) given by k11 = 1, k12 = 0, k21 = θ and k22 = 1 (det(Kθ) = 1), and
by ηn = ηn(Kθ), n ∈ N0, the eigenvalues for the (RCθ)-problem in (3.12). We also consider
µn = µn(Kθ) and νn = νn(Kθ), n ∈ N0, the eigenvalues problems in (3.12) induced by Kθ with
the following boundary conditions

y(−L) = y(L) = 0, (Dirichlet condition) ,
y ′ (−L) = 0, θy(L)− y ′ (L) = 0, (Neumann-type condition) ,

(3.17)

respectively. We recall that if yn is an eigenfunction of µn, then yn is unique up to constant
multiples and it has exactly n zeros in (−L,L), n ∈ N0 (a similar result is obtained for un an
eigenfunction of νn, n ∈ N0). Next, by theorem 4.8.1 in [55], we have that ν0 and η0 are simple
eigenvalues and in particular, we have the following partial distribution of eigenvalues

ν0 ≦ η0 < {µ0,ν1}< η1 ≦ {µ1,ν2}≦ η2, (3.18)

where the notation {µn,νm} is used to indicate either µn or νm but non-comparison is made
between µn and νm. In the following, we will see u ′

0(L) = 0 and so θ= 0 (because by (3.18)
we have ν0 < µ0 and so u0(±L) ̸= 0). Indeed, since ν0 is simple and the profile-solution Φ is
even, we need to have that u0 is even or odd, but as u0 has not zeros in [−L,L] we get that u0
even. Thus u ′

0 is odd and therefore u
′
0(±L) = 0. This finishes the proof.

Remark 3.5. (a) Lemma 3.4 holds for Φ even with multiple bumps on (−L,L) (see figure 3
above), as well as, for ψa, a> 0, in (1.14) being a tail-profile on (0,+∞) (see figure 3
in [26]). Thus, our splitting eigenvalue strategy can be a first step for studying stability
properties of multiple bumps profiles on tadpole graphs.

(b) Lemma 3.4 has been extended to the case of looping edge graphs in [8] for the stability
study of positive single-lobe states (see also [3–5]) and section 6 in [40] for additional
results).

3.3. Spectral analysis with δ-interactions on (0,+∞)

From the splitting eigenvalue result in lemma 3.4, we need to obtain spectral informations for
the family of self-adjoint operators (L1,Sγ)γ∈R with

L1 =−∂2x + 1− (p+ 1)(2p+ 1)ψ2p
a , Sγ =

{
f ∈ H2 (0,+∞) : f ′ (0+) = γf(0+)

}
, (3.19)

where we are using ω =−1 in (3.2) (without loss of generality). Thus, in this subsection,
we will consider the soliton-bump profiles ψa(x) = ψ0(x+ a), a< 0, x ∈ (0,+∞), without
initially having any relationship with some a priori positive two-lobe state. Also, we will use
the notation L1,a for L1. We note that operators of type (−∆+V(x),Sγ) appear in the study
of boundary conditions for Schrödinger operators on (0,+∞) in the quantum mechanic (see
appendix D in [6] and references therein). In our case, a more detailed study on the Morse and
nullity indeces of operators in (3.19) depending on the shift-parameter a and the strength γ,
are main in our study of (L+,Z,DZ). As the classical Sturm–Liouville oscillation theory for
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(L1,a,Sγ) is not enough for a complete spectral information, we decide to give some deeper
details of this study.

From proposition A.5 in appendix, we have initially that the Morse index for L1,a on Sγ ,
satisfies n(L1,a)≦ 2 for any value of γ. Next, we begin our analysis by determining the exact
values of the Morse and nullity indices for L1,a on S0 (Neumann-condition) depending of the
shift-value a.

Lemma 3.6. Let a∗ < 0 be the unique value such that ψ ′ ′
a∗(0+) = 0. Then, by considering

(L1,a,S0), a< 0, we have:

(a) n(L1,a∗) = 1 and ker(L1,a∗) = span{ψ ′
a∗},

(b) for a ̸= a∗, ker(L1,a) = {0},
(c) for a ∈ (a∗,0), n(L1,a) = 1, and for a ∈ (−∞,a∗), n(L1,a) = 2.

Proof. Items (a)–(b) are an immediate consequence of Sturm–Liouville theory on half-lines
(see [20]). Hence, item (c) will follow from the analytic perturbation theory.

(a) Let f ∈ S0 such that L1,a∗ f = 0. Since L1,a∗ψ
′
a∗ = 0 and ψ ′

a∗(x)→ 0 as x→+∞, it fol-
lows from Sturm–Liouville theory on half-lines that zero will be simple and so f = βψ ′

a∗ .
Moreover, since ψ ′

a∗ has exactly one zero on (0,+∞), it follows from oscillations theory
that L1,a∗ has exactly one negative eigenvalue and its corresponding eigenfunction can be
chosen as being positive.

(b) Let a ̸= a∗ and f ∈ S0 such that L1,af = 0. Then, there is s ∈ R such that f = sψ ′
a. From

f ′(0) = 0 we get that sψ ′ ′
a (0) = 0 and so s= 0.

(c) By items (a)–(b) and by the mapping a→ ψa to be real-analytic, next we will see that
the zero eigenvalue for L1,a∗ will jump to the right or to the left depending of the posi-
tion of a≈ a∗. To decide this movement we will use an argument based in the analytic
perturbation theory (see [11, 13, 15] for similar situations). Thus, the proof will be only
sketched for sake of brevity. Therefore, by using the spectrum’s structure of L1,a∗ given
in item (a) and since L1,a converges to L1,a∗ as a→ a∗ in the generalized sense (Kato
[41]), we can conclude that the non-positive spectrum of L1,a∗ (which is discrete) moves
continuously with the parameter a. Thus, from Kato-Rellich Theorem (see theorem XII.8
in [52]) we obtain the existence of two analytic functions η : (a∗ − ϵ,a∗ + ϵ)→ R and
Π : (a∗ − ϵ,a∗ + ϵ)→ L2(0,+∞), for ϵ> 0 small enough, such that
(i) η(a∗) = 0 and Π(a∗) = ψ ′

a∗ .
(ii) For all a ∈ (a∗ − ϵ,a∗ + ϵ), η(a) is the simple isolated second eigenvalue of L1,a on

S0, and Π(a) is the associated eigenvector for η(a).
(iii) ϵ can be chosen small enough to ensure that for a ∈ (a∗ − ϵ,a∗ + ϵ) the spectrum of

L1,a is positive, except at most the first two eigenvalues.
Nowwe investigate how the perturbed second eigenvalue moves depending on the position
of a with regard to a∗. From Taylor’s theorem we have the following expansions

η (a) = µ(a− a∗)+O
(
|a− a∗|2

)
and

Π(a) = ψ ′
a∗ +Π ′ (a∗)(a− a∗)+O

(
|a− a∗|2

)
, (3.20)

whereµ≡ η ′(a∗) ∈ R andΠ ′(a∗)≡ d
daΠ(a)|a=a∗ ∈ L2(0,+∞). The desired result in item

(c) will follow if we show that µ> 0. Thus, we will compute ⟨L1,aΠ(a),ψ ′
a∗⟩ in two dif-

ferent ways. The first one is obtained from (3.20),

⟨L1,aΠ(a) ,ψ ′
a∗⟩= η (a)⟨Π(a) ,ψ ′

a∗⟩= µ∥ψ ′
a∗∥2 (a− a∗)+O

(
|a− a∗|2

)
. (3.21)
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Next, by L1,a∗ψ
′
a∗ = 0 and C(p) = (p+ 1)(2p+ 1) we get

L1,aψ
′
a∗ = L1,a∗ψ

′
a∗ −C(p)

[
ψ2p
a −ψ2p

a∗

]
ψ ′
a∗

=−2pC(p)(a− a∗)ψ2p−1
a∗ ψ ′

a∗Ω+O
(
|a− a∗|2

)
(3.22)

with Ω= ∂ψa

∂a |a=a∗ = ψ ′
a∗ . Then, as ψ

′
a∗ ∈ S0 we get from the self-adjoint property of L1,a

and from (3.20)–(3.22) that

⟨L1,aΠ(a) ,ψ ′
a∗⟩= ⟨Π(a) ,L1,aψ

′
a∗⟩= ⟨Π(a) ,−2pC(p)(a− a∗)ψ2p−1

a∗ (ψ ′
a∗)

2

+O
(
|a− a∗|2

)
⟩

=−2pC(p)(a− a∗)⟨ψ ′
a∗ ,ψ

2p−1
a∗ (ψ ′

a∗)
2⟩+O

(
|a− a∗|2

)
. (3.23)

Then, from (3.21) and (3.22) follow

µ=−2pC(p)
∥ψ ′

a∗∥2

ˆ +∞

0
(ψ ′

a∗)
3
(x)ψ2p−1

a∗ (x)dx+O(|a− a∗|) . (3.24)

In the following, we will see that the sign of the integral in (3.24) is negative, and therefore
we prove item (c) at least for a close to a∗. Indeed, by using that ψ ′

a∗ satisfies (ψ ′
a∗)

2 =

ψ2
a∗ −ψ2p+2

a∗ and (p+ 1)ψ2p
a∗(0) = 1 we obtain

ˆ +∞

0
(ψ ′

a∗)
3
ψ2p−1
a∗ dx=

ˆ +∞

0
ψ ′
a∗

[
ψ2
a∗ −ψ2p+2

a∗

]
ψ2p−1
a∗ dx

=

ˆ +∞

0

d
dx

[
1

2(p+ 1)
ψ2p+2
a∗ − 1

4p+ 2
ψ4p+2
a∗

]
dx= ψ2p+2

a∗ (0)

[
1

4p+ 2
ψ2p
a∗ (0)−

1
2(p+ 1)

]
=

1
2(p+ 1)

ψ2p+2
a∗ (0)

[
1

2p+ 1
− 1

]
< 0. (3.25)

Next, we obtain the Morse index of L1,a on S0 for any a ̸= a∗. Here, the strategy is to use
a classical continuation argument based on the Riesz projection and that for any a ̸= a∗

we have ker(L1,a) = {0} (see [11, 13, 15] for similar situations). So, without loss of gen-
erality we consider only the case of a< a∗ ( the other case, a ∈ (a∗,0), is similar). Define
a−∞ by

a−∞ = inf {ã< a∗ : L1,a has exactly two negative eigenvalues for all a ∈ (ã,a∗)} .
(3.26)

By the former analysis with a≈ a∗, a−∞ is well defined and a−∞ ∈ [−∞,a∗). We claim
that a−∞ =−∞. Indeed, suppose that a−∞ >−∞. Let M= n(L1,a−∞) and let Γ be a
closed curve (for instance, a circle or a rectangle) such that 0 ∈ Γ⊂ ρ(L1,a−∞), and such
that all the negative eigenvalues of L1,a−∞ belong to the inner domain of Γ. The existence
of such Γ can be deduced from the lower semi-boundedness of the quadratic form associ-
ated toL1,a−∞ . Next, sinceL1,a converges toL1,a−∞ as a→ a−∞ in the generalized sense,
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it follows that there is ϵ> 0 such that for a ∈ [a−∞ − ϵ,a−∞ + ϵ]we have Γ⊂ ρ(L1,a) and
for ξ ∈ Γ, a→ (L1,a− ξ)−1 is analytic (see theoremXII.7 in [52]). Therefore, we have the
existence of an analytic family of Riesz-projections a→ P(a) given by

P(a) =− 1
2π i

˛
Γ

(L1,a− ξ)
−1 dξ.

Therefore,

dim(Ran P(a)) = dim(Ran P(a−∞)) =M, for all a ∈ [a−∞ − ϵ,a−∞ + ϵ] .

Next, by definition of a−∞, L1,a−∞+ϵ has two negative eigenvalues and therefore M= 2,
hence L1,a has two negative eigenvalues for a ∈ (a−∞ − ϵ,a∗), which contradicts the
definition of a−∞. Therefore, a−∞ =−∞. This finishes the proof.

In the next two lemmas, we determine the exact values of the Morse and nullity indexes
for L1,a on Sγ , with γ ̸= 0. We will see that these values depend of a threshold value of γ and
from the position of the shift-value a with regard to a∗.

Lemma 3.7. Let a∗ < 0 be the unique value such that ψ ′ ′
a∗(0+) = 0. We consider the family of

self-adjoint operators (L1,a,Sγ)γ∈R defined in (3.19) with a ∈ (a∗,0) fixed. Define

γ∗ =
ψ ′ ′
a (0+)

ψ ′
a (0+)

< 0.

Then,

(a) for γ = γ∗, ker(L1,a) = span{ψ ′
a} and n(L1,a) = 1 on Sγ∗ ,

(b) for γ ̸= γ∗, ker(L1,a) = {0} on Sγ ,
(c) for γ ∈ (γ∗,+∞), n(L1,a) = 1, and for γ ∈ (−∞,γ∗), n(L1,a) = 2, on Sγ .

Proof. (a) It is immediate that ψ ′
a ∈ Sγ∗ and L1,aψ

′
a = 0. Next, suppose f ∈ ker(L1,a) and

f ∈ Sγ∗ . Then, since ψ ′
a(x)→ 0 as x→+∞, there is s ∈ R such that f = sψ ′

a. Thus,
ker(L1,a) = span{ψ ′

a}. Next, since ψ ′
a has exactly one zero in (0,+∞), the oscillation

theory implies that L1,a will have exactly one negative eigenvalue on Sγ∗ .
(b) For γ= 0, lemma 3.6-item (b) implies ker(L1,a) = {0} on S0. Next, we consider γ > 0.

Then for f ∈ ker(L1,a) and f ∈ Sγ , we get that f = rψ ′
a and so

rγψ ′
a (0) = γf(0) = f ′ (0) = rψ ′ ′

a (0) .

If r ̸= 0, then γ = ψ ′ ′
a (0)/ψ ′

a(0)< 0 (we recall that for a ∈ (a∗,0), ψ ′ ′
a (0)< 0). Then,

r= 0 and so ker(L1,a) = {0} on Sγ . Lastly, let γ < 0 and γ ̸= γ∗. Then, by the former
analysis we get immediately γ = ψ ′ ′

a (0)/ψ ′
a(0) = γ∗, which is false.

(c) Consider the quadratic form Qγ : H1(0,+∞)→ R, given by

Qγ ( f) =
ˆ +∞

0

(
f ′
)2

+Waf
2dx+ γ|f(0) |2, γ ∈ R, (3.27)

withWa = 1− (p+ 1)(2p+ 1)ψ2p
a . We denote by nγ(L1,a) the Morse index of L1,a on Sγ .

We divide our analysis in several cases:
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(i) Let γ ∈ (γ∗,0]. Then Qγ( f)≧Qγ∗( f) for f ∈ H1(0,+∞). Therefore, nγ(L1,a)≦
nγ∗(L1,a) = 1 (by using item (a) above). Next, asQγ( f)≦Q0( f) for f ∈ H1(0,+∞),
lemma 3.6-item (c) implies that there is χ ∈ S0 such that Q0(χ)< 0. Hence, by the
min-max theorem we get that nγ(L1,a) = 1.

(ii) Let γ > 0. It is not difficult to see that (L1,a,Sγ) as a function of γ ∈ R is a real-analytic
family of type (B) in the sense of Kato (see [41], theoremVII-4.2).Moreover, for γ= 0
and a ∈ (a∗,0), from lemma 3.6 we have ker(L1,a) = {0} and n0(L1,a) = 1 on S0.
Thus, since ker(L1,a) = {0} on Sγ for any γ ∈ (−ϵ,ϵ) (by item (b) above), we have
the right framework to apply the analytic perturbation theory and the Kato-Rellich
Theorem (see proof of item (c) of lemma 3.6) to obtain that

γ∞ = sup{γ̃ > 0 : L1,a has exactly one negative eigenvalue on Sγ for all γ ∈ (0, γ̃)}

is well defined and that γ∞ ∈ (0,+∞]. Thus, by using a classical continuation argu-
ment based on the Riesz-projection, we get that γ∞ =+∞. Then, nγ(L1,a) = 1 for
all γ > 0.

(iii) Let γ ∈ (−∞,γ∗). By item (a) above, we consider λ∗ < 0 and the positive eigen-
function χ∗ ∈ Sγ∗ such that L1,aχ

∗ = λ∗χ∗. Next, we consider the unfold operator L̃
in (3.9) defined on the δ-interaction domain Dδ,2γ∗ (see (3.10)). Then, for ψ ′

a,even and
χ∗
even being, respectively, the even-extension of ψ ′

a and χ
∗ on all the line, we obtain

ψ ′
a,even,χ

∗
even ∈ Dδ,2γ∗ , and

L̃ψ ′
a,even = 0, L̃χ∗

even = λ∗χ∗
even, for x ̸= 0.

Thus, asψ ′
a,even has exactly two different zeros, we obtain from Sturm–Liouville oscil-

lations theory for δ-interaction boundary conditions, that there are θ ∈ (λ∗,0) and
Θ ∈ Dδ,2γ∗ , such thatΘ is odd andΘ(x) = 0 if and only if x= 0 (therefore, n(L̃) = 2).
We note that asΘ ∈ H2(R), thenΘ ∈ Dδ,2γ for any γ. Now, we consider the quadratic
form associated to L̃ on Dδ,2γ ,

Qδ,γ ( f) =
ˆ +∞

−∞

(
f ′
)2

+Weven f
2dx+ 2γ|f(0) |2, (3.28)

where Weven = 1− (p+ 1)(2p+ 1)ψ2p
a,even. Then for any γ ∈ (−∞,γ∗) we get

Qδ,γ (χ
∗
even)≦Qδ,γ∗ (χ∗

even)< 0 and Qδ,γ (Θ)< 0.

Moreover,

Qδ,γ

(
ψ ′
a,even

)
=−2ψ ′ ′

a (0+)ψ ′
a (0+)+ 2γ|ψ ′

a (0+) |2 = 2(γ− γ∗) |ψ ′
a (0+) |2 < 0.

Therefore, Qδ,γ is a negative quadratic form on the three-dimensional subspaceM=
span{χ∗

even,Θ,ψ
′
a,even} where χ∗

even,Θ and ψ ′
a,even are orthogonal two by two. Then,

n(L̃)≧ 3 for L̃ with domain Dδ,2γ . But, via extension theory we know that n(L̃)≦ 3
(see proposition A.4 in appendix), and so n(L̃) = 3. Next, let λ0,2γ ,θ,λ2,2γ be the
three simple negative eigenvalues for L̃ on Dδ,2γ . Then, by oscillation theory we have
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that the eigenfunctions associated to λ0,2γ and λ2,2γ are even, so they are the only
ones that will survive when we restrict our problem to the half-line (0,+∞). Then,
nγ(L1,a) = 2. This finishes the Lemma.

Lemma 3.8. Let a∗ < 0 be the unique value such that ψ ′ ′
0,a∗(0+) = 0. We consider the family

of self-adjoint operators (L1,a,Sγ)γ∈R defined in (3.19) with a ∈ (−∞,a∗) fixed. Define γ∗ =
ψ ′ ′
0,a(0+)/ψ ′

0,a(0+)> 0. Then,

(a) for γ = γ∗, ker(L1,a) = span{ψ ′
0,a} and n(L1,a) = 1 on Sγ∗ ,

(b) for γ ̸= γ∗, ker(L1,a) = {0} on Sγ ,
(c) for γ ∈ (γ∗,+∞), n(L1,a) = 1, and for γ ∈ (−∞,γ∗), n(L1,a) = 2, on Sγ .

Proof. The proof of items (a)–(b) are similar to items (a)–(b) in lemma 3.7. The proof of item
(c) will require an approach based in the analytic perturbation theory. We denote by nγ(L1,a)
the Morse index of L1,a on Sγ .

(c) Consider the quadratic form Qγ in (3.27). Then, for γ ≦ 0 we obtain Qγ ≦Q0 and so
nγ(L1,a)≧ n0(L1,a) = 2 (see item (c) in lemma 3.6). But, by extension theory we have
always nγ(L1,a)≦ 2 for any γ ∈ R (see appendix), then nγ(L1,a) = 2 for γ ≦ 0.
Let γ > γ∗. Then, Qγ ≧Qγ∗ . Hence, nγ∗(L1,a) = 1 implies nγ(L1,a)≦ 1. Next, let

λ∗ < 0 be the unique negative eigenvalue for L1,a on Sγ∗ (by former item (a)). Then, by
following a similar argument as in the proof of item (c) in lemma 3.7, we get the following:
there are θ ∈ (λ∗,0) andΘ ∈ H2(R), withΘ odd and with an unique zero on allR in x= 0,
such that L1,aΘ= θΘ on (0,+∞). Then, Qγ(Θ) = θ∥Θ∥2 < 0. Hence, by the min-max
theorem we get nγ(L1,a) = 1.
Let γ ∈ (0,γ∗). By the analysis above, we have for γ= 0 that ker(L1,a) = {0} and

n0(L1,a) = 2. Then, by analytic perturbation theory, we obtain nγ(L1,a) = 2 for γ≈ 0.
Define σ∗ by

σ∗ = sup{γ̃ > 0 : nγ (L1,a) = 2 for all γ ∈ (0, γ̃)} . (3.29)

Then, by the former statement, there is ϵ0 > 0 such that for all γ ∈ (0, ϵ0) we have
nγ(L1,a) = 2. Then σ∗ is well defined and σ∗ ∈ [ϵ0,+∞]. But, since for all γ > γ∗,
nγ(L1,a) = 1, then σ∗ ≦ γ∗.
Next, we show that σ∗ = γ∗. Suppose σ∗ < γ∗ and define M= nσ∗(L1,a). Since

ker(L1,a) = {0} on Sσ∗ we can considerΓ as being a closed curve (for example, a circle or a
rectangle) such that 0 ∈ Γ⊂ ρ(L1,a), and all the negative eigenvalues ofL1,a on Sσ∗ belong
to the inner domain ofΓ. Next, it is convenient to use the notationL1,a,γ ≡ L1,a for drawing
the attention that D(L1,a,γ) = Sγ . Thus, since as a function of γ, (L1,a,γ ,Sγ)γ∈R is a real-
analytic family of self-adjoint operators of type (B) in the sense of Kato (see theorem VII-
4.2 in [41] and lemma 3.11 in [15]), it follows that there is δ > 0 small enough such that for
γ ∈ [σ∗ − δ,σ∗ + δ] we have Γ⊂ ρ(L1,a) (L1,a on Sγ) and for ξ ∈ Γ, γ→ (L1,a,γ − ξ)−1

is analytic. In this point we note that from formula (2.8) in [16] with convenient constants
and from the Krein’s Formula for deficiency indices (1, 1) (see theorem A.2 and appendix
D in [6]), we can obtain an expression that shows the analytic-dependence of the resolvent

20



Nonlinearity 37 (2024) 045015 J Angulo Pava

(L1,a,γ − ξ)−1 on γ (see also the proof of theorem A.7 in appendix). Therefore, a sim-
ilar argument as in the proof of lemma 3.6 we obtain that σ∗ < γ∗ is not possible and so
σ∗ = γ∗, which implies nγ(L1,a) = 2 for all γ ∈ (0,γ∗). This finishes the Lemma.

3.4. Morse index

In this subsection we show theorem 1.3 about the Morse index of (L+,Z,DZ). Thus, by using
the notation at the beginning of this section, it is sufficient to studyL+ = diag(L0,L1) onDZ,0.

Proof (theorem 1.3). Theorem 3.1 shows item (1) in theorem 1.3. In the following, we then
focus to prove item (2). In fact, we consider the family of soliton-profiles a ∈ (−∞,0)→ ψ0,a

and a∗ < 0 the unique value such that ψ ′ ′
0,a∗(0+) = 0. We will divide our analysis in several

steps.

(1) Let a ∈ (a∗,0) and γ∗ = ψ ′ ′
0,a(0+)/ψ ′

0,a(0+)< 0 (we note that γ∗ = γ(a) in (1.15)).
(a) Let −Z≧ γ∗. Suppose n(L+)≧ 2 and it considers λ1 as being the second eigenvalue

such that 0> λ1 > λ0, and with associated eigenfunction ( f,g) ∈ DZ,0. Thus, we have
the relations 

L0f(x) = λ1f(x) , x ∈ (−L,L) ,
L1g(x) = λ1g(x) , x> 0,
f(L) = f(−L) = g(0) ,
f ′ (L)− f ′ (−L) = g ′ (0)+ Zg(0) .

(3.30)

Next, we consider the following cases:
(i) Suppose g≡ 0: then, f satisfiesDirichlet boundary conditions and soλ1 is a simple

eigenvalue. Therefore, f is even or odd. Next, as f⊥ϕλ0 then f changes of sign. By
using Floquet theory follows that f is odd (see step 1) in the proof of theorem
3.1). Now, L0Φ

′ = 0, Φ ′ is odd and Φ ′(x)< 0 on (−L,0). Then, since f(−L) =
f(0) = 0 and λ1 < 0 we obtain from the Sturm comparison theorem that there is
r ∈ (−L,0) such that Φ ′(r) = 0, which is false. Then, the component g is non-
trivial.

(ii) For g ̸= 0, suppose g(0) = 0 (so g ′(0) ̸= 0 by item (i)): let η be the smallest
eigenvalue for L0 with Dirichlet conditions, then η ≦ λ1. Moreover, by the ana-
lysis in item (i), f is even (if f is odd then f ′ is even and so from (3.30) we
obtain g ′(0) = 0). Suppose η < λ1, then f has at least one zero swith s ∈ (−L,0).
Therefore, from the Sturm comparison theorem, there is w ∈ (−L,s) such that
Φ ′(w) = 0, which is false. Then, η = λ1 and so f > 0 on (−L,L).
In the following we show that g> 0 on (0,+∞). Suppose that there is b ∈

(0,+∞) such that g(b) = 0. Then, by considering the odd-extension godd ∈ H2(R)
of g, godd will be an eigenfunction associated to the eigenvalue λ1 for the
extension-operator L̃ in (3.9) (ω =−1) on the δ-interaction domainDδ,γ in (3.10)
for any γ. Thus, since godd has at least three zeros onR, it follows from the Sturm–
Liouville oscillation theory for (L̃,Dδ,γ) (see lemma 5.3 in [15]) that λ1 is at least
the fourth negative eigenvalue for L̃ on Dδ,γ , which is a contradiction because
n(L̃)≦ 3 (see proposition A.4 in appendix). Therefore, we have f,g> 0. Now,
since( f,g)⊥(ϕλ0 , ζλ0) we get a contradiction by lemma 3.1.

21



Nonlinearity 37 (2024) 045015 J Angulo Pava

(iii) Let g ̸= 0 with g(0)> 0 (without loss of generality): Then, by the splitting eigen-
value lemma (lemma 3.4) and by the Perron–Frobenius property for L+, we get
that the pairs (g,λ1) and (ζλ0 ,λ0) satisfy the eigenvalue problem,{

L1h(x) = τh(x) , x> 0,
h ′ (0) =−Zh(0) . (3.31)

Therefore, the Morse index of L1 on S−Z = {h ∈ H2(0,+∞) : h ′(0) =−Zh(0)},
satisfies n(L1)≧ 2. But, by the condition −Z≧ γ∗ and lemma 3.7, we obtain a
contradiction. Then, we need to have n(L+) = 1.

(b) Suppose the relation −Z< γ∗ and we will show 1≦ n(L+)≦ 2. Suppose n(L+) = 3
(we note that by using theorem A.6 and a similar analysis as in proposition A.4 in
appendix, we can obtain the estimative n(L+)≦ 3). Let λi be the negative eigenvalues
for the problem in (3.1) such that 0> λ2 ≧ λ1 > λ0. Then, if λ2 ̸= λ1 we obtain by the
analysis in the former item (a)–(ii)–(iii) that the eigenvalue problem in (3.31) will have
at least 3 different negative eigenvalues, which is a contradiction because n(L1) = 2
on S−Z (see lemma 3.7). Thus, we obtain that λ1 is a double eigenvalue for L+. Then,
there are eigenfunctions (ϕi,gi), i = 1,2, associated to the eigenvalue λ1 such that
ϕi(L) = ϕi(−L) = gi(0). By the analysis in the former item (a)–(ii), we can suppose
that gi(0)> 0 (we note that g1 and g2 can be linearly dependent and so since n(L1) =
2 on S−Z , by lemma 3.7 a priori we do not get a contradiction). Then, by splitting
eigenvalue lemma, every ϕi satisfies also periodic boundary conditions. Now, if some
ϕi satisfies ϕi(0) = 0 then from Floquet’s oscillation theory there is a zero for ϕi in
(−L,0) or (0,L) (we recall that the number of zeros of any periodic eigenfunction
for L0 is even in [−L,L)). Therefore, the Sturm comparison theorem implies that the
profile Φ ′ will have one zero in (−L,0) or (0,L), which is false. Thus, we need to
have ϕi(0) ̸= 0 for i = 1,2. Next, we consider the following periodic eigenfunction
associated to λ1

Υ(x) =−ϕ2 (0)
ϕ1 (0)

ϕ1 (x)+ϕ2 (x) .

Then,Υ(0) = 0 and soΥ needs to have a zero in [−L,0) or (0,L). Hence, we get again a
contradiction by the profile-structure ofΦ ′. Therefore, we need to have 1≦ n(L+)≦ 2.
In the following we show items (i)–(ii) in the theorem’s statements.
(i) n(L+) = 1 if and only if n(L0) = 1: suppose n(L+) = 1, then by the splitting

eigenvalue lemma n(L0)≧ 1 (L0 with periodic boundary conditions). Next, we
assume n(L0)≧ 2 and we take r ∈ (λ0,0) being the second eigenvalue for L0 (it
can be double) with associated eigenfunction fr⊥ϕλ0 . Then, by Floquet theory, fr
needs to have two-zeros in [−L,L) and fr can be chosen even or odd. If fr is odd
then by the Sturm comparison theorem Φ ′ has a zero in (−L,0), which is false.
Suppose fr even and so fr(−L) = fr(L) ̸= 0.
Next, for−Z< γ∗ we know that n(L1) = 2 on S−Z by lemma 3.7. Thus, let λ1 ∈

(λ0,0) be the second eigenvalue for L1 with associated eigenfunction gλ1 , then by
oscillation theory, gλ1 has exactly one zero on (0,+∞) with gλ1(0) ̸= 0 (see item
(ii) in the proof of step a) above). Moreover, gλ1⊥ζλ0 and we can choose gλ1(0) =
fr(L) = fr(−L). Therefore ( fr,gλ1) ∈ D(QZ) and (ϕλ0 , ζλ0)⊥( fr,gλ1). Then, we
obtain from (3.5) and n(L+) = 1 that

0≦QZ ( fr,gλ1) = r∥fr∥2 +λ1∥gλ1∥2 < 0.
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Hence, n(L0) = 1.
In the following, suppose n(L0) = 1 and n(L+) = 2. Then, there is λ1 ∈ (λ0,0)

(we recall that λ0 is simple) and (ϕ1,g1) ∈ DZ,0 such that L0ϕ1 = λ1ϕ1, and by
the analysis in the former paragraph ϕ1(−L) = ϕ1(L) = g1(0) ̸= 0. Then, by the
splitting eigenvalue lemma ϕ ′

1(−L) = ϕ ′
1(L). Therefore, we conclude n(L0)≧ 2.

Thus, we need to have necessary n(L+) = 1.
(ii) n(L0) = 2 if and only if n(L+) = 2: the necessary condition follows from the

former item (i). Now, suppose n(L+) = 2. Then again by item (i) we get n(L0)≧ 2
(L0 with periodic boundary conditions).
In the following, we will see that n(L0)≦ 2 in general. So, without loss of gener-

ality, suppose n(L0) = 3 and consider the eigenvalue distribution λ0 < λ1 ≦ λ2 <
0. For the case, λ1 < λ2 with associated eigenfunctions f1, f2, respectively, we have
that fi is even or odd (because λ ′

i s are simple). Next, if some fi is odd we obtain by
comparison’s theory that Φ ′ has one zero in (−L,0), which is false. Then, both
fi are even and by oscillation theory each fi has exactly 2 zeros in (−L,L), so
fi(L) ̸= 0. Suppose, fi(L)> 0 and b such that f1(±b) = 0, −L<−b< 0< b< L.
Then, since λ1 < λ2, it follows from oscillation theory that there are points ±a
with −b<−a< 0< a< b and f2(±a) = 0. Thus, from fi(x)> 0 for x ∈ (b,L),
f ′i (L) = 0, f ′1(b)> 0 and f2(b)> 0, we obtain the following contradiction

0=
ˆ L

b
( f1f

′ ′
2 − f ′ ′1 f2)dx+(λ2 −λ1)

ˆ L

b
f1f2dx

= (f ′2f1 − f ′1f2) |Lb +(λ2 −λ1)

ˆ L

b
f1f2dx

= f ′1 (b) f2 (b)+ (λ2 −λ1)

ˆ L

b
f1f2dx> 0.

The case λ1 = λ2 also leads a contradiction by oscillation and comparison theories.
Therefore, n(L0)≦ 2.

(2) For a< a∗ and γ∗ ≡ ψ ′ ′
0,a(0+)/ψ ′

0,a(0+)> 0, we have that a similar analysis as the one in
item (1), now using lemma 3.8 and the splitting eigenvalue lemma, it shows the statement.

(3) For a= a∗ and γ0 ≡ ψ ′ ′
0,a∗(0+)/ψ ′

0,a∗(0+) = 0, we have that a similar analysis as the one
in item (1), now using lemma 3.6-item (a) and the splitting eigenvalue lemma, it shows the
statement.

Remark 3.9. Some comments about theorem 1.3:

(a) The smallest eigenvalue, λ0, for L+,Z ≡ (L0,L1,ω) on DZ in (1.13), coincides with the
smallest eigenvalue for both L0 and L1,ω, with periodic boundary conditions and δ-
boundary conditions at zero, respectively (which follows from the proof of theorem 3.1,
the splitting eigenvalue lemma, and from oscillation theory).

(b) The arguments in item (b)–(ii) of the proof of theorem 1.3, show that in general we have
1≦ n(L0)≦ 2.
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3.5. Nullity index

In this subsection we show theorem 1.4 about the kernel of (L+,Z,DZ). Thus, by using the
notation at the beginning of this section, it is sufficient to study L+ = diag(L0,L1) on DZ,0.

Proof (theorem 1.4). Suppose ( f,h) ∈ DZ,0 such that L+( f,h)t = (0,0)t, then we obtain the
eigenvalue problem

L0f(x) = 0, x ∈ (−L,L) ,
L1h(x) = 0, x ∈ (0,+∞) ,
f(−L) = f(L) = h(0)
f ′ (L)− f ′ (−L) = h ′ (0)+ Zh(0) .

(3.32)

Now, sinceL1ψ
′
0,a = 0 it follows immediately h= cψ ′

0,a on (0,+∞) (see theorem 3.3 in [20]).

(a) Suppose c= 0: Then h≡ 0 and f satisfies Dirichlet-periodic boundary conditions f(L) =
f(−L) = 0 and f ′(L) = f ′(−L). We consider f ̸= 0, then from oscillation theory and remark
3.9 we have that zero is not the first eigenvalue for L0 and so f needs to change of sign.
Now, from Sturm–Liouville theory for Dirichlet conditions we have that f is even or odd
(because 0will be a simple eigenvalue). Next, sinceL0Φ

′ = 0,Φ ′ is odd andΦ ′(L) ̸= 0, we
get that f is even (indeed, from classical ODE’s theory f = aΦ ′ + bP, where P is the even-
solution of L0P= 0 with P(0) = 1, P ′(0) = 0, and so we need to have a= 0). Now, from
Floquet’s oscillation theory, f has an even number of zeros on [−L,L). But, as f(−L) = 0
we deduce that f has an odd number of zeros on (−L,L) which implies f(0) = 0. Thus,
since f ′(0) = 0 we get a contradiction. Therefore f≡ 0.

(b) Suppose c ̸= 0, then h(0) ̸= 0 (h(0)> 0 without loss of generality for c> 0). Then, by the
splitting eigenvalue lemma we get the following relations:

f(−L) = f(L) = h(0)> 0, f ′ (L) = f ′ (−L) , h ′ (0) =−Zh(0) . (3.33)

Then, in particular we have the relation

ψ ′ ′
0,a (0) =−Zψ ′

0,a (0) . (3.34)

Now, for a∗ < 0 being the unique value of a such that ψ ′ ′
0,a(0+) = 0, we consider the fol-

lowing cases:
(i) Suppose a ̸= a∗ and−Z ̸= ψ ′ ′

0,a(0)/ψ
′
0,a(0): then obviously we can not have (3.34) and

so c= 0.
(ii) Suppose a= a∗: for Z ̸= 0 we obtain obviously that (3.34) can not happen and so c= 0.

For Z= 0, we have ker(L1) = span{ψ ′
0,a∗} on S0. In the following we show that the

second eigenvalue for L0, with periodic-boundary conditions, is exactly zero (simple)
and with f being even. Indeed, from oscillation theory we have the following distribu-
tion of eigenvalues for L0 (see theorem 4.8.1 in [55])

η0 < µ0 < η1 ≦ µ1 ≦ η2 < µ2 < η3 < · · ·

where µi and ηi are the eigenvalues for L0 with Dirichlet and periodic conditions,
respectively. We will see that η1 = 0 and simple. Suppose 0> µ1. Then, since the
eigenfunction associated to µ1 is odd, it follows by Sturm comparison theorem that
Φ ′ has one zero on (−L,0), which is impossible. So, 0≦ µ1. Next, by supposing
µ1 = 0, we have the existence of a odd-eigenfunction χ1 withL0χ1 = 0 and χ1(−L) =
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Figure 4. Profile of γ in (3.36) with ω =−1 and p= 1.

χ1(L) = 0. Thus, the WronskianoW(χ1,Φ
′) of χ1 and Φ ′ is constant and satisfies for

every x ∈ [−L,L]

A≡W(χ1,Φ
′)(x) = χ1 (x)Φ

′ ′ (x)−χ ′
1 (x)Φ

′ (x) .

Then, for x= 0 we obtain that A= 0 and so there is a β such that χ1 = βΦ ′. Therefore,
as Φ ′(L) ̸= 0 we obtain β= 0, and so we get a contradiction. Then, 0< µ1 and so
η1 = 0 is simple with eigenfunction f being obviously even (f(L) ̸= 0). Moreover,
f ′(L) = 0 and f(0)< 0 (because f will have exactly two zeros in (−L,L)). Thus, we
get that

B≡W( f,Φ ′)(x)< 0, for x ∈ [−L,L] . (3.35)

But, W( f,Φ ′)(L) = f(L)Φ ′ ′(L) = f(L)ψ ′ ′
0,a∗(0) = 0. Therefore, we need to have again

that c= 0.
(iii) Suppose a< a∗ and−Z= ψ ′ ′

0,a(0)/ψ
′
0,a(0) (hence Z< 0, see figure 4 below): similarly

as in the former case ii), we have ker(L1) = span{ψ ′
0,a} on S−Z and zerowill be exactly

the second eigenvalue for L0 (with periodic-boundary conditions), simple, and with f
being even. Recall, we also have the relation in (3.35). Thus,

B=W( f,Φ ′)(L) = f(L)Φ ′ ′ (L) = h(0)ψ ′ ′
0,a (0) =−cZ

[
ψ ′
0,a (0)

]2
> 0.

Therefore c= 0. This finishes the proof.

Remark 3.10. In the next, we have some comments about the proof of theorem 1.4): we con-
sider the profile of the following mapping γ, for ω< 0 and with p fixed values (see (1.15)),
namely,

γ (a) =
ψ ′ ′
0,a (0)

ψ ′
0,a (0)

=
√
−ω (p+ 1)sech2 (pa)− 1

tanh(pa)
, a< 0. (3.36)

Then, we have that for any Z> 0 (fixed), the equation−Z= γ(a) has a solution (and unique) if
and only if a ∈ (a∗,0)with γ(a∗) = 0 (see figure 4). Thus, if for the shift-parameter a(ω,Z)we
have−Z= γ(a(ω,Z))), then the strategy for showing item (3) of theorem 1.4 does not work for
obtaining some information about ker(L+,Z) in the case of a> a∗ and Z=−γ((a(ω,Z))> 0.
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3.6. Non-negative spectrum for L−,Z

In the following, we show theorem 1.6. In fact, we consider the operator L−,Z =
diag(L0,−,L1,−) on DZ in (1.3), where

L0,− =−∂2x −ω− (p+ 1)Φ2p
ω , L1,− =−∂2x −ω− (p+ 1)ψ2p

a ,

with ψa defined in (1.14).

Proof. It is clear that (Φω,ψa) ∈ ker(L−,Z) by (1.5). Next, we note that for any V= ( f,g) ∈
DZ

L0,− ( f) =− 1
Φω

d
dx

[
Φ2
ω

d
dx

(
f

Φω

)]
, x ∈ (−L,L)

L1,− (g) =− 1
ψa

d
dx

[
ψ2
a
d
dx

(
g
ψa

)]
, x> L.

(3.37)

Thus, we obtain immediately that

⟨L−,ZV,V⟩=
ˆ L

−L
Φ2
ω

(
d
dx

(
f

Φω

))2

dx+
ˆ +∞

L
ψ2
a

(
d
dx

(
g
ψa

))2

dx≧ 0.

Therefore, since ⟨L−,ZV,V⟩= 0 if and only if f = cΦω and g= dψa (with c= d because
f(L) = g(L)), we obtain ker(L−,Z) = span{(Φω,ψa)}. This finishes the proof.

4. Applications and proof of theorem 1.7

In this section, we prove initially the existence of a C1-mapping of positive two-lobe state
profiles ω ∈ I→ (Φω,Ψω) ∈ D0 for the cubic-NLS in (1.5), with p= 1. The existence of these
profiles will be based on the dynamical system theory for orbits on the plane via the period
function for second-order differential equations (see [33, 39, 40, 50]). We note that in [50],
this period function strategy was already applied for the case p= 2 for obtaining the existence
of positive single-lobe state profiles of (1.5) with Z= 0. We believe that the periodic function
can also be applied for obtaining positive two-lobe states with other values of p and it will
be pursued in a future work. In our analysis, we prove that I= (−∞,ω0), with ω0 < 0, and
that positive two-lobe states do not exist for ω ∈ (ω0,0) (see lemma 4.1 and remark 4.5). After
this, we also prove the monotonicity of the mass-map ω ∈ I→ Q(Φω,Ψω) and so, by using
theorems 1.3, 1.4 and 1.6, and the orbital criterion in theoremA.8 (appendix), we show theorem
1.7.

We begin by considering L= π, ψ(x) = Ψ(x+π) for x> 0. Then, the scaling transforma-
tion for ω ≡−ϵ2 with ϵ> 0; namely,

ψ (x) = ϵu0 (ϵx) , Φ(x) = ϵφ(ϵx) , (4.1)

implies that system (1.5) is transformed in the following system of differential equations:
−φ ′ ′ (x)+φ(x)− 2φ3 (x) = 0, x ∈ (−ϵπ,ϵπ) ,
−u ′ ′

0 (x)+ u0 (x)− 2u30 (x) = 0, x ∈ (0,+∞) ,
φ(−ϵπ ) = φ(ϵπ) = u0 (0) ,
φ ′ (ϵπ )−φ ′ (−ϵπ ) = u ′

0 (0) .

(4.2)
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The only positive decaying solution to the second equation in (4.2) on the half-line, is given
by the shifted classical NLS soliton ψ0 in (1.8):

u0 (x) = ψ0 (x+ a) = sech(x+ a) , x> 0, (4.3)

where a ∈ R will be considered a< 0 for obtaining a non-monotone u0 on [0,∞) (a bump-
profile).

It is immediate that each second-order differential equation in system (4.2) is integrable
with the first-order invariant:

E(u,v) = v2 −A(u) , v=
du
dx
, A(u) = u2 − u4 (4.4)

where the value E(u,v) = E is independent of x. For E= 0 we obtain the well-know two homo-
clinic orbits on the phase plane (u,u ′), one corresponds to positive u (which is represented by
the curve x ∈ R→ (ψ0(x),ψ ′

0(x)), the green colour in figure 5), and the other one corresponds
to negative −u. Now, since A(u) for u> 0, has only one critical point p∗ ∈ (0,1) (p∗ = 1√

2
),

we have that periodic orbits exist inside each of the two homoclinic loops and correspond to
E ∈ (E∗,0), where E∗ =−A(p∗) =− 1

4 . Here we are interested in strictly positive profile u
(the blue colour in figure 5). Note that

E+A(p∗)> 0, E ∈ (E∗,0) . (4.5)

In the following we define p0 ≡ u0(0) = sech(a) ∈ (0,1), and so u ′
0(0) =

√
A(p0) by (4.4),

E= 0 and a< 0. In our analysis, p0 will be a free parameter such that p0(a)→ 1 when a→ 0−

and p0(a)→ 0 when a→−∞.
Hence, our first positive single-lobe state will be found from the following over-determined

boundary-value problem:
−φ ′ ′ (x)+φ(x)− 2φ3 (x) = 0, x ∈ (−ϵπ,ϵπ) ,
φ(−ϵπ ) = φ(ϵπ) = p0,
φ ′ (−ϵπ ) =−φ ′ (ϵπ ) =− 1

2

√
A(p0)≡ q0,

(4.6)

where p0 ∈ (0,1) is a free parameter of the problem. Figure 5 shows a geometric construc-
tion of solutions to (4.6) on the plane (u, v). The red solid line plots q0(p0) =− 1

2

√
A(p0),

p0 ∈ (0,1). The dashed-dotted vertical line depicts the value of p0 = u0(0) = sech(a) and so
the green dashed line represents the homoclinic orbit at E= 0 with the solid part depicting
the shifted NLS soliton (4.3). Therefore, the level curve E(u,v) = E(p0,q0), at p0 = sech(a)
and q0 =− 1

2

√
A(p0), is shown by the blue dashed line, whereas the solid part depicts a suit-

able solution to the boundary-value problem (4.6). Thus, our positive-even solution φ for (4.6)
induces the planar curve x→ γ(x) = (φ(x),φ ′(x)) which corresponds to a part of the level
curve E(u,v) = E(p0,q0)≡ E0(p0) =− 3

4A(p0) ∈ (E∗,0), which intersects the line u≡ p0 only
twice at the ends of the interval [−πϵ,π ϵ], with γ(−ϵπ) = (p0,q0) and γ(0) = (φ(0),0).
Therefore, the green and blue solid parts in figure 5 depict a suitable positive two-lobe state
profile solution to the boundary-value problem (4.2).

Our formal analysis of the existence of φ in (4.6) will be based in the following period
function (see [33, 39, 50]) defined for (p0,q0) as

T− (p0,q0) =
ˆ p0

p−

du√
E+A(u)

, (4.7)
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Figure 5. Representation of the solution to the boundary-value problem (4.6) on the
phase plane.

where the fixed value −E ∈ (0,A(p∗)) and the point p−, are defined from (p0,q0) by

E(p0) = q20 −A(p0) =−A(p−) (4.8)

with 0< p− < p∗ < 1 and p− = p−(p0) (see figure 5). Note that since φ is even, φ ′(x)< 0
for all x ∈ (−ϵπ,0) and [φ ′(0)]2 = E+A(φ(0)), we get A(φ(0)) =−E= A(p−). Then, since
0< φ(0)< p0 we need to have φ(0) = p− (the minimum value for φ on [−ϵπ,ϵπ]). Thus,
the planar solution curve x ∈ (−ϵπ,0]→ γ(x) = (φ(x),φ ′(x)) starts at (p0,q0) and ends at
(p−,0).

From the classical theory of dynamical system at the plane,φ is a positive single-lobe profile
(sometimes it is called a depression profile) of problem (4.6) if, and only if, p0 ∈ (0,1) is a
solution of the equation

T (p0) = πϵ, with T (p0)≡ T−

(
p0,−

1
2

√
A(p0)

)
. (4.9)

The following result shows that problem in (4.9) has a solution for a restricted range of
values of ϵ and so for ω.

Lemma 4.1. The mapping p0 ∈ (0,1)→T (p0) is C1 andmonotonically increasing. Moreover,
T (p0)→ α0 > 0 as p0 → 0 and T (p0)→+∞ as p0 → 1. Therefore, problem in (4.6) has a
unique solution for πϵ > α0. Thus, by the scaling transformation (4.1) and (4.3), we obtain
at least a C1-mapping ω ∈ (−∞,ω0)→Θ(ω) = (Φω,Ψω) ∈ D0, ω0 < 0, of two-lobe state for
the cubic-NLS on a tadpole graph. Also, we get that the shift-mapping ω→ a(ω) ∈ (−∞,0)
(a diffeomorphism-mapping) is smooth with sech(a(ω)) = p0 such that T (p0) = π

√
−ω.

Remark 4.2. In remark 4.5, we give a formula for the profileΦω in terms of the Jacobi elliptic
function of dnoidal-type. Therefore, we obtain that ω0 in lemma 4.1 is giving by ω0 =−α2

0/π
2

with α0 being the positive root of sech2(α0) = 3/4.
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Proof. To prove the lemma we use the technique developed in [39] for a flower graph in the
cubic-NLS case (see also [33]). We start by considering the following C1-function

W(u,v) =
2(A(u)−A(p∗))v

A ′ (u)
,

defined inside the open region limited by the homoclinic orbit (see figure 5), so u ∈ (0,1).
Moreover, the differential of W is given by

dW=

[
2− 2(A(u)−A(p∗))A ′ ′ (u)

[A ′ (u)]2

]
vdu+

2(A(u)−A(p∗))
A ′ (u)

dv. (4.10)

Now, we consider the level curve E(u,v) = v2 −A(u) = E, with E ∈ (E∗,0) (E∗ =− 1
4 ), inside

the homoclinic orbit and where v=−
√
E(u,v)+A(u). Then, in this level curve we have

2vdv= A ′(u)du and so

A(u)−A(p∗)
v

du=−

[
2− 2(A(u)−A(p∗))A ′ ′ (u)

[A ′ (u)]2

]
vdu+ dW. (4.11)

Next, if we consider theC1-curve γ connecting (p0,q0) and (p−,0) on the level curve E(u,v) =
E(p0,q0) = E0(p0), E0(p0) ∈ (E∗,0), then the line integral of dW along of γ is given by

ˆ
γ

dW=−
ˆ
−γ

dW=−
ˆ (p0,q0)

(p−,0)
dW=− [W(p0,q0)−W(p−,0)] =−W(p0,q0) . (4.12)

We recall that the value of T (p0) in (4.9) is obtained from the level curve E(u,v) = E(p0,q0) =
E0(p0), q0 =− 1

2

√
A(p0), thus from (4.7), (4.11) and (4.12), for p0 ∈ (0,1) we obtain the

relation

[E0 (p0)+A(p∗)]T (p0) =−
ˆ p0

p−

E(u,v)+A(p∗)du
v

=−
ˆ p0

p−

[
v− A(u)−A(p∗)

v

]
du

=−
ˆ p0

p−

[
3− 2(A(u)−A(p∗))A ′ ′ (u)

[A ′ (u)]2

]
vdu

+
2(A(p0)−A(p∗))

A ′ (p0)
q0. (4.13)

Therefore, it follows immediately that the mapping p0 ∈ (0,1)→T (p0) ∈ (0,+∞) is C1.
In the following we prove that T ′(p0)> 0 for every p0 ∈ (0,1). Indeed, by differentiating

the expression in (4.13), using E ′
0(p0) =− 3

4A
′(p0), ∂v

∂p0
= 1

2vE
′
0(p0) and

dq0
dp0

=− 1
4
A ′(p0)√
A(p0)

, it

follows

[E0 (p0)+A(p∗)]T ′ (p0) =
A(p∗)

2
√
A(p0)

+
3
8
A ′ (p0)

ˆ p0

p−

[
1− 2(A(u)−A(p∗))A ′ ′ (u)

[A ′ (u)]2

]
1
v
du

=
A(p∗)

2
√
A(p0)

+
3
32
A ′ (p0)

ˆ p0

p−

1− 2u2

u2v
du. (4.14)
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Figure 6. Graph of F(p0) for p0 ∈ (0,0.1).

Next, by using integration by parts we obtain

ˆ p0

p−

1− 2u2

u2v
du=−

ˆ p0

p−

A ′ (u)

2u3
√
E0 (p0)+A(u)

du=−
ˆ p0

p−

1
u3

d
du

√
E0 (p0)+A(u)du

=
q0
p30

+ 3
ˆ p0

p−

v
u4

du. (4.15)

Substituting this into (4.14) yields

[E0 (p0)+A(p∗)]T ′ (p0) =
A(p∗)

2
√
A(p0)

+
3
32
A ′ (p0)

q0
p30

+
9
32
A ′ (p0)

ˆ p0

p−

v
u4

du. (4.16)

Since A ′(p0)≦ 0 for p0 ∈ [p∗,1), and q0,v< 0, we get immediately from (4.16) that T ′(p0)>
0 for every p0 ∈ [p∗,1).

The case p0 ∈ (0,p∗) is more delicate. Initially, we have the following estimative by using
that E0(p0) =−A(p−),

ˆ p0

p−

√
E0 (p0)+A(u)

u4
du=

ˆ p0

p−

1
u4

√
u2 − p2−

√
1−

(
u2 + p2−

)
du≦ 1

3p30p
2
−

(
p20 − p2−

)3/2
.

(4.17)

Thus, from (4.16), (4.17) and from the facts that q0 =− 1
2

√
A(p0), A ′(p0)> 0, and A(p∗) = 1

4 ,
we have that T ′(p0)> 0 for every p0 ∈ (0,p∗) as long as we have

F(p0)≡ p2−A
′ (p0)A(p0)+ 2

√
A(p0)A

′ (p0)
(
p20 − p2−

)3/2 − 8
3
p30p

2
− < 0

for p0 ∈ (0,p∗). Indeed, first from relation A(p−) = 3
4A(p0) we get that

p2− =
1−

√
1− 3A(p0)
2

.

Then, it follows immediately that limp0→0+ F(p0) = 0. Moreover, F ′(p0)< 0 for p0 ∈ (0,p∗)
(see figure 6). Therefore, F(p0)< 0 for p0 ∈ (0,p∗).

Next, from relation E0(p0)+A(u) = A(u)−A(p−)≦ A(u), we have

T (p0)≧
ˆ p0

p−

du

u
√
1− u2

,
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and so, since p−(p0)→ 0 as p0 → 1 and
´ 1
0

du
u
√
1−u2

du=+∞, we get T (p0)→+∞ as p0 → 1.
It remains to prove that T (p0)→ α0 as p0 → 0, for α0 > 0. In fact, for p0 > 0 small enough,
we obtain from the mean value theorem and from A ′(u) being a strictly increasing positive
function on (0,p0), that

T (p0)≧
ˆ p0

p−

1√
uA ′ (u)

du≧ 1
√
2
√
1− 2p2−

ˆ p0

p−

1
u
du≧ 1

√
2
√
1− 2p2−

(
1− p−

p0

)
.

Then, since limp0→0
p−
p0

=
√
3
2 , we arrive that

α0 ≡ lim
p0→0

T (p0)≧
(
2−

√
3
)√

2

4
.

Thus, for πϵ > α0 there exists exactly one root p0 of (4.9) and such that p0 = sech(a(ϵ)) ∈
(0,1) with a(ϵ) ∈ (−∞,0). Now, by using that ω =−ϵ2 <−α2

0/π
2, the scaling transform-

ation (4.1), and the solitons formulas (1.7) and (4.3), we obtain a unique two-lobe state
solution (Φω,Ψω) ∈ D0 satisfying the stationary NLS equation (1.5) under the conditions
p= 1, L= π and Z= 0. Moreover, by the analysis above, we get the C1-mapping ω→
(−∞,−α2

0
π2 )→ p0 ∈ (0,1), with T (p0) = π

√
−ω, and so a C1-diffeomorphism shift mapping

ω→ (−∞,−α2
0
π2 )→ a(ω) ∈ (−∞,0) with a(ω) such that sech(a(ω)) = p0. Lastly, we obtain

a C1-mapping ω ∈ (−∞,−α2
0
π2 )→Θ(ω) = (Φω,Ψω) ∈ D0 of positive two-lobe states for the

cubic-NLS on a tadpole graph. The proof of the lemma is complete.

Lemma 4.3. Consider the C1-mapping ω ∈ (−∞,−α2
0
π2 )→Θ(ω) = (Φω,Ψω) ∈ D0 of two-

lobe state constructed in lemma 4.1 for the cubic-NLS on a tadpole graph. Then, the mass
Ω(ω)≡ Q(Φω,Ψω) satisfies

d
dω

Ω(ω)< 0.

Proof. Let’s consider the two-lobe state (Φω,Ψω) given by lemma (4.1). Then, via the change
of variable ψ(x)≡Ψ(x+π), x> 0, the scaling transformation (4.1), the soliton formula (4.3),
the fact that

−φ2dy=
φ2√

E0 +A(φ)
dφ,

with y ∈ [−ϵπ,0], and from the even property of φ, the mass Ω can be rewritten as

Ω(ω) = 2ϵ
ˆ 0

−ϵπ
φ2 (y)dy+ ϵ [1− tanh(a)] = 2ϵ

ˆ p0

p−

u2√
E0 +A(u)

du+ ϵ

[
1+

√
1− p20

]
,

(4.18)

where ϵ2 =−ω and p0 = p0(ω) ∈ (0,1), such that T (p0) = π ϵ, where E0 ≡ E0(p0) = q20 −
A(p0) =− 3

4A(p0) is the energy level associated to E(u,v) = v2 −A(u), with A(u) = u2 − u4.
Thus, formula in (4.18) can be reformulated in the following p0-dependence formula,

N (p0)≡ πΩ(ω) = T (p0)

[
2
ˆ p0

p−

u2√
E0 +A(u)

du+

[
1+

√
1− p20

]]
. (4.19)
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Now, we prove that the mapping p0 ∈ (0,1)→H(p0)≡
´ p0
p−

u2√
E0+A(u)

du ∈ (0,+∞) is C1.

Indeed, from the differential formula

d

[
2(A(u)−A(p∗))u2v

A ′ (u)

]
= 2

[
1+

2
(
1+ 2u2

)
(A(u)−A(p∗))

[A ′ (u)]2

]
u2vdu

+
2(A(u)−A(p∗))

A ′ (u)
u2dv, (4.20)

and for (u, v) such that E(u,v) = E0(p0) (and so 2vdv= A ′(u)du, with v< 0), we get

A(u)−A(p∗)
v

u2du= d

[
2(A(u)−A(p∗))u2v

A ′ (u)

]
− 2

[
1+

2
(
1+ 2u2

)
(A(u)−A(p∗))

[A ′ (u)]2

]
u2vdu, (4.21)

where the quotients are not singular for every u> 0 (included the critical point u= p∗). Then,
by following a similar analysis as in the proof of lemma 4.1 (see formulas (4.12) and (4.13))
we obtain

[E0 (p0)+A(p∗)]H (p0) =−
ˆ p0

p−

(E(u,v)+A(p∗))u2

v
du

=−
ˆ p0

p−

[
u2v− (A(u)−A(p∗))u2

v

]
du

=−
ˆ p0

p−

[
3+

4
(
1+ 2u2

)
(A(u)−A(p∗))

[A ′ (u)]2

]
u2vdu

+
2(A(p0)−A(p∗))

A ′ (p0)
p20q0. (4.22)

Because the integrands are free of singularities and E0(p0)+A(p∗)> 0, the mapping p0 ∈
(0,1)→H(p0) ∈ (0,+∞) is C1. Thus, the mapping p0 ∈ (0,1)→N (p0) ∈ (0,+∞) is C1.

In the following we will see that N ′(p0)> 0 for every p0 ∈ (0,1). We begin by differenti-
ating (4.19) with respect to p0, to give

N ′ (p0) = T ′ (p0)

[
2H (p0)+

[
1+

√
1− p20

]]
+ 2T (p0)H ′ (p0)+ T (p0)

−p0√
1− p20

,

(4.23)

and we consider two cases for p0:

(a) let p0 ∈ (0,p∗] and we take

J≡ 2T (p0)H ′ (p0)+ T (p0)
−p0√
1− p20

.
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Then, via a long differentiation of (4.22), we get

[E0 (p0)+A(p∗)]H ′ (p0) =− p20
16q0

− 3
32
A ′ (p0)

ˆ p0

p−

1− 2u2

v
du.

Therefore, from the former formula and from the facts that E0(p0) =− 3
4A(p0), A(p∗) =

1
4

and 2q0 =−
√
A(p0), we arrive

I≡ [E0 (p0)+A(p∗)]J=
3
4
T (p0)

 p0A(p0)√
1− p20

− A ′ (p0)
4

ˆ p0

p−

1− 2u2

v
du

 .
For p0 ∈ (0,p∗], we have A ′(p0)≧ 0 and 1− 2u2 > 0, therefore I> 0 and so J> 0. From
lemma 4.1 we have T ′(p0)> 0, hence from (4.23) it follows N (p0)> 0 for p0 ∈ (0,p∗].

(b) let p0 ∈ (p∗,1) and we consider

[E0 (p0)+A(p∗)]N ′ (p0) = 2 [E0 (p0)+A(p∗)]T ′ (p0)H (p0)

− 3
16

T (p0)A
′ (p0)

ˆ p0

p−

1− 2u2

v
du+P(p0)

≡ II+P(p0) , (4.24)

where P(p0)> 0 for every p0 ∈ (0,1), since T ′(p0)> 0. In the following we show that
II> 0 for p0 ∈ (p∗,1). Indeed, from (4.14) we get

II=− 3
16
A ′ (p0)

[
T (p0)

ˆ p0

p−

1− 2u2

v
du−H (p0)

ˆ p0

p−

1− 2u2

u2v
du

]
+H (p0)

1

4
√
A(p0)

.

(4.25)

Now, by using the expressions to T (p0) and H(p0) we get

T (p0)
´ p0
p−

1−2u2

v du−H (p0)
´ p0
p−

1−2u2

u2v du=
(´ p0

p−
u2

v du
)(´ p0

p−
1
u2vdu

)
−
(´ p0

p−
1
vdu
)2

≧ 0,

in which we have used the Cauchy–Schwarz inequality. Hence, since A ′(p0)< 0 for p0 ∈
(p∗,1), it follows from (4.25) that II> 0 for p0 ∈ (p∗,1). Therefore, from (4.24) we get
N ′(p0)> 0 for p0 ∈ (p∗,1).

Lastly, the mapping p0 ∈ (0,1)→N (p0) is C1 and strictly increasing, where N (p0) =
πΩ(ω). In addition, by lemma 4.1 and (4.9), the mapping ϵ ∈ (α0/π,+∞)→ p0(ϵ) ∈ (0,1)
is C1 and strictly increasing. Therefore, from ϵ=

√
−ω and from the chain rule, we obtain

d
dω

Ω(ω) =
dN
dp0

dp0
dϵ

dϵ
dω

< 0,

and so the proof of lemma 4.3 is complete.

Remark 4.4. From the proof of lemmas 4.1 and 4.3, we get that the shift-mapping ω ∈
(−∞,ω0)→ a(ω) ∈ (−∞,0) has the following properties: a ′(ω)< 0, a(ω)→−∞ as ω→
ω0 and a(ω)→ 0 as ω→−∞.
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Proof (theorem 1.7). By lemma 4.1 we obtain item (1). Next, for Z= 0, from theorem 1.3-
item (2)–(a) we get that the Morse index for L+,0 in (1.13), n(L+,0), satisfies n(L+,0) = 1 for
a= a(ω) ∈ [a∗,0) since γ = γ(a)≦ 0 in (1.15). Moreover, from theorems 1.4 and 1.6 follow
that for any shift-parameter value of a, Ker(L+,0) = {0}, Ker(L−,0) = span{(Φω,Ψω)} and
L−,0 ≧ 0. Thus, by lemma 4.3 and theorem 2.1, we obtain that e−iωt(Φω,Ψω) is orbitally
stable in E(G) for ω ≦ ω∗ < 0 such that a(ω) ∈ [a∗,0).

Next, we show that n(L+,0) = 1 for ω such that a(ω)< a∗. Indeed, by a similar analysis as
in the proof of lemma 4.1, the mapping ω→ (Φω,Ψω) is a real-analytic mapping depending of
the shift-parameter a, with a ∈ (−∞,0)→Θ(ω(a)) = (Φω(a),Ψω(a)). Then, we can see the
family of operatorsL+,0 in (1.13) depending of the parameter a, and so wewill use the notation
La. Moreover,Θ(ω(a))→Θ(ω∗) as a→ a∗ in the sense that ∥Θ(ω(a))−Θ(ω∗)∥E(G) → 0 as
a→ a∗. Thus, we obtain that La converges to La∗ as a→ a∗ in the generalized sense. Indeed,
denoting Wa = diag(−ω(a)− 6Φω(a),−ω(a)− 6Ψω(a)) we obtain

δ̂ (La,La∗) = δ̂ (La∗ +(Wa−Wa∗) ,La∗)≦ ∥Wa−Wa∗∥L2(G) → 0, as a→ a∗,

where δ̂ is the gap metric (see [41, chapter IV]).
Now, it denotes byN= n(La). Thus, fromKer(La) = {0} for all a< 0, n(La∗) = 1, and the

generalized convergence of La to La∗ as a→ a∗, we get n(La) = N= 1 for a ∈ [a∗ − δ1,a∗ +
δ1], with δ1 > 0 small enough. Lastly, by using a continuation argument based on the Riesz-
projection, we obtain that n(La) = 1 for any a< a∗ (see proof of lemmas 3.6 and 3.7). This
finishes the proof.

Remark 4.5. From the theory of Jacobi elliptic functions (see [25]), we can give an explicit
formula for the profileΦω and the shift-value a(ω) obtained in lemma 4.1. Indeed, we consider
ω< 0, p= 1 in (1.5), L= π and Ψω in (1.7) given by

Ψω (x) =
√
−ωsech

(√
−ω (x−π)+ a

)
, x≧ π, (4.26)

with a to be chosen by the condition Φω(π) = Φω(−π) =
√
−ωsech(a), in (1.5). The profile

Φω is given by a profile of dnoidal type, dn (see Angulo [9, 10] and Cacciapuoti et al [26]),
namely,

Φω (x) =

√
|ω|

2− k2
dn

(√
|ω|

2− k2

(
x− Tdn (k)

2

)
;k

)
, (4.27)

with

Tdn (k) = 2

√
2− k2

|ω|
K(k) (4.28)

where k ∈ (0,1) is a free parameter, so-called the modulus of the Jacobian elliptic function dn,
and K is the Legendre’s complete elliptic integral of the first type [25]

K(k) =
ˆ 1

0

1√
(1− t2)(1− k2t2)

dt. (4.29)

Thus, since Φω satisfies the first equation in (1.5), k= k(ω). Moreover, as dn(·;k) is an even
periodic function with fundamental period being 2K(k) (dn(x+ 2K(k);k) = dn(x;k)), it fol-
lowsΦω(−π) = Φω(π). Next, since dn ∈ [

√
1− k2,1], we have thatΦω is bounded away from
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Figure 7. Profile of Φω in (4.27) on [−L,L] with L= π.

0, x= 0 is the unique minimal point for Φω on [−π,π] and that Φω(0) =
√

|ω|
2−k2

√
1− k2 (see

figure 7).
From relation dn(x+K(k);k) =

√
1− k2 1

dn(x;k) , the profile Φω takes the form

Φω (x) =

√
|ω|

2− k2

√
1− k2

dn

(√
|ω|
2−k2 x;k

) . (4.30)

Thus, we get the following formula for the shift-value a= a(ω) in function of k:
√
1− k2√
2− k2

1
dn(α(k) ;k)

= sech(a) , α(k)≡
√

|ω|
2− k2

π. (4.31)

Next, from relation 2Φ ′
ω(π) = Ψ ′

ω(π) we can give an estimative of constant ω0 in lemma
4.1. Indeed, from sn(x+K(k);k) = cn(x;k)

dn(x;k) , cn(x+K(k);k) =−
√
1− k2 sn(x;k)dn(x;k) (see formula

(112.03) in [25]), we get from the former derivative condition that

3k4sn2 (α(k) ;k)cn2 (α(k) ;k) = dn4 (α(k) ;k) , (4.32)

where sn,cn are the Jacobian elliptic functions snoidal and cnoidal, respectively (see [25]).
Thus, for obtaining a positive two-single lobe profile solution on [−π,π] we need to find k0
such that for

Hπ,ω (k)≡ 3k4sn2 (α(k) ;k)cn2 (α(k) ;k)− dn4 (α(k) ;k) , k ∈ (0,1)(4.33)

we have Hπ,ω(k0) = 0. In general, equation Hπ,ω(k) = 0 not always admits one solution. In
fact, from the following limits

lim
k→0

Hπ,ω (k) =−1 and lim
k→1−

Hπ,ω (k) = sech2
(√

|ω|π
)(

3− 4sech2
(√

|ω|π
))

≡ ℓ,

(4.34)

we get the following: there is an unique ω0 < 0 such that sech2(
√
|ω0|π) = 3

4 (so
√
|ω0|π ≈

0.5493). Therefore, since Hπ,ω is a strictly increasing mapping for k ∈ (0,1) and for ω ∈
(ω0,0), we have ℓ < 0, then Hπ,ω(k) = 0 is not possible. For ω < ω0 we obtain ℓ > 0 and
so Hπ,ω(k) = 0 has at least one solution. Thus, ω0 =−α2

0/π
2, with α0 being the positive root

of sech2(α0) = 3/4.
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Appendix

A.1. Extension theory and Morse index estimative

In this subsection we formulate some tools and applications of the extension theory of symmet-
ric operators of Krein & von Neumann suitable for our needs (see [46, 52] for further inform-
ation). In particular, we establish for (L̃,Dδ,γ)γ∈R in (3.9)–(3.10), the Morse index estimative
n(L̃)≦ 3. Moreover, for (L1,Sγ)γ∈R in (3.19), we also obtain that n(L1)≦ 2. These two spe-
cific estimates for the Morse index were used in section 3 above.

The following two results from the extension theory of symmetric operators are classical
and can be found in [52].

Theorem A.1 (von-Neumann decomposition). Let A be a closed, symmetric operator, then

D(A∗) = D(A)⊕N−i⊕N+i. (A.1)

with N±i = ker(A∗ ∓ iI). Therefore, for u ∈ D(A∗) and u= x+ y+ z ∈ D(A)⊕N−i⊕N+i,

A∗u= Ax+(−i)y+ iz. (A.2)

Remark A.2. The direct sum in (A.1) is not necessarily orthogonal.

The following proposition provides a strategy for estimating the Morse index of the self-
adjoint extensions of a minimal symmetric operator (see [46], [52]-chapter X). We recall the
notation n±(A) = dimker(A∗ ∓ iI).

Proposition A.3. Let A be a densely defined lower semi-bounded symmetric operator (that is,
A⩾ mI) with finite deficiency indices, n±(A) = k<∞, in the Hilbert space H, and let Â be a
self-adjoint extension of A. Then the spectrum of Â in (−∞,m) is discrete and consists of, at
most, k eigenvalues counting multiplicities.

Proposition A.4. We consider the family of self-adjoint operators (L̃,Dδ,γ)γ∈R where

L̃=−∂2x −ω− (p+ 1)(2p+ 1)ψ2p
even,

with ψeven ∈ H2(R−{0})∩H1(R) being the even-extension of the bump-profile ψ0,a(x) =
ψa(x+L), x> 0 in (1.14), on whole the line, and Dδ,γ begin the following δ-interaction type
domain

Dδ,γ =
{
f ∈ H2 (R−{0})∩H1 (R) : f ′ (0+)− f ′ (0−) = γf(0)

}
.
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Then (L̃,Dδ,γ)γ∈R is a branch of the family of self-adjoint extensions of the following sym-
metric operatorM

M=−∂2x −ω− (p+ 1)(2p+ 1)ψ2p
even, D(M) =

{
v ∈ H2 (R) : v(0) = 0,v(±µ) = 0

}
,

where µ denotes the unique positive zero of ψa. Moreover, we have the Morse index estimative
n(L̃)≦ 3.

Proof. From the Krein & von Neumann’s extension theory (see chapter II.2 in [6]) we have
that the symmetric operator N ,

N =− d2

dx2
, D(N ) =

{
v ∈ H2 (R) : v(0) = 0,v(±µ) = 0

}
,

has deficiency numbers n±(N ) = 3. Thus, since ψeven ∈ L∞(R), we have n±(M) = 3, and
hence all self-adjoint extensions of N are given by a nine-parameter family of self-adjoint
operators. Then, when we restrict to the case of separated boundary conditions at each point
0,±µ, we obtain a three-parameters family of self-adjoint operators (Lγ,α1,α2 ,D(Lγ,α1,α2)),
depending on γ,αi ∈ R, and it given (via theorem A.1) by

Lγ,α1,α2 =−∂2x −ω− (p+ 1)(2p+ 1)ψ2p
even

D(Lγ,α1,α2) =

 v ∈ H2 (R−{0,±µ})∩H1 (R) : v(0+)− v(0−) = γv ′ (0) ,

v ′ (−µ+)− v ′ (−µ−) = α1v(−µ) , v ′ (µ+)− v ′ (µ−) = α2v(µ)

 .
It is easily seen that we arrive at (L̃,Dδ,γ)γ∈R for αi = 0, i = 1,2.

Next, we estimative n(L̃). By proposition A.3 it is enough to prove thatM is a non-negative
operator. In fact, it is easy to verify that for v ∈ D(M) the following identity holds for ψe ≡
ψeven

Mv=
−1
ψ ′
e

d
dx

[
(ψ ′

e)
2 d
dx

(
v
ψ ′
e

)]
, x ̸= 0,±µ. (A.3)

Now, integration by parts yields

⟨Mv,v⟩=
−µ−ˆ

−∞

(ψ ′
e)

2
(

d
dx

(
v
ψ ′
e

))2

dx+

0−ˆ

−µ+

(ψ ′
e)

2
(

d
dx

(
v
ψ ′
e

))2

dx

+

µ−ˆ

0+

(ψ ′
e)

2
(

d
dx

(
v
ψ ′
e

))2

dx+

+∞ˆ

µ+

(ψ ′
e)

2
(

d
dx

(
v
ψ ′
e

))2

dx

−
[
v ′v− v2

ψ ′ ′
e

ψ ′
e

]−µ−
−∞

−
[
v ′v− v2

ψ ′ ′
e

ψ ′
e

]0−
−µ+

−
[
v ′v− v2

ψ ′ ′
e

ψ ′
e

]µ−
0+

−
[
v ′v− v2

ψ ′ ′
e

ψ ′
e

]+∞

µ+

.

(A.4)
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Noting v(±µ) = 0 and that ±µ are the first-order zeroes for ψ ′
e (namely, ψ ′ ′

e (±µ) ̸= 0), we
have, for instance, for the eighth term in (A.4) that

−
[
v ′v− v2

ψ ′ ′
e

ψ ′
e

]∞
µ+

=−ψ ′ ′
e (µ) lim

x→µ+

v2 (x)
ψ ′
e (x)

=−2ψ ′ ′
e (µ) lim

x→µ+

v(x)v ′ (x)
ψ ′
e (x)

= 0. (A.5)

Analogously the fifth term in (A.4) is zero. Next, sinceψ ′
e(0±) ̸= 0 and from the limit in (A.5),

the sixth and seventh terms in (A.4) are also zero.
Therefore, we getM≧ 0 onD(M), and consequently by proposition A.3, the Morse index

of L̃ acting on Dδ,γ satisfies n(L̃)≦ 3. This finishes the proof.

Proposition A.5. We consider the family of self-adjoint operators (L1,Sγ)γ∈R, where

L1 =−∂2x −ω− (p+ 1)(2p+ 1)ψ2p
a , (A.6)

with ψa(x) = ψ0(x+ a), a< 0, x ∈ (0,+∞), being the bump-profile determined by the soliton
ψ0 in (1.8), and with Sγ given by

Sγ =
{
f ∈ H2 (0,+∞) : f ′ (0+) = γf(0)

}
. (A.7)

Then the following Morse index estimative, n(L1)≦ 2, is satisfied.

Proof. Let µ> 0 be the unique positive zero of ψa and it considers forN =− d2

dx2 the minimal-
symmetric operator (N ,C∞

0 [(0,+∞)−{µ})]. Then, the closure ofN , denoted by Ṅ , has defi-
ciency number n±(Ṅ ) = 2. Thus, sinceψa ∈ L∞(0,+∞), we have n±(L1) = 2 withD(L1) =
D(Ṅ ), and hence all the self-adjoint extensions of Ṅ are given by a four-parameter family of
self-adjoint operators. Thus, when we restrict to the case of separated boundary conditions
at each point 0,µ, we get a two-parameter family of self-adjoint operators (Lγ,α,D(Lγ,α)),
depending on γ,α ∈ R, and it given by (via theorem A.1)

Lγ,α =−∂2x −ω− (p+ 1)(2p+ 1)ψ2p
a

D(Lγ,α) =

 v ∈ H2 ((0,+∞)−{µ})∩H1 (0,+∞) : v ′ (0+) = γv(0) ,

v ′ (µ+)− v ′ (µ−) = αv(µ)

 .
Then, it is easily seen that (L1,Sγ)γ∈R is a branch of the family (Lγ,α,D(Lγ,α)) for α= 0.
Thus, by using a similar analysis as in proposition A.4 and via proposition A.3, we get n(L1)≦
2. This finishes the proof.

A.2. Extension theory for the Laplacian operator on a tadpole graph

In this subsection, by completeness in the exposition, we establish an extension theory for the
Laplacian operator −∆,

−∆=

(
− d2

dx2

)
e∈E

(A.8)

on a tadpole graph G with structure represented by the set E= (−L,L)∪ (L,+∞) and a
single vertex at ν = L, such that it induces the one-parameter family of self-adjoint operat-
ors (−∆,DZ)Z∈R in (1.3). With these notations we have the following result.
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Theorem A.6. The Schrödinger type operator −∆ in (A.8) on L2(G), with domain

D(−∆) =
{
(ϕ,ψ) ∈ H2 (G) : ϕ(−L) = ϕ(L) = ψ (L) = 0, ϕ ′ (L)−ϕ ′ (−L) = ψ ′ (L)

}
,

(A.9)

is a densely defined symmetric operator with deficiency indices n±(−∆) = 1. Therefore,
(−∆,D(−∆)) has a one-parameter family of self-adjoint extensions defined by (−∆,DZ)Z∈R
with

DZ =
{
( f,g) ∈ H2 (G) : f(L) = f(−L) = g(L) , and, f ′ (L)− f ′ (−L) = g ′ (L)+ Zg(L)

}
.
(A.10)

Proof. The symmetric property of (−∆,D(−∆)) is immediate. Since, C∞
c (−L,L)

⊕
C∞
c

(L,+∞)⊂ D(−∆) we obtain the density property of D(−∆) in L2(G). Now, it is not dif-
ficult to see that the adjoint operator (−∆∗,D(−∆∗)) of (−∆,D(−∆)) is given by

−∆∗ =−∆, D(−∆∗) =
{
(u,v) ∈ H2 (G) : u(−L) = u(L) = v(L)

}
. (A.11)

Next, the deficiency subspacesD± = ker(−∆∗ ∓ i) have dimension one. Indeed, by using the
definition of D(−∆∗) in (A.11) we can see that D± = span{( f±i,g±i)} with{

f+i (x) = e
√
−i(x+L) + e−

√
−i(x−L), x ∈ (−L,L) , Im

(√
−i
)
> 0

g+i (x) = e
√
−i(x−L) + e

√
−i(x+L), x> L,

(A.12)

and, {
f−i (x) = e

√
i(x+L) + e−

√
i(x−L), x ∈ (−L,L) , Im

(√
i
)
< 0

g−i (x) = e
√
i(x−L) + e

√
i(x+L), x> L.

(A.13)

Thus, from theorem A.1 in [6] (appendix A), from the formulas in (A.12)–(A.13) and the
von-Neumann decomposition in theorem A.1, we can deduce that (−∆,D(−∆)) has a one-
parameter family of self-adjoint extensions (−∆,DZ)Z∈R with DZ defined in (A.10). This fin-
ishes the proof.

A.3. Perron–Frobenius property

In the following we establish the Perron–Frobenius property for the family of self-adjoint
operators (L̃,Dδ,γ) in (3.9)–(3.10).We note that there are several results in the literature related
to the Perron-Frobenius property for Schrödinger operator of the type −∆+V(x) with an
external potential. In the case of metric graphs, some results have been obtained depending
of the graph’s topology (see [27, 31], and reference therein). Here, by convenience of the
reader, we give an unified proof of this property for (L̃,Dδ,γ) with any value of γ. For that,
we start with the following two remarks: by Weyl’s essential spectrum theorem [53], we have
that the essential spectrum σess(L̃) of L̃, it satisfies σess(L̃) = [−ω,+∞). Furthermore, from
⟨L̃ψeven,ψeven⟩< 0 and the extension theory, it follows that 1≦ n(L̃)≦ 3 for any γ.

Theorem A.7 (Perron–Frobenius property). We consider the family of self-adjoint operators
(L̃,Dδ,γ)γ∈R defined in (3.9)–(3.10). For γ fixed, it assumes that β = inf σ(L̃)<−ω is the
smallest eigenvalue. Then, β is simple and its corresponding eigenfunction ζβ is positive (after
replacing ζβ by −ζβ if necessary) and even.
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Proof. The result follows by a slight twist of standard abstract Perron–Frobenius arguments
(see proposition 2 in Albert et al [7]). The basic point in the analysis is to show that the
Laplacian operator −∆γ ≡− d2

dx2 on the domain Dδ,γ has its resolvent Rµ = (−∆γ +µ)−1

represented by a positive kernel for some µ> 0 sufficiently large. Namely, for f ∈ L2(R)

Rµf(x) =
ˆ +∞

−∞
K(x,y) f(y)dy

with K(x,y)> 0 for all x,y ∈ R. By convenience of the reader we show this main point, the
remainder of the proof follows the same strategy as in [7]. In fact, for γ fixed, let µ> 0 be
sufficiently large (with−2

√
µ < γ in the case γ < 0), then from theKrein formula (see theorem

3.1.2 in [6]) we obtain

K(x,y) =
1

2
√
µ

[
e−

√
µ|x−y| − γ

γ+ 2
√
µ
e−

√
µ(|x|+|y|)

]
.

Moreover, for every x fixed, K(x, ·) ∈ L2(R). Thus, the existence of the integral above is
guaranteed by Holder’s inequality. Now, since K(x,y) = K(y,x), it is sufficient to show that
K(x,y)> 0 in the following cases.

(1) Let x> 0 and y> 0 or x< 0 and y< 0: for γ ≧ 0, we obtain from γ
γ+2

√
µ < 1 and |x− y|≦

|x|+ |y|, that K(x,y)> 0. For γ < 0 and −2
√
µ < γ, it follows immediately K(x,y)> 0.

(2) Let x> 0 and y< 0: in this case,

K(x,y) =
1

γ+ 2
√
µ
e−

√
µ(x−y) > 0

for any value of γ (where again −2
√
µ < γ in the case γ < 0).

The proof of the theorem is complete.

A.4. Orbital stability criterion

By convenience of the reader, in this subsection we adapted the abstract stability results from
Grillakis et al in [34, 35] for the case of a tadpole graph and standing waves being a positive
two-lobe state. This criterion was used in the proof of theorem 1.7.

Theorem A.8. Suppose that there is a C1-mapping ω→ (Φω,Ψω) of positive two-lobe states
for the NLS model (1.1) on a tadpole graph G. We consider the assertions in theorems 1.3, 1.4
and 1.6, associated to the Morse index and the nullity index for the operators L+,Z and L−,Z.
Then, for Ker(L+,Z) = {0} we have

(1) if n(L+,Z) = 1 and ∂ω||(Φω,Ψω)||2L2(G) < 0, then e−iωt(Φω,Ψω) is orbitally stable in
E(G),

(2) if n(L+,Z) = 1 and ∂ω||(Φω,Ψω)||2L2(G) > 0, then e−iωt(Φω,Ψω) is orbitally unstable in
E(G),

(3) if n(L+,Z) = 2 and ∂ω||(Φω,Ψω)||2L2(G) < 0, then e−iωt(Φω,Ψω) is linearly unstable in
E(G).
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By completeness in the exposition, we have the following comment about the instabil-
ity part, item (3), of the above theorem: it is known from [35] that when n(L+,Z) =
2 and ∂ω||(Φω,Ψω)||2L2(G) < 0, we obtain only spectral instability of the standing wave

e−iωt(Φω,Ψω). Generally, to obtain the orbital instability from the spectral one is not an easy
task. The approach in [36] can be a good tool for obtaining this connection (see [14–18] where
the results in [36] has been applied successfully for models on metric graphs). Indeed, the key
point of the approach is to use the fact that if the mapping data-solution associated to (1.1)
is of class C2, then we obtain the orbital instability from a result of spectral instability (for
instance, see theorem 3.12, Corollary 3.13 and the proof of theorem 3.5 in [18], where the link
between the C2-property and the orbital instability is explained more precisely). Therefore, by
using theorem 2.1 in the case 2p> 1, we can change linearly unstable statement in item (3) by
orbitally unstable.
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