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Abstract

The Image Foresting Transform (IFT) is a graph-based framework to develop

image operators based on optimum connectivity between a root set and the re-

maining nodes, according to a given path-cost function. Its applications involve

a variety of tasks, such as segmentation, boundary tracking, skeletonization,

filtering, among others. The Differential Image Foresting Transform (DIFT)

allows multiple IFT executions for different root sets and a same monotoni-

cally incremental path-cost function, making the processing time proportional

to the number of modified nodes. In this paper, we extend the DIFT algorithm

for non-monotonically incremental functions with root-based increases. This

proposed extension, called Generalized DIFT (GDIFT), has been successfully

used as the core part of some modern superpixels methods with state-of-the-art

results. Experimental results show considerable efficiency gains over the sequen-

tial flow of IFTs for the generation of superpixels, also avoiding inconsistencies

in image segmentation, which could occur with the regular DIFT algorithm.
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1. Introduction

The Image Foresting Transform (IFT) algorithm is a generalization of Dijk-

stra’s algorithm for multiple sources (root sets) and more general connectivity

functions [1, 2]. It reduces connectivity-based image processing problems to the

computation of an optimum-path forest in an image derived graph, followed5

by a simple postprocessing of the resulting forest attributes (e.g., cost, path’s

predecessor node, propagated label). Its applications involve morphological fil-

tering [3], boundary tracking and curve tracing [4], multiscale shape skeletoniza-

tion [5, 6], region-based segmentation [7], data clustering [8, 9], among others.

Recently, the conditions for the optimality of the cost map were corrected in [2].10

However, even when the paths of the resulting spanning forest are not optimal,

the forest may still be optimal according to other optimality criteria (e.g., a cut

measure in the image graph [10, 11]).

In applications that require multiple executions of the IFT algorithm for

different seed sets (root candidates) over a same image and using a same path-15

cost function, such as seed-based interactive image segmentation, the Differ-

ential Image Foresting Transform (DIFT) algorithm [12] allows to update the

optimum-path forest in time proportional to the size of the modified regions in

the image (i.e., in sublinear time). However, it requires that the path-cost func-

tion be monotonically incremental (MI) — i.e., (a) the costs along the paths20

can only increase or remain the same and (b) the cost relation between paths

with the same terminal node must not change when they are extended from

that node. For a more detailed description of MI see Appendix B.

In recent years, non-monotonically incremental functions (NMI) have been

employed in the IFT algorithm in order to improve the results for several ap-25

plications, including segmentation by optimum cuts in graphs subject to high-

level constraints [11, 13, 14, 15, 16], interactive segmentation with adaptive

cost functions [17, 18], interactive repair [19, 20], boundary tracking and curve

tracing [21, 22], and superpixel segmentation [23, 24, 25, 26].

Motivated by the great success of NMI functions, in this paper, we present30
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a novel differential IFT algorithm, named Generalized DIFT (GDIFT), which

extends the original DIFT algorithm to handle connectivity functions with root-

based increases (which can be non-monotonically incremental), maintaining its

same time complexity order. Figure 1 shows an example of interactive seg-

mentation comparing the wrong DIFT with NMI functions with its corrected35

algorithm by GDIFT. In addition to the natural application of GDIFT in inter-

active segmentation of 3D volumes, allowing the efficient use of modern adaptive

functions to deal with image inhomogeneity problems [17, 18], and to perform

interactive repair to remove imperfections in automatic results [19], here we

emphasize its recent successful application for the generation of superpixels. In-40

deed, GDIFT currently resides in the main core of some modern superpixels

methods [24, 25, 26], being their ground basis to achieve state-of-the-art re-

sults. In this context, it avoids segmentation inconsistencies (e.g., disconnected

superpixels), which could occur with the DIFT algorithm, as used in [23].

(a) (b) (c)

Figure 1: Interactive segmentation example with NMI functions. a) Result of the first inter-

action by IFT with three initial markers (two for the background and one for the object). b)

The updated result after the addition of an object marker (in the flower petal) by the DIFT

algorithm from [12] presents the highlighted segmentation inconsistencies. c) The correct

result by the proposed GDIFT algorithm for the same addition of markers.

For the experimental comparison with various methods of superpixels, in-45

cluding Simple Linear Iterative Clustering (SLIC) [27], Linear Spectral Clus-

tering (LSC) [28], Entropy Rate Superpixels (ERS) [29], Lazy Random Walks

(LRW) [30] and Waterpixels [31], on six image datasets of natural and medical

images with distinct object properties, the reader should refer to [24, 26]. Here
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we focus on the detailed technical description of the GDIFT algorithm which is50

missing in these other works.

A preliminary version of GDIFT, previously named as DIFTmod, was first

presented in a conference paper [32]. In this extended work, we provide more

details in the presentation of the method, including a formal definition of its

supported functions and its revised algorithm. Moreover, we also present ex-55

periments involving the differential computation of the forest in the case of the

Euclidean distance path-cost function.

The paper is organized as follows. Section 2 gives the related works, including

the required background on IFT and DIFT algorithms. Section 3 discusses the

problems of a first attempt to extend DIFT for connectivity functions with root-60

based increases. Based on this detailed analysis of problems from the previous

section, the new algorithm, called GDIFT, is then proposed in Section 4. The

experimental results are discussed in Section 5 and we conclude the paper in

Section 6.

2. Related works65

The fast incremental calculation of a new result with an updated starting

condition from a previous one is a recurrent problem in different frameworks [33].

For instance, in the Random Walks segmentation algorithm, the fast editing of

a segmentation by adding more seeds may be obtained by using the previous

solution as the initialization of an iterative matrix solver [34], while in the70

Graph Cuts segmentation method, a maximum flow on a new graph is efficiently

obtained starting from the previous flow without recomputing the whole solution

from scratch, by increasing the edge capacity of terminal links connected to the

new seeds [35]. In the context of IFT, the incremental computation leads to

DIFT. In this section, we present these related methods, which are required75

to introduce the proposed extension, GDIFT. Given that GDIFT is important

within the context of superpixel generation via the ISF framework [24], we also

discuss it briefly.
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2.1. Image Foresting Transform (IFT)

The Image Foresting Transform (IFT) algorithm [1] interprets an image as80

a graph G = 〈I,A〉, whose nodes in I are image elements (pixels, vertices,

regions) and arcs in A are defined by a given adjacency relation. For instance,

take the nodes as the pixels in the image domain I ⊂ Z2 and the arcs as the

ordered neighboring pixel pairs 〈s, t〉 ∈ A (e.g., 4/8-neighborhood in 2D and

6/26-neighborhood in 3D). A connectivity function assigns a cost to any path in85

the graph, including the trivial ones formed by a single node. Initially, all nodes

represent trivial paths and the minima of the initial cost map form a seed set

(root candidates). The seeds compete among themselves by offering minimum-

cost paths to the remaining nodes, such that the cost map is minimized as paths

are propagated (extended) from the seed set and the graph is partitioned into90

an optimum-path forest rooted at the winner seeds. In the context of image

segmentation, the nodes along the computed paths receives the label from their

corresponding root nodes (winner seeds), such that objects are defined as sets

of nodes sharing a same label.

The general IFT algorithm can run in time proportional to the number of95

nodes for most applications. It propagates paths with lower costs by using a

priority queue. Hence, linear-time implementation is possible by bucket sorting,

whenever the cost increments along the paths are integers and limited [1, 4].

When this is not the case, it executes in linearithmic time by using a binary

heap as priority queue.100

For the purpose of completeness in presentation, we include the IFT algo-

rithm [1] in Appendix B, using the standardized notation of this work given

in Appendix A.

2.2. Differential Image Foresting Transform (DIFT)

In interactive region-based segmentation from markers (i.e., set of seeds),105

the user can add markers to and/or remove markers from previous interactions

in order to improve the segmentation results. In the context of IFT, instead of

starting over the segmentation for each new set of seeds, DIFT can be employed

5



to update the segmentation in a differential manner, by correcting only the

wrongly labeled parts of the forest. This greatly increases efficiency, which is110

crucial to obtain interactive response times in the segmentation of large 3D

volumes (Figure 2).

(a) (b) (c)

(d) (e) (f)

Figure 2: Example of DIFT in a 3D MR-T1 image of 256 × 256 × 143 voxels. By removing

and adding markers, an initial 3D brain segmentation by IFT watershed from markers is

gradually converted into a segmentation without the brain stem, cerebellum and ventricles. (a-

b) The initial segmentation and its 3D rendition. (c-d) The object marker passing through the

ventricle is marked for removal and the voxels from its optimum-path trees (in blue) become

available for a new dispute among the remaining roots and the new selected background

marker. (e-f) Final segmentation of cerebral hemispheres. The initial result took 4 sec, while

the editing changes were made in only 292 ms in an Intel Core i3-5005U CPU 2.00GHz ×4.

For the purpose of completeness in presentation, we include the DIFT algo-

rithm [12] for MI functions in Appendix C, using the standardized notation of

this work given in Appendix A, in order to allow the discussion of its required115

modifications, aiming at its extension to other path-cost functions in the next
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sections.

2.3. Superpixel by Iterative Spanning Forest (ISF)

The over-segmentation of an image leading to a partition into k regions of

similar and connected pixels is known as superpixels (supervoxels in 3D).120

The Iterative Spanning Forest (ISF) framework [24] computes improved sets

of connected superpixels by a sequence of image foresting transforms, where each

superpixel structurally corresponds to a spanning tree rooted at a corresponding

seed. Initially, k seeds are selected according to a seed sampling strategy (e.g.,

grid sampling, regional-minima-based sampling or mixed entropy-based seed125

sampling). Seed positions are then updated at each step in order to generate

superpixels frontiers with better adhesion to the boundaries of objects in the

image, following a seed pixel recomputation procedure. However, the connectivity

functions leading to the best results in ISF are all NMI functions, so that their

efficient implementation by the differential flow requires the GDIFT algorithm130

as proposed in this work. More details about ISF can be seen in the experiments

involving superpixels in Section 5.1.

3. A first attempt to extend DIFT

From the information in Appendix B, we know that the state test S(t) 6= 1 is

required for NMI functions in IFT (Algorithm 3). The original DIFT algorithm135

does not have the state test S(t) 6= 1, because it was developed only for MI

functions. Given that we are interested in functions that are not MI, let’s

modify Algorithm 4 to include this test, by changing its condition at Line 14 to

S(t) 6= 1, and name this new version as DIFT∗.

Unfortunately, the introduction of the state test S(t) 6= 1 in Algorithm 4 is140

not sufficient to guarantee its correctness in the case of non-monotonically in-

cremental functions (NMI). In fact, its introduction generates problems even in

cases involving MI functions. Under certain circumstances it generates inconsis-

tencies between the map of labels (and/or roots) and the map of predecessors,

as defined in Appendix A.145
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• Inconsistency in the root map: A root map R is inconsistent if there

is a node s ∈ I such that πPs = 〈t1, . . . , tn = s〉 and R(s) 6= t1.

• Inconsistency in the label map: A label map L is inconsistent if there

is a node s ∈ I such that πPs = 〈t1, . . . , tn = s〉 and L(t1) 6= L(s).

The detailed study of the reasons behind the occurrence of these inconsisten-150

cies, as presented in Sections 3.1 and 3.2, will be fundamental for the proposal

of the new algorithm in Section 4.
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Figure 3: Execution of DIFT∗ algorithm, where the roots are indicated with diamond shape.

Yellow pixels are in the priority queue Q and gray pixels have already been evaluated. a) A

symmetric graph with 4-neighborhood adjacency and weights indicated in the arcs. b) First

iteration IFT(S1) with fmax function (Eq. 1). c) Addition of a new marker (upper corner)

and frontier set wraps the removed orange zone. d) Some steps later in DIFT∗, the pixel s,

indicated with red border, is evaluated, propagating a wrong label (green). Afterward, its

predecessor t will be evaluated but it won’t be able to fix the label of s due to the state test.

e) The final result obtained by DIFT∗ with an inconsistent label map. f) The desired result.
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3.1. DIFT∗ problems with MI functions

Figure 3 presents an example in which an inconsistency in the map of labels

L happens after an execution of the DIFT∗ algorithm. It uses the cost function155

fmax in Equation 1, where πs is a path (see Appendix A), δ(s, t) is the arc

weight of 〈s, t〉 and H(s) is a handicap value (e.g., in Figure 3, H(s) is assumed

to be zero for the seeds and infinity otherwise).

fmax(〈s〉) = H(s)

fmax(πs · 〈s, t〉) = max{fmax(πs), δ(s, t)} (1)

Given the initial image graph in Figure 3(a), an initial segmentation IFT(S1)160

is executed producing the maps in Figure 3(b) for the first seed set S1 with

two markers in green and orange. At the beginning of the second iteration

DIFT ∗
(∆+
S2
,∆−S2

,C1)
, shown in Figure 3(c), the orange marker and its subtree are

removed and a blue marker is inserted (see Appendix C). The frontier pixels of

the removed subtree and the inserted marker are show in yellow. Figure 3(d)165

shows the moment in which an inconsistency occurs in the label map during the

execution of DIFT∗. Pixel s leaves the queue Q before pixel t and changes its

state, because of the employed First-In-First-Out (FIFO) tie-breaking policy.

Later, when pixel t leaves the queue, it can not propagate its label to s, since s

was already evaluated (S(s) = 1). Therefore, in the end of the DIFT∗ execution,170

t is the predecessor of s, but they have distinct labels (see Figure 3(e)). Fig-

ure 3(f) shows the expected result, which is consistent with the one by IFT(S2)

using the same two markers.

Moya and Falcão were the first to identify this problem in DIFT∗. In [36]

the following alternative solutions were analyzed for MI functions.175

1. Set the tie-breaking policy of Q as Last-In-First-Out (LIFO).

2. Consider the addition and removal operation as two independent opera-

tions.

3. Do not use the state test S(t) 6= 1 in the DIFT∗ algorithm.
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In a LIFO tie-breaking policy, all nodes to be conquered with the same cost180

would be attributed to the new seed, however, a LIFO policy does not gener-

ate a well-balanced treatment of tie zones, which is not desirable in practice.

To handle a simultaneous addition and removal operation as two independent

operations, it would be necessary to run the main loop of DIFT∗ twice, adding

computational effort. The third solution corresponds to using the original DIFT185

algorithm from [12], which solves the aforementioned problem by updating each

node multiple times, which is inefficient.

All of these alternatives do not work properly for more general functions, in-

cluding non-monotonically incremental functions (NMI), which is the objective

of this work.190

3.2. DIFT∗ problems for functions with root-based increases

For non-monotonically incremental functions (NMI), the usage of the state

test is mandatory in order to avoid the reprocessing of pixels and the occurrence

of infinite loops. However, in this section, we show how DIFT∗ algorithm fails to

output consistent cost, root and label maps for NMI functions from a particular195

class of functions, in which the cost increase of a path depends on some property

of its root node.

Definition 1 (Connectivity function with root-based increases (RI)). We define

a connectivity function with increases based on its root, as a function in which,

for the extension of a path πr s by an arc 〈s, t〉, we have that ∆C = f(πr s ·200

〈s, t〉) − f(πr s) is a non-negative function of only r, s and t. That is, ∆C =

g(r, s, t) ≥ 0.

Note that the connectivity functions with root-based increases are a partic-

ular case of a more general class of functions with prefix-based increases.

Definition 2 (Connectivity function with prefix-based increases (PI)). We de-205

fine a connectivity function with increases based on its prefix, as a function in

which, for the extension of a path πtn−1
= 〈t1, . . . , tn−1〉 by an arc 〈tn−1, tn〉,
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we have that ∆C = f(πtn−1 · 〈tn−1, tn〉)− f(πtn−1) is a non-negative function of

all pixels t1, . . ., tn. That is, ∆C = g(t1, . . . , tn) ≥ 0.

One example of a connectivity function with prefix-based increases can be210

seen in [22], where a new approach is proposed for curve tracing and boundary

tracking.

In this section we are interested in connectivity functions with root-based in-

creases. We will consider function feuc in Equation 2 for the squared Euclidean

distance transform and the function fabs add in Equation 3, which is a simplifi-

cation of the function used in [23] for the generation of superpixels, where I(t)

denotes the image intensity at pixel t.

feuc(πt = 〈t〉) =

 0 if t ∈ S

+∞ otherwise

feuc(πr s · 〈s, t〉) =

 ‖t− r‖2 if r ∈ S

+∞ otherwise

(2)

fabs add(πt = 〈t〉) =

 0 if t ∈ S

+∞ otherwise

fabs add(πr s · 〈s, t〉) = fabs add(πr s) + |I(r)− I(t)|+ 1

(3)

In the presented equations, the path extension depends on a root property215

(its pixel intensity or its relative position in the image). Note that function

feuc, from the theoretical point of view, is not a cost function with root-based

increases, since ∆C = feuc(πr s · 〈s, t〉) − feuc(πr s) = ‖t − r‖2 − ‖s − r‖2

may be negative. ∆C is negative when the pixel t is closer to the root r than

s. However, in practice, the IFT algorithm with feuc only evaluates the cases220

where ∆C ≥ 0, because t would already have been conquered by another shorter

path. Therefore we also consider feuc in our experiments.

As our purpose is to compute a sequence of IFTs, in a differential manner,

next we show the inconsistencies that are generated by DIFT∗ for functions

with root-based increases.225
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Inconsistency in the cost map: An inconsistency in the map of cost occurs

when DIFT∗ generates a cost map that does not correspond to any valid cost

map that can be generated by the IFT algorithm for the same graph and seeds.

DIFT∗ with function feuc may generate an inconsistency in the cost map.

Consider the IFT result with a single seed presented in Figure 4(b) over the230

input image graph of Figure 4(a). Now suppose that a blue marker (r′) is

inserted as shown in Figure 4(c). After a few steps by DIFT∗, the pixel s offers

to its neighboring pixel t a higher cost (i.e., 5) than its current one (i.e., 4), as

shown in Figure 4(d), but by the test of predecessor, pixel t is conquered by the

path πr′ s · 〈s, t〉, as shown in Figure 4(e). This leads to an inconsistent cost235

map since pixel t will have a higher cost compared to the result obtained by

IFT for the final seed set (compare Figures 4(e) and (f)).

Applying DIFT∗ algorithm with path function fabs add described in Equa-

tion 3 may output a graph with cycles, which violates the fact that the IFT

algorithm should result in a spanning forest. Consider for the the image graph240

in Figure 5(a), the forest in Figure 5(b) computed by IFT. Then, the orange

marker and its tree are removed, and a new green marker is inserted, as shown

in Figure 5(c). The yellow pixels indicate the frontier obtained after the tree

removal. After a few steps by DIFT∗, pixel s offers a higher cost to t than

its current one (Figure 5(d)). Nevertheless, by the predecessor test, pixel t is245

conquered by the path πs · 〈s, t〉 (Figure 5(e)). Note that the pixel with red

bound in Figure 5(e) leaves the queue Q before the pixel t, conquering it again,

such that a cycle is generated, as shown in Figure 5(f). Note that the connected

component to which t belongs does not even have a root node.

4. Proposal: The GDIFT algorithm250

We propose here a novel algorithm, GDIFT (Algorithm 1), to reinforce the

predecessor test. The objective is to continue using the state test, having a

high performance solution and to be able to deal with the previously reported

problems, including the issue reported in Section 3.1 and also the problems with

12
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Figure 4: Example of inconsistency by DIFT∗ with feuc. The roots are indicated in diamond

shape, the yellow color is used to indicate pixels that are in the priority queue Q and gray

pixels are used for nodes that have already been evaluated. a) Graph with 8-neighborhood

adjacency and the initial cost map, before inserting the seed. b) The initial forest computed

by IFT with feuc. c) The addition of a new marker. d) After some steps by DIFT∗, the pixel

s offers a higher cost to t than its current cost in V (t). Nevertheless, t is conquered by s due

to the test of predecessor. e) Result obtained by DIFT∗. f) The expected result.

the non-monotonically incremental functions presented in Section 3.2.255

Moya’s alternatives [36], presented in Section 3.1, do not support our ob-

jective. Therefore, we propose the following alternative: If the cost offered by

path πr′ s · 〈s, t〉 to pixel t is equal to its current cost V (t), both pixels have

different roots R(s) 6= R(t) and s = P (t), then t is conquered by πr′ s · 〈s, t〉

and t is inserted in the priority queue Q at the beginning of its corresponding260

bucket (i.e., a LIFO tie-breaking policy is adopted only for this insertion, after

which the priority queue gets back to work according to a FIFO tie-breaking

policy, see Lines 20 and 25-27 of Algorithm 1). This prevents path suffixes of

path πr′ t, with the same value of V (t) in Q to be evaluated before the pixel

t, such that inconsistencies of labels and roots from Section 3.1 are eliminated.265

Now, to prevent the problems related to functions which employ properties
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Figure 5: Example of inconsistency by DIFT∗ with function fabs add. The roots are indicated

in diamond shape and gray pixels indicate pixels that have already been evaluated. a) Graph

with 4-neighborhood adjacency and with the pixel intensities depicted in the nodes. b) The

initial forest computed by IFT with fabs add. c) The removal of the orange tree and the

addition of a new marker (green). The yellow pixels denote the frontier set. d) Some steps

later by DIFT∗, pixel s offers a higher cost to pixel t than its current one in V (t), but by the

test of predecessor t is conquered. The yellow pixels indicate the pixels in Q. e) The node

marked with a red border leaves the queue before node t, generating a cycle in the graph. f)

The incorrect resulting graph with a cycle obtained by DIFT∗, instead of a spanning forest.

of roots, as explained in Section 3.2, we must include other conditions to the

predecessor test of the DIFT∗ algorithm. The idea is to verify if the subtree

of a pixel s, being evaluated, is in an inconsistent state. A subtree rooted in

t is inconsistent if the cost offered to t by a new path πs extended by 〈s, t〉 is270

greater than the current cost V (t) and s is the predecessor of t. In this case, the

procedure DIFT-RemoveSubTree must be executed (Line 23 of Algorithm 1)
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in order to release the inconsistent subtree for a new dispute among seeds and

frontier pixels, avoiding the inconsistencies from Section 3.2.

As a final note, when it is not possible to have a priority queue with the275

two tie-breaking policies, the Lines 25-27 of Algorithm 1 could be replaced by

a call to procedure DIFT-RemoveSubTree. This alternative solution generates

the removal of the subtree releasing its region to a later dispute among seeds

and frontier pixels, avoiding possible inconsistencies from Section 3.1.

Procedure DIFT-RemoveSubTree in Algorithm 2, releases the entire subtree,280

converting its pixels to trivial trees of infinite cost, and transforms all of its

neighboring pixels into frontier pixels, inserting them in Q, assuming that the

graph is symmetric.

Algorithm 1. – Algorithm GDIFT

Input: Image graph 〈I,A〉, path-cost function f , the set ∆+
S of seeds for addi-

tion, set ∆−S of seeds for removal, the maps L, R, V and P initialized

with the result from the previous IFT/DIFT execution, and an initial

labeling function λ : ∆+
S → {0, . . . , l} for the new seeds.

Output: The updated maps L, R, V and P .

Auxiliary: Priority queue Q, variable tmp, the set of frontier pixels F , and an

array of status S : I → {0, 1}, initialized as S(t) = 0 for all t ∈ I,

where S(t) = 1 for processed nodes and S(t) = 0 for unprocessed

nodes.

285

1. Set Q← ∅.

2. If ∆−S 6= ∅, then

3. (L,R, V, P, F )← DIFT-TreeRemoval (〈I,A〉,∆−S , L,R, V, P )

4. F ← F \∆+
S

5. For each t ∈ F , do insert t in Q.

6. For each s ∈ ∆+
S , do

7. If f(〈s〉) < V (s), then

8. Set V (s)← f(〈s〉), L(s)← λ(s), R(s)← s, P (s)← nil

9. Insert s in Q.

10. While Q 6= ∅, do

11. Remove s from Q such that V (s) = min∀t∈Q{V (t)}.
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12. Set S(s)← 1.

13. For each node t such that 〈s, t〉 ∈ A, do

14. If S(t) 6= 1, then

15. Compute tmp← f(πPs · 〈s, t〉).

16. If tmp < V (t), then

17. If t ∈ Q, then remove t from Q.

18. Set P (t)← s, V (t)← tmp.

19. Set R(t)← R(s), L(t)← L(s).

20. Insert t in Q with FIFO tie-breaking policy.

21. Else If s = P (t), then

22. If tmp > V (t), then

23. DIFT-RemoveSubTree(L,R, V, P,Q, S, t)

24. Else If R(t) 6= R(s), then

25. If t ∈ Q, then remove t from Q.

26. L(t)← L(s), R(t)← R(s).

27. Insert t in Q with LIFO tie-breaking policy.

Algorithm 2. – Procedure DIFT-RemoveSubTree

Input: The maps L, R, V and P , the priority queue Q, the array of status

S : I → {0, 1}, and node t (root of the subtree to be removed).

Output: The updated maps L, R, V and P , the updated priority queue Q and

the updated array of status S.

Auxiliary: Queue J and a set F .

1. Set J ← ∅, F ← ∅.

2. Insert t in J .

3. While J 6= ∅, do

4. Remove s from J .

5. Set S(s)← 0.

6. Set P (s)← nil, R(s)← s, V (s)←∞.

7. If s ∈ Q, then remove s from Q.

8. For each node t such that 〈s, t〉 ∈ A, do

9. If s = P (t), then insert t in J .
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10. Else If t /∈ F and V (t) 6=∞, then

11. Insert t in F .

12. While F 6= ∅, do

13. Remove s from F .

14. If s /∈ Q and V (s) 6=∞, then

15. Set S(s)← 0 and insert s in Q.

5. Experimental results

In this section, we evaluate the proposed differential algorithm in relation

to the sequential application of IFTs, in order to illustrate its suitability to290

overcome all the problems presented in Sections 3.1 and 3.2. The gains of using

GDIFT compared to DIFT∗ are presented in two applications: generation of

superpixels and dynamic update of the Euclidean Distance Transform.

5.1. Application to generation of superpixels

Superpixels are the result of an over-segmentation of the image and have been295

used in a wide variety of applications of computer vision, including segmenta-

tion, object detection and 3D reconstruction [37]. One of the most well-known

superpixel algorithms is the Simple Linear Iterative Clustering (SLIC) [27],

which divides the image using an adaptive k-means clustering.

Here we discuss the results by the IFT-SLIC algorithm [23], which corre-300

sponds to a particular case of the ISF framework [24]. In order to compute k

superpixels, IFT-SLIC considers a first initialization of k clusters in a similar

way as SLIC and adapts the superpixels by calculating the IFT with a con-

nectivity function that depends on the root pixel of each superpixel according

to Equation 4. The algorithm is repeated a few times (e.g., 10), updating the305
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central position of each superpixel.

fD(πt = 〈t〉) =

 0 if t ∈ S

+∞ otherwise

fD(πr s · 〈s, t〉) = fD(πr s) + (‖I(r)− I(t)‖ · α)β + ‖t− s‖

(4)

The differential mode of IFT-SLIC is possible by using DIFT in order to

reduce the computation effort at each iteration, but since the path function

used by IFT-SLIC is similar to fabs add (Equation 3), inconsistencies may oc-310

cur. With the modifications presented in Section 4 though, it is possible to

generate consistent results, capable of being reproduced by the execution of

IFT. A demonstration is available at the author’s website1.

To compare the time reduction and the obtained results, we execute the

algorithms for different values of the parameters. In Equation 4, we used 20315

samples for α in [0.01,0.2] and β equals to 12 as recommended in [23].

In the experiment, we used the test set of 50 natural images of the public

GrabCut dataset [38] on a 2.40 GHz Intel(R) i7-3630QM CPU. We compare

DIFT∗ and GDIFT for the differential flow, taking the labeled superpixels by

the IFT algorithm executed 10 times (IFT 10x) for the sequential flow as our320

gold standard. Since the number of superpixels is the same in all results, in order

to compute the accuracy, we compare the resulting labels of the superpixels by

the differential algorithms with the corresponding labels by the IFT 10x.

Figure 6 shows one example. The borders of each superpixel by IFT 10x and

GDIFT are shown in Figures 6(a-b). The divergence composed of non-matching325

labeled pixels is shown in Figure 6(d). Note that the greatest divergence occurs

at the borders of each superpixel. This divergence occurs in areas with little

information to define good borders (absence of contrast), which are related to

tie zones (Figure 6(c)). Given that it is common to have thin tie zones at the

boundaries of the objects, we give a tolerance of 1 pixel at the borders and330

1http://www.vision.ime.usp.br/~mtejadac/gdift.html
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(a) (b) (c)

(d) (e)

Figure 6: Graphical visualization of the accuracy of the algorithms. a-b) The borders of the

superpixels obtained by the algorithms IFT x10 and GDIFT respectively, are shown with

parameters k = 450 and α = 0.06. The divergent areas are highlighted with zoom. c) The

corresponding regions in the original image have low contrast to define precise edges. d)

Divergent areas between results of IFT x10 and GDIFT algorithms. Note that most of the

differences occur in areas with low contrast, which are related to tie zones. e) Divergent

areas with 1-pixel tolerance (adjacency 4) at the edges of superpixels. White pixels represent

notable differences in the algorithm results.

consider the result of Figure 6(e). At the end of the process, Figure 6(e) shows

the largest differences between the result by IFT x10 and GDIFT. We repeat

this process also comparing DIFT∗ and IFT 10x, in order to evaluate which

differential method gets the higher agreement with IFT 10x. The percentage of

divergence observed in this experiment is shown in Figure 7.335

For the DIFT∗ algorithm, the divergence grows as we increase the value of

the parameter α, indicating a higher probability of having inconsistencies in its

results. On the other hand, for the GDIFT algorithm the divergence remains

almost constant, presenting low values (< 0.05%) as compared to the total

number of pixels in the image. Figure 8 shows the visual results of DIFT? and340

GDIFT.

Regarding the processing time, we compare the running times of the se-
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quential flow and differential flows by DIFT∗ and GDIFT. Figure 9 shows the

processing time for different values of k (the number of superpixels). The time of

the first IFT execution, which is common for the three algorithms, is indicated345

in the blue zone. The range of recommended alpha values (α ∈ [0.04, 0.08] as

indicated in [23] and [19]) is also highlighted in the figures. Clearly, the compu-

tation of superpixels by IFT-SLIC using the proposed GDIFT algorithm leads

to a low computational cost and high precision results compared to IFT x10.
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Figure 7: Percentage of pixels divergence between the results by IFT x10 and the results of

differential flows by DIFT∗ and GDIFT, for different numbers of superpixels k.

(a) (b) (c)

Figure 8: Inconsistencies generated by DIFT∗ and the result by GDIFT for parameters k = 500

and α = 0.1. a) Original image. b) Image with superpixels labels by DIFT∗ presenting incon-

sistencies (disconnected regions), with focus on zoomed red pixels. c) Image with superpixels

labels by GDIFT with no label inconsistencies.
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Figure 9: The mean running time of the methods for different values of k.

5.2. Application to Euclidean Distance Transform350

Experiments with feuc (Equation 2) to compute the Euclidean Distance

Transform (EDT) in IFTs sequences [1] were carried out to compare the values

of the cost V and label L maps obtained through the differential algorithms and

the results of the sequential flow.

First we calculate the Voronoi diagram in an image of size 512 × 512 with355

40 random points, then in each iteration, some seeds are marked for removal

and other novel seeds are added2, on average 10% of modifications are made

on the number of markers in each iteration. These iterations are performed

differentially by DIFT* and GDIFT algorithms and sequentially by IFT.

Figure 10(a) shows the percentage of divergence, in each of the 50 iterations,360

2One possible application would be to dynamically update the voronoi diagram of moving

objects (e.g., robots, players, vehicles) to monitor the distances between them or for the terrain

analysis in real-time strategy games [39].
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between the cost maps of the differential algorithms and the cost map of the

IFT. No divergence in the cost map of GDIFT was found. However, for DIFT*

the divergence is considerable and varies between iterations. The divergence

of labels is shown in Figure 10(b), where GDIFT has a divergence of less than

0.05% (caused by tie-zones at the borders). In the DIFT* algorithm, cost and365

label maps divergences follow a similar pattern, where the cost is different, the

more likely is the label to be different.
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Figure 10: Percentage of pixels divergence in cost and label maps between results of differential

algorithms and IFT in each iteration.

Figure 11 shows the region where the greatest divergence of labels occurs for

GDIFT (20th iteration of Figure 10(b)). For the same region, it also shows the

divergence of labels and costs for both GDIFT and DIFT*, where the red and370

blue regions represent the divergences in the cost and label maps respectively.

As a result of the experiment, we present the mean percentage of divergence

of 30 executions (of 50 iterations each) as shown in Figure 12(a-b). The exe-

cution time of IFT along the iterations has a constant behavior, since all the

nodes of the graph are always modified (Figure 12(c)). However the differential375

algorithms (DIFT* and GDIFT) have a better performance, since only a subset

of the nodes in the image domain is reached by the seeds in ∆+
S and ∆−S .
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(a) DIFT* cost map (b) GDIFT cost map

(c) DIFT* label map (d) GDIFT label map

Figure 11: Cost and label maps for the 20th iteration of Figure 10(b)

6. Conclusion

In this paper, we presented an extension of the DIFT algorithm, named

GDIFT, to support connectivity functions with root-based increases, demon-380

strating the importance of exploring other types of connectivity functions in the

IFT framework. The experiments show results compatible with multiple sequen-

tial IFT executions, but with reduced running times. The proposed algorithm is

being used in several parallel works, with recent publications for state-of-the-art

superpixel segmentation [24, 25, 26].385

As future work, we intend to explore the differential computation of the Ori-

ented Image Foresting Transform (OIFT) [11, 14] in 3D images by the GDIFT

algorithm, by adding the support for other types of NMI functions, and to ex-

plore its usage with layered graphs in the HLOIFT method [16], to incorporate

hierarchical constraints.390
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Figure 12: a-b) Mean of the percentage of pixels divergence in cost and label maps between

results of differential algorithms and IFT for 30 executions. c) The mean accumulated time

along the iterations of the methods.

Appendix A. Definitions

A path π = 〈t1, . . . , tn〉 is a sequence of adjacent pixels (i.e., 〈ti, ti+1〉 ∈

A, i = 1, 2, . . . , n− 1). The notation πt = 〈t1, . . . , tn = t〉 indicates a path with

terminus at a pixel t and the notation πr t = 〈t1 = r, . . . , tn = t〉 indicates

a path from a pixel r (origin/root) to a pixel t (destination node). A path395

is also said trivial if it is composed of a single node, that is, when πt = 〈t〉.

A path πt = πs · 〈s, t〉 indicates the extension of a path πs by an arc 〈s, t〉.

Πt(G) indicates the set of all paths with terminus at a node t in a graph G and

Π(G) =
⋃
t∈I Πt(G) indicates the set of all possible paths in G.

A predecessor map is a function P : I → I ∪{nil} that assigns to each pixel400

t in I either some other adjacent pixel or a distinctive marker nil /∈ I — in

which case t is said to be a root of the map. A spanning forest is a predecessor
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map which contains no cycles. For any pixel t ∈ I, a spanning forest P defines a

path πPt recursively as 〈t〉, when P (t) = nil, or πPs · 〈s, t〉, when P (t) = s 6= nil.

A root map R : I → I associates each pixel s ∈ I with the origin of the path405

πPs in the forest generated by IFT. That is, πPs = 〈R(s), . . . , P (P (s)), P (s), s〉

and P (R(s)) = nil. The root map takes the form R : I → S, when we constrain

the computed paths to start from a given set S of seed pixels.

A label map is a function L : I → {0, . . . , l}, where l + 1 is the number of

image objects. In image segmentation from markers by IFT, we have a seed410

set S ⊂ I and a partial labeling function λ : S → {0, . . . , l}, which defines the

initial label of each seed. This partial image labeling is then propagated to all

the remaining pixels in I \S, which can be initialized with an arbitrary labeling,

since their labels will be overwritten in L. At the end, the label map L associates

each pixel s ∈ I with the label of its root r = R(s) (i.e., λ(r) = L(r) = L(s)).415

A connectivity function f : Π(G) → V computes a value f(πt) for any

path πt, in some totally ordered set V of cost values. A path πt is optimum if

f(πt) ≤ f(τt) for any other path τt in G.

Appendix B. IFT algorithm

In this section we present the IFT algorithm in detail using the standard420

notation from Appendix A. The IFT algorithm is a generalization of Dijkstra’s

algorithm for multiple sources and more general connectivity functions [1, 2]. As

shown by Frieze [40], the original proof of Dijkstra’s algorithm can be applied

to monotonic-incremental (MI) connectivity functions — i.e., functions f(πs ·

〈s, t〉) = f(πs)� 〈s, t〉, where f(〈t〉) is given by an arbitrary handicap cost and425

� : V ×A → V is a binary operation that satisfies two conditions:

• x′ ≥ x⇒ x′ � 〈s, t〉 ≥ x� 〈s, t〉 and

• x� 〈s, t〉 ≥ x,

for any x, x′ ∈ V and any 〈s, t〉 ∈ A. An essential feature of MI functions is

that � depends only on the cost f(πs) of πs and not on any other property of430

this path.
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For applicable connectivity function f [2], the image foresting transform

(IFT) takes an image graph G = 〈I,A〉 and returns an optimum-path forest

P — i.e., a spanning forest where all paths πPt for t ∈ I are optimum. The

computed costs of paths πPs in the computed forest P for each pixel s ∈ I are435

stored in a path-cost map V : I → V — i.e., V (s) = f(πPs ).

The general IFT algorithm is presented in Algorithm 3. The IFT ensures

that the computed cost map V converges to Vopt(t) = minπt∈Πt(G){f(πt)} for

MI and non-MI (NMI) functions that satisfy the conditions in [2]. Algorithm 3 is

also optimized for handling infinite costs, by storing only the nodes with finite-440

cost path in the priority queue Q, assuming that Vopt(t) < +∞ for all t ∈ I. In

the case of NMI functions, the state test S(t) 6= 1 (Line 11) is required to ensure

that each pixel will be removed from Q (Line 8) just once during the execution

of the algorithm. In the case of MI functions, this state test is considered only

a performance improvement [1] to avoid the path-cost computation in Line 12.445

Algorithm 3. – IFT Algorithm

Input: Image graph 〈I,A〉, path-cost function f and an initial labeling func-

tion λ : I → {0, . . . , l}.

Output: The label map L : I → {0, . . . , l}, root map R : I → I, path-cost

map V : I → V and the spanning forest P : I → I ∪ {nil}.

Auxiliary: Priority queue Q, variable tmp and an array of status S : I → {0, 1},

where S(t) = 1 for processed nodes and S(t) = 0 for unprocessed

nodes.

1. For each t ∈ I, do

2. Set S(t)← 0.

3. Set P (t)← nil and V (t)← f(〈t〉).

4. Set R(t)← t and L(t)← λ(t).

5. If V (t) 6= +∞, then

6. insert t in Q.

7. While Q 6= ∅, do

8. Remove s from Q such that V (s) = min∀t∈Q{V (t)}.

9. Set S(s)← 1.
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10. For each node t such that 〈s, t〉 ∈ A, do

11. If S(t) 6= 1, then

12. Compute tmp← f(πPs · 〈s, t〉).

13. If tmp < V (t), then

14. If t ∈ Q, then remove t from Q.

15. Set P (t)← s and V (t)← tmp.

16. Set R(t)← R(s) and L(t)← L(s).

17. Insert t in Q.

Appendix C. DIFT algorithm

Let a sequence of IFTs be represented as 〈IFT(S1), IFT(S2), . . . , IFT(Sn)〉,

where n is the total number of IFT executions on the image. At each execution,450

the seed set Si is modified by adding, removing, or by combining the addition

and removal of seeds to obtain a new set Si+1. We define a scene Ci as the

set of maps Ci = {Pi, Vi, Li, Ri}, resulting from the ith iteration in a sequence

of IFTs. In applications, Si+1 is usually defined based on the previous scene

output Ci, so that we can not know beforehand the final set of seeds Sn.455

The DIFT algorithm [12] allows to efficiently compute a scene Ci from

the previous scene Ci−1, a set ∆+
Si = Si \ Si−1 of new seeds for addition,

and a set ∆−Si = Si−1 \ Si of seeds marked for removal. In the execu-

tion flow by DIFT, after the first execution of IFT(S1), we have that the

scenes Ci for i ≥ 2 are calculated based on the scene Ci−1, taking advan-460

tage of the trees that were computed in the previous iteration, thus re-

ducing the processing time. Hence, we have the following differential flow:

〈IFT(S1), DIFT(∆+
S2
,∆−S2

,C1), DIFT(∆+
S3
,∆−S3

,C2), . . . , DIFT(∆+
Sn ,∆

−
Sn ,Cn−1)〉.

The differential flow must obtain a valid result, obtainable by IFT(Sn). That

is, IFT(Sn) can have several possible outcomes depending on the order of pro-465

cessing of the nodes and arcs in case of draws. The result of the differential

flow should correspond to one of them, so differences in the final labeling should

be restricted only within the tie zones. As a consequence, when the result of
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IFT(Sn) has as output a unique cost map Vn (optimal or not optimal), the dif-

ferential flow must reproduce exactly the same cost map. Since for MI functions,470

the IFT algorithm generates an optimal cost map that is unique, the differential

flow for MI functions should generate the same optimal cost map.

The DIFT algorithm was originally designed exclusively for MI functions [12].

Its insertion and removal cases are explained below. In all cases, the maps of

the current scene Ci = {Pi, Vi, Li, Ri}, for i > 1, are initialized as being the475

maps from the previous scene Ci−1.

- Addition of markers: The insertion of new seeds into an existing opti-

mal path forest can be done by inserting the new seeds r′ ∈ ∆+
Si into the

priority queue Q (currently empty) with its trivial path cost and executing

the main loop of Algorithm 3. Let’s initially consider the same rules of480

Algorithm 3 (Lines 12-17) to process the extension of a path. Suppose

the insertion of a new seed r′ during an iteration, such that πr′ s be-

comes an optimum path to a pixel s (possibly s = r′). If the new path

through s extended by the arc 〈s, t〉 offers a lower cost f(πr′ s · 〈s, t〉)

to t than its current one in Vi(t), then the path πPt will be updated485

as πr′ s · 〈s, t〉 and t will be inserted in Q. However, if the offered

cost f(πr′ s · 〈s, t〉) is the same as its current value in Vi(t) the seg-

mentation label Li(t) will not be updated and t will not be reinserted

in Q. A problem arises when in the (i-1)th iteration of the DIFT al-

gorithm, we have Pi−1(t) = s. In this case, we will have an inconsis-490

tency of the maps of roots (r′ = Ri(Pi(t)) 6= Ri(t) = Ri−1(t)) and labels

(Li(r
′) = Li(Pi(t)) 6= Li(t) = Li−1(Ri−1(t))), because these maps will

be outdated referring to an old root Ri−1(t) of the previous execution.

Hence, in order to fix this problem, a predecessor test Pi(t) = s (Line

16 of Algorithm 4) was proposed in [12] to ensure that the maps will be495

updated.

- Removal of markers: In the case of a root r ∈ ∆−Si marked for removal,

the entire tree of the seed r must be removed, creating a set of frontier
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pixels F = {t : 〈t, s〉 ∈ A ∧ r = R(s) ∧ R(t) 6= R(s)}. These frontier

pixels will be inserted in the priority queue to start a new dispute for the500

conquest of the removed area.

- Simultaneous addition and removal of markers: In this case, the

removal is executed first, defining the frontier pixels. The new markers

are then initialized, removing from F all new markers that eventually also

belong to it.505

Therefore we have the following algorithms.

Algorithm 4. – DIFT Algorithm

Input: Image graph 〈I,A〉, path-cost function f , the set ∆+
S of seeds for addi-

tion, set ∆−S of seeds for removal, the maps L, R, V and P initialized

with the result from the previous IFT/DIFT execution, and an initial

labeling function λ : ∆+
S → {0, . . . , l} for the new seeds.

Output: The updated maps L, R, V and P .

Auxiliary: Priority queue Q, variable tmp, the set of frontier pixels F , and an

array of status S : I → {0, 1}, initialized as S(t) = 0 for all t ∈ I,

where S(t) = 1 for processed nodes and S(t) = 0 for unprocessed

nodes.

1. Set Q← ∅.

2. If ∆−S 6= ∅, then

3. (L,R, V, P, F )← DIFT-TreeRemoval (〈I,A〉,∆−S , L,R, V, P )

4. F ← F \∆+
S

5. For each t ∈ F , do insert t in Q.

6. For each s ∈ ∆+
S , do

7. If f(〈s〉) < V (s), then

8. Set V (s)← f(〈s〉), L(s)← λ(s), R(s)← s, P (s)← nil

9. Insert s in Q.

10. While Q 6= ∅, do

11. Remove s from Q such that V (s) = min∀t∈Q{V (t)}.

12. Set S(s)← 1.

13. For each node t such that 〈s, t〉 ∈ A, do
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14. If S(t) ≤ 1, then

15. Compute tmp← f(πPs · 〈s, t〉).

16. If tmp < V (t) or s = P (t), then

17. If t ∈ Q, then remove t from Q.

18. Set P (t)← s and V (t)← tmp.

19. Set R(t)← R(s) and L(t)← L(s).

20. Insert t in Q.

The condition S(t) ≤ 1 at Line 14 of Algorithm 4, which is always true,

is used only to mark a point for modifications as discussed in Section 3. The510

following auxiliary algorithm for marker removal (Algorithm 5) assumes that

the graph is symmetric. A graph G is symmetric if for all 〈s, t〉 ∈ A, the pair

〈t, s〉 is also an arc of G.

Algorithm 5. – DIFT-TreeRemoval Procedure

Input: Image graph 〈I,A〉, the set of seeds to be removed ∆−S , and the maps

L, R, V and P .

Output: The updated maps L, R, V and P , and the set of frontier pixels F .

Auxiliary: FIFO Queue T .

515

1. Set F ← ∅.

2. For each r ∈ ∆−S , do

3. Set V (r)← +∞ and P (r)← nil.

4. Insert r in T .

5. While T 6= ∅, do

6. Remove s from T .

7. For each node t such that 〈s, t〉 ∈ A, do

8. If s = P (t), then

9. Set V (t)← +∞ and P (t)← nil.

10. Insert t in T .

11. Else If R(t) /∈ ∆−S , then F ← F ∪ {t}.
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Highlights

• We extend the DIFT algorithm for non-monotonically incremental functions with root-based 
increases.

• Generalized DIFT has been successfully used as the core part of some modern superpixels 
methods with state-of-the-art results.

• GDIFT shows considerable efficiency gains over the sequential flow of IFTs for the generation 
of superpixels, also avoiding inconsistencies in image segmentation.


