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Abstract

We consider an autonomous, indefinite Lagrangian L admitting an infinitesimal symmetry
K whose associated Noether charge is linear in each tangent space. Our focus lies in inves-
tigating solutions to the Euler-Lagrange equations having fixed energy and that connect a
given point p to a flow line y = y(¢) of K that does not cross p. By utilizing the invariance
of L under the flow of K, we simplify the problem into a two-point boundary problem.
Consequently, we derive an equation that involves the differential of the “arrival time” ¢,
seen as a functional on the infinite dimensional manifold of connecting paths satisfying the
semi-holonomic constraint defined by the Noether charge. When L is positively homogene-
ous of degree 2 in the velocities, the resulting equation establishes a variational principle
that extends the Fermat’s principle in a stationary spacetime. Furthermore, we also analyze
the scenario where the Noether charge is affine.
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1 Introduction

In the problem of finding solutions with fixed energy for an autonomous Lagrangian sys-
tem with a finite number of degrees of freedom, subject to two-point or periodic boundary
conditions, one viable approach is to allow for a free interval of parametrization for the
involved curves. This method entails employing the action functional with fixed energy, as
originally defined by Mafié (see [1] and the survey [2]). Specifically, given a pair of distinct
points on a compact manifold M and a fiberwise convex and superlinear Lagrangian L,
there always exists a solution connecting the two points with a fixed energy value x, pro-
vided that « is strictly greater than the so-called Marié critical value c(L) [3, Theorem X].
This approach has also demonstrated its effectiveness in addressing the challenging prob-
lem of establishing the existence of periodic solutions, as explored in works such as [4-7].

A more basic approach involves fixing the parameter interval and the initial point p,
while allowing the final point to traverse along a given curve y. This is a common frame-
work employed in General Relativity when studying causal geodesics, which represent
the paths of light rays (photons) or the worldlines of massive particles. In this scenario,
the Lagrangian energy coincides with the conserved quantity of the geodesic, namely the
square of the norm of its velocity vector. Consequently, the values k = 0, —1 correspond to
the energy levels of light rays and massive particles, respectively. The curve y represents
the worldline of an observer, while p signifies the event of emission or, in an alternative
perspective, ¥ symbolizes the worldline of a source of light signals or massive particles,
and p represents the event of detecting those signals (in the latter case, the geodesics origi-
nate from y and terminate at p). In the former scenario, the parameter value of y (more
precisely, its “proper time”) at the intersection point with a lightlike future-oriented curve
z from p to y is referred to as the arrival time of z [8]. The future-oriented lightlike geodes-
ics are then all and only the stationary points of the arrival time with respect to any smooth
variation z, made by smooth future-oriented lightlike curves between p and y [9]. This gen-
eral statement is recognized as Fermat’s principle in General Relativity.

In fact, when the spacetime is static or stationary, Levi-Civita first introduced Fermat’s
principle in local coordinates in [10] and [11] and observed that the geometry of lightlike
geodesics in the spacetime can be linked to a metric in a spacelike slice, called optical
metric, which is Riemannian, when the spacetime is static, and Finslerian in the stationary
case, and that allows describing and calculating various geometric and causal properties of
the spacetime through it [12—16]. Subsequently, other variations of Fermat’s principle have
emerged, sharing fundamental elements while possessing distinct technical characteris-
tics (see, e.g., [17-23]); moreover, it has been generalized to massive particles in [15, 24].
Light rays and massive particles via variational methods have also been studied in [25-30].
The use of Fermat’s principle also emerges in the study of motion around black holes [31],
as well as in the well-known phenomenon known as gravitational lensing [32-36], which
has been specialized for particular exact solutions of the Einstein field equations, such as
Schwarzschild [37] and NUT spacetimes [38]. Interestingly, the utilization of least-time
principles in observational cosmology opens up the possibility of interpreting observed
instances of gravitational lensing without the need to invoke the existence of dark matter
[39]. We recommend referring readers to [40] for a comprehensive review on gravitational
lensing in a relativistic context.

Additionally, it is worth noting that the application of variational principles related with
or inspired by Fermat’s principle has been extended and generalized beyond Euclidean or
Lorentzian geometry as evidenced in [23, 41-50].

@ Springer



Fixed energy solutions to the Euler-Lagrange equations of an...

This work contributes to the latest type of research. We consider an indefinite Lagran-
gian L on a manifold M that is invariant under a one-dimensional group of local diffeo-
morphisms generated by a complete vector field K. The Noether charge associated with
L is assumed to be linear in each tangent space 7,.M. Our focus lies on solutions to the
Euler-Lagrange equations of the action functional of L that connect a point p to a flow
line y of K and having fixed energy k. Our approach is based on the variational setting in
[51], which is inspired by [52]. The main result in this work, Theorem 5.1, at least when L
is 2-homogeneous in the velocities, extends Fermat’s principle as established in [53], that
was specifically tailored to the framework explored in [52]. Leveraging this extension, we
provide proof of existence (Theorem 6.9-(a)) and a multiplicity result (Theorem 6.9-(b))
for such solutions. Additionally, we delve into the analysis of the case where the Noether
charge is an affine function in Appendix 1. In Appendix B we give some results that link
an assumption on the manifold of curves that we consider in our variational setting, called
pseudocoercivity, with the notion of global hyperbolicity for the cone structure associated
with L in the 2-homogeneous case.

2 Notations, assumptions and a class of examples

Let M be a smooth, connected manifold of dimension (mm + 1), where m > 1. We denote the
tangent bundle of M as TM. In this paper, we consider a Riemannian metric g on M as an
auxiliary metric, and we use ||-|| : TM — R to represent its induced norm; specifically, for
any v € TM, we have ||v||2 = g(v,v). We represent an element of TM as a pair (x, v), where
x belongs to M and v belongs to the tangent space 7. M.

Let L : TM — R be a Lagrangian on M. For any (x,v) € TM, we denote the vertical
derivative of L as d,L(x, v)[-], which is is defined as follows:

0,L(x,v)[£] = %L(x, v+ s&)

, VEeTM.
s=0

We also need a derivative w.r.t. x, denoted by d,L(x, v). This is defined only locally (in a
system of coordinates) as:

m

.Lx, Mg = Y %(x, WE, VEeTM,

i=0
where (x°, ..., x™) is a local coordinate system in a neighbourhood of x, and consequently,
@2, ..., x" V0 ..., v") are the induced coordinates on TM. With this notation, the Euler-

Lagrange equations for a curve z : [0, 1] = M of class C! are given by:

%0VL(Z, H-0Lz2=0, Vselo,1], .1

where z denotes the derivative of z with respect to the parameter s. It is well-known that the
energy function E : TM — R, defined as:

E(x,v) = 0,L(x,v)[v] = L(x,v),

is a first integral of the Lagrangian system. Therefore, if z : [0, 1] — M is a solution of the
Euler-Lagrange equations, there exists a constant ¥ € R such that:

@ Springer



E. Caponio et al.

E(z,2) =k, Vsel0,1]. (2.2)

Assumption 1 The Lagrangian L : TM — R satisfies the following conditions:

L is a C! function on TM;
There exists a complete C? vector field K on M such that L is invariant under the one-
parameter group of C* diffeomorphisms of M generated by K (we refer to K as an
infinitesimal symmetry of L);

o The Noether charge, i.e., the map (x,v) € TM  9,L(x,v)[K] € R, is a C! one-form
Q on M, namely

0,L(x, v)[K] = Q(v); (2.3)
e For every x € M, the following equality holds:
oK) =-1 2.4)

Remark 2.1 In [51], the Noether charge was assumed to be an affine function on each tan-
gent space. For the sake of simplicity, we present the main results under the more restric-
tive assumption of linearity. A discussion about the affine case is given in Appendix 1.

Remark 2.2 The C? regularity condition on K is needed to get that a certain map con-
structed by using the flow of K is a diffeomorphism (see Proposition 4.1). We don’t know if
the regularity of K can be lowered there to C".

Assumption 2 The Lagrangian L, : TM — R, defined by
L.(x,v):=L(x,v) + Q*(v), (2.5)

satisfies the following conditions:

e there exists a continuous function C : M — (0, +o0) such that for all (x,v) € TM, the
following inequalities hold:

L(x,v) < CE)(IVIP +1); (2.6)
10,L.(x, )| < CE)(IIVIIP +1); 2.7)
10,L.(x,v)| < CE)(IIvll +1); 2.8)

e there exists a continuous function A : M — (0, +o0) such that for each x € M and for
allv;,v, € T .M, the following inequality holds:

(0,Lc(x,v,) = 0, L (x,v))[vy = vi] = A@)||v2 — v, ||2; (2.9)
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Remark 2.3 As proven in [51, Proposition 2.5], K is also an infinitesimal symmetry of L,
and a simple computation shows that

0,L.(x, VK] = =Q().

Remark 2.4 From [51, Proposition 7.4], if L satisfies Assumptions 1 and 2, it admits a sta-
tionary product type local structure. This means that for each point p € M, there exists a
neighbourhood U, C M, an open neighborhood S, of R™, an open interval /, of R, and a

diffeomorphism ¢ : S, X I, — U, such that, denoting 7 as the natural coordinate of I,
$(0) =Kl .

and the function L can be expressed as follows:
1
L(x,v) = Log((y. 1), (v, 7)) = Lo(y, V) + 0, (V)7 — 512, (2.10)

where

o (nNES, X, (v,1) €R"XR,and (x,v) = $((v, 1), (v, 7));

o LyeC! (S,) is a Lagrangian that satisfies the growth conditions (2.6)—(2.8) with respect
to the norm ||-|| s, and it is fiberwise strongly convex, i.e., (2.9) holds (with L. replaced

by L) for some function 4 : §, — (0, +00);
® w,is the C' one-form induced by Q on S,

Using this notation, we have the following equalities:
00) = Qog(v, 7) = w, (V) — 7;

2.11
L.(x,v) = L.og, ((5.0),(v, 7)) = Ly(y, v) + w}%(v) - w,(V)T + L2, @10

102
2
and

E(x,v) = Eogp, ((3.1), (v, 7)) = Eg(y, V) + 0,(V)T — %12, (2.12)

where Ey(y,v) = d,Ly(y, v)[v] — Ly(y, v).

Remark 2.5 For every p € M, let ¢, : S, X1, —» M be a mapping that satisfies (2.10).
Since L, is fiberwise strongly convex, we can conclude that

Ey(v,v) > Eg(y,0) = =Ly(»,0), Vv #0, (2.13)
Indeed, from the strict convexity of L, we have
Ly(y,0) > L(y,v) + 9,L(y, v)[-Vv], Vv # 0.
Assumption 3 We require:

sup L(x, 0) < +o00.
sup L(x, 0) (2.14)
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Remark 2.6 We need the last assumption to guarantee the existence of xk € R satisfy-
ing (4.19), which is a key condition for our main result.

2.1 Lorentz-Finsler metrics

Provided the existence of an infinitesimal symmetry, an important kind of Lagrangians
that satisfy the above assumptions is given by Lorentz-Finsler metrics, introduced by J.
K. Beem in [54].

Definition 2.7 Let M be a smooth, connected manifold of dimension m + 1. A Lagrangian
Ly : TM — Riis called Lorentz-Finsler metric if it satisfies the following conditions:

(@) Lp € C(TM)n C*TM \ 0), where 0 denotes the zero section of TM;

(b) Lpx, Av) = ﬁzLF(x, v), for all A > 0;
(c) forany (x,v) € TM \ 0, the vertical Hessian of L, i.e. the symmetric matrix
0L _0
(8F)ap(x, V)-—W(x, v), a,f=0,..,m,

is non-degenerate with index 1.

Remark 2.8 The regularity conditions required on L, are sometimes too rigid and we relax
them to include some interesting classes of Lagrangians (see [46, 55]). The first and the
last conditions above will be replaced by:

(@) Let M be a smooth, connected, manifold of dimension m+ 1, m > 1, and
L € CY(TM) n C*(O), where O € TM \ 0 is such that O _:=0NT.M # @ for all
x € M, and O, is an open set in 7,M which is a linear cone (i.e. Av € O,, for all
A>0,ifv € O,); moreover, for any v, v, € T M there exist two sequences of vectors
Vi Vi such that, for all k € N, the segment with extreme points v;, and v,, is entirely
contained in O, and v, — v;,i =1,2.

(c’) Condition (c) is valid for each (x,v) € O; moreover the eigenvalues 4;(x,v) of
(8F)q,p(x, v) are bounded away from 0 on O,, i.e. there exists 4, (x) > 0 such that

[4;(6, )| 2 4, (%), (2.15)

foralli € {0,...,m}andv € O,.

If L is a Lorentz-Finsler metric, then the couple (M, L) is called a Finsler spacetime.

The study of the notion of a Finsler spacetime has received renewed impetus from
various sources. V. Perlick’s work [41], which explores Fermat’s principle, was particu-
larly influential. Subsequent contributions came from [56] (also see [57]), which revived
the research initiated by G. Y. Bogoslowsky [58-60], and from [61]. Additional momen-
tum was provided by the works of V. A. Kostelecky and collaborators [62-65], as well
as C. Pfeifer, N. Voicu, and their coworkers (refer to [66—71] for further details). Nota-
ble mathematical contributions include [72-74], which have influenced the field in a dif-
ferent manner. For a comprehensive historical overview, diverse definitions of a Finsler
spacetime, and additional references, interested readers are directed to [44, 48, 75, 76].
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As we will see later, the significance of Lorentz-Finsler metrics relies on the 2-homo-
geneity assumption. This homogeneity ensures that the solutions of the Euler-Lagrange
equations, with a suitably prescribed energy value (in this case, less than or equal to
0), connecting a point to a flow line of the infinitesimal symmetry vector field, are the
ones for which the time of arrival is critical. Therefore, Fermat’s principle holds (see
Remark 5.2).

Proposition 2.9 Let L. : TM — R be a Lorentz-Finsler metric satisfying (a'), (b) and (c")
above, and assume there exists an infinitesimal symmetry K : M — TM such that (2.3) and
(2.4) hold. Then Assumptions 2 and 3 hold.

Proof Assumption 3 is ensured by the 2-homogeneity of L, since Ly(x,0) = O for every
x € M. Let us show that Assumption 2 holds. As a first step, we notice that the Lagrangian
L. : TM - R, defined by

Lc(xr V) = LF(-xs V) + Q2(V)’

admits vertical Hessian at any (x,v) € O that is a positive definite bilinear form on T, M.
For any (x,v) € O, we have

ava(r(x’ V) = avaF(x’ V) + 2Q ® Q (216)

For each w € T,M, we have, thanks to (2.3),

Ly
0,,Lp(x, VK, w] = 3501 x,v+tK + sw) (=00, -
_ 0(0,Lp(x,v + sw)[K]) _ 00 + sw)‘ _ o) 2.17)
as s=0 os s=0 ’

hence we obtain
0,,L.(x,MIK,K] = 09,,Lp(x,V)[K,K] + 200(K) = 0Q(K)+2=1>0.

Now consider w € ker Q; from (2.17) we have d,,L;(x,v)[w, K] = 0, and since d,,Lp(x, v)
has index 1 we obtain that 0L (x, v)[w, w] = 9,,Lp(x, v)[w,w] > 0, for all w € ker Q, from
which we conclude that 0, L .(x, v)[, -]is positive definite.

Let

Alx) : vienofx weTE,iurh It 0,,L.(x,v)[w, w]. (2.18)
As any w € ker Q is orthogonal to K, with respect to both bilinear forms 0,,L.(x,v) and
0,,Lp(x,v), by (2.16) we deduce that the determinants of (gz),; and (g.),,; are opposite
numbers and then, from (2.15) we conclude that A(x) > 0, for all x € M.

Inequality (2.9) then follows by the mean value theorem applied to the function
ve O, - 0,L.(x,v)[v, —v;], when v, and v, both belong to O, and the segment having
them as extreme points is contained in O, as well. Then, for each x € M, (2.9) follows
by continuity due to the property of approximation by segments in (a’). The inequali-
ties (2.6), (2.7) and (2.8) are ensured by the fact that L.is C Yon TM and it is positive homo-
geneous of degree 2 w.r.t. v. a
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Remark 2.10 As shown in the above proof, the vertical Hessian of L, is positive definite
on O, the last being dense in TM. Hence, by homogeneity, L, is a non-negative fiberwise
strongly function on TM. Moreover, the vertical Hessian of FC:=\/L_C at any (x,v) € O is
positive semi-definite (see, e.g., [86, p. 8]). Hence, for any v, and v, belonging to O, defin-
ing a segment contained in O, we get by Taylor’s theorem,

F.(x,vy) 2 F.(x,v{) + 0,F.(x,v)[v, —v{].

By continuity and the approximation by segments property in (a’), the above inequality
holds on TM, hence F, is fiberwise convex and therefore it is a Finsler metric on M, (i.e.,
F_.(x,-) is non-negative, positively homogeneous, and satisfies the triangle inequality on
T .M, for each x € M) whose square is only of class C! on TM.

As a consequence of Proposition 2.9, if L, : TM — M is a Lorentz-Finsler metric and
there exists a complete vector field K such that Assumption 1 holds, then Remark 2.4
ensures that L can be locally expressed as follows:

Lr(6v) = Lro(( 1), (v 0) = FP0 ) + 0,007 = 222 2.19)

where F : TS — R is a Finsler metric on S, with F?> € C'(TM). Whenever L. is not twice
differentiable only at the line sub-bundle of TM defined by K, F becomes a classical Finsler
metric on S, (i.e. F2 € C2(TS\O) and, for each y € S, F(y, -) is a Minkowski norm on TS,
see e.g. [86, §1.2]). ’

Since in this case K is a timelike Killing vector field, namely it is an infinitesimal sym-
metry of Ly such that Lp(x, K) < O for every x, (M, Ly) is called stationary Finsler space-
time. In particular, if L is twice differentiable on TM \ 0, then F’ 2(y,-) in (2.19) must be
the square of the norm of a positive definite inner product on 7,S. We thank the referee for
this observation. In fact, a special kind of stationary Finsler spacetimes are the stationary
Lorentzian manifolds, namely those Lorentzian manifolds (M, g; ) for which g; is a Lorent-
zian metric and there exists a timelike Killing vector field for g, . In this case, the stationary
product type local structure is given by

8.0 = g ) + 0 ()7 = 27

where g is a Riemannian metric on an open neighbourhood S of R™. In this direction, the
results in this paper improve previous results about stationary Lorentzian metrics (see, [15,
19, 53]), since just C! stationary metrics with a C* timelike Killing vector field are allowed
and both lightlike and timelike geodesics can be considered in an unified setting.

3 Variational setting

Let us fix a point p € M and consider a flow line y : R - M of K that does not pass
through p, i.e., p € y(R). We are interested in finding solutions of the Euler-Lagrange
equations that connect p to points on y with a fixed energy x € R. Specifically, we seek
to characterize curves z € C'([0, 1], M) that satisfy (2.1), with z(0) = p, z(1) € y(R), and
E(z(s), z(s)) = k for all s € [0, 1].

We define the action functional £ : H'([0, 1], M) — R as follows:
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1
L(2):= / L(z,z)ds.
0

Similarly, we define the energy functional:

1
E@):= / E(z,2)ds.
0

We note that both £ and £ are well-defined on H'([0, 1], M) and they are respectively a C!
and a C? functional due to (2.5), the growth conditions (2.6)—(2.8) and the fiberwise con-
vexity of L, (2.9) (see, e.g., the first part of the proof of Proposition 3.1 in [78]).

Remark 3.1 Henceforth, we will assume that £ is a C! functional. This holds if L is posi-
tively homogeneous of degree 2 in the velocities, since in that case £ = £; moreover it
holds if L, is a C?, strongly convex Lagrangian on TM with second derivatives satisfying
assumptions (L.1’) in [78, p. 605].

Recalling that we have chosen a fixed point p € M, we define the set €, .(M) for every
r € M as follows:

Q, (M):={z € H'([0,1],M) : z(0) = p,z(1) = r},

and we denote by £, , the restriction of £ to Q, .(M).

Remark 3.2 According to [51, Proposition A.1], if z is a critical point of £p’r, then both z
and the function

§ = 0,L(z(s), 2())[(s)]

are of class Cl. As a consequence, 7 is a critical point of L, , if and only if equation (2.1)
holds and there exists k € R such that equation (2.2) holds.

3.1 Preliminary results

Recalling that K is a complete vector field, we denote by w : RX M — M the flow of
K, and by 0,y and d,y the partial derivatives of w(z,x) with respect to t € R and x € M,
respectively.

Let us denote by K¢ the complete lift of K to TM (see, e.g., [46]). Then, for any
(x,v) € TM, the flow w* of K on TM is given by w*(t,x,v) = (w(t,x), o,y (t,x)[v]), and
we have

0(Loy*
KC(L)(q/C(t,x, v)) = %([,x, V).

Since K is an infinitesimal symmetry of L, we have

0(Loy1c)

—— (X1 =0, @3.D
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which implies
h .
K¢(L)(x,v) = i(x, WK (x) + %(x, v)&(x)v’ =0. 3.2)
oxh ovh ox’

Moreover, from (3.1) we also obtain
L(x,v) = L(y(t,x), 0,y (,0v]), V(x,v) €TM, t €R, (3.3)
and consequently

9,L(x. V€] = 0,L(w(t, ), o,y (1, 0V]) [0, (1, 0[E]]. (3.4)

Lemma 3.3 Ifz : [0,1] - M is a weak solution of the Euler-Lagrange equation (2.1) (i.e.
a critical point of L on Q , (M) ), then it is a C' curve and its Noether charge is con-
stant, namely there exists ¢ € R such that

0,L(z(s), 2(NK ()] = ¢, Vs €[0,1].

Proof By [51, Proposition A.1], both z and 0, L(z, z) are of class C!. Therefore, it suffices to
prove that, for every s € [0, 1], we have

d .
2 (L) KN ) = 0.
s
Therefore, we can work on a local coordinate system (x°,...,x",%,...,v") of TM and,
using (2.1) and (3.2), we obtain the following chain of equalities:
d /oL i
~(%E 2(s)) K
(55 (0. 20K o) )
_ (O MV kieon + 2L (a0 2000 2K
= 2 (55 (9. 29) JK(a(6)) + 55 (25, 29) S5 )2 )

) . oL . oK
== (2(5), 2()) K'(2(s)) + pw (Z(S),Z(S))—axh (2(s))Z"(s) = 0.
O

On the basis of Lemma 3.3, the curves with a constant Noether charge are the only
ones that can be critical points of the action functional. The following results ensure
that this subset of curves is indeed a closed manifold of class C!, allowing for a simpli-
fication of the variational setting by considering only these curves. A detailed proof can
be found in [51] and relies on the linearity assumption of the Noether charge.

Let us define the following sets:

/\/pyr:={z € Qp’,(M) : dc € R such that Q(2) = ca.e. on [0,1]} C Qp’,(M),
and

W, :={n€T.Q, M) : IueHy0,1],R)
such that n(s) = u(s)K(z(s)), a.e. on [0, 1]}.
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Since L is invariant under the one-parameter group of local C! diffeomorphisms generated
by K, we have the following result.

Proposition 3.4 The space ./\/;” is non-empty, it is a C" closed submanifold of Q, (M) and
satisfies

N, ={z€Q,,M) : dL, (n] =0,Yn € W_}. (3.5)

Moreover, for every z € N,

».rs the tangent space of ./\/W at z is given by

T.N,,={¢€T.Q, (M) : 3c € Rsuch that 0,0(2)[£] + Q) = cae.},  (3.6)

7=%p,r
and
T,Q,,(M)=TN,, +W,. (3.7)

Proof The fact that J\/p,, # @, for all p,r € M, follows from [51, proposition 6.4]. Equal-
ity (3.5) is proved in [51, Proposition 4.2], and (3.6) is a particular case of [51, Proposition
4.3]. Finally, (3.7) comes from [51, Lemma 4.4],". 0

The above result gives the following variational principle for the critical points of £, ,,
which extends a result by F. Giannoni and P. Piccione (see [52]).

Proposition 3.5 Let J,, : N,, = R be the restriction of L, to N, . Then, z is a critical

point for L, . if and only if z € ./\/:w and z is a critical point for 7, ,.

Proof See [51, Theorem 4.7]. O

4 The variational structure of the action in relation with the flow of K

In this section, we consider the flow of the complete vector field K and its relationship with
the variational structure of the action. More precisely, let y : R X M — M denote the flow
generated by the vector field K. Given a flow line y : R — M of K, there exists a point
q € M such that y(¢) = yw(t, q).

Our goal is to prove that for each r € R, there is a diffeomorphism between /\/pyq and
/\/p,y(z)' This enables us to define a functional (see (4.9)) on J\/;,’q X R and obtain an alterna-
tive equation for solutions of the Euler-Lagrange equations connecting p and y (see (4.13)).
Furthermore, recalling that we seek the solutions of Euler-Lagrange equations with a fixed

energy k, we show that for any z € ./\/M, there are two values of 7 € R such that £(7') = «,

where « satisfies (4.19) and 7' € J\/'M(,) is the curve corresponding to z via the diffeomor-
phism. Therefore, we can simplify the problem and study a couple of functionals defined
only on V,, , (see (4.20)).

Let us define the map F' : Qp’q(M) — W(,)(M) as follows:

' We would like to draw attention to a misprint in [51, Lemma 4.4] where we note that the “direct sum”
should be corrected to “sum” as it appears there.
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(F'(2)) (s): = (15, 2(5)). @.1)
To simplify the notation, we write
Zt = FI(Z)

for any z € Qp’q(M).

Proposition 4.1 The map F' is a diffeomorphism with its inverse being F~'. Furthermore,
F’|NM is a diffeomorphism from N;w to '/\/p,y(t)' Therefore, for every z € Q, (M), we have
the following equivalences:

dF'(2)[¢] € TN,y if and only if ¢€TN,,, 4.2)
and
dF'(Q)(nl € W, if andonly if neW.. 4.3)

Proof By utilizing a result by R. Palais [77] and considering that the flow of K is C3, we can
conclude that F' is a diffeomorphism (cf. [53, Proposition 2.2]). Recalling that d,y is the
differential of y with respect to the first variable, we can derive the following equalities:

9w (s, z(s)[1] = K(y (s, z(s))),
and
0,y (s, 2())K (2(s))] = K(w (15, 2(5))). (4.4)
Consequently, we obtain the velocity of 7' as:
L2 = 2(5) = 0,y (15, 2NN + 0,y 15, 2N “5)
Now, considering that Q(K) = —1, we deduce:
0,L(Z', HIK(EZ)] = Q&) = —1 + Q(0,w (15, 2(s))[2()]).

Hence, from (3.4), we have:

0@ =00 -1, (4.6)
which implies that 7' € ./\fp’y(t) if and only if z € ./\/;,’q. Therefore, this implies (4.2). Finally,
(4.3) follows from dF'(2)[v] = 0, (ts, z(s))[v(s)] and (4.4). O

We introduce the functional prq 1Q, MXR >R defined as follows:
M, o)=L,y (F' (). @.7)

Using (4.5) and observing that 9,y (s, z(s))[?] = 10,y (ts, z(s))[K(z(s)], we can deduce the
expression:

7= 0,w(ts, 2(s)) [Z + IK(Z(S))], 4.8)

so that, by applying also (3.3), we can rewrite H,, ,(z, 1) as
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1
H, (1) = / L(z,z+ tK(2))ds. (4.9)
0

Considering that F'|,, is a diffeomorphism, we obtain the following result, which allows
Pq
us to focus our study on critical curves of 1, , within J\/},,q.

Proposition 4.2 For(z,t) € Qp,q(M) X R, the following statements hold:
o H, (2 0[E] =0, V¢ eT,Q, (M), (4.10)

ifand only ifz € N, , and
O0.M, (@ DE1=0,  VEETN,,. @.11)

Proof 1f (4.10) holds, we can use (4.7) and Proposition 4.1 to conclude that 7 = F'(z) is a

critical point of £, ,,, and by Proposition 3.5, 7' belongs to /\/p,y(,). Consequently, we have

z=F(¢) e ./\/;,,q, and (4.11) trivially follows from (4.10).

For the other implication, we need to show that if z € J\/M, then
o H, (20Nl =0, Vnew,. (4.12)

By contradiction, let’s assume that z € /\/M and (4.12) does not hold. According to the
definition of H, , there exists # € WV, such that

P9’
0.H, (2 0lnl = dL, ., (F' () [dF'(@)[n]] # 0.

Using (4.3), we know that dF'(z)[#] € W,.. Applying Proposition 3.4, we can conclude that
F'(2) & N, Which contradicts Proposition 4.1. O

Corollary 4.3 If (z, 1) satisfies (4.10), then 7' is a critical point for L, . The following
Euler-Lagrange equations (in local coordinates) hold:

% (z.2+1K@) - %% (z.2+1K(2))
oL oK (4.13)
+ tw(z,z + tK(z))W(z) =0, Vsel[o,1],
and there exists k € R such that
E(z.z+1K@) =k, Vse[0,1]. (4.14)

Proof According to Proposition 4.2, if (4.10) holds, then (4.13) is an immediate conse-
quence of (4.9) and the du Bois-Reymond lemma. By (4.7), 7/ = F'(2) is a critical point of
L on QW(,)(M). Hence, using Remark 3.2, we can conclude that there exists a constant k&

such that E(Z', z') = k. Combining (3.3), (3.4), and (4.8), we obtain (4.14). O
Proposition 4.4 For every (x,v) € TM and every t € R, the following two equations hold:
L(x,v+tK(x)) = L(x,v) + 1Q(v) — %tz, (4.15)

and
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E(x,v+1K(x)) = E(x,v) +1Q(v) — %tz. (4.16)
As a consequence, for every (x,v) € TM, we have
L(x,v+tK(x)) — E(x,v+1K(x)) = L(x,v) — E(x,v). (4.17)

Proof We will prove (4.15); the computations for (4.16) are analogous. Since the result has
a local nature, we can use (2.10). For every (x,v) € TM, we can write

L(x,v + tK) = Log, (v, 1), (v, T + 1))
= Ly(y.v) + o,(V)(z + 1) — %(T + 17
= (Lo(y, V) + o,V - %fz) + (wy,(v) — 7)1 — %zz
= L(x,v) + 1Q(v) — %ﬂ.
This completes the proof. O

Using (4.15) and recalling that Q(Z) is constant for all z € N,

i o> the functional Hp,q can
be written as:

1
H, (2.1 = / L(z,z)ds +10(2) — %tz = L(2) +10(2) — %rz. (4.18)
0

Proposition 4.5 Let
k < —sup L(x,0)

et 4.19)
(recall (2.14)). Then the functionals t7, 1% : 'Np,q — R defined by
£ = 0) = /020) +2(60) - x). (4.20)
are well-defined, and they satisfy the following equation:
EFED(2) = k. 4.21)

Proof Since Q(3) is constant for every z € NV,

».g» from (4.16) we have that t (z) are the only
two solutions of

N
EF'(@) = () = E@) +10(0) = 51* = k.
Hence, it remains to prove that for every z € ./\/'p,q, we have

8@+ 300 2 x.

provided that x satisfies (4.19). As a consequence, it suffices to prove that
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E(x,v) + %QZ(V) > K, Y(x,v) € TM. (4.22)

Using the expression of L in a local chart in a neighbourhood of x € M, in particular (2.11)
and (2.12), and setting (x,v) = ¢, ((y, 1, (v, r)), we obtain the following equalities:

E(x,v) + %Qz(v) =Ey(, v) + o, (V)T — %12 + %(a)y(v) - 1)2
(4.23)

=B )+ 5070,

where E,(y, v) is the energy function of the Lagrangian L. As a consequence, using (2.13),
we obtain

1
Eo(y,v) + wa,(v) > Ey(y,0) = —Ly(y,0) = —L(x, 0).
Since « satisfies (4.19), we infer
EGv) +30°0) 2 L 0) 2k, V() €TM,
and we are done. a
Remark 4.6 Our problem naturally leads to the condition (4.19). For a Finsler spacetime
(M, L) (see Sect. 2.1), this condition means k < 0. Therefore, we only consider the energy
values that correspond to causal geodesics (timelike or lightlike geodesics).
Lemma 4.7 Ifk satisfies (4.19) then
1
&)+ EQz(z) >k, VZEN,,.
Proof From (4.22), it is enough to prove that
1 5.
&) + EQ @) #«x.

By contradiction assume that £(z) + %QZ(Z) = k. Using (4.23) and (2.13), we conclude that

in any neighbourhood Ugy S € [0, 1], as in Remark 2.4, and for a.e. s in a neighbourhood
of 5, the vector z(s) corresponds through ¢, to a vector whose component in 7S, vanishes.
This is equivalent to the existence of a function a : [0, 1] — R such that

z2(s) = a(s)K(z(s)), fora.e. s € [0, 1].

Since Q(z) is constant a.e. and Q(a(s)K(z(s))) = —a(s), we deduce that « is constant a.e.
and 7 is equivalent to a continuous 7M-valued function on [0, 1]. Hence p and g are on the
same flow line of K, which is a contradiction. O

Remark 4.8 As a consequence of Lemma 4.7, " in (4.20) are C! functionals on J\/p,q.

Corollary 4.9 Ifk satisfies (4.19), then
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pq’

0H,,(z15() #0, VZEN,
and the same holds replacing 1’ (z) with 1*(z).

Proof By (4.18) and (4.20), we have

M, ,(2,15(2) = 0@) - 15(2) = —\/ Q2(2) +2(£k) — k). (4.24)

Then, the thesis follows by Lemma 4.7. |

5 Main result
We are ready to proof our main result:

Theorem 5.1 Let L : TM — R satisfy Assumptions 1, 2, and 3, and let k € R satisfy (4.19).
A curve ¢ : [0,1] - M is a solution of the Euler-Lagrange equations (2.1) joining p and y
with energy K if and only if there exists z € ./\/;,,q such that ¢ = F*O(g) or ¢ = F~9(2), and
the following equality holds:
() = d&(z) — dL(2) ’
02(2) +2(Ek) — k)

5.1

or

A (0) = dL(z) — d&(z) -

02(2) +2(£() - x)

(5.2)

Proof Consider a critical curve £ € j\/;,’},(,) with energy k. We know that F’ is a diffeo-
morphism, so there exists z € /\/pyq such that F~/(£) =z and t = t8.(z) or t = t*(z). For this
proof, we will focus on the case where t = % (2).

Since 7 is a critical curve for £ by the definition of H, , (see (4.7)), we have

Py (@)
d.H, ,(z, 1) = 0. Furthermore, using (4.17) and the definition of % (z), we obtain the follow-
ing equation:

1
H,, (@15 (@) = / L(z.z2+ %5 (9)K(2))ds
0

(5.3)
=L(z) — &) +k, VzeEN,,.
By differentiating both sides of (5.3), we obtain:
0. H, 42, 11(2) + 0,H,, ,(z, 1 (2)) dr (2) = dL(2) — d&(2). (54)

Since we know that 0, H,, ,(z, 7} (z)) = 0, substituting this into (5.4), we get:
oH, (2,11 (2) df} (z) = dL(z) — d&(2).
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According to Corollary 4.9, we have d,H,, ,(z,1}(z)) # 0 for every z € j\quq. Using equa-
tion (4.24), we obtain ().

For the converse, if z € ./V;w satisfies (), we can use (5.4) to conclude that
0.H,, ,(z15(2)) = 0. By Proposition 4.2 and Corollary 4.3, we then deduce that ¢ = F'+?)(z)

is a critical point of £, ,,,. Hence the thesis follows from Proposition 3.5 and Remark 3.2.
a

Remark 5.2 If L is homogeneous of degree 2 in the velocities (i.e., L is a Lorentz-Finsler
metric, Definition 2.7), then £(z) = £(z) for every z and, consequently, () and () are equiva-
lent to dr?(z) = 0 and dr*(z) = 0, respectively. Hence, in this case we re-obtain, for k <0,
the Fermat’s principle in a stationary spacetime that globally splits [19] (also known as
standard stationary spacetime) as well as in a stationary spacetime that may not globally
split [53]. Furthermore, we also obtain a Fermat’s principle in a stationary Finsler space-
time that is not necessarily a stationary splitting one (compare with [46, Appendix B]),
including also timelike geodesics.

6 An existence and multiplicity result

In this section we assume that L is a Lorentz-Finsler metric as in Sect. 2.1, satisfying
Assumption 1. By Theorem 5.1 and Remark 5.2, the critical points z of the functionals
t5 © N, , — R give all and only the solutions ¢ of (2.1) connecting p to y and having fixed

energy k < 0 (recall Remark 4.6) through the relation # = F'=?)(z). We are going to show
that 7} satisfy the Palais-Smale condition provided that 7, , (recall Proposition 3.5) is
pseudocoercive, for all t € R. Pseudocoercivity is a compactness assumption introduced in
[52] and recently revived in [51]. Let us recall it:

Definition 6.1 Let f,c € R; the manifold ./\fp ) is said to be c-precompact if every

(2

sequence (z,,), C J;y([):={z €N, 0 * J,,0(@ < c} has a uniformly convergent subse-

quence. We say that 7, ,, is pseudocoercive if /\/p,y(,) is c-precompact for all ¢ € R.

Remark 6.2 A sufficient condition ensuring that 7, , is pseudocoercive, for all p,r € M, is
based on the existence of a C' function ¢ : M — R such that dp(K) > 0, see [51, Proposi-
tion 8.1]. It is then natural to look at this result in the framework of causality properties of
a Finsler spacetime as global hyperbolicity. We analyze this question in Appendix B.

Remark 6.3 We point out that if ij is pseudocoercive then, for each ¢ € R,

sup |Q(2)| < +o0,
[N

pr

see [51, Theorem 7.6].

Henceforth, our attention turns to the functional #;, recognizing that all the subsequent
considerations can be replicated comparably for 7~.
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Lemma 6.4 Let L be a Lorentz-Finsler metric, p € M and y = y(t) be a flow line of K such
that p & y(R). Assume that J, ., is pseudocoercive for allt € R. Let (z,) C ./\/;,,q such that
tfr(zn) is bounded, then

sup |Q(z,)| < +oo. 6.1)

Proof Assume by contradiction that sup,, |Q(z,)| = +oo. Since g € y(R) and J, ) is

pseudocoercive for all 7 € R, from Remark 6.3 necessarily J, ,(z,) — +o0. Since 7 (z,) is
bounded and

£z = 06 +1/ 02 +2(86,) — )

6.2)
= 0+ /02 +2(L6,) — x).
we get that, up to pass to a subsequence,
Q(z,) = —co. (6.3)
Let C > 0 such that|#}(z,)| < C, for all m € N. From (6.2) we then get
2L(z,) < C* =2C Q(z,) + 2«. (6.4)

Take 7 > C and consider Z :=F'(z,). Recalling (4.7) and (4.18), we then get from (6.4):
i o 1., _C* . .
L(z,) = L(z,) +10(z,) — sS4+ - 00z, + Kk > —c0.

By Remark 6.3, we deduce that sup,, |Q(2")| < +co. Then from (4.6),

sup |Q(z,)| < +oo,
in contradiction with (6.3). O

Let zeN,, and { € T,Q, (M); we recall that the H'-norm of ¢ is given by

/01 8.(¢’,¢")ds where ¢’ denotes the covariant derivative of ¢ along z defined by the Levi-
Civita connection of the auxiliary Riemannian metric g.

Lemma 6.5 Let (z,), C ./\fM be a bounded sequence (w.r.t. the topology induced on ./\/;,,q

by the topology of Q, (M) ) such that their images z,([0, 1]) are contained in a compact
subset of M and, for eachn € N, let {, € TZKQM(M). If

1
sup/ 8. (£, ¢)ds < +oo,
n 0

then there exist bounded sequences &, € Tzn./\/;,!q and p, € Hé([O, 1],R) such that
G = Sn + 1, K(2,).

Proof Since the images of the curves z, are contained in a compact subset W of M, we can

assume that the field K is bounded and the covariant derivatives of the fields K(z,) along z,,
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are uniformly bounded in the [*-norm. Thus, it suffices to show that there exists a bounded
sequence (4,), C H(l)([O, 1], R) such that

&=, —mn,Kz,) €T, N,,, VneN.
By (3.6), we need to prove that, for each n € N, there exists ¢, € R such that

0,.0G)IE]+ 0E) =c,, ae.,

so we need to solve, with respect toc, € Rand y, € H(l)([O, 1], R), the following ODE:

9,051+ OE,) = 1, (0,0 )K(E)] + OK,)) + ), = ¢ (6.5)
where, K, denotes 25 (z,,(5))2,(5) |, Let us re-write (6.5) as
H.($) = a, (), (s) = b, (5), (6.6)
where
a,(s) = 9,0(z,)[K(z,)] + O(K,)
and

b, (s) = ¢, — hy(s), h,(8):=0,0,)[&,]+ Q&)
Setting A, (s) = [, a,(r)dz, and
1

1 - 1
om ([ o) ([ o),
0 0

a solution of (6.6) which satisfies the boundary conditions y,(0) = p,(1) = 0 is given by
)
Hy(5) = €™ / b,(t)edr.
0

We notice that the sequence A,(s) : [0, 1] = R is uniformly bounded in L* since

1 1
14,)] < / la,ds < C, / G s,
0 0

where C, is a positive constant depending on the maxima of the absolute values of the com-
ponents of Q and K and their derivatives, in each coordinate system used to cover W, and
on a constant that bounds from above the Euclidean norm with the norm associated with g
in each of the same of coordinate system. This implies that the sequence of functions e=4:()

2
is also uniformly bounded in L* and then ( /01 e‘An(S)ds> is bounded as well.

Analogously,

1h, ()] < C3 Vg 20)s

where now C, > 0 is independent of K but depend on an upper bound for the L*-norms of
the fields ¢,. Hence c,, is bounded and b,, satisfies then
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16, ()] < C3 + CV/8(2,2,):

for some non-negative constant C;. Since
s
H(s) = a,(s)e* / b, (t)e™ D dz + b, (s)
0

we get
1,(9)] < Cylay ()] + 1B, ()],

folr some non-negative constant C,, depending also on an upper bound of the sequence
fo \/8(%,,z,)ds. Hence, y, is bounded in H(l)—norm. O

Lemma 6.6 Letz € N, andn € W, then dt¥(z)[n] = 0.

Proof From (5.4), since £ = &£, we get
o.M, (2.1 (2) + oM, (z,£{(2)drl(z) = 0.

As showed in the proof of Proposition 4.2, 6sz7q(z, (@)l = 0, and since, from Corol-
lary 4.9, 0,/H,, ,(z, 7} (2)) # O, we get the thesis. O

We are now ready to prove the Palais-Smale condition for 7}. We recall that a C ! func-
tional f : M — R, defined on a manifold M, satisfies the Palais-Smale condition if
every sequence z, C M such that f(z,) is bounded and df(z,) — 0, admits a converging
subsequence.

Proposition 6.7 Under the assumptions in Lemma 6.4, %, ./\fp,q — R satisfies the Palais-
Smale condition.

Proof Let (z,), C ./\/;Lq and C > 0 such that |zi(zn)| < Cand d#{(z,) — 0. From Lemma 6.4,
we have that (6.1) holds. Hence, from (6.2) we deduce that £(z,) is bounded from above.
By the pseudocoercivity assumption, there exists then a subsequence, still denoted by z,,,
which uniformly converge to a continuous curve z : [0, 1] = M connecting p to g. Thus,
the curves z, are contained in a compact subset W of M. Hence, from Remark 2.10 there
exists a positive constant «, depending on W, such that L (x,v) > ag(v,v), for all x € W
andv € T,M. Let L, denote the action functional of L, and

S(z):=\/Q2(Z) +2(L@)-«) = \/2(£C(z) —Kk) = Q%2).
Since Q(z,,) is bounded, L(z,,) is bounded from above and
1
a/ 8ty £ L(z,) = L) + Q*(,), 6.7
0

we deduce that S(z,,) and fol g(z,,z,)ds are bounded as well. Moreover, for z € /, , let us

P
see Q(z) as a functional Q on ./\/’M (recall that Q(2) is constant a.e. on [0, 1]).
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Let then {, € Tznﬂé’z(M) be a bounded sequence; from Lemma 6.5 there exist two

bounded sequences &, € T, N, and u, € Hy([0, 1], R) such that §, = &, + 1, K, . As z,,is
a Palais-Smale sequence, from Lemma 6.6 we obtain

e’ (z,)8,] = i (z,)[&,] + dr (z,)[m, K, ] = dr (z,)[E,] — 0.

We now apply a localization argument as in [78] (see also the proof of [51, Theorem 5.6]).
Thus, we can assume that L is defined on [0, 1] x U x R™*!, with U an open neighbourhood
of 0 in R"™*!. Analogously, we associate to L, and Q, a time-dependent fiberwise strongly
convex Lagrangian L in U and a C' family of linear forms Q.. Moreover, we can identify
(z,), with a sequence in the Sobolev space H 1([0, 11, U). By (6.7), taking into account that
the curves z, have fixed end-points, we get that (z,), is bounded in H 1[0, 1], U) and so it
admits a subsequence, still denoted by (z,),, which weakly and uniformly converges to a
curve z € H'([0, 1], R"™*!) which also satisfies the same fixed end-points boundary condi-
tions. The differential at z,, of the localized functional obtained, that we still denote with t,
is given by

chs(Zn) - Qs (Zn)dQs (Zn)
Sy(z,)

dt(z,) = dQ,(z,) +

where the index s is used to denote the localized functionals. Since S,(z,) is bounded we
get

0 « S,(z,)d15 (z,) = (Sy(z,) — Qy(z,))dQy(z,) + AL (z,).
In particular, since z,, — z is bounded in H(‘], we obtain
(Ss(zn) - Qs'(zn))dQs(Zn)[Zn —zl+ dl:cs(zn)[zn -zl -0 (6.8)

Since z, — z uniformly and weakly, we deduce that dQ(z,)[z, —2] = 0. As
S,(z,) — 9Q,(z,) is bounded then (Ss(zn) - Q,(z,))d9Q,(z,)lz, — z] = 0 as well. From (6.8),
we then get d£,(z,)[z, — z] = 0. We can then conclude that z, — z in H'-norm thanks to
the convexity of L as in the proof of [51, Theorem 5.6]. There exists then a subsequence
Z,, such that z, — Z, a.e. on [0, 1]. As Q(z, ) = ¢; a.e., for some ¢; € R, we get that also
O(z)is constant a.e.,i.e.z € N, . O

Lemma 6.8 Under the assumptions of Lemma 6.4, the functional % /\/pyq — R is bounded
from below.

Proof By contradiction, let us assume the existence of a sequence (z,), C ./\/p,q such that
lim,_,, } (z,) = —oo. From (6.2), this implies that

lim Q(z,) = —oo,

hence from Remark 6.3, up to pass to a subsequence, L(z,) = J,.4(@,) = +oo. Therefore,
from (6.2), } (z,) = 0, for n big enough. O

We are now ready to present an existence and multiplicity results for solutions of
the Euler-Lagrange equations (2.1). Previous existence results, in the case k = 0, based
on causality techniques were obtained in [46, Proposition 6.2 and Proposition B.2] for
Finsler spacetimes that admit a global splitting S X R endowed with a Lorentz-Finsler
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metric of the type (2.19) and in [47, Theorem 2.49] in the more general setting of a
manifold with a proper cone structure.

Theorem 6.9 Let M be a smooth, connected finite dimensional manifold, L : TM — R be
a Lorentz-Finsler metric on M satisfying Assumption 1, p € M and y © R — M be a flow
line of K such that p & y(R). Let us assume that J, ., is pseudocoercive for all t € R. Let
k < 0. Then,

(a) There exists a curve 7 : [0, 1] = M that is a solution of Euler-Lagrange equations (2.1)
with energy i, joining p and y(R) and minimizes 1\

(b) If M is a non-contractible manifold, then there exists a sequence of curves
z, . [0, 1] = M that are solutions of Euler-Lagrange equations (2.1) with energy k
Jjoining p and y(R) and such that lim,,_, . 1% (w,) = +c0.

Proof Since 1} is a bounded from below, C! functional defined on a C! manifold and it

satisfies the Palais-Smale condition, both part (a) and (b) follows from [79, Theorem

(3.6)], Theorem 5.1 and Remark 5.2, taking into account, for part (b), that if M is non-

contractible then the Lusternik-Schnirelmann category of ./\fM is 400 as follows from [51,

Proposition 6.4] and [80, Proposition 3.2]. O

Remark 6.10 Assumption (2.4) could be considered quite restrictive; however, for solutions
with energy k = 0, that is not the case for the following reasons:

(1) Since L is a Lorentz-Finsler metric, solutions z : [0, 1] — M of the Euler-Lagrange
equations (2.1) with k = 0 satisfy L(z(s), z(s)) = 0 for all s € [0, 1] and therefore they
are lightlike geodesics (see, e.g., [41, 81, 82]).

(2) According to [83, Proposition 4.4] (see also [82, Proposition 3.4] and [81, Proposi-
tion 12]) for any smooth function ¢ : M — (0,+o0) and for any lightlike geodesic
z . [0,1] = M of L, there exists a reparametrization of z (on some interval [0, a_])
which is a lightlike geodesic of the Lorentz-Finsler metric L.

(3) Let L be a Lorentz-Finsler metric on M which satisfies Assumption 1 with (2.4)
replaced by O(K) < 0 (where Q is the Noether charge of L). Hence, L:=— L/O(K)
satisfies (2.4).

(4) The infinitesimal symmetry K of L remains an infinitesimal symmetry for L. This is
a consequence of the fact that the flow y of K preserves O(K) (see the proof of [51,
Proposition 2.5-(iv)]), and then

o(Loy*© o
( ;;I/ _) (t,x,v) =KC(L)(¥/C(1‘, X, V)) = KC( _ L/Q(K)) (Wc(ta x, V))
o(Loy* /(Q(K)oy))
== (t,x,v)
ot
> 20(Q(K)oy)
=<(Q(K)oy/) ZMLOWC

ot
- _0(Loy*
— (0&K)oy) ‘%)a,x, v =0,

(recall the beginning of Sect. 3.1).
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Summing up, Theorem 6.9 also holds (replacing [0, 1] with unknown interval of parametri-
zations [0, a,]) for a Lorentz-Finsler metric L on M which satisfies Assumption 1 with (2.4)
replaced by O(K) < 0.

Appendix A Affine Noether charge

In this section, we briefly show that Theorem 5.1 holds even if the Noether charge is an affine
function with respect to v. Specifically, there exists a C! one-form Q on M and a C! function
d : M — Rsuch that (2.3) is replaced by

N(x,v):=0,L(x, v)IK] = Q(v) + d(x); (A1)

and d is invariant under the one-parameter group of C? diffeomorphisms generated by K. In
such a case, the stationary type local structure is given by

L) = Lo, (000, (5 D) = L0 + (0,0 +d0)r - 375 (A2)
50 we have
E(x,v) = Eogp, ((y.1), (v, 7)) = Ey(y,v) + o, (V)T — %72. (A3)
Moreover, the set V, , is given by

N,

pri={z2€Q,, (M) : 3c € Rsuch that N(z,2) = ¢, a.e. on [0, 1]} C Q, (M),

and Proposition 3.5 still holds. Moreover, defining F’ : Q, (M) - Q,,(M)as (4.1) and
H,, : Q,, (M) xR — Rasin (4.7), it is possible to prove both Proposition 4.2 and Corol-
lary 4.3. The main difference with the linear case is that Proposition 4.4 doesn’t hold and it
is replaced by the following result, whose proof is a based on a computation in local charts
which employs (A2).

Proposition A.1 For every (x,v) € TM and for every t € R, the following two equations
holds:

L(x,v + tK(x)) = L(x, v) +tN(x,v) — %;2,
and
E(x,v+tK(x)) = E(x,v) + 1Q(v) — %tz.

As a consequence, for every (x,v) € TM we have
L(x, v+ tK(x)) - E(x, v+ tK(x)) = L(x, v) - E(x, v) + td(x). (A4)

Since on any curve z € ./\/;,q the quantities Q(2) and d(z) are not necessarily constant,
let us introduce the functionals Q : ./\/p,q - Rand D : ./\fp# — R as follows:
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1 1
Q@)= / O(2)ds, and D(z):= / d(z)ds.
0 0

Using this notation, for every z € ./\/'p’q the two quantities #%(z) that satisfy (4.21) are given
by h

() = Q@) £/ Q@) +2(60) ~ k).

and they are still well defined if « satisfies (4.19). Moreover, since the function d doesn’t
appear in the expression of E(x, v) in local coordinates (see (A3)), Corollary 4.9 still holds.
Because of the difference between (A4) and (4.17), we have that in the affine case the equa-
tion analogous to (5.3) is

M, (2 15(2) = L&) — E@) + k +15(2) (N, 2) — Q(2))
= L(2) - &) + k + 1;(2)D().

As a consequence, using a similar proof of the one of Theorem 5.1, we obtain the follow-
ing result.

Theorem A.2 Let L : TM — R satisfy assumptions 1, 2, and 3, with (A1) instead of (2.3),
and let k € R satisfy (4.19). A curve ¢ is a solution of the Euler-Lagrange equations (2.1)
Jjoining p and y with energy k if and only if there exists z € /\/p,q such that ¢ = Fv9(2) or
¢ = F'~9(z), and the following equality holds:

dé(z) — dL(2) - 1 (2)dD(z)
dri () = ,

\/ Q% (%) +2(&@) - x)

or

dL(z) = d&(z) + t*(2)dD(2)

dtf(z) =
VOO +2(60) - )

Corollary A3 Let L : TM — R satisfy assumptions 1, 2, and 3, with (A1) instead of (2.3),
and let ¥k € R satisfy (4.19). Moreover, assume that d : M — R is a constant function.
Then, a curve ¢ is a solution of the Euler-Lagrange equations (2.1) joining p and y with
energy k if and only if there exists 7 € /\fp!q such that £ = F*9(2) or £ = F~9(z), and ()
or () holds.
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Appendix B Pseudocoercivity and global hyperbolicity

In this appendix we show that pseudocoercivity and global hyperbolicity of a Finsler
spacetime (M, L) as defined in Subsection 2.1, are connected notions. We refer to [47,
73] for the needed notions of causality, and in particular of global hyperbolicity and
of a Cauchy hypersurface, in Finsler spacetimes and in the more general framework of
proper cone structures (see [47, Definition 2.4]). We notice indeed that M is endowed
with a continuous cone structure C:={(x,v) € TM : L(x,v) <0,0() < 0}. In fact, from
the local expression of L (2.19), we deduce that (v, 1) € CW) :=Cn Ty »M if and only if

7> (V) + Vor(v) + 2F2(y,v), B1)

and since F2(y,-) is strongly convex, we deduce that C(yq,) U {0} is a closed, convex, sharp
cone with non-empty interior.

Our first aim would be to extend [84, Theorem 5.1], which states that if a stationary
Lorentzian manifold is globally hyperbolic with a complete Cauchy hypersurface then
it is pseudocoercive. We obtain a result in that direction, namely Proposition B.2, that
ensures pseudocoerciveness from the global hyperbolicity in our setting requiring some
other technical assumptions that are trivially satisfied in the Lorentzian setting.

Lemma B.1 Ler (M, L) be a Finsler spacetime (i.e. L : TM — R satisfies (a'), (b) and (c")
in Definition 2.7) such that Assumption 1 holds. If (M, L) is globally hyperbolic (i.e. the
cone structure C associated to L is globally hyperbolic) then M globally splits as S X R and
L is given on S X R by an expression of the type (2.10), with Ly:=L|q and o the one-form
induced by Q on S.

Proof From [85, Theorem 1.3], we have that there exists a smooth Cauchy time function
T : M — R. Let then S:=T"1(0). Being K, €, for all x € M, we have that dT(K) > 0
by definition of a smooth time function, and then K is transversal to S. Thus, for any vector
(x,w) € TM with x € S, we can write w = wg + 7, K, where wg € T..S. Since

diL(x, wg + 57, K) = 7,0, L(x, wg + 57, K)[K] = 7,,0(W) — sri,
s

by integrating w.r.t. s between 0 and 1, we get

L(x,w) = L(x,wg + 7,,K) = L(x, wg) + 7,,0(Wg) — %Tj,

which gives the required expression for L restricted to vectors (x, w) € TM with x € S. Let
¢ be the restriction to S X R of the flow of K. Since T is a Cauchy time function, it is
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strictly increasing on the flow lines y of K and it satisfies lim_, , ., T(y(s)) = +oo. There-
fore, ¢ : S X R — M is a diffeomorphism. Using that L is invariant by the flow of K we
obtain

1
Log, ((x,1),(v,7)) = Ly(x,v) + @(v)T — 512, (B2)
where L, = L|; and w is the one-form induced by Q on S. O

Let us denote by gg the C' Riemannian metric on S induced by g. We assume that
the one-form w has sublinear growth w.r.t. the distance d induced by gg, i.e. there exist
a € [0, 1) and two non-negative constants k, and k; such that

loll < ko + ki (dgx,x0)) ", (B3)

for some x;, € S and all x € §. From [51, Proposition 8.1], we immediately obtain the fol-
lowing result.

Proposition B.2 Under the assumptions of Lemma B.1, assume also that g is complete,
(B3) holds, L is non-negative and satisfies

(0,Lo(x, ) = 0gLo(x, v)) [vy — vi1 = Ag(0)]||v, — v, ||2, (B4)

for each x € S, and all v,v, € T,S. If}i(relgllo(x) > 0, then J,, is pseudocoercive for all
p,r€M.

Remark B.3 We notice that the condition (B4) is always satisfied in the Lorentzian setting,
since S can be taken to be a smooth spacelike Cauchy hypersurface; moreover if S is com-
plete then a possible auxiliary Riemannian metric g on S X R is the natural product metric
which is then also complete. Therefore, A;(x) = 1, for each x € §, in the Lorentzian setting.
We point out that in [84, Theorem 5.1] the completeness of S is a required assumption. The
more technical assumption in Proposition B.2 is (B3). It is needed to get the boundedness
of the constants Q(2), for all z in a fixed sublevel f a property called c-boundedness in
[51], that implies pseudocoerciveness if satisfied for each c € R (see [51, Proposition 7.2]).
Actually, when L is a 2-positive homogeneous Lagrangian and L, € C!(TS) is the square
of a Finsler metric on S, a close inspection of the proof of [84, Theorem 5.1] makes clear
that (B3) can be removed, and an analogous proof can be repeated by using the action
functional of L instead of the energy functional of the Riemannian metric on S. In fact,
using the global splitting S X R and (B2), the arrival time functional of a lightlike curve
2(s) = (x(s), 2(s)), (i.e., a causal curve z : [0,1] > M such that L(z(s),(s)) =0, a.e. on
[0, 1]) between p = (x;,0) € S x {0} and a flow line of K, y(¢) = (x,,1), is given by

1
7 onvxl ) - R, Jx) = / (a)(jc) + 4/ @0 (%) + 2Ly (x, J'c))ds,
0

and this is a key point in the proof of [84, Theorem 5.1] (refer to [84, Lemma 5.4]).
Moreover, the completeness of the Riemannian metric on S can be replaced by the for-
ward or backward completeness of \/L_o . Another fundamental point is the compactness of
SNJ(g), for any g € M, (see (B6) for the definition of J~(g)), used in the proof of [84,
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Lemma 5.5]. In our setting, this is an immediate consequence of [47, Theorem 2.44]. Sum-
ming up, the following result extending [84, Theorem 5.1] holds:

Theorem B.4 Under the assumptions of Lemma B.1, assume also that L, € C'(TS) is the
square of a forward or backward complete Finsler metric on S. Then J, , is pseudocoercive
forall p,re M.

Remark B.5 In light of Theorem B.4, it becomes important to give conditions ensuring that
L, is the square of a Finsler metric on S. A first observation is that L, is non-negative and
(B4) holds if, for each x € §

_ 2
A(x) vET?;,EIlI)éH: | 20:(v) > 0,

where A(x) is defined in (2.9) (see [51, Remark 2.14]).
We also notice that, if O, := O N TS, satisfies, relatively to TS, the same properties sat-
isfied by O in Remark 2.8-(a’), then (B4) holds if

viench <verfls1,i\|l3n=1 (9Ll v] = 20; (V))> >0 ©3)

Moreover, in this case, \/L_0 in (B2) is a Finsler metric on S such that L, is of class C 1
Indeed, from (2.16) and (B5) we immediately get that 9, L(x, V)|TXS><TXS is a positive definite
bilinear form, for every v € T,.S N O,. Therefore, recalling that L, = L|;¢ and it is fiberwise
positively homogeneous, we have that L,(v) > 0 for all v € O, and then on TS by density of
O, in TS. Arguing as in Remark 2.10, we then conclude that \/L_o is a Finsler metric.
Actually, in this last setting, (B5) is also a necessary condition for L, being the square
of a Finsler metric. In fact, let {e|,...,e,} C TS be an orthonormal basis of T,.S with
respect to the auxiliary Riemannian metric g. Using this basis, we can write the one-form

o T.§ - Rgiven by Q|7 s as (@, ..., w,). Let us denote by g,(v); the vertical Hessian
matrix of L, in v € 7,5 n O, with respect to this basis. Similarly, we denote by g.(v); the
vertical Hessian matrix of L, restricted to 7,.S. With this notation, first we notice that, go(v);
has m — 1 positive eigenvalues, since it coincides with g.(v); on ker(w). By [86, Proposi-

tion 11.2.1], applied to the vector i\,/i(w1 s e sW,,) € C™, we have
det(gy(v);) = det(g.(v); — 2w,0;) = (1 — 2. (V)" w,;)det(g.(v);).

where g.(v)¥ denotes the inverse matrix of gc(v)ij. Since gc(v)ij is positive definite, then

go(v); is positive definite if and only if 1 —2g.(v)"*w,®; > 0, namely if and only if the
norm of w with respect to g.(v) is strictly less than 1/2 foreveryv € T,.Sn O,.

Let us now analyze the converse situation, i.e. we assume now that 7, , is pseudocoer-
cive for all p, r € M and we prove that global hyperbolicity holds. We recall (see, e.g., [47,
§2.1]) that an absolutely continuous curve y : [a,b] - M is causal if y(t) € C,,, for a.e.
t € [a,b]. For any p € M, we set

y(1)
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+ .
/ (p).—{ such that y(0) = pand y(1) = r

r € M : r = p or there exists a causal curve y : [0,1] - M}

and, analogously, we define

J (p):= r €M : r = p or there exists a causal curve y : [0,1] > M
= such that y(0) = rand y(1) = p - B9

We call causal diamond a set given by J*(p) N J~(r), for some p,r € M.

According to [47, Corollary 2.4], global hyperbolicity on a proper cone structure C is
equivalent to the non-existence of absolutely continuous closed causal curves plus com-
pactness of every causal diamond. We use this characterization to prove the next result that
extends to Lorentz-Finsler stationary spacetimes [52, Proposition B1].

Theorem B.6 Let (M, L) be a Finsler spacetime such that Assumption 1 holds. If J,, is
pseudocoercive for all p,r € M, then (M, L) is globally hyperbolic.

Before proving the above result we need the following lemma.

Lemma B.7 Any absolutely continuous causal curve y : [a,b] - M admits a reparametri-
zation on [0, 1] as an H' curve with Q(y(s)) = const..

Proof By the local splitting and homogeneity in (B1), we can use the locally defined func-
tions 7 to parametrize locally y as y(f) = (x(¢), 1), so that ¢t — ||x(¢)|| is locally bounded. As
the support of y is compact, we can patch together the locally defined reparametrization to
get an H'! curve defined on an interval [0, c], and a further reparametrization gives the the-
sis. a

Proof of Proposition B.6 From Lemma B.7, there is no loss of generality in considering just
H' curves parametrized on [0, 1] with Q(y(s)) = const.. Assume that there exists a closed
causal curve y : [0, 1] = M. We take the sequence y,, n > 1, defined by concatenating the
n curves y;(s):=y(n(s — j/n)) for s € [j/n,(j+ 1)/nl, j =0, ...,n — 1. The sequence satis-
fies J(y,) < 0 but it does not admit any uniformly converging subsequence in contradic-
tion with pseucoercivity of 7, ) hence (M, L) must be causal. Let us now assume by
contradiction that J*(p) N J~(r) is not compact. Then there exists a sequence of points
(@)ueny €I () NJ~(r) that does not admit any subsequence converging to a point in
Jt(p) N J~(r). We take then a sequence of causal curves (¥,),eny C J1 (@) NJ~(r) such that
q, € 7,([0, 1]), for each n € N. Moreover, by Lemma B.7 we can assume that the sequence
(Y4)nen belongs to J,,. Since J(y,) <0 for every n €N, by pseudocoercivity (,,),en
admits a uniformly converging subsequence (y,, ). The uniform limit is then a causal curve
y . [0,1] - M connecting p to r, by theorem [47, Theorem 2.12]. This implies that (an)k
must admit a converging subsequence to a point in J*(p) N J~(r), which is a contradiction.
O
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