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Abstract
We consider an autonomous, indefinite Lagrangian L admitting an infinitesimal symmetry 
K whose associated Noether charge is linear in each tangent space. Our focus lies in inves-
tigating solutions to the Euler-Lagrange equations having fixed energy and that connect a 
given point p to a flow line � = �(t) of K that does not cross p. By utilizing the invariance 
of L under the flow of K, we simplify the problem into a two-point boundary problem. 
Consequently, we derive an equation that involves the differential of the “arrival time” t, 
seen as a functional on the infinite dimensional manifold of connecting paths satisfying the 
semi-holonomic constraint defined by the Noether charge. When L is positively homogene-
ous of degree 2 in the velocities, the resulting equation establishes a variational principle 
that extends the Fermat’s principle in a stationary spacetime. Furthermore, we also analyze 
the scenario where the Noether charge is affine.
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1  Introduction

In the problem of finding solutions with fixed energy for an autonomous Lagrangian sys-
tem with a finite number of degrees of freedom, subject to two-point or periodic boundary 
conditions, one viable approach is to allow for a free interval of parametrization for the 
involved curves. This method entails employing the action functional with fixed energy, as 
originally defined by Mañé (see [1] and the survey [2]). Specifically, given a pair of distinct 
points on a compact manifold M and a fiberwise convex and superlinear Lagrangian L, 
there always exists a solution connecting the two points with a fixed energy value � , pro-
vided that � is strictly greater than the so-called Mañé critical value c(L) [3, Theorem X]. 
This approach has also demonstrated its effectiveness in addressing the challenging prob-
lem of establishing the existence of periodic solutions, as explored in works such as [4–7].

A more basic approach involves fixing the parameter interval and the initial point p, 
while allowing the final point to traverse along a given curve � . This is a common frame-
work employed in General Relativity when studying causal geodesics, which represent 
the paths of light rays (photons) or the worldlines of massive particles. In this scenario, 
the Lagrangian energy coincides with the conserved quantity of the geodesic, namely the 
square of the norm of its velocity vector. Consequently, the values � = 0,−1 correspond to 
the energy levels of light rays and massive particles, respectively. The curve � represents 
the worldline of an observer, while p signifies the event of emission or, in an alternative 
perspective, � symbolizes the worldline of a source of light signals or massive particles, 
and p represents the event of detecting those signals (in the latter case, the geodesics origi-
nate from � and terminate at p). In the former scenario, the parameter value of � (more 
precisely, its “proper time”) at the intersection point with a lightlike future-oriented curve 
z from p to � is referred to as the arrival time of z [8]. The future-oriented lightlike geodes-
ics are then all and only the stationary points of the arrival time with respect to any smooth 
variation z

�
 made by smooth future-oriented lightlike curves between p and � [9]. This gen-

eral statement is recognized as Fermat’s principle in General Relativity.
In fact, when the spacetime is static or stationary, Levi-Civita first introduced Fermat’s 

principle in local coordinates in [10] and [11] and observed that the geometry of lightlike 
geodesics in the spacetime can be linked to a metric in a spacelike slice, called optical 
metric, which is Riemannian, when the spacetime is static, and Finslerian in the stationary 
case, and that allows describing and calculating various geometric and causal properties of 
the spacetime through it [12–16]. Subsequently, other variations of Fermat’s principle have 
emerged, sharing fundamental elements while possessing distinct technical characteris-
tics (see, e.g., [17–23]); moreover, it has been generalized to massive particles in [15, 24]. 
Light rays and massive particles via variational methods have also been studied in [25–30]. 
The use of Fermat’s principle also emerges in the study of motion around black holes [31], 
as well as in the well-known phenomenon known as gravitational lensing [32–36], which 
has been specialized for particular exact solutions of the Einstein field equations, such as 
Schwarzschild [37] and NUT spacetimes [38]. Interestingly, the utilization of least-time 
principles in observational cosmology opens up the possibility of interpreting observed 
instances of gravitational lensing without the need to invoke the existence of dark matter 
[39]. We recommend referring readers to [40] for a comprehensive review on gravitational 
lensing in a relativistic context.

Additionally, it is worth noting that the application of variational principles related with 
or inspired by Fermat’s principle has been extended and generalized beyond Euclidean or 
Lorentzian geometry as evidenced in [23, 41–50].
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This work contributes to the latest type of research. We consider an indefinite Lagran-
gian L on a manifold M that is invariant under a one-dimensional group of local diffeo-
morphisms generated by a complete vector field K. The Noether charge associated with 
L is assumed to be linear in each tangent space TxM . Our focus lies on solutions to the 
Euler-Lagrange equations of the action functional of L that connect a point p to a flow 
line � of K and having fixed energy � . Our approach is based on the variational setting in 
[51], which is inspired by [52]. The main result in this work, Theorem 5.1, at least when L 
is 2-homogeneous in the velocities, extends Fermat’s principle as established in [53], that 
was specifically tailored to the framework explored in [52]. Leveraging this extension, we 
provide proof of existence (Theorem 6.9-(a)) and a multiplicity result (Theorem 6.9-(b)) 
for such solutions. Additionally, we delve into the analysis of the case where the Noether 
charge is an affine function in Appendix 1. In Appendix B we give some results that link 
an assumption on the manifold of curves that we consider in our variational setting, called 
pseudocoercivity, with the notion of global hyperbolicity for the cone structure associated 
with L in the 2-homogeneous case.

2 � Notations, assumptions and a class of examples

Let M be a smooth, connected manifold of dimension (m + 1) , where m ≥ 1 . We denote the 
tangent bundle of M as TM. In this paper, we consider a Riemannian metric g on M as an 
auxiliary metric, and we use ‖⋅‖ ∶ TM → ℝ to represent its induced norm; specifically, for 
any v ∈ TM , we have ‖v‖2 = g(v, v) . We represent an element of TM as a pair (x, v), where 
x belongs to M and v belongs to the tangent space TxM.

Let L ∶ TM → ℝ be a Lagrangian on M. For any (x, v) ∈ TM , we denote the vertical 
derivative of L as �vL(x, v)[⋅] , which is is defined as follows:

We also need a derivative w.r.t. x, denoted by �xL(x, v) . This is defined only locally (in a 
system of coordinates) as:

where (x0,… , xm) is a local coordinate system in a neighbourhood of x, and consequently, 
(x0,… , xm, v0,… , vm) are the induced coordinates on TM. With this notation, the Euler-
Lagrange equations for a curve z ∶ [0, 1] → M of class C1 are given by:

where ż denotes the derivative of z with respect to the parameter s. It is well-known that the 
energy function E ∶ TM → ℝ , defined as:

is a first integral of the Lagrangian system. Therefore, if z ∶ [0, 1] → M is a solution of the 
Euler-Lagrange equations, there exists a constant � ∈ ℝ such that:

�vL(x, v)[�] =
d

ds
L(x, v + s�)

||||s=0
, ∀� ∈ TxM.

�xL(x, v)[�] =

m∑

i=0

�L

�xi
(x, v)�i, ∀� ∈ TxM,

(2.1)
d

ds
𝜕vL(z, ż) − 𝜕xL(z, ż) = 0, ∀s ∈ [0, 1],

E(x, v) = �vL(x, v)[v] − L(x, v),
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Assumption 1  The Lagrangian L ∶ TM → ℝ satisfies the following conditions:

•	 L is a C1 function on TM;
•	 There exists a complete C3 vector field K on M such that L is invariant under the one-

parameter group of C3 diffeomorphisms of M generated by K (we refer to K as an 
infinitesimal symmetry of L);

•	 The Noether charge, i.e., the map (x, v) ∈ TM ↦ �vL(x, v)[K] ∈ ℝ , is a C1 one-form 
Q on M, namely 

•	 For every x ∈ M , the following equality holds: 

Remark 2.1  In [51], the Noether charge was assumed to be an affine function on each tan-
gent space. For the sake of simplicity, we present the main results under the more restric-
tive assumption of linearity. A discussion about the affine case is given in Appendix 1.

Remark 2.2  The C3 regularity condition on K is needed to get that a certain map con-
structed by using the flow of K is a diffeomorphism (see Proposition 4.1). We don’t know if 
the regularity of K can be lowered there to C1.

Assumption 2  The Lagrangian Lc ∶ TM → ℝ , defined by

satisfies the following conditions:

•	 there exists a continuous function C ∶ M → (0,+∞) such that for all (x, v) ∈ TM , the 
following inequalities hold: 

•	 there exists a continuous function � ∶ M → (0,+∞) such that for each x ∈ M and for 
all v1, v2 ∈ TxM , the following inequality holds: 

(2.2)E(z, ż) = 𝜅, ∀s ∈ [0, 1].

(2.3)�vL(x, v)[K] = Q(v);

(2.4)Q(K) = −1

(2.5)Lc(x, v)∶=L(x, v) + Q2(v),

(2.6)Lc(x, v) ≤ C(x)
�
‖v‖2 + 1

�
;

(2.7)��xLc(x, v)� ≤ C(x)
�
‖v‖2 + 1

�
;

(2.8)��vLc(x, v)� ≤ C(x)
�
‖v‖ + 1

�
;

(2.9)
(
�vLc(x, v2) − �vLc(x, v1)

)
[v2 − v1] ≥ �(x)‖‖v2 − v1

‖‖
2
;
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Remark 2.3  As proven in [51, Proposition 2.5], K is also an infinitesimal symmetry of Lc , 
and a simple computation shows that

Remark 2.4  From [51, Proposition 7.4], if L satisfies Assumptions 1 and 2, it admits a sta-
tionary product type local structure. This means that for each point p ∈ M , there exists a 
neighbourhood Up ⊂ M , an open neighborhood Sp of ℝm , an open interval Ip of ℝ , and a 

diffeomorphism � ∶ Sp × Ip → Up such that, denoting t as the natural coordinate of Ip,

and the function L can be expressed as follows:

where

•	 (y, t) ∈ Sp × Ip , (�, �) ∈ ℝ
m ×ℝ , and (x, v) = �

(
(y, t), (�, �)

)
;

•	 L0 ∈ C1(Sp) is a Lagrangian that satisfies the growth conditions (2.6)–(2.8) with respect 
to the norm ‖⋅‖Sp and it is fiberwise strongly convex, i.e., (2.9) holds (with Lc replaced 
by L0 ) for some function � ∶ Sp → (0,+∞);

•	 �y is the C1 one-form induced by Q on Sp.

Using this notation, we have the following equalities:

and

where E0(y, �) = �
�
L0(y, �)[�] − L0(y, �).

Remark 2.5  For every p ∈ M , let �p ∶ Sp × Ip → M be a mapping that satisfies  (2.10). 
Since L0 is fiberwise strongly convex, we can conclude that

Indeed, from the strict convexity of L0 we have

Assumption 3  We require:

�vLc(x, v)[K] = −Q(v).

�(�t) = K|Up
,

(2.10)L(x, v) = L◦�
(
(y, t), (�, �)

)
= L0(y, �) + �y(�)� −

1

2
�
2,

(2.11)
Q(v) = Q◦�(�, �) = �y(�) − �;

Lc(x, v) = Lc◦�∗

(
(y, t), (�, �)

)
= L0(y, �) + �

2
y
(�) − �y(�)� +

1

2
�
2;

(2.12)E(x, v) = E◦�∗

(
(y, t), (�, �)

)
= E0(y, �) + �y(�)� −

1

2
�
2,

(2.13)E0(y, 𝜈) > E0(y, 0) = −L0(y, 0), ∀𝜈 ≠ 0,

L0(y, 0) > L(y, 𝜈) + 𝜕
𝜈
L(y, 𝜈)[−𝜈], ∀𝜈 ≠ 0.

(2.14)sup
x∈M

L(x, 0) < +∞.
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Remark 2.6  We need the last assumption to guarantee the existence of � ∈ ℝ satisfy-
ing (4.19), which is a key condition for our main result.

2.1 � Lorentz‑Finsler metrics

Provided the existence of an infinitesimal symmetry, an important kind of Lagrangians 
that satisfy the above assumptions is given by Lorentz-Finsler metrics, introduced by J. 
K. Beem in [54].

Definition 2.7  Let M be a smooth, connected manifold of dimension m + 1 . A Lagrangian 
LF ∶ TM → ℝ is called Lorentz-Finsler metric if it satisfies the following conditions: 

(a)	 LF ∈ C1(TM) ∩ C2(TM ⧵ 0) , where 0 denotes the zero section of TM;

(b)	 LF(x, �v) = �
2LF(x, v) , for all 𝜆 > 0;

(c)	 for any (x, v) ∈ TM ⧵ 0 , the vertical Hessian of LF , i.e. the symmetric matrix 

 is non-degenerate with index 1.

Remark 2.8  The regularity conditions required on LF are sometimes too rigid and we relax 
them to include some interesting classes of Lagrangians (see [46, 55]). The first and the 
last conditions above will be replaced by: 

	(a’)	 Let M be a smooth, connected, manifold of dimension m + 1 , m ≥ 1 , and 
LF ∈ C1(TM) ∩ C2(O ), where O ⊂ TM ⧵ 0 is such that Ox∶=O ∩ TxM ≠ � for all 
x ∈ M , and Ox is an open set in TxM which is a linear cone (i.e. �v ∈ Ox , for all 
𝜆 > 0 , if v ∈ Ox ); moreover, for any v1, v2 ∈ TxM there exist two sequences of vectors 
v1k, v2k such that, for all k ∈ ℕ , the segment with extreme points v1k and v2k is entirely 
contained in Ox and vik → vi , i = 1, 2.

	(c’)	 Condition (c) is valid for each (x, v) ∈ O ; moreover the eigenvalues �i(x, v) of 
(gF)�,�(x, v) are bounded away from 0 on Ox , i.e. there exists 𝜆+(x) > 0 such that 

 for all i ∈ {0,… ,m} and v ∈ Ox.

If LF is a Lorentz-Finsler metric, then the couple (M,LF) is called a Finsler spacetime.
The study of the notion of a Finsler spacetime has received renewed impetus from 

various sources. V. Perlick’s work [41], which explores Fermat’s principle, was particu-
larly influential. Subsequent contributions came from [56] (also see [57]), which revived 
the research initiated by G. Y. Bogoslowsky [58–60], and from [61]. Additional momen-
tum was provided by the works of V. A. Kostelecký and collaborators [62–65], as well 
as C. Pfeifer, N. Voicu, and their coworkers (refer to [66–71] for further details). Nota-
ble mathematical contributions include [72–74], which have influenced the field in a dif-
ferent manner. For a comprehensive historical overview, diverse definitions of a Finsler 
spacetime, and additional references, interested readers are directed to [44, 48, 75, 76].

(gF)��(x, v)∶=
�
2LF

�v��v�
(x, v), �, � = 0,… ,m,

(2.15)|�i(x, v)| ≥ �+(x),
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As we will see later, the significance of Lorentz-Finsler metrics relies on the 2-homo-
geneity assumption. This homogeneity ensures that the solutions of the Euler-Lagrange 
equations, with a suitably prescribed energy value (in this case, less than or equal to 
0), connecting a point to a flow line of the infinitesimal symmetry vector field, are the 
ones for which the time of arrival is critical. Therefore, Fermat’s principle holds (see 
Remark 5.2).

Proposition 2.9  Let LF ∶ TM → ℝ be a Lorentz-Finsler metric satisfying (a�) , (b) and (c�) 
above, and assume there exists an infinitesimal symmetry K ∶ M → TM such that (2.3) and 
(2.4) hold. Then Assumptions 2 and 3 hold.

Proof  Assumption 3 is ensured by the 2–homogeneity of LF , since LF(x, 0) = 0 for every 
x ∈ M . Let us show that Assumption 2 holds. As a first step, we notice that the Lagrangian 
Lc ∶ TM → ℝ , defined by

admits vertical Hessian at any (x, v) ∈ O that is a positive definite bilinear form on TxM . 
For any (x, v) ∈ O , we have

For each w ∈ TxM , we have, thanks to (2.3),

hence we obtain

Now consider w ∈ kerQ ; from (2.17) we have �vvLF(x, v)[w,K] = 0 , and since �vvLF(x, v) 
has index 1 we obtain that 𝜕vvLc(x, v)[w,w] = 𝜕vvLF(x, v)[w,w] > 0 , for all w ∈ kerQ , from 
which we conclude that �vvLc(x, v)[⋅, ⋅] is positive definite.

Let

As any w ∈ kerQ is orthogonal to Kx with respect to both bilinear forms �vvLc(x, v) and 
�vvLF(x, v) , by (2.16) we deduce that the determinants of (gF)�� and (gc)�� are opposite 
numbers and then, from (2.15) we conclude that 𝜆(x) > 0 , for all x ∈ M.

Inequality  (2.9) then follows by the mean value theorem applied to the function 
v ∈ Ox ↦ �vLc(x, v)[v2 − v1] , when v1 and v2 both belong to Ox and the segment having 
them as extreme points is contained in Ox as well. Then, for each x ∈ M,  (2.9) follows 
by continuity due to the property of approximation by segments in (a’). The inequali-
ties (2.6), (2.7) and (2.8) are ensured by the fact that Lc is C1 on TM and it is positive homo-
geneous of degree 2 w.r.t. v. 	�  ◻

Lc(x, v) = LF(x, v) + Q2(v),

(2.16)𝜕vvLc(x, v) = 𝜕vvLF(x, v) + 2Q⊗ Q.

(2.17)
�vvLF(x, v)[K,w] =

�
2LF

�s�t
(x, v + tK + sw)

|||(s,t)=(0,0)

=
�(�vLF(x, v + sw)[K])

�s

|||s=0 =
�Q(v + sw)

�s

|||s=0 = Q(w),

𝜕vvLc(x, v)[K,K] = 𝜕vvLF(x, v)[K,K] + 2Q2(K) = Q(K) + 2 = 1 > 0.

(2.18)�(x) ∶ inf
v∈Ox

min
w∈TxM,‖w‖=1

�vvLc(x, v)[w,w].
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Remark 2.10  As shown in the above proof, the vertical Hessian of Lc is positive definite 
on O , the last being dense in TM. Hence, by homogeneity, Lc is a non-negative fiberwise 
strongly function on TM. Moreover, the vertical Hessian of Fc∶=

√
Lc at any (x, v) ∈ O is 

positive semi-definite (see, e.g., [86, p. 8]). Hence, for any v1 and v2 belonging to Ox defin-
ing a segment contained in Ox , we get by Taylor’s theorem,

By continuity and the approximation by segments property in (a’), the above inequality 
holds on TM, hence Fc is fiberwise convex and therefore it is a Finsler metric on M, (i.e., 
Fc(x, ⋅) is non-negative, positively homogeneous, and satisfies the triangle inequality on 
TxM , for each x ∈ M ) whose square is only of class C1 on TM.

As a consequence of Proposition 2.9, if LF ∶ TM → M is a Lorentz-Finsler metric and 
there exists a complete vector field K such that Assumption  1 holds, then Remark  2.4 
ensures that LF can be locally expressed as follows:

where F ∶ TS → ℝ is a Finsler metric on S, with F2 ∈ C1(TM) . Whenever LF is not twice 
differentiable only at the line sub-bundle of TM defined by K, F becomes a classical Finsler 
metric on S, (i.e. F2 ∈ C2(TS⧵0) and, for each y ∈ S , F(y, ⋅) is a Minkowski norm on TyS , 
see e.g. [86, §1.2]).

Since in this case K is a timelike Killing vector field, namely it is an infinitesimal sym-
metry of LF such that LF(x,K) < 0 for every x, (M,LF) is called stationary Finsler space-
time. In particular, if LF is twice differentiable on TM ⧵ 0 , then F2(y, ⋅) in (2.19) must be 
the square of the norm of a positive definite inner product on TyS . We thank the referee for 
this observation. In fact, a special kind of stationary Finsler spacetimes are the stationary 
Lorentzian manifolds, namely those Lorentzian manifolds (M, gL) for which gL is a Lorent-
zian metric and there exists a timelike Killing vector field for gL . In this case, the stationary 
product type local structure is given by

where gR is a Riemannian metric on an open neighbourhood S of ℝm . In this direction, the 
results in this paper improve previous results about stationary Lorentzian metrics (see, [15, 
19, 53]), since just C1 stationary metrics with a C3 timelike Killing vector field are allowed 
and both lightlike and timelike geodesics can be considered in an unified setting.

3 � Variational setting

Let us fix a point p ∈ M and consider a flow line � ∶ ℝ → M of K that does not pass 
through p, i.e., p ∉ �(ℝ) . We are interested in finding solutions of the Euler-Lagrange 
equations that connect p to points on � with a fixed energy � ∈ ℝ . Specifically, we seek 
to characterize curves z ∈ C1([0, 1],M) that satisfy (2.1), with z(0) = p , z(1) ∈ �(ℝ) , and 
E(z(s), ż(s)) = 𝜅 for all s ∈ [0, 1].

We define the action functional L ∶ H1([0, 1],M) → ℝ as follows:

Fc(x, v2) ≥ Fc(x, v1) + �vFc(x, v1)[v2 − v1].

(2.19)LF(x, v) = LF◦�((y, t), (�, �)) = F2(y, �) + �y(�)� −
1

2
�
2,

gL(v, v) = gR(�, �) + �(�)� −
1

2
�
2,
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Similarly, we define the energy functional:

We note that both L and E are well-defined on H1([0, 1],M) and they are respectively a C1 
and a C0 functional due to (2.5), the growth conditions (2.6)–(2.8) and the fiberwise con-
vexity of Lc (2.9) (see, e.g., the first part of the proof of Proposition 3.1 in [78]).

Remark 3.1  Henceforth, we will assume that E is a C1 functional. This holds if L is posi-
tively homogeneous of degree 2 in the velocities, since in that case E = L ; moreover it 
holds if Lc is a C2 , strongly convex Lagrangian on TM with second derivatives satisfying 
assumptions (L1’) in [78, p. 605].

Recalling that we have chosen a fixed point p ∈ M , we define the set Ωp,r(M) for every 
r ∈ M as follows:

and we denote by Lp,r the restriction of L to Ωp,r(M).

Remark 3.2  According to [51, Proposition A.1], if z is a critical point of Lp,r , then both z 
and the function

are of class C1 . As a consequence, z is a critical point of Lp,r if and only if equation (2.1) 
holds and there exists � ∈ ℝ such that equation (2.2) holds.

3.1 � Preliminary results

Recalling that K is a complete vector field, we denote by � ∶ ℝ ×M → M the flow of 
K, and by �u� and �x� the partial derivatives of �(t, x) with respect to t ∈ ℝ and x ∈ M , 
respectively.

Let us denote by Kc the complete lift of K to TM (see, e.g., [46]). Then, for any 
(x, v) ∈ TM , the flow �c of Kc on TM is given by �c(t, x, v) =

(
�(t, x), �x�(t, x)[v]

)
 , and 

we have

Since K is an infinitesimal symmetry of L, we have

L(z)∶=∫
1

0

L(z, ż) ds.

E(z)∶=∫
1

0

E(z, ż) ds.

Ωp,r(M)∶=
{
z ∈ H1([0, 1],M) ∶ z(0) = p, z(1) = r

}
,

s ↦ 𝜕vL(z(s), ż(s))[ż(s)]

Kc(L)
(
�

c(t, x, v)
)
=

�

(
L◦�c

)

�t
(t, x, v).

(3.1)
�

(
L◦�c

)

�t
(t, x, v) = 0,
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which implies

Moreover, from (3.1) we also obtain

and consequently

Lemma 3.3  If z ∶ [0, 1] → M is a weak solution of the Euler-Lagrange equation (2.1) (i.e. 
a critical point of L on Ωz(0),z(1)(M) ) , then it is a C1 curve and its Noether charge is con-
stant, namely there exists c ∈ ℝ such that

Proof  By [51, Proposition A.1], both z and 𝜕vL(z, ż) are of class C1 . Therefore, it suffices to 
prove that, for every s ∈ [0, 1] , we have

Therefore, we can work on a local coordinate system (x0,… , xm, v0,… , vm) of TM and, 
using (2.1) and (3.2), we obtain the following chain of equalities:

	�  ◻

On the basis of Lemma 3.3, the curves with a constant Noether charge are the only 
ones that can be critical points of the action functional. The following results ensure 
that this subset of curves is indeed a closed manifold of class C1 , allowing for a simpli-
fication of the variational setting by considering only these curves. A detailed proof can 
be found in [51] and relies on the linearity assumption of the Noether charge.

Let us define the following sets:

and

(3.2)Kc(L)(x, v) =
�L

�xh
(x, v)Kh(x) +

�L

�vh
(x, v)

�Kh

�xi
(x)vi = 0.

(3.3)L(x, v) = L
(
�(t, x), �x�(t, x)[v]

)
, ∀(x, v) ∈ TM, t ∈ ℝ,

(3.4)�vL(x, v)[�] = �vL
(
�(t, x), �x�(t, x)[v]

)[
�x�(t, x)[�]

]
.

𝜕vL(z(s), ż(s))[K(z(s))] = c, ∀s ∈ [0, 1].

d

ds

(
𝜕vL(z(s), ż(s))[K(z(s))]

)
= 0.

d

ds

(
𝜕L

𝜕vi

(
z(s), ż(s)

)
Ki(z(s))

)

=
d

ds

(
𝜕L

𝜕vi

(
z(s), ż(s)

))
Ki(z(s)) +

𝜕L

𝜕vi

(
z(s), ż(s)

)𝜕Ki

𝜕xh
(z(s))żh(s)

=
𝜕L

𝜕xi

(
z(s), ż(s)

)
Ki(z(s)) +

𝜕L

𝜕vi

(
z(s), ż(s)

)𝜕Ki

𝜕xh
(z(s))żh(s) = 0.

Np,r∶={z ∈ Ωp,r(M) ∶ ∃c ∈ ℝ such that Q(ż) = c a.e. on [0, 1]} ⊂ Ωp,r(M),

Wz ∶=
{
� ∈ TzΩp,r(M) ∶ ∃� ∈ H1

0
([0, 1],ℝ)

such that �(s) = �(s)K(z(s)), a.e. on [0, 1]
}
.
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Since L is invariant under the one-parameter group of local C1 diffeomorphisms generated 
by K, we have the following result.

Proposition 3.4  The space Np,r is non-empty, it is a C1 closed submanifold of Ωp,r(M) and 
satisfies

Moreover, for every z ∈ Np,r , the tangent space of Np,r at z is given by

and

Proof  The fact that Np,r ≠ ∅ , for all p, r ∈ M , follows from [51, proposition 6.4]. Equal-
ity (3.5) is proved in [51, Proposition 4.2], and (3.6) is a particular case of [51, Proposition 
4.3]. Finally, (3.7) comes from [51, Lemma 4.4],1. 	�  ◻

The above result gives the following variational principle for the critical points of Lp,r , 
which extends a result by F. Giannoni and P. Piccione (see [52]).

Proposition 3.5  Let Jp,r ∶ Np,r → ℝ be the restriction of Lp,r to Np,r . Then, z is a critical 

point for Lp,r if and only if z ∈ Np,r and z is a critical point for Jp,r.

Proof  See [51, Theorem 4.7]. 	�  ◻

4 � The variational structure of the action in relation with the flow of K

In this section, we consider the flow of the complete vector field K and its relationship with 
the variational structure of the action. More precisely, let � ∶ ℝ ×M → M denote the flow 
generated by the vector field K. Given a flow line � ∶ ℝ → M of K, there exists a point 
q ∈ M such that �(t) = �(t, q).

Our goal is to prove that for each t ∈ ℝ , there is a diffeomorphism between Np,q and 
Np,�(t) . This enables us to define a functional (see (4.9)) on Np,q ×ℝ and obtain an alterna-
tive equation for solutions of the Euler-Lagrange equations connecting p and � (see (4.13)). 
Furthermore, recalling that we seek the solutions of Euler-Lagrange equations with a fixed 
energy � , we show that for any z ∈ Np,q , there are two values of t ∈ ℝ such that E(zt) = � , 

where � satisfies (4.19) and zt ∈ Np,�(t) is the curve corresponding to z via the diffeomor-
phism. Therefore, we can simplify the problem and study a couple of functionals defined 
only on Np,q (see (4.20)).

Let us define the map Ft ∶ Ωp,q(M) → Ωp,�(t)(M) as follows:

(3.5)Np,r =
{
z ∈ Ωp,r(M) ∶ dLp,r(z)[�] = 0,∀� ∈ Wz

}
.

(3.6)TzNp,r =
{
𝜉 ∈ TzΩp,r(M) ∶ ∃c ∈ ℝ such that 𝜕xQ(ż)[𝜉] + Q(𝜉̇) = c a.e.

}
,

(3.7)TzΩp,r(M) = TzNp,r +Wz.

1  We would like to draw attention to a misprint in [51, Lemma 4.4] where we note that the “direct sum” 
should be corrected to “sum” as it appears there.
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To simplify the notation, we write

for any z ∈ Ωp,q(M).

Proposition 4.1  The map Ft is a diffeomorphism with its inverse being F−t . Furthermore, 
Ft|Np,q

 is a diffeomorphism from Np,q to Np,�(t) . Therefore, for every z ∈ Ωp,q(M) , we have 
the following equivalences:

and

Proof  By utilizing a result by R. Palais [77] and considering that the flow of K is C3 , we can 
conclude that Ft is a diffeomorphism (cf. [53, Proposition 2.2]). Recalling that �u� is the 
differential of � with respect to the first variable, we can derive the following equalities:

and

Consequently, we obtain the velocity of zt as:

Now, considering that Q(K) ≡ −1 , we deduce:

Hence, from (3.4), we have:

which implies that zt ∈ Np,�(t) if and only if z ∈ Np,q . Therefore, this implies (4.2). Finally, 

(4.3) follows from dFt(z)[�] = �x�(ts, z(s))[�(s)] and (4.4). 	�  ◻

We introduce the functional Hp,q ∶ Ωp,q(M) ×ℝ → ℝ defined as follows:

Using (4.5) and observing that �u�(ts, z(s))[t] = t�x�(ts, z(s))[K(z(s)] , we can deduce the 
expression:

so that, by applying also (3.3), we can rewrite Hp,q(z, t) as

(4.1)
(
Ft(z)

)
(s)∶=�(ts, z(s)).

zt = Ft(z)

(4.2)dFt(z)[�] ∈ TztNp,�(t) if and only if � ∈ TzNp,q,

(4.3)dFt(z)[�] ∈ Wzt if and only if � ∈ Wz.

�u�(ts, z(s))[1] = K(�(ts, z(s))),

(4.4)�x�(ts, z(s))[K(z(s))] = K(�(ts, z(s))).

(4.5)
d

ds
zt(s) = żt(s) = 𝜕u𝜓(ts, z(s))[t] + 𝜕x𝜓(ts, z(s))[ż(s)].

𝜕vL(z
t, żt)[K(zt)] = Q(żt) = −t + Q

(
𝜕x𝜓(ts, z(s))[ż(s)]

)
.

(4.6)Q(żt) = Q(ż) − t,

(4.7)Hp,q(z, t)∶=Lp,�(t)(F
t(z)).

(4.8)żt = 𝜕x𝜓(ts, z(s))
[
ż + tK(z(s))

]
,
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Considering that Ft|Np,q
 is a diffeomorphism, we obtain the following result, which allows 

us to focus our study on critical curves of Hp,q within Np,q.

Proposition 4.2  For (z, t) ∈ Ωp,q(M) ×ℝ , the following statements hold:

if and only if z ∈ Np,q and

Proof  If (4.10) holds, we can use (4.7) and Proposition 4.1 to conclude that zt = Ft(z) is a 
critical point of Lp,�(t) , and by Proposition 3.5, zt belongs to Np,�(t) . Consequently, we have 

z = F−t(zt) ∈ Np,q , and (4.11) trivially follows from (4.10).
For the other implication, we need to show that if z ∈ Np,q , then

By contradiction, let’s assume that z ∈ Np,q and (4.12) does not hold. According to the 
definition of Hp,q , there exists � ∈ Wz such that

Using (4.3), we know that dFt(z)[�] ∈ Wzt . Applying Proposition 3.4, we can conclude that 
Ft(z) ∉ Np,�(t) , which contradicts Proposition 4.1. 	�  ◻

Corollary 4.3  If (z,  t) satisfies  (4.10), then zt is a critical point for Lp,�(t) . The following 
Euler-Lagrange equations (in local coordinates) hold:

and there exists � ∈ ℝ such that

Proof  According to Proposition  4.2, if (4.10) holds, then (4.13) is an immediate conse-
quence of (4.9) and the du Bois-Reymond lemma. By (4.7), zt = Ft(z) is a critical point of 
L on Ωp,�(t)(M) . Hence, using Remark 3.2, we can conclude that there exists a constant � 

such that E(zt, żt) = 𝜅 . Combining (3.3), (3.4), and (4.8), we obtain (4.14). 	�  ◻

Proposition 4.4  For every (x, v) ∈ TM and every t ∈ ℝ , the following two equations hold:

and

(4.9)Hp,q(z, t) = ∫
1

0

L
(
z, ż + tK(z)

)
ds.

(4.10)�zHp,q(z, t)[�] = 0, ∀� ∈ TzΩp,q(M),

(4.11)�zHp,q(z, t)[�] = 0, ∀� ∈ TzNp,q.

(4.12)�zHp,q(z, t)[�] = 0, ∀� ∈ Wz.

�zHp,q(z, t)[�] = dLp,�(t)(F
t(z))

[
dFt(z)[�]

] ≠ 0.

(4.13)

𝜕L

𝜕xi

(
z, ż + tK(z)

)
−

d

ds

𝜕L

𝜕vi

(
z, ż + tK(z)

)

+ t
𝜕L

𝜕vj

(
z, ż + tK(z)

)𝜕Kj

𝜕xi
(z) = 0, ∀s ∈ [0, 1],

(4.14)E
(
z, ż + tK(z)

)
= 𝜅, ∀s ∈ [0, 1].

(4.15)L
(
x, v + tK(x)

)
= L

(
x, v

)
+ tQ(v) −

1

2
t2,
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As a consequence, for every (x, v) ∈ TM , we have

Proof  We will prove (4.15); the computations for (4.16) are analogous. Since the result has 
a local nature, we can use (2.10). For every (x, v) ∈ TM , we can write

This completes the proof. 	�  ◻

Using (4.15) and recalling that Q(ż) is constant for all z ∈ Np,q , the functional Hp,q can 
be written as:

Proposition 4.5  Let

(recall (2.14)). Then the functionals t�
+
, t�
−
∶ Np,q → ℝ defined by

are well-defined, and they satisfy the following equation:

Proof  Since Q(ż) is constant for every z ∈ Np,q , from (4.16) we have that t�
±
(z) are the only 

two solutions of

Hence, it remains to prove that for every z ∈ Np,q , we have

provided that � satisfies (4.19). As a consequence, it suffices to prove that

(4.16)E
(
x, v + tK(x)

)
= E

(
x, v

)
+ tQ(v) −

1

2
t2.

(4.17)L
(
x, v + tK(x)

)
− E

(
x, v + tK(x)

)
= L

(
x, v

)
− E

(
x, v

)
.

L(x, v + tK) = L◦�∗

(
(y, t), (�, � + t)

)

= L0(y, �) + �y(�)(� + t) −
1

2
(� + t)2

=
(
L0(y, �) + �y(�)� −

1

2
�
2
)
+
(
�y(�) − �

)
t −

1

2
t2

= L(x, v) + tQ(v) −
1

2
t2.

(4.18)Hp,q(z, t) = ∫
1

0

L
(
z, ż

)
ds + tQ(ż) −

1

2
t2 = L(z) + tQ(ż) −

1

2
t2.

(4.19)� ≤ − sup
x∈M

L(x, 0)

(4.20)t𝜅
±
(z) = Q(ż) ±

√
Q2(ż) + 2

(
E(z) − 𝜅

)
,

(4.21)E(Ft�
±
(z)(z)) = �.

E(Ft(z)) = E(zt) = E(z) + tQ(ż) −
1

2
t2 = 𝜅.

E(z) +
1

2
Q2(ż) ≥ 𝜅,
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Using the expression of L in a local chart in a neighbourhood of x ∈ M , in particular (2.11) 
and (2.12), and setting (x, v) = �∗

(
(y, t), (�, �)

)
 , we obtain the following equalities:

where E0(y, �) is the energy function of the Lagrangian L0 . As a consequence, using (2.13), 
we obtain

Since � satisfies (4.19), we infer

and we are done. 	�  ◻

Remark 4.6  Our problem naturally leads to the condition  (4.19). For a Finsler spacetime 
(M, L) (see Sect. 2.1), this condition means � ≤ 0 . Therefore, we only consider the energy 
values that correspond to causal geodesics (timelike or lightlike geodesics).

Lemma 4.7  If � satisfies (4.19) then

Proof  From (4.22), it is enough to prove that

By contradiction assume that E(z) + 1

2
Q2(ż) = 𝜅 . Using (4.23) and (2.13), we conclude that 

in any neighbourhood Uz(s̄) , s̄ ∈ [0, 1] , as in Remark 2.4, and for a.e. s in a neighbourhood 
of s̄ , the vector ż(s) corresponds through �∗ to a vector whose component in TSz(s̄) vanishes. 
This is equivalent to the existence of a function � ∶ [0, 1] → ℝ such that

Since Q(ż) is constant a.e. and Q(�(s)K(z(s))) = −�(s) , we deduce that � is constant a.e. 
and ż is equivalent to a continuous TM-valued function on [0, 1]. Hence p and q are on the 
same flow line of K, which is a contradiction. 	�  ◻

Remark 4.8  As a consequence of Lemma 4.7, t�
±
 in (4.20) are C1 functionals on Np,q.

Corollary 4.9  If � satisfies (4.19), then

(4.22)E(x, v) +
1

2
Q2(v) ≥ �, ∀(x, v) ∈ TM.

(4.23)
E(x, v) +

1

2
Q2(v) =E0(y, �) + �y(�)� −

1

2
�
2 +

1

2

(
�y(�) − �

)2

=E0(y, �) +
1

2
�
2
y
(�),

E0(y, �) +
1

2
�
2
y
(�) ≥ E0(y, 0) = −L0(y, 0) = −L(x, 0).

E(x, v) +
1

2
Q2(v) ≥ −L(x, 0) ≥ �, ∀(x, v) ∈ TM,

E(z) +
1

2
Q2(z) > 𝜅, ∀z ∈ Np,q.

E(z) +
1

2
Q2(ż) ≠ 𝜅.

ż(s) = 𝛼(s)K(z(s)), for a.e. s ∈ [0, 1].
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and the same holds replacing t�
+
(z) with t�

−
(z).

Proof  By (4.18) and (4.20), we have

Then, the thesis follows by Lemma 4.7. 	�  ◻

5 � Main result

We are ready to proof our main result:

Theorem 5.1  Let L ∶ TM → ℝ satisfy Assumptions 1, 2, and 3, and let � ∈ ℝ satisfy (4.19). 
A curve � ∶ [0, 1] → M is a solution of the Euler-Lagrange equations (2.1) joining p and � 
with energy � if and only if there exists z ∈ Np,q such that � = Ft�

+
(z)(z) or � = Ft�

−
(z)(z) , and 

the following equality holds:

or

Proof  Consider a critical curve � ∈ Np,�(t) with energy � . We know that Ft is a diffeo-
morphism, so there exists z ∈ Np,q such that F−t(�) = z and t = t�

+
(z) or t = t�

−
(z) . For this 

proof, we will focus on the case where t = t�
+
(z).

Since � is a critical curve for Lp,�(t) , by the definition of Hp,q (see  (4.7)), we have 

�zHp,q(z, t) = 0 . Furthermore, using (4.17) and the definition of t�
+
(z) , we obtain the follow-

ing equation:

By differentiating both sides of (5.3), we obtain:

Since we know that �zHp,q(z, t
�

+
(z)) = 0 , substituting this into (5.4), we get:

�tHp,q(z, t
�

+
(z)) ≠ 0, ∀z ∈ Np,q,

(4.24)𝜕tHp,q(z, t
𝜅

+
(z)) = Q(ż) − t𝜅

+
(z) = −

√
Q2(ż) + 2

(
E(z) − 𝜅

)
.

(5.1)dt𝜅
±
(z) =

dE(z) − dL(z)
√

Q2(ż) + 2
(
E(z) − 𝜅

) ,

(5.2)dt𝜅
−
(z) =

dL(z) − dE(z)
√

Q2(ż) + 2
(
E(z) − 𝜅

) .

(5.3)
Hp,q(z, t

𝜅

+
(z)) = ∫

1

0

L
(
z, ż + t𝜅

+
(z)K(z)

)
ds

= L(z) − E(z) + k, ∀z ∈ Np,q.

(5.4)�zHp,q(z, t
�

+
(z)) + �tHp,q(z, t

�

+
(z)) dt�

+
(z) = dL(z) − dE(z).

�tHp,q(z, t
�

+
(z)) dt�

+
(z) = dL(z) − dE(z).
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According to Corollary 4.9, we have �tHp,q(z, t
�

+
(z)) ≠ 0 for every z ∈ Np,q . Using equa-

tion (4.24), we obtain ().
For the converse, if z ∈ Np,q satisfies  (), we can use  (5.4) to conclude that 

�zHp,q(z, t
�

+
(z)) = 0 . By Proposition 4.2 and Corollary 4.3, we then deduce that � = Ft�

+
(z)(z) 

is a critical point of Lp,�(t) . Hence the thesis follows from Proposition 3.5 and Remark 3.2. 	
� ◻

Remark 5.2  If L is homogeneous of degree 2 in the velocities (i.e., L is a Lorentz-Finsler 
metric, Definition 2.7), then L(z) = E(z) for every z and, consequently, () and () are equiva-
lent to dt�

+
(z) = 0 and dt�

−
(z) = 0 , respectively. Hence, in this case we re-obtain, for � ≤ 0 , 

the Fermat’s principle in a stationary spacetime that globally splits [19] (also known as 
standard stationary spacetime) as well as in a stationary spacetime that may not globally 
split [53]. Furthermore, we also obtain a Fermat’s principle in a stationary Finsler space-
time that is not necessarily a stationary splitting one (compare with [46, Appendix B]), 
including also timelike geodesics.

6 � An existence and multiplicity result

In this section we assume that L is a Lorentz-Finsler metric as in Sect.  2.1, satisfying 
Assumption  1. By Theorem  5.1 and Remark  5.2, the critical points z of the functionals 
t�
±
∶ Np,q → ℝ give all and only the solutions � of (2.1) connecting p to � and having fixed 

energy � ≤ 0 (recall Remark 4.6) through the relation � = Ft�
±
(z)(z) . We are going to show 

that t�
±
 satisfy the Palais-Smale condition provided that Jp,�(t) (recall Proposition  3.5) is 

pseudocoercive, for all t ∈ ℝ . Pseudocoercivity is a compactness assumption introduced in 
[52] and recently revived in [51]. Let us recall it:

Definition 6.1  Let t, c ∈ ℝ ; the manifold Np,�(t) is said to be c-precompact if every 

sequence (zn)n ⊂ Jc
p,𝛾(t)

∶={z ∈ Np,𝛾(t) ∶ Jp,𝛾(t)(z) ≤ c} has a uniformly convergent subse-

quence. We say that Jp,�(t) is pseudocoercive if Np,�(t) is c-precompact for all c ∈ ℝ.

Remark 6.2  A sufficient condition ensuring that Jp,r is pseudocoercive, for all p, r ∈ M , is 
based on the existence of a C1 function � ∶ M → ℝ such that d𝜑(K) > 0 , see [51, Proposi-
tion 8.1]. It is then natural to look at this result in the framework of causality properties of 
a Finsler spacetime as global hyperbolicity. We analyze this question in Appendix B.

Remark 6.3  We point out that if Jp,r is pseudocoercive then, for each c ∈ ℝ,

see [51, Theorem 7.6].

Henceforth, our attention turns to the functional t�
+
 , recognizing that all the subsequent 

considerations can be replicated comparably for t�
−
.

sup
z∈Jc

p,r

|Q(ż)| < +∞,
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Lemma 6.4  Let L be a Lorentz-Finsler metric, p ∈ M and � = �(t) be a flow line of K such 
that p ∉ �(ℝ) . Assume that Jp,�(t) is pseudocoercive for all t ∈ ℝ . Let (zn) ⊂ Np,q such that 
t�
+
(zn) is bounded, then

Proof  Assume by contradiction that supm |Q(żn)| = +∞ . Since q ∈ �(ℝ) and Jp,�(t) is 
pseudocoercive for all t ∈ ℝ , from Remark 6.3 necessarily Jp,q(zn) → +∞ . Since t�

+
(zn) is 

bounded and

we get that, up to pass to a subsequence,

Let C ≥ 0 such that |t�
+
(zn)| ≤ C , for all m ∈ ℕ . From (6.2) we then get

Take t̄ > C and consider zt̄
n
∶=Ft̄(zn) . Recalling (4.7) and (4.18), we then get from (6.4):

By Remark 6.3, we deduce that supm |Q(żt̄
m
)| < +∞ . Then from (4.6),

in contradiction with (6.3). 	�  ◻

Let z ∈ Np,q and � ∈ TzΩp,q(M) ; we recall that the H1-norm of � is given by 

∫ 1

0
gz(�

�, � �)ds where � ′ denotes the covariant derivative of � along z defined by the Levi-
Civita connection of the auxiliary Riemannian metric g.

Lemma 6.5  Let (zn)n ⊂ Np,q be a bounded sequence (w.r.t. the topology induced on Np,q 

by the topology of Ωp,q(M) ) such that their images zn([0, 1]) are contained in a compact 
subset of M and, for each n ∈ ℕ , let �n ∈ TznΩp,q(M) . If

then there exist bounded sequences �n ∈ TznNp,q and �n ∈ H1
0
([0, 1],ℝ) such that 

�n = �n + �nK(zn).

Proof  Since the images of the curves zn are contained in a compact subset W of M, we can 
assume that the field K is bounded and the covariant derivatives of the fields K(zn) along zn 

(6.1)sup
m

|Q(żn)| < +∞.

(6.2)
t𝜅
+
(zn) = Q(żn) +

√
Q2(żn) + 2

(
E(zn) − 𝜅

)

= Q(żn) +

√
Q2(żn) + 2

(
L(zn) − 𝜅

)
,

(6.3)Q(żn) → −∞.

(6.4)2L(zn) ≤ C2 − 2CQ(żn) + 2𝜅.

L(zt̄
n
) = L(zn) + t̄Q(żn) −

1

2
t̄ 2 ≤ C2

2
+ (t̄ − C)Q(żn) + 𝜅 → −∞.

sup
m

|Q(żn)| < +∞,

sup
n ∫

1

0

gzn (𝜁
�
n
, 𝜁 �

n
)ds < +∞,
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are uniformly bounded in the L2-norm. Thus, it suffices to show that there exists a bounded 
sequence (𝜇n)n ⊂ H1

0
([0, 1],ℝ) such that

By (3.6), we need to prove that, for each n ∈ ℕ , there exists cn ∈ ℝ such that

so we need to solve, with respect to cn ∈ ℝ and �n ∈ H1
0
([0, 1],ℝ) , the following ODE:

where, K̇n denotes 𝜕K
i

𝜕xj
(zn(s))ż

j
n(s)

𝜕

𝜕xi
|zn(s) . Let us re-write (6.5) as

where

and

Setting An(s) = ∫ s

0
an(�)d�, and

a solution of (6.6) which satisfies the boundary conditions �n(0) = �n(1) = 0 is given by

We notice that the sequence An(s) ∶ [0, 1] → ℝ is uniformly bounded in L∞ since

where C1 is a positive constant depending on the maxima of the absolute values of the com-
ponents of Q and K and their derivatives, in each coordinate system used to cover W, and 
on a constant that bounds from above the Euclidean norm with the norm associated with g 
in each of the same of coordinate system. This implies that the sequence of functions e±An(s) 
is also uniformly bounded in L∞ and then 

(∫ 1

0
e−An(s)ds

)−1

 is bounded as well. 
Analogously,

where now C2 ≥ 0 is independent of K but depend on an upper bound for the L∞-norms of 
the fields �n . Hence cn is bounded and bn satisfies then

�n∶=�n − �nK(zn) ∈ TznNp,q, ∀n ∈ ℕ.

𝜕xQ(żn)[𝜉n] + Q(𝜉̇n) = cn, a.e.,

(6.5)𝜕xQ(żn)[𝜁n] + Q(𝜁̇n) − 𝜇n

(
𝜕xQ(żn)[K(zn)] + Q(K̇n)

)
+ 𝜇

�
n
= cn,

(6.6)�
�
n
(s) − an(s)�n(s) = bn(s),

an(s) = 𝜕xQ(żn)[K(zn)] + Q(K̇n)

bn(s) = cn − hn(s), hn(s)∶=𝜕xQ(żn)[𝜁n] + Q(𝜁̇n)

cn =

(

∫
1

0

e−An(s)ds

)−1(

∫
1

0

eAn(s)hn(s)ds

)
,

�n(s) = eAn(s) ∫
s

0

bn(�)e
−An(�)d�.

�An(s)� ≤ �
1

0

�an�ds ≤ C1 �
1

0

√
g(żn, żn)ds,

�hn(s)� ≤ C2

√
g(żn, żn),
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for some non-negative constant C3 . Since

we get

for some non-negative constant C4 , depending also on an upper bound of the sequence 
∫ 1

0

√
g(żn, żn)ds . Hence, �n is bounded in H1

0
-norm. 	�  ◻

Lemma 6.6  Let z ∈ Np,q and � ∈ Wz , then dt�
+
(z)[�] = 0.

Proof  From (5.4), since L = E , we get

As showed in the proof of Proposition 4.2, �zHp,q(z, t
�

+
(z))[�] = 0 , and since, from Corol-

lary 4.9, �tHp,q(z, t
�

+
(z)) ≠ 0 , we get the thesis. 	� ◻

We are now ready to prove the Palais-Smale condition for t�
+
 . We recall that a C1 func-

tional f ∶ M → ℝ , defined on a manifold M , satisfies the Palais-Smale condition if 
every sequence zn ⊂ M such that f (zn) is bounded and df (zn) → 0 , admits a converging 
subsequence.

Proposition 6.7  Under the assumptions in Lemma 6.4, t�
+
∶ Np,q → ℝ satisfies the Palais-

Smale condition.

Proof  Let (zn)n ⊂ Np,q and C ≥ 0 such that |t�
+
(zn)| ≤ C and dt�

+
(zn) → 0 . From Lemma 6.4, 

we have that (6.1) holds. Hence, from (6.2) we deduce that L(zn) is bounded from above. 
By the pseudocoercivity assumption, there exists then a subsequence, still denoted by zn , 
which uniformly converge to a continuous curve z ∶ [0, 1] → M connecting p to q. Thus, 
the curves zn are contained in a compact subset W of M. Hence, from Remark 2.10 there 
exists a positive constant � , depending on W, such that Lc(x, v) ≥ �g(v, v) , for all x ∈ W 
and v ∈ TxM . Let Lc denote the action functional of Lc and

Since Q(żn) is bounded, L(zn) is bounded from above and

we deduce that S(zn) and ∫ 1

0
g(żn, żn)ds are bounded as well. Moreover, for z ∈ Np,q , let us 

see Q(ż) as a functional Q on Np,q (recall that Q(ż) is constant a.e. on [0, 1]).

�bn(s)� ≤ C3 + C2

√
g(żn, żn),

�
�
n
(s) = an(s)e

An(s) ∫
s

0

bn(�)e
−An(�)d� + bn(s)

|��
n
(s)| ≤ C4|an(s)| + |bn(s)|,

�zHp,q(z, t
�

+
(z)) + �tHp,q(z, t

�

+
(z)) dt�

+
(z) = 0.

S(z)∶=

√
Q2(ż) + 2

(
L(z) − 𝜅

)
=

√
2
(
Lc(z) − 𝜅

)
− Q2(ż).

(6.7)𝛼 �
1

0

g(żn, żn) ≤ Lc(zn) = L(zn) + Q2(żn),
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Let then �n ∈ TznΩ
1,2
p,q
(M) be a bounded sequence; from Lemma  6.5 there exist two 

bounded sequences �n ∈ TznNp,q and �n ∈ H1
0
([0, 1],ℝ) such that �n = �n + �nKzn

 . As zn is 
a Palais-Smale sequence, from Lemma 6.6 we obtain

We now apply a localization argument as in [78] (see also the proof of [51, Theorem 5.6]). 
Thus, we can assume that L is defined on [0, 1] × U ×ℝ

m+1 , with U an open neighbourhood 
of 0 in ℝm+1 . Analogously, we associate to Lc and Q, a time-dependent fiberwise strongly 
convex Lagrangian Lcs in U and a C1 family of linear forms Qs . Moreover, we can identify 
(zn)n with a sequence in the Sobolev space H1([0, 1],U) . By (6.7), taking into account that 
the curves zn have fixed end-points, we get that (zn)n is bounded in H1([0, 1],U) and so it 
admits a subsequence, still denoted by (zn)n , which weakly and uniformly converges to a 
curve z ∈ H1([0, 1],ℝm+1) which also satisfies the same fixed end-points boundary condi-
tions. The differential at zn of the localized functional obtained, that we still denote with t�

+
 , 

is given by

where the index s is used to denote the localized functionals. Since Ss(zn) is bounded we 
get

In particular, since zn − z is bounded in H1
0
 , we obtain

Since zn → z uniformly and weakly, we deduce that dQs(zn)[zn − z] → 0 . As 
Ss(zn) −Qs(zn) is bounded then 

(
Ss(zn) −Qs(zn)

)
dQs(zn)[zn − z] → 0 as well. From (6.8), 

we then get dLcs(zn)[zn − z] → 0 . We can then conclude that zn → z in H1-norm thanks to 
the convexity of Lcs as in the proof of [51, Theorem 5.6]. There exists then a subsequence 
znk such that żnk → ż , a.e. on [0, 1]. As Q(żnk ) = ck a.e., for some ck ∈ ℝ , we get that also 
Q(ż) is constant a.e., i.e. z ∈ Np,q . 	�  ◻

Lemma 6.8  Under the assumptions of Lemma 6.4, the functional t�
+
∶ Np,q → ℝ is bounded 

from below.

Proof  By contradiction, let us assume the existence of a sequence (zn)n ⊂ Np,q such that 
limn→∞ t�

+
(zn) = −∞ . From (6.2), this implies that

hence from Remark 6.3, up to pass to a subsequence, L(zn) = Jp,q(zn) → +∞ . Therefore, 
from (6.2), t�

+
(zn) ≥ 0 , for n big enough. 	�  ◻

We are now ready to present an existence and multiplicity results for solutions of 
the Euler-Lagrange equations (2.1). Previous existence results, in the case � = 0 , based 
on causality techniques were obtained in [46, Proposition 6.2 and Proposition B.2] for 
Finsler spacetimes that admit a global splitting S ×ℝ endowed with a Lorentz-Finsler 

dt�
+
(zn)[�n] = dt�

+
(zn)[�n] + dt�

+
(zn)[�nKzn

] = dt�
+
(zn)[�n] → 0.

dt�
+
(zn) = dQs(zn) +

dLcs(zn) −Qs(zn)dQs(zn)

Ss(zn)

0 ← Ss(zn)dt
�

+
(zn) =

(
Ss(zn) −Qs(zn)

)
dQs(zn) + dLcs(zn).

(6.8)
(
Ss(zn) −Qs(zn)

)
dQs(zn)[zn − z] + dLcs(zn)[zn − z] → 0.

lim
n→∞

Q(żn) = −∞,
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metric of the type (2.19) and in [47, Theorem  2.49] in the more general setting of a 
manifold with a proper cone structure.

Theorem 6.9  Let M be a smooth, connected finite dimensional manifold, L ∶ TM → ℝ be 
a Lorentz-Finsler metric on M satisfying Assumption 1, p ∈ M and � ∶ ℝ → M be a flow 
line of K such that p ∉ �(ℝ) . Let us assume that Jp,�(t) is pseudocoercive for all t ∈ ℝ . Let 
� ≤ 0 . Then, 

(a)	 There exists a curve z ∶ [0, 1] → M that is a solution of Euler-Lagrange equations (2.1) 
with energy � , joining p and �(ℝ) and minimizes t�

+
;

(b)	 If M is a non-contractible manifold, then there exists a sequence of curves 
zn ∶ [0, 1] → M that are solutions of Euler-Lagrange equations (2.1) with energy � 
joining p and �(ℝ) and such that limn→∞ t�

+
(wn) = +∞.

Proof  Since t�
+
 is a bounded from below, C1 functional defined on a C1 manifold and it 

satisfies the Palais-Smale condition, both part (a) and (b) follows from [79, Theorem 
(3.6)], Theorem 5.1 and Remark 5.2, taking into account, for part (b), that if M is non-
contractible then the Lusternik-Schnirelmann category of Np,q is +∞ as follows from [51, 
Proposition 6.4] and [80, Proposition 3.2]. 	�  ◻

Remark 6.10  Assumption (2.4) could be considered quite restrictive; however, for solutions 
with energy � = 0 , that is not the case for the following reasons: 

(1)	 Since L is a Lorentz-Finsler metric, solutions z ∶ [0, 1] → M of the Euler-Lagrange 
equations (2.1) with � = 0 satisfy L

(
z(s), ż(s)

)
= 0 for all s ∈ [0, 1] and therefore they 

are lightlike geodesics (see, e.g., [41, 81, 82]).
(2)	 According to [83, Proposition 4.4] (see also [82, Proposition 3.4] and [81, Proposi-

tion 12]) for any smooth function � ∶ M → (0,+∞) and for any lightlike geodesic 
z ∶ [0, 1] → M of L, there exists a reparametrization of z (on some interval [0, az] ) 
which is a lightlike geodesic of the Lorentz-Finsler metric �L.

(3)	 Let L̃ be a Lorentz-Finsler metric on M which satisfies Assumption 1 with (2.4) 
replaced by Q̃(K) < 0 (where Q̃ is the Noether charge of L̃ ). Hence, L∶= − L̃∕Q̃(K) 
satisfies (2.4).

(4)	 The infinitesimal symmetry K of L̃ remains an infinitesimal symmetry for L. This is 
a consequence of the fact that the flow � of K preserves Q̃(K) (see the proof of [51, 
Proposition 2.5-(iv)]), and then 

 (recall the beginning of Sect. 3.1).

𝜕

(
L◦𝜓c

)

𝜕t
(t, x, v) =Kc(L)

(
𝜓

c(t, x, v)
)
= Kc

(
− L̃∕Q̃(K)

)(
𝜓

c(t, x, v)
)

= −
𝜕

(
L̃◦𝜓c∕(Q̃(K)◦𝜓)

)

𝜕t
(t, x, v)

=
((

Q̃(K)◦𝜓
)−2 𝜕

(
Q̃(K)◦𝜓

)

𝜕t
L̃◦𝜓c

−
(
Q̃(K)◦𝜓

)−1 𝜕
(
L̃◦𝜓c

)

𝜕t

)
(t, x, v) = 0,
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Summing up, Theorem 6.9 also holds (replacing [0, 1] with unknown interval of parametri-
zations [0, az] ) for a Lorentz-Finsler metric L̃ on M which satisfies Assumption 1 with (2.4) 
replaced by Q̃(K) < 0.

Appendix A Affine Noether charge

In this section, we briefly show that Theorem 5.1 holds even if the Noether charge is an affine 
function with respect to v. Specifically, there exists a C1 one-form Q on M and a C1 function 
d ∶ M → ℝ such that (2.3) is replaced by

and d is invariant under the one-parameter group of C3 diffeomorphisms generated by K. In 
such a case, the stationary type local structure is given by

so we have

Moreover, the set Np,r is given by

and Proposition 3.5 still holds. Moreover, defining Ft ∶ Ωp,q(M) → Ωp,�(t)(M) as (4.1) and 
Hp,q ∶ Ωp,q(M) ×ℝ → ℝ as in (4.7), it is possible to prove both Proposition 4.2 and Corol-
lary 4.3. The main difference with the linear case is that Proposition 4.4 doesn’t hold and it 
is replaced by the following result, whose proof is a based on a computation in local charts 
which employs (A2).

Proposition A.1  For every (x, v) ∈ TM and for every t ∈ ℝ , the following two equations 
holds:

and

As a consequence, for every (x, v) ∈ TM we have

Since on any curve z ∈ Np,q the quantities Q(ż) and d(z) are not necessarily constant, 
let us introduce the functionals Q ∶ Np,q → ℝ and D ∶ Np,q → ℝ as follows:

(A1)N(x, v)∶=�vL(x, v)[K] = Q(v) + d(x);

(A2)L(x, v) = L◦�∗

(
(y, t), (�, �)

)
= L0(y, �) +

(
�y(�) + d(y)

)
� −

1

2
�
2,

(A3)E(x, v) = E◦�∗

(
(y, t), (�, �)

)
= E0(y, �) + �y(�)� −

1

2
�
2.

Np,r∶={z ∈ Ωp,r(M) ∶ ∃c ∈ ℝ such that N(z, ż) = c, a.e. on [0, 1]} ⊂ Ωp,r(M),

L
(
x, v + tK(x)

)
= L

(
x, v

)
+ tN(x, v) −

1

2
t2,

E
(
x, v + tK(x)

)
= E

(
x, v

)
+ tQ(v) −

1

2
t2.

(A4)L
(
x, v + tK(x)

)
− E

(
x, v + tK(x)

)
= L

(
x, v

)
− E

(
x, v

)
+ td(x).
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Using this notation, for every z ∈ Np,q the two quantities t�
±
(z) that satisfy (4.21) are given 

by

and they are still well defined if � satisfies (4.19). Moreover, since the function d doesn’t 
appear in the expression of E(x, v) in local coordinates (see (A3)), Corollary 4.9 still holds. 
Because of the difference between (A4) and (4.17), we have that in the affine case the equa-
tion analogous to (5.3) is

As a consequence, using a similar proof of the one of Theorem 5.1, we obtain the follow-
ing result.

Theorem A.2  Let L ∶ TM → ℝ satisfy assumptions 1, 2, and 3, with (A1) instead of (2.3), 
and let � ∈ ℝ satisfy (4.19). A curve � is a solution of the Euler-Lagrange equations (2.1) 
joining p and � with energy � if and only if there exists z ∈ Np,q such that � = Ft�

+
(z)(z) or 

� = Ft�
−
(z)(z) , and the following equality holds:

or

Corollary A.3  Let L ∶ TM → ℝ satisfy assumptions 1, 2, and 3, with (A1) instead of (2.3), 
and let � ∈ ℝ satisfy  (4.19). Moreover, assume that d ∶ M → ℝ is a constant function. 
Then, a curve � is a solution of the Euler-Lagrange equations (2.1) joining p and � with 
energy � if and only if there exists z ∈ Np,q such that � = Ft�

+
(z)(z) or � = Ft�

−
(z)(z) , and () 

or () holds.
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Q(z)∶=∫
1

0

Q(ż)ds, and D(z)∶=∫
1

0

d(z)ds.

t�
±
(z) = Q(z) ±

√
Q2(z) + 2

(
E(z) − �

)
,

Hp,q(z, t
𝜅

+
(z)) = L(z) − E(z) + 𝜅 + t𝜅

+
(z)

(
N(z, ż) −Q(z)

)

= L(z) − E(z) + 𝜅 + t𝜅
+
(z)D(z).

dt𝜅
+
(z) =

dE(z) − dL(z) − t𝜅
+
(z)dD(z)

√
Q2(ż) + 2

(
E(z) − 𝜅

) ,

dt𝜅
−
(z) =

dL(z) − dE(z) + t𝜅
−
(z)dD(z)

√
Q2(ż) + 2

(
E(z) − 𝜅

) .
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Appendix B Pseudocoercivity and global hyperbolicity

In this appendix we show that pseudocoercivity and global hyperbolicity of a Finsler 
spacetime (M, L) as defined in Subsection 2.1, are connected notions. We refer to [47, 
73] for the needed notions of causality, and in particular of global hyperbolicity and 
of a Cauchy hypersurface, in Finsler spacetimes and in the more general framework of 
proper cone structures (see [47, Definition 2.4]). We notice indeed that M is endowed 
with a continuous cone structure C∶={(x, v) ∈ TM ∶ L(x, v) ≤ 0,Q(v) < 0} . In fact, from 
the local expression of L (2.19), we deduce that (�, �) ∈ C(y,t)∶=C ∩ T(y,t)M if and only if

and since F2(y, ⋅) is strongly convex, we deduce that C(y,t) ∪ {0} is a closed, convex, sharp 
cone with non-empty interior.

Our first aim would be to extend [84, Theorem 5.1], which states that if a stationary 
Lorentzian manifold is globally hyperbolic with a complete Cauchy hypersurface then 
it is pseudocoercive. We obtain a result in that direction, namely Proposition B.2, that 
ensures pseudocoerciveness from the global hyperbolicity in our setting requiring some 
other technical assumptions that are trivially satisfied in the Lorentzian setting.

Lemma B.1  Let (M, L) be a Finsler spacetime (i.e. LF ∶ TM → ℝ satisfies (a�) , (b) and (c�) 
in Definition 2.7) such that Assumption 1 holds. If (M, L) is globally hyperbolic (i.e. the 
cone structure C associated to L is globally hyperbolic) then M globally splits as S ×ℝ and 
L is given on S ×ℝ by an expression of the type (2.10), with L0∶=L|TS and � the one-form 
induced by Q on S.

Proof  From [85, Theorem 1.3], we have that there exists a smooth Cauchy time function 
T ∶ M → ℝ . Let then S∶=T−1(0) . Being Kx ∈ Cx , for all x ∈ M , we have that dT(K) > 0 
by definition of a smooth time function, and then K is transversal to S. Thus, for any vector 
(x,w) ∈ TM with x ∈ S , we can write w = wS + �wKx where wS ∈ TxS . Since

by integrating w.r.t. s between 0 and 1, we get

which gives the required expression for L restricted to vectors (x,w) ∈ TM with x ∈ S . Let 
� be the restriction to S ×ℝ of the flow of K. Since T is a Cauchy time function, it is 

(B1)� ≥ �(�) +
√
�2(�) + 2F2(y, �),

d

ds
L(x,wS + s�wK) = �w�vL(x,wS + s�wK)[K] = �wQ(wS) − s�2

w
,

L(x,w) = L(x,wS + �wK) = L(x,wS) + �wQ(wS) −
1

2
�
2
w
,

http://creativecommons.org/licenses/by/4.0/
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strictly increasing on the flow lines � of K and it satisfies lims→±∞ T(�(s)) = ±∞ . There-
fore, � ∶ S ×ℝ → M is a diffeomorphism. Using that L is invariant by the flow of Kc we 
obtain

where L0 = L|TS and � is the one-form induced by Q on S. 	�  ◻

Let us denote by gS the C1 Riemannian metric on S induced by g. We assume that 
the one-form � has sublinear growth w.r.t. the distance dS induced by gS , i.e. there exist 
� ∈ [0, 1) and two non-negative constants k0 and k1 such that

for some x0 ∈ S and all x ∈ S . From [51, Proposition 8.1], we immediately obtain the fol-
lowing result.

Proposition B.2  Under the assumptions of Lemma  B.1, assume also that g is complete, 
(B3) holds, L0 is non-negative and satisfies

for each x ∈ S , and all v1, v2 ∈ TxS . If inf
x∈S

𝜆0(x) > 0 , then Jp,r is pseudocoercive for all 
p, r ∈ M.

Remark B.3  We notice that the condition (B4) is always satisfied in the Lorentzian setting, 
since S can be taken to be a smooth spacelike Cauchy hypersurface; moreover if S is com-
plete then a possible auxiliary Riemannian metric g on S ×ℝ is the natural product metric 
which is then also complete. Therefore, �0(x) = 1 , for each x ∈ S , in the Lorentzian setting. 
We point out that in [84, Theorem 5.1] the completeness of S is a required assumption. The 
more technical assumption in Proposition B.2 is (B3). It is needed to get the boundedness 
of the constants Q(ż) , for all z in a fixed sublevel Jc

p,r
 , a property called c-boundedness in 

[51], that implies pseudocoerciveness if satisfied for each c ∈ ℝ (see [51, Proposition 7.2]). 
Actually, when L is a 2-positive homogeneous Lagrangian and L0 ∈ C1(TS) is the square 
of a Finsler metric on S, a close inspection of the proof of [84, Theorem 5.1] makes clear 
that  (B3) can be removed, and an analogous proof can be repeated by using the action 
functional of L0 instead of the energy functional of the Riemannian metric on S. In fact, 
using the global splitting S ×ℝ and (B2), the arrival time functional of a lightlike curve 
z(s) =

(
x(s), t(s)

)
 , (i.e., a causal curve z ∶ [0, 1] → M such that L

(
z(s), ż(s)

)
= 0 , a.e. on 

[0, 1]) between p = (x0, 0) ∈ S × {0} and a flow line of K, �(t) = (x1, t) , is given by

and this is a key point in the proof of [84, Theorem  5.1] (refer to [84, Lemma 5.4]). 
Moreover, the completeness of the Riemannian metric on S can be replaced by the for-
ward or backward completeness of 

√
L0 . Another fundamental point is the compactness of 

S ∩ J−(q) , for any q ∈ M , (see (B6) for the definition of J−(q) ), used in the proof of [84, 

(B2)L◦�∗

(
(x, t), (�, �)

)
= L0(x, �) + �(�)� −

1

2
�
2,

(B3)‖�‖ ≤ k0 + k1
�
dS(x, x0)

��
,

(B4)
(
�vL0(x, v2) − �0L0(x, v1)

)
[v2 − v1] ≥ �0(x)

‖‖v2 − v1
‖‖
2
,

J ∶ Ωx0,x1
(S) → ℝ, J(x) = ∫

1

0

(
𝜔(ẋ) +

√
𝜔2(ẋ) + 2L0(x, ẋ

))
ds,
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Lemma 5.5]. In our setting, this is an immediate consequence of [47, Theorem 2.44]. Sum-
ming up, the following result extending [84, Theorem 5.1] holds:

Theorem B.4  Under the assumptions of Lemma B.1, assume also that L0 ∈ C1(TS) is the 
square of a forward or backward complete Finsler metric on S. Then Jp,r is pseudocoercive 
for all p, r ∈ M.

Remark B.5  In light of Theorem B.4, it becomes important to give conditions ensuring that 
L0 is the square of a Finsler metric on S. A first observation is that L0 is non-negative and 
(B4) holds if, for each x ∈ S

where �(x) is defined in (2.9) (see [51, Remark 2.14]).
We also notice that, if O0 ∶= O ∩ TS , satisfies, relatively to TS, the same properties sat-

isfied by O in Remark 2.8-(a’), then (B4) holds if

Moreover, in this case, 
√
L0 in (B2) is a Finsler metric on S such that L0 is of class C1 . 

Indeed, from (2.16) and (B5) we immediately get that �vvL(x, v)|TxS×TxS is a positive definite 

bilinear form, for every v ∈ TxS ∩O0 . Therefore, recalling that L0 = L|TS and it is fiberwise 
positively homogeneous, we have that L0(v) ≥ 0 for all v ∈ O0 and then on TS by density of 
O0 in TS. Arguing as in Remark 2.10, we then conclude that 

√
L0 is a Finsler metric.

Actually, in this last setting, (B5) is also a necessary condition for L0 being the square 
of a Finsler metric. In fact, let {e1,… , em} ⊂ TxS be an orthonormal basis of TxS with 
respect to the auxiliary Riemannian metric g. Using this basis, we can write the one-form 
� ∶ TxS → ℝ given by Q|TxS as (�1,… ,�m) . Let us denote by g0(v)ij the vertical Hessian 

matrix of L0 in v ∈ TxS ∩Ox with respect to this basis. Similarly, we denote by gc(v)ij the 

vertical Hessian matrix of Lc restricted to TxS . With this notation, first we notice that, g0(v)ij 

has m − 1 positive eigenvalues, since it coincides with gc(v)ij on ker(�) . By [86, Proposi-

tion 11.2.1], applied to the vector i
√
2(w1,… ,wm) ∈ ℂ

m , we have

where gc(v)ij denotes the inverse matrix of gc(v)ij . Since gc(v)ij is positive definite, then 

g0(v)ij is positive definite if and only if 1 − 2gc(v)
ih
𝜔h𝜔i > 0 , namely if and only if the 

norm of � with respect to gc(v) is strictly less than 1/2 for every v ∈ TxS ∩Ox.

Let us now analyze the converse situation, i.e. we assume now that Jp,r is pseudocoer-
cive for all p, r ∈ M and we prove that global hyperbolicity holds. We recall (see, e.g., [47, 
§2.1]) that an absolutely continuous curve � ∶ [a, b] → M is causal if 𝛾̇(t) ∈ C

𝛾(t) , for a.e. 
t ∈ [a, b] . For any p ∈ M , we set

𝜆(x) − max
𝜈∈TxS,‖𝜈‖=1

2Q2
x
(𝜈) > 0,

(B5)inf
v∈Ox

�
min

𝜈∈TxS,‖𝜈‖=1

�
𝜕vvLc(x, v)[𝜈, 𝜈] − 2Q2

x
(𝜈)

��
> 0.

det(g0(v)ij) = det
(
gc(v)ij − 2�i�j

)
=
(
1 − 2gc(v)

ih
�h�i

)
det(gc(v)ij),
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and, analogously, we define

We call causal diamond a set given by J+(p) ∩ J−(r) , for some p, r ∈ M.
According to [47, Corollary 2.4], global hyperbolicity on a proper cone structure C is 

equivalent to the non-existence of absolutely continuous closed causal curves plus com-
pactness of every causal diamond. We use this characterization to prove the next result that 
extends to Lorentz-Finsler stationary spacetimes [52, Proposition B1].

Theorem B.6  Let (M,  L) be a Finsler spacetime such that Assumption 1 holds. If Jp,r is 
pseudocoercive for all p, r ∈ M , then (M, L) is globally hyperbolic.

Before proving the above result we need the following lemma.

Lemma B.7  Any absolutely continuous causal curve � ∶ [a, b] → M admits a reparametri-
zation on [0, 1] as an H1 curve with Q(𝛾̇(s)) = const..

Proof  By the local splitting and homogeneity in (B1), we can use the locally defined func-
tions t to parametrize locally � as �(t) = (x(t), t) , so that t ↦ ‖ẋ(t)‖ is locally bounded. As 
the support of � is compact, we can patch together the locally defined reparametrization to 
get an H1 curve defined on an interval [0, c], and a further reparametrization gives the the-
sis. 	�  ◻

Proof of Proposition B.6  From Lemma B.7, there is no loss of generality in considering just 
H1 curves parametrized on [0, 1] with Q(𝛾̇(s)) = const. . Assume that there exists a closed 
causal curve � ∶ [0, 1] → M . We take the sequence �n , n ≥ 1 , defined by concatenating the 
n curves �j(s)∶=�(n(s − j∕n)) for s ∈ [j∕n, (j + 1)∕n] , j = 0,… , n − 1 . The sequence satis-
fies J(�n) ≤ 0 but it does not admit any uniformly converging subsequence in contradic-
tion with pseucoercivity of J

�(0),�(0) , hence (M, L) must be causal. Let us now assume by 
contradiction that J+(p) ∩ J−(r) is not compact. Then there exists a sequence of points 
(qn)n∈ℕ ⊂ J+(p) ∩ J−(r) that does not admit any subsequence converging to a point in 
J+(p) ∩ J−(r) . We take then a sequence of causal curves (𝛾n)n∈ℕ ⊂ J+(p) ∩ J−(r) such that 
qn ∈ �n([0, 1]) , for each n ∈ ℕ . Moreover, by Lemma B.7 we can assume that the sequence 
(�n)n∈ℕ belongs to Jp,r . Since J(�n) ≤ 0 for every n ∈ ℕ , by pseudocoercivity (�n)n∈ℕ 
admits a uniformly converging subsequence (�nk )k . The uniform limit is then a causal curve 
� ∶ [0, 1] → M connecting p to r, by theorem [47, Theorem 2.12]. This implies that (qnk )k 
must admit a converging subsequence to a point in J+(p) ∩ J−(r) , which is a contradiction. 	
� ◻

References
	 1.	 Mañé, R.: Lagrangian flows: the dynamics of globally minimizing orbits. Bol. Soc. Brasil. Mat. 

(N.S.) 28(2), 141–153 (1997). https://​doi.​org/​10.​1007/​BF012​33389

J+(p)∶=

{
r ∈ M ∶ r = p or there exists a causal curve � ∶ [0, 1] → M

such that �(0) = p and �(1) = r

}
,

(B6)J−(p)∶=

{
r ∈ M ∶ r = p or there exists a causal curve � ∶ [0, 1] → M

such that �(0) = r and �(1) = p

}
.

https://doi.org/10.1007/BF01233389


Fixed energy solutions to the Euler‑Lagrange equations of an…

1 3

	 2.	 Abbondandolo, A.: Lectures on the free period Lagrangian action functional. J. Fixed Point Theory 
Appl. 13(2), 397–430 (2013). https://​doi.​org/​10.​1007/​s11784-​013-​0128-1

	 3.	 Contreras, G., Delgado, J., Iturriaga, R.: Lagrangian flows: the dynamics of globally minimizing 
orbits II. Bol. Soc. Brasil. Mat. (N.S.) 28(2), 155–196 (1997). https://​doi.​org/​10.​1007/​BF012​33390

	 4.	 Contreras, G.: The Palais-Smale condition on contact type energy levels for convex Lagran-
gian systems. Calc. Var. Partial Diff. Equ. 27(3), 321–395 (2006). https://​doi.​org/​10.​1007/​
s00526-​005-​0368-z

	 5.	 Corona, D.: A multiplicity result for euler-lagrange orbits satisfying the conormal boundary condi-
tions. J. Fixed Point Theory Appl. 22(3), 60 (2020). https://​doi.​org/​10.​1007/​s11784-​020-​00795-4

	 6.	 Corona, D., Giannoni, F.: A new approach for Euler-Lagrange orbits on compact manifolds with 
boundary. Symmetry 12(11), 1917 (2020). https://​doi.​org/​10.​3390/​sym12​111917

	 7.	 Asselle, L., Benedetti, G., Mazzucchelli, M.: Minimal boundaries in Tonelli Lagrangian systems. Int. 
Math. Res. Not. IMRN 2021(20), 15746–15787 (2021). https://​doi.​org/​10.​1093/​imrn/​rnz246

	 8.	 Kovner, I.: Fermat principles for arbitrary space-times. Astrophys. J. 351, 114–120 (1990). https://​doi.​
org/​10.​1086/​168450

	 9.	 Perlick, V.: On Fermat’s principle in general relativity. I. The general case. Class. Quantum Gravity 
7(8), 1319–1331 (1990). https://​doi.​org/​10.​1088/​0264-​9381/7/​8/​011

	10.	 Levi-Civita, T.: Statica einsteiniana. Atti della Reale Accademia dei Lincei. Rendiconti 26, 458–470 
(1917). https://​doi.​org/​10.​1007/​bf029​59761

	11.	 Levi-Civita, T.: La teoria di Einstein e il principio di Fermat. Nuovo Cimento 16, 105–114 (1918). 
https://​doi.​org/​10.​1007/​bf029​59761

	12.	 Pham, M.Q.: Inductions électromagnétiques en relativité générale et principe de Fermat. Arch. Ration. 
Mech. Anal. 1, 54–80 (1957). https://​doi.​org/​10.​1007/​BF002​97996

	13.	 Gibbons, G.W., Werner, M.C.: Applications of the Gauss-Bonnet theorem to gravitational lensing. 
Class. Quantum Gravity 25(23), 235009 (2008). https://​doi.​org/​10.​1088/​0264-​9381/​25/​23/​235009

	14.	 Gibbons, G.W., Herdeiro, C.A.R., Warnick, C.M., Werner, M.C.: Stationary metrics and optical Zer-
melo-Randers-Finsler geometry. Phys. Rev. D 79(4), 044022 (2009). https://​doi.​org/​10.​1103/​PhysR​
evD.​79.​044022

	15.	 Caponio, E., Javaloyes, M.A., Masiello, A.: On the energy functional on Finsler manifolds and 
applications to stationary spacetimes. Math. Ann. 351(2), 365–392 (2011). https://​doi.​org/​10.​1007/​
s00208-​010-​0602-7

	16.	 Caponio, E., Javaloyes, M.A., Sánchez, M.: On the interplay between Lorentzian causality and Finsler 
metrics of randers type. Rev. Mat. Iberoam. 27(3), 919–952 (2011). https://​doi.​org/​10.​4171/​RMI/​658

	17.	 Pham, M.Q.: Projections des géodésiques de longueur nulle et rayons électromagnétiques dans un 
milieu en mouvement permanent. C. R. Acad. Sci. Paris 242, 875–878 (1956)

	18.	 Uhlenbeck, K.: A Morse theory for geodesics on a Lorentz manifold. Topology 14, 69–90 (1975). 
https://​doi.​org/​10.​1016/​0040-​9383(75)​90037-3

	19.	 Fortunato, D., Giannoni, F., Masiello, A.: A Fermat principle for stationary space-times and appli-
cations to light rays. J. Geom. Phys. 15(2), 159–188 (1995). https://​doi.​org/​10.​1016/​0393-​0440(94)​
00011-R

	20.	 Antonacci, F., Piccione, P.: A Fermat principle on Lorentzian manifolds and applications. Appl. Math. 
Lett. 9(2), 91–95 (1996). https://​doi.​org/​10.​1016/​0893-​9659(96)​00019-5

	21.	 Perlick, V., Piccione, P.: A general-relativistic Fermat principle for extended light sources and extended 
receivers. Gen. Relativ. Gravit. 30(10), 1461–1476 (1998). https://​doi.​org/​10.​1023/A:​10188​61024​445

	22.	 Frolov, V.P.: Generalized Fermat’s principle and action for light rays in a curved spacetime. Phys. Rev. 
D 88, 064039 (2013). https://​doi.​org/​10.​1103/​PhysR​evD.​88.​064039

	23.	 Caponio, E., Javaloyes, M.A., Sánchez, M.: Wind Finslerian structures: from Zermelo’s navigation to 
the causality of spacetimes. Memoirs AMS (in press) arXiv:​1407.​5494v5 [math.DG]

	24.	 Giannoni, F., Masiello, A., Piccione, P.: A timelike extension of Fermat’s principle in General Relativ-
ity and applications. Calc. Var. Partial Diff. Equ. 6(3), 263–283 (1998). https://​doi.​org/​10.​1007/​s0052​
60050​091

	25.	 Giannoni, F., Masiello, A., Piccione, P.: A variational theory for light rays in stably causal Lorentzian 
manifolds: regularity and multiplicity results. Commun. Math. Phys. 187(2), 375–415 (1997). https://​
doi.​org/​10.​1007/​s0022​00050​141

	26.	 Giannoni, F., Masiello, A., Piccione, P.: A Morse theory for light rays on stably causal Lorentzian 
manifolds. Ann. Inst. H. Poincaré Phys. Théor. 69(4), 359–412 (1998)

	27.	 Giannoni, F.: Global variational methods in general relativity with applications to gravitational lens-
ing. Ann. Phys. 8(10), 849–859 (1999)

	28.	 Giannoni, F., Masiello, A., Piccione, P.: A Morse theory for massive particles and photons in general 
relativity. J. Geom. Phys. 35(1), 1–34 (2000). https://​doi.​org/​10.​1016/​S0393-​0440(99)​00045-5

https://doi.org/10.1007/s11784-013-0128-1
https://doi.org/10.1007/BF01233390
https://doi.org/10.1007/s00526-005-0368-z
https://doi.org/10.1007/s00526-005-0368-z
https://doi.org/10.1007/s11784-020-00795-4
https://doi.org/10.3390/sym12111917
https://doi.org/10.1093/imrn/rnz246
https://doi.org/10.1086/168450
https://doi.org/10.1086/168450
https://doi.org/10.1088/0264-9381/7/8/011
https://doi.org/10.1007/bf02959761
https://doi.org/10.1007/bf02959761
https://doi.org/10.1007/BF00297996
https://doi.org/10.1088/0264-9381/25/23/235009
https://doi.org/10.1103/PhysRevD.79.044022
https://doi.org/10.1103/PhysRevD.79.044022
https://doi.org/10.1007/s00208-010-0602-7
https://doi.org/10.1007/s00208-010-0602-7
https://doi.org/10.4171/RMI/658
https://doi.org/10.1016/0040-9383(75)90037-3
https://doi.org/10.1016/0393-0440(94)00011-R
https://doi.org/10.1016/0393-0440(94)00011-R
https://doi.org/10.1016/0893-9659(96)00019-5
https://doi.org/10.1023/A:1018861024445
https://doi.org/10.1103/PhysRevD.88.064039
http://arxiv.org/abs/1407.5494v5
https://doi.org/10.1007/s005260050091
https://doi.org/10.1007/s005260050091
https://doi.org/10.1007/s002200050141
https://doi.org/10.1007/s002200050141
https://doi.org/10.1016/S0393-0440(99)00045-5


	 E. Caponio et al.

1 3

	29.	 Giannoni, F., Masiello, A., Piccione, P.: The Fermat principle in general relativity and applications. J. 
Math. Phys. 43(1), 563–596 (2002). https://​doi.​org/​10.​1063/1.​14154​28

	30.	 Caponio, E., Javaloyes, M.A., Masiello, A.: Morse theory of causal geodesics in a stationary spacetime 
via Morse theory of geodesics of a Finsler metric. Ann. Inst. H. Poincaré C Anal. Non Linéaire 27(3), 
857–876 (2010). https://​doi.​org/​10.​1016/j.​anihpc.​2010.​01.​001

	31.	 Hod, S.: Fermat’s principle in black-hole spacetimes. Int. J. Mod. Phys. D 27(14), 1847025 (2018). 
https://​doi.​org/​10.​1142/​S0218​27181​84702​59

	32.	 Faraoni, V.: Nonstationary gravitational lenses and the Fermat principle. Astrophys. J. 398(2), 425–
428 (1992). https://​doi.​org/​10.​1086/​171866

	33.	 Nandor, M.J., Helliwell, T.M.: Fermat’s principle and multiple imaging by gravitational lenses. Am. J. 
Phys. 64(1), 45–49 (1996). https://​doi.​org/​10.​1119/1.​18291

	34.	 Frittelli, S., Kling, T.P., Newman, E.T.: Fermat potentials for nonperturbative gravitational lensing. 
Phys. Rev. D 65(12), 123007 (2002). https://​doi.​org/​10.​1103/​PhysR​evD.​65.​123007

	35.	 Sereno, M.: Gravitational lensing in metric theories of gravity. Phys. Rev. D 67(6), 064007 (2003). 
https://​doi.​org/​10.​1103/​PhysR​evD.​67.​064007

	36.	 Giambò, R., Giannoni, F., Piccione, P.: Gravitational lensing in general relativity via bifurcation the-
ory. Nonlinearity 17(1), 117–132 (2004). https://​doi.​org/​10.​1088/​0951-​7715/​17/1/​008

	37.	 Virbhadra, K.S., Ellis, G.F.R.: Schwarzschild black hole lensing. Phys. Rev. D 62(8), 084003 (2000). 
https://​doi.​org/​10.​1103/​PhysR​evD.​62.​084003

	38.	 Halla, M., Perlick, V.: Application of the Gauss-Bonnet theorem to lensing in the NUT metric. Gen. 
Relativ. Gravit. 52(11), 1 (2020). https://​doi.​org/​10.​1007/​s10714-​020-​02766-z

	39.	 Annila, A.: Least-time paths of light. Mon. Not. R. Astron. Soc. 416(4), 2944–2948 (2011). https://​doi.​
org/​10.​1111/j.​1365-​2966.​2011.​19242.x

	40.	 Perlick, V.: Gravitational lensing from a spacetime perspective. Living Rev. Relat. 7(9) (2004). https://​
doi.​org/​10.​12942/​lrr-​2004-9

	41.	 Perlick, V.: Fermat principle in Finsler spacetimes. Gen. Relativ. Gravit. 38(2), 365–380 (2006). 
https://​doi.​org/​10.​1007/​s10714-​005-​0225-6

	42.	 Duval, C.: Finsler spinoptics. Commun. Math. Phys. 283(3), 701–727 (2008). https://​doi.​org/​10.​
1007/​s00220-​008-​0573-7

	43.	 Masiello, A.: An alternative variational principle for geodesies of a randers metric. Adv. Nonlinear 
Stud. 9(4), 783–801 (2009). https://​doi.​org/​10.​1515/​ans-​2009-​0410

	44.	 Gallego Torromé, R., Piccione, P., Vitório, H.: On Fermat’s principle for causal curves in time ori-
ented Finsler spacetimes. J. Math. Phys. 53(12), 123511 (2012). https://​doi.​org/​10.​1063/1.​47650​66

	45.	 Caponio, E., Stancarone, G.: Standard static Finsler spacetimes. Int. J. Geom. Methods Mod. Phys. 
13(4), 1650040 (2016). https://​doi.​org/​10.​1142/​S0219​88781​65004​07

	46.	 Caponio, E., Stancarone, G.: On Finsler spacetimes with a timelike killing vector field. Class. 
Quantum Gravity 35(8), 085007 (2018). https://​doi.​org/​10.​1088/​1361-​6382/​aab0d9

	47.	 Minguzzi, E.: Causality theory for closed cone structures with applications. Rev. Math. Phys. 31(5), 
1930001–139 (2019). https://​doi.​org/​10.​1142/​S0129​055X1​93000​12

	48.	 Javaloyes, M.A., Sánchez, M.: On the definition and examples of cones and Finsler spacetimes. 
Rev. R. Acad. Cienc. Exactas Fís Nat. Ser. A Mat. 114(1), 30 (2020). https://​doi.​org/​10.​1007/​
s13398-​019-​00736-y

	49.	 Herrera, J., Javaloyes, M.A.: Stationary-complete spacetimes with non-standard splittings and pre-
randers metrics. J. Geom. Phys. 163, 104120 (2021). https://​doi.​org/​10.​1016/j.​geomp​hys.​2021.​
104120

	50.	 Caponio, E., Giannoni, F., Masiello, A., Suhr, S.: Connecting and closed geodesics of a Kropina 
metric. Adv. Nonlinear Stud. 21(3), 683–695 (2021). https://​doi.​org/​10.​1515/​ans-​2021-​2133

	51.	 Caponio, E., Corona, D.: A variational setting for an indefinite Lagrangian with an affine Noether 
charge. Calc. Var. Partial Diff. Equ. 62(2), 39 (2023). https://​doi.​org/​10.​1007/​s00526-​022-​02379-1

	52.	 Giannoni, F., Piccione, P.: An intrinsic approach to the geodesical connectedness of stationary 
Lorentzian manifolds. Commun. Anal. Geom. 7(1), 157–197 (1999). https://​doi.​org/​10.​4310/​CAG.​
1999.​v7.​n1.​a6

	53.	 Caponio, E.: An intrinsic Fermat principle on stationary Lorentzian manifolds and applications. 
Diff. Geom. Appl. 16(3), 245–265 (2002). https://​doi.​org/​10.​1016/​S0926-​2245(02)​00069-4

	54.	 Beem, J.K.: Indefinite Finsler spaces and timelike spaces. Can. J. Math. 22, 1035–1039 (1970). 
https://​doi.​org/​10.​4153/​CJM-​1970-​119-7

	55.	 Lämmerzahl, C., Perlick, V., Hasse, W.: Observable effects in a class of spherically symmetric static 
Finsler spacetimes. Phys. Rev. D 86, 104042 (2012). https://​doi.​org/​10.​1103/​PhysR​evD.​86.​104042

	56.	 Gibbons, G.W., Gomis, J., Pope, C.N.: General very special relativity is Finsler geometry. Phys. 
Rev. D 76(8), 081701 (2007). https://​doi.​org/​10.​1103/​PhysR​evD.​76.​081701

https://doi.org/10.1063/1.1415428
https://doi.org/10.1016/j.anihpc.2010.01.001
https://doi.org/10.1142/S0218271818470259
https://doi.org/10.1086/171866
https://doi.org/10.1119/1.18291
https://doi.org/10.1103/PhysRevD.65.123007
https://doi.org/10.1103/PhysRevD.67.064007
https://doi.org/10.1088/0951-7715/17/1/008
https://doi.org/10.1103/PhysRevD.62.084003
https://doi.org/10.1007/s10714-020-02766-z
https://doi.org/10.1111/j.1365-2966.2011.19242.x
https://doi.org/10.1111/j.1365-2966.2011.19242.x
https://doi.org/10.12942/lrr-2004-9
https://doi.org/10.12942/lrr-2004-9
https://doi.org/10.1007/s10714-005-0225-6
https://doi.org/10.1007/s00220-008-0573-7
https://doi.org/10.1007/s00220-008-0573-7
https://doi.org/10.1515/ans-2009-0410
https://doi.org/10.1063/1.4765066
https://doi.org/10.1142/S0219887816500407
https://doi.org/10.1088/1361-6382/aab0d9
https://doi.org/10.1142/S0129055X19300012
https://doi.org/10.1007/s13398-019-00736-y
https://doi.org/10.1007/s13398-019-00736-y
https://doi.org/10.1016/j.geomphys.2021.104120
https://doi.org/10.1016/j.geomphys.2021.104120
https://doi.org/10.1515/ans-2021-2133
https://doi.org/10.1007/s00526-022-02379-1
https://doi.org/10.4310/CAG.1999.v7.n1.a6
https://doi.org/10.4310/CAG.1999.v7.n1.a6
https://doi.org/10.1016/S0926-2245(02)00069-4
https://doi.org/10.4153/CJM-1970-119-7
https://doi.org/10.1103/PhysRevD.86.104042
https://doi.org/10.1103/PhysRevD.76.081701


Fixed energy solutions to the Euler‑Lagrange equations of an…

1 3

	57.	 Kouretsis, A.P., Stathakopoulos, M., Stavrinos, P.C.: General very special relativity in Finsler cos-
mology. Phys. Rev. D 79(10), 104011 (2009). https://​doi.​org/​10.​1103/​PhysR​evD.​79.​104011

	58.	 Bogoslovsky, G.Y.: A special-relativistic theory of the locally anisotropic space-time. I: the metric 
and group of motions of the anisotropic space of events. Il Nuovo Cimento B 40, 99–115 (1977). 
https://​doi.​org/​10.​1007/​BF027​39183

	59.	 Bogoslovsky, G.Y.: A special-relativistic theory of the locally anisotropic space-time II mechanics 
and electrodynamics in the anisotropic space. Nuovo Cimento B 40, 116–134 (1977). https://​doi.​
org/​10.​1007/​BF027​39184

	60.	 Bogoslovsky, G.Y.: A viable model of locally anisotropic space-time and the Finslerian generaliza-
tion of the relativity theory. Fortschr. Phys. 42(2), 143–193 (1994). https://​doi.​org/​10.​1002/​prop.​
21904​20203

	61.	 Girelli, F., Liberati, S., Sindoni, L.: Planck-scale modified dispersion relations and Finsler geom-
etry. Phys. Rev. D 75(6), 064015 (2007). https://​doi.​org/​10.​1103/​PhysR​evD.​75.​064015

	62.	 Kostelecký, V.A.: Riemann-Finsler geometry and Lorentz-violating kinematics. Phys. Lett. B 
701(1), 137–143 (2011). https://​doi.​org/​10.​1016/j.​physl​etb.​2011.​05.​041

	63.	 Colladay, D., McDonald, P.: Classical Lagrangians for momentum dependent Lorentz violation. 
Phys. Rev. D 85, 044042 (2012). https://​doi.​org/​10.​1103/​PhysR​evD.​85.​044042

	64.	 Kostelecký, V.A., Russell, N., Tso, R.: Bipartite Riemann-Finsler geometry and Lorentz violation. 
Phys. Lett. B 716(3–5), 470–474 (2012). https://​doi.​org/​10.​1016/j.​physl​etb.​2012.​09.​002

	65.	 Russell, N.: Finsler-like structures from Lorentz-breaking classical particles. Phys. Rev. D 91(4), 
045008 (2015). https://​doi.​org/​10.​1103/​PhysR​evD.​91.​045008

	66.	 Pfeifer, C., Wohlfarth, M.N.R.: Causal structure and electrodynamics on Finsler spacetimes. Phys. 
Rev. D (2011). https://​doi.​org/​10.​1103/​PhysR​evD.​84.​04403​91104.​1079

	67.	 Fuster, A., Pabst, C.: Finsler pp-waves. Phys. Rev. D 94(10), 104072 (2016). https://​doi.​org/​10.​
1103/​physr​evd.​94.​104072

	68.	 Hohmann, M., Pfeifer, C.: Geodesics and the magnitude-redshift relation on cosmologically symmetric 
Finsler spacetimes. Phys. Rev. D 95(10), 104021 (2017). https://​doi.​org/​10.​1103/​physr​evd.​95.​104021

	69.	 Voicu, N.: Volume forms for time orientable Finsler spacetimes. J. Geom. Phys. 112, 85–94 (2017). 
https://​doi.​org/​10.​1016/j.​geomp​hys.​2016.​11.​005

	70.	 Fuster, A., Pabst, C., Pfeifer, C.: Berwald spacetimes and very special relativity. Phys. Rev. D 98(8), 
084062 (2018). https://​doi.​org/​10.​1103/​physr​evd.​98.​084062

	71.	 Hohmann, M., Pfeifer, C., Voicu, N.: Finsler gravity action from variational completion. Phys. Rev. D 
100(6), 064035 (2019). https://​doi.​org/​10.​1103/​physr​evd.​100.​064035

	72.	 Javaloyes, M.A., Sánchez, M.: Finsler metrics and relativistic spacetimes. Int. J. Geom. Methods Mod. 
Phys. 11(9), 1460032 (2014). https://​doi.​org/​10.​1142/​S0219​88781​46003​29

	73.	 Minguzzi, E.: Light cones in Finsler spacetime. Commun. Math. Phys. 334(3), 1529–1551 (2015). 
https://​doi.​org/​10.​1007/​s00220-​014-​2215-6

	74.	 Minguzzi, E.: Convex neighborhoods for Lipschitz connections and sprays. Monatsh. Math. 177, 569–
625 (2015). https://​doi.​org/​10.​1007/​s00605-​014-​0699-y

	75.	 Caponio, E., Masiello, A.: On the analyticity of static solutions of a field equation in Finsler gravity. 
Universe 6, 59 (2020). https://​doi.​org/​10.​3390/​unive​rse60​40059

	76.	 Minguzzi, E.: An equivalence of Finslerian relativistic theories. Math. Phys. 77, 45–55 (2016). https://​
doi.​org/​10.​1016/​S0034-​4877(16)​30004-0

	77.	 Palais, R.S.: Morse theory on Hilbert manifolds. Topology 2, 299–340 (1963). https://​doi.​org/​10.​1016/​
0040-​9383(63)​90013-2

	78.	 Abbondandolo, A., Schwarz, M.: A smooth pseudo-gradient for the Lagrangian action functional. Adv. 
Nonlinear Stud. 9, 597–623 (2009). https://​doi.​org/​10.​1515/​ans-​2009-​0402

	79.	 Corvellec, J.-N., Degiovanni, M., Marzocchi, M.: Deformation properties for continuous functionals 
and critical point theory. Topol. Methods Nonlinear Anal. 1(1), 151 (1993). https://​doi.​org/​10.​12775/​
TMNA.​1993.​012

	80.	 Fadell, E., Husseini, S.: Category of loop spaces of open subsets in Euclidean space. Nonlinear Anal. 
17(12), 1153–1161 (1991). https://​doi.​org/​10.​1016/​0362-​546X(91)​90234-R

	81.	 Minguzzi, E.: Affine sphere relativity. Commun. Math. Phys. 350, 749–801 (2017). https://​doi.​org/​10.​
1007/​s00220-​016-​2802-9

	82.	 Javaloyes, M.A., Soares, B.L.: Anisotropic conformal invariance of lightlike geodesics in pseudo-Fin-
sler manifolds. Class. Quantum Gravity 38(2), 16 (2021). https://​doi.​org/​10.​1088/​1361-​6382/​abc22​5Id/​
No025​002

	83.	 Javaloyes, M.A., Soares, B.L.: Geodesics and Jacobi fields of pseudo-Finsler manifolds. arXiv:​1401.​
8149v1 [math.DG] (2014) https://​doi.​org/​10.​48550/​arXiv.​1401.​8149

https://doi.org/10.1103/PhysRevD.79.104011
https://doi.org/10.1007/BF02739183
https://doi.org/10.1007/BF02739184
https://doi.org/10.1007/BF02739184
https://doi.org/10.1002/prop.2190420203
https://doi.org/10.1002/prop.2190420203
https://doi.org/10.1103/PhysRevD.75.064015
https://doi.org/10.1016/j.physletb.2011.05.041
https://doi.org/10.1103/PhysRevD.85.044042
https://doi.org/10.1016/j.physletb.2012.09.002
https://doi.org/10.1103/PhysRevD.91.045008
https://doi.org/10.1103/PhysRevD.84.0440391104.1079
https://doi.org/10.1103/physrevd.94.104072
https://doi.org/10.1103/physrevd.94.104072
https://doi.org/10.1103/physrevd.95.104021
https://doi.org/10.1016/j.geomphys.2016.11.005
https://doi.org/10.1103/physrevd.98.084062
https://doi.org/10.1103/physrevd.100.064035
https://doi.org/10.1142/S0219887814600329
https://doi.org/10.1007/s00220-014-2215-6
https://doi.org/10.1007/s00605-014-0699-y
https://doi.org/10.3390/universe6040059
https://doi.org/10.1016/S0034-4877(16)30004-0
https://doi.org/10.1016/S0034-4877(16)30004-0
https://doi.org/10.1016/0040-9383(63)90013-2
https://doi.org/10.1016/0040-9383(63)90013-2
https://doi.org/10.1515/ans-2009-0402
https://doi.org/10.12775/TMNA.1993.012
https://doi.org/10.12775/TMNA.1993.012
https://doi.org/10.1016/0362-546X(91)90234-R
https://doi.org/10.1007/s00220-016-2802-9
https://doi.org/10.1007/s00220-016-2802-9
https://doi.org/10.1088/1361-6382/abc225Id/No025002
https://doi.org/10.1088/1361-6382/abc225Id/No025002
http://arxiv.org/abs/1401.8149v1
http://arxiv.org/abs/1401.8149v1
https://doi.org/10.48550/arXiv.1401.8149


	 E. Caponio et al.

1 3

	84.	 Candela, A.M., Flores, J.L., Sánchez, M.: Global hyperbolicity and Palais-Smale condition for action 
functionals in stationary spacetimes. Adv. Math. 218, 515–556 (2008). https://​doi.​org/​10.​1016/j.​aim.​
2008.​01.​004

	85.	 Fathi, A., Siconolfi, A.: On smooth time functions. Math. Proc. Camb. Philos. Soc. 152, 303–339 
(2012). https://​doi.​org/​10.​1017/​S0305​00411​10006​61

	86.	 Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler Geometry. Springer-Verlag, New 
York (2000)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1016/j.aim.2008.01.004
https://doi.org/10.1016/j.aim.2008.01.004
https://doi.org/10.1017/S0305004111000661

	Fixed energy solutions to the Euler-Lagrange equations of an indefinite Lagrangian with affine Noether charge
	Abstract
	1 Introduction
	2 Notations, assumptions and a class of examples
	2.1 Lorentz-Finsler metrics

	3 Variational setting
	3.1 Preliminary results

	4 The variational structure of the action in relation with the flow of K
	5 Main result
	6 An existence and multiplicity result
	Appendix A Affine Noether charge
	Appendix B Pseudocoercivity and global hyperbolicity
	Anchor 13
	References




