

Electrochemical behavior of methylene blue at self-doped TiO₂ nanotube electrode for environmental sensing application

Victor Lorejan Pinto*, Rafael A. L. Chioquetti, Silvia H. P. Serrano,

Institute of Chemistry, University of São Paulo, Brazil

*e-mail: victor.lorejan@usp.br

Voltammetric detection of organic pollutants requires sensitive, stable and low-cost electrodes. Self-doped TiO₂ nanotubes (SD-TiO₂NT) offer an alternative by combining high surface area with enhanced conductivity via electrochemical self-doping (induced by negative potential) [1]. This study investigated the interacting mechanisms between methylene blue (MB), a model textile pollutant, and SD-TiO₂NT for environmental sensing applications. Titanium sheets were anodised in (0.25 wt. % NaF and 10 vol. % water) glycerol solution at 20 V for 48 h. The material was calcined to convert the amorphous phase into crystalline anatase. The SD-TiO₂NT electrode (geometric area: 0.071 cm²) was prepared by applying -1.5 V for 15 min in phosphate buffer solution (PBS pH 7.4), using a conventional three-electrode system. Scanning Electron Microscopy confirmed TiO₂ nanotubes (19-44 nm in diameter), and X-ray Diffraction identified the anatase phase. Cyclic voltammograms using negatively charged electrochemical probes revealed that, after self-doping, the surface was negatively charged, probably due to the phosphate adsorption from the PBS electrolyte. Furthermore, the voltammetric experiments showed a sharp reduction peak at pH 2.00, confirming strong electrostatic adsorption of the protonated MB form onto the negatively charged SD-TiO₂NT surface. MB redox kinetics exhibited clear dependence on scan rate (0.010 – 1.0 V s⁻¹). At scan rate \leq 0.10 V s⁻¹, the slope of $\log I_{pc}$ vs $\log v$ plots was 0.97, characteristic of an adsorptive process. A linear fit of E_{pc} vs $\log v$ showed a slope of 31 mV dec⁻¹, confirming first-order chemical kinetics [2]. Tafel analysis ($\alpha = 1.5$) indicated that the second electron transfer is rate-limiting. The Differential Pulse (MB) analytical curve performed at 0.1 M PBS presented a linear interval of (15 – 60 μ M) with a detection limit of 0.2 μ M.

Acknowledgments:

CNPq Process: 403808/2022-7 and FAPESP.

References:

- [1] Spanu D.; et al. Chemosensors, 11, 560 (2023).
- [2] Savéant, J. M.; Costentin, C. John Wiley & Sons, 2006.