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a b s t r a c t 

Periodic orbits are fundamental to nonlinear systems. We investigate periodic orbits for a dissipative map- 

ping, derived from a prototype model of a non-linear driven oscillator with fast relaxation and a limit 

cycle. We show numerically the exponential growth of periodic orbits quantity and provide an analytical 

bound for such growth rate, by making use of the transition matrix associated with a given periodic or- 

bit. Furthermore, we give numerical evidence to support that optimal orbits, those that maximize time 

averages, are often unstable periodic orbits with low period, by numerically comparing their performance 

under a family of sinusoidal functions. 
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. Introduction 

Periodic orbits have ever been considered a fundamental 

nowledge to understand dynamical systems [1] . In phase space, 

he average transit time of the irregular orbits is determined 

y the nearby invariant manifolds of unstable periodic orbits [2] , 

s in systems with chaotic scattering [3] or describing the escaping 

f magnetic field lines in tokamaks [4] . Furthermore, the fractal in- 

ariant measure of chaotic strange attractors can be approximated 

ystematically by the set of unstable n -periodic orbits of increasing 

 [5] . Unstable periodic orbits have also been associated to turbu- 

ence characteristics in fluids. For example, in flows described by 

he Navier-Stokes equation, periodic orbits and their symbolic dy- 

amics up to any desired period have been used to compute dy- 

amical averages [6] . Some applications, as the interpretation of 

ransit time and scaping, do not require any control of the unsta- 

le orbits. On the other hand, the control of oscillations requires a 

tabilization of a chosen unstable orbit by applying a small pertur- 

ation [15] . 

To investigate properties of these orbits, some maps have been 

onsidered, among them the logistic [7] , Hénon [8] , and the cir- 

le map [9] . In fact, the knowledge of the behavior of the periodic

rbits of a map can provide a lot of dynamically meaningful in- 

ormation, such as the general structure of the system’s attractors 

5] and its optimizing invariant measures [10] . Since this realiza- 

ion, many attentions were drawn into this subject. In particular, 
∗ Corrsponding auhthor. 
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he simplest question one can ask about a map concerning its pe- 

iodic orbits is how their quantity grows, as the period gets larger. 

n this matter, many techniques were developed to count the num- 

er of periodic orbits of a given period for certain maps, even ob- 

aining its exact number as the power series expansion of a certain 

unction that depends on the periodic attractors [11] . 

More recently, questions were posed, also for maps, about the 

ptimality of periodic orbits [ 12 , 13 , 14 ]. Such topic concerns with

he time average of a determined orbit under a measurable func- 

ion, and what can be said, in general, about the orbits that maxi- 

ize this average [13] . Those investigations provide many applica- 

ions. For example, it was shown that one can stabilize a system 

hrough small changes near some unstable periodic orbit [15] , and 

hat that change gets smaller the less unstable the orbit is. The 

easure of instability is given by the orbit’s Lyapunov exponent 

1] , which is an example of quantity obtained by the average, over 

n orbit, of a real valued function. 

For the analysis of the periodic orbits, we have chosen a one- 

imensional two-parameters circle map. This kind of circle map 

ccurs in a wide class of models, such as the forced Brusselator 

16] , some electronic oscillators [ 17 , 18 ], and other systems in en-

ineering [ 19 , 20 ] and physics [ 21 , 22 ]. Mathematically, it rises nat-

rally as the discrete representation of a harmonic oscillator per- 

urbed by impulsive kicks at the limit of high dissipation [23] . The 

onsidered map has diverse and rich dynamics, as descripted in 

 24 , 25 ] and [26] yet their structure allows us to extract some ana-

ytical results. 

In this work, we apply the transition matrix technique, along 

ith fundamental results on one dimensional dynamics [27] , to es- 
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Fig. 1. Parameter space of the family of dissipative circle maps splitted into differ- 

ent periodic attractors 
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imate the growth number of the unstable periodic orbits of the 

onsidered dissipative circle map. Furthermore, trough numerical 

imulations, we identify some patterns in the evolution of optimal 

rbits under a family of sinusoidal functions. Thus, we find numer- 

cal evidence that optimal orbits are usually unstable periodic or- 

its with low periods. 

In section 2 we introduce the map analyzed in this work. The 

ounting of unstable periodic orbits is in section 3. Identification 

f optimal period orbits are presented in section 4. The conclu- 

ions are in section 5, and some technicalities needed for the main 

esults are left in the Appendix. 

. The Dissipative Circle Map 

The considered dissipative circle map, comes up as a natural 

iscrete representation of the periodically perturbed system of dif- 

erential equations 
 

 

 

 

 

d x 

d t 
= −y + sx 

(
1 − x 2 − y 2 

)
+ 2 a 

∑ 

n ∈ Z 
δ( t − 2 πbn ) 

d y 

d t 
= sy 

(
1 − x 2 − y 2 

)
+ x 

(2.1) 

n the limit of high dissipation [ 1 , 17 ]. The perturbation is repre-

ented by the Dirac function δ, with intensity a and period 2 πb. 

ithout this disturbance, the system is integrable and has very 

imple dynamics: apart from the unstable singularity in ( 0 , 0 ) , ev- 

ry initial condition is attracted to the unitary circumference. 

We can transform the system in a discrete one by considering 

he iterates as the points ( r n , θn ) , in polar coordinates, exactly after 

ach kick, as in [24] . Doing so, we obtain the following map: 

 

r n +1 , θn +1 ) = 

⎛ 

⎜ ⎜ ⎝ 

1 

1+ ( r n −2 −1 ) e −4 πsb 
+ 

4 a cos ( θn +2 πb ) √ 

1+ ( r n −2 −1 ) e −4 πsb 
+ 4 a 2 , 

arctan 

( 

sin ( θn +2 πb ) 

cos ( θn +2 πb ) +2 a 

√ 

1+ ( r n −2 −1 ) e −4 πsb 

) 

⎞ 

⎟ ⎟ ⎠ 

(2.2) 

Letting s , the parameter of dissipation, go to infinity, the map 

onverges to the system 

 

r n +1 , θn +1 ) = 

(√ (
1 + 4a cos ( θn + 2 πb ) + 4 a 2 

)
, 

arc tan 

(
sin ( θn +2 πb ) 

cos ( θn +2 πb ) +2 a 

)) (2.3) 

hich is independent of r, allowing the dynamics to be repre- 

ented by a one-dimensional map in θ : 

an ( θn +1 ) = 

sin ( θn + 2 πb ) 

cos ( θn + 2 πb ) + 2 a 
(2.4) 

here θn +1 is chosen in such a way that sin θn +1 · sin ( θn + 2 πb ) ≥
 . 

When we refer to a difference equation, such as (2.4), as a 

ap, we mean the unique function f a,b : S 
1 → S 1 such that θn +1 = 

f a,b ( θn ) . 

This map, beyond emerging naturally from the perturbed sys- 

em ( 2 . 1 ) at the limit for s → + ∞ [23] , describes oscillations of a

oupled oscillator [24] . From a purely mathematical point of view, 

e regard f a,b : S 
1 → S 1 as a continuous map of the circle, for each 

 and b fixed. 

We shall consider the parameters a and b varying in the rect- 

ngle [ 0 , 1 ] × [ 0 , 0 . 5 ] as, up to coordinate changes, it represents 

very possible dynamical behavior observed in the whole plane 

24] . Depending of the parameters a and b, the map has different 

olutions such as periodic, quasi-periodic and chaotic attractors. 

n Fig. 1 are represented the attractors obtained in the parameter 

pace, determined numerically by analyzing the behavior of a 

ypical orbits after neglecting the transient. The colors indicate the 

ttractor observed, as it was reported in [26] . For a > 0.5, there
2 
ay be other periodic or chaotic attractors besides those shown in 

ig. 1 . These multiple attractors are achieved for initial conditions 

n their basin of attraction [24] . 

Furthermore, the map has other solutions corresponding to un- 

table periodic orbits that we analyze in this article, with the goal 

f determining its asymptotic growth. 

For parameters in which cos ( θ + 2 πb ) + 2 a is never zero, f can 

e extended continuously as a map of the interval [ −π, π ] , feature 

hat will be crucial to count the unstable periodic orbits. For the 

emaining parameters, f is a circle homeomorphism, hence, the 

ell-known result that we shall recall in section 3 guaranties that 

he asymptotic growth of periodic orbits is null [27] . 

In the next sections, we will continue our analysis of the dis- 

ipative circle map under the perspective of counting unstable pe- 

iodic orbits and determining optimal trajectories [14] . The latter 

oncerns with the time average of a determined orbit under a 

easurable function, and what can be said, in general, about the 

rbits that maximize this average [13] . 

. Counting Unstable Periodic Orbits 

A great deal of information can be extracted from a system only 

y knowledge of the behavior of its stable and unstable periodic 

rbits [15] . This and the next section will be devoted to their study 

or certain parameters of the dissipative circle map. We shall start 

y stablishing some basic nomenclature. 

For a map f , we will denote by P (k ) [resp. N(k ) ] the number of

eriod- k points [resp. orbits] of f , and by F (k ) the number of fixed

oints of the iterate f k . We’d also like to distinguish the unstable 

eriod- k points, denoting its quantity by U(k ) . 

The following identities are a direct consequence of the above 

efinition: 

 ( k ) = 

P ( k ) 

k 
(3.1) 

 ( k ) = F ( k ) −
∑ 

i | k, i � = k 
P ( i ) (3.2) 

Our focus is on the asymptotic growth of the previously defined 

unctions, in the following sense: 

Let S(k ) be a sequence with an infinite number of non-zero 

erms, we define the asymptotic growth of S(k ) by: 

imsup 

k → + ∞ 

log ( S ( k ) ) 

k 

f such limit exists. If S(k ) → 0 as k → + ∞ , we define the asymp-

otic growth to be zero. 

The main method applied in this section concerns estimates of 

 (k ) . For that matter, we affirm that for any map f , F (k ) and P (k )

ave the same asymptotic growth. The idea of the proof of this 

act is to bound the sum in Eq. (3.2) by the sum over all i ≤ k 
2 . The

echnical details are omitted (see Appendix). 
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Fig. 2. In the left, the cobweb plot of the period-3 orbit and the associated par- 

tition. In the middle and in the right, respectively, the transition graph and ma- 

trix constructed from the period-3 orbit, encoding which intervals gets mapped in 

which intervals. 
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Fig. 3. Numerical calculation of the number of periodic points for a = 0 . 55 and b = 

0 . 343 , k ≤ 19 in logarithmic scale. 
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It’s a well-known result that if f is a circle homeomorphism, 

hen the periods of the orbits are bounded [27] . This result classi- 

es half of our maps with respect to periodic orbit counting: In- 

eed, if | a | < 0 . 5 , then since cos ( θ + 2 πb ) takes all the values in

 −1 , 1 ] , for some θ , cos ( θ + 2 πb ) + 2 a = 0 . 

As we observed, for such parameters, f a,b is a circle homeomor- 

hism and the previous result can be applied, giving that the num- 

er periodic orbits of the corresponding map f a,b have zero asymp- 

otic growth for each b ∈ [ 0 , 0 . 5 ] . 

Another well-known theorem [27] states that for a C 2 one- 

imensional map with non-flat critical points, there must be only 

 finite number of attracting periodic orbits. In the notation previ- 

usly stablished, this means U(k ) and P (k ) have the same asymp-

otic growth. Along with the result relating P to F , all of the rele-

ant information is encoded by the sequence F (k ) . 

Although we cannot derive a general result valid for any a > 

 . 5 , we use the fact that the map is continuous in the interval to

se techniques, applicable to particular values of a , to obtain upper 

nd lower bounds to the asymptotical growth of F (k ) . 

The upper bound is given by the fact that for those maps, each 

oint have at most two pre-images. Since the critical points of f k 

re the pre-images by the some f i , i ≤ k , of the original critical

oints, denoting its number by C(k ) , we obtain inductively 

 ( k ) ≤
k +1 ∑ 

i =1 

2 

i ≤ 2 

k +2 (3.3) 

We conclude with the observation that between two unstable 

eriodic points of period- k , there must be either a stable fixed 

oint or a critical point of f k , and, since the first is finite, we can

ake k sufficiently large and consider only the latter; giving us 

 ( k ) ≤ C ( k ) + 1 ≤ 2 

k +2 + 1 (3.4) 

Therefore, the asymptotic growth of U(k ) is less or equal than 

og 2 , for any map f a,b with a > 0 . 5 . 

For the lower bound, we’ll start to restrict to particular cases. 

n order to explain the technique, let’s focus on the map with pa- 

ameters a = 0 . 55 and b = 0 . 343 , that we will denote simply by f .

he main hypothesis that this map provides is the existence of a 

eriod-3 orbit. Beyond guarantying the existence of orbits for all 

eriods, via Sharkovskii’s Theorem [27] , we can infer something 

bout its growth, by a simple step by step construction, illustrated 

n Fig. 2 and described in detail bellow: 

First, define the partition of the periodic orbit in a way to have 

he periodic points as extremities. Then, construct the associated 

ransition graph, linking an interval I i to the interval I j if and only 

f f ( I i ) ⊇ I j . The information of this graph can be encoded in a 

 × 2 matrix, defining a i j to be 1, if there’s a link from I i to I j , or 0,

therwise. Denoting the matrix by M f , it has the important prop- 

rty 

 f k = 

(
M f 

)k 
(3.5) 

here a i j = k means there’s k ways of getting from I i to I j in k 

teps. 
3 
In particular, if a ii = k for the matrix n -th iterate, then I i have k 

xed points of f n and, summing over all i (or taking the trace of 

he matrix), that gives the lower bound 

og 
F ( k ) 

k 
≥

log 
(
tr 

(
M 

k 
f 

))
k 

(3.6) 

This inequality holds for any continuous interval map and can 

e applied to any of its periodic orbits. To the special case a = 0 . 55

nd b = 0 . 343 , the construction is represented in Fig. 2 . In that

ase, the partition has two intervals I 1 and I 2 such that f ( I 1 ) con- 

ains only I 1 and f ( I 2 ) contains both intervals. That results, by the 

bove-described process, in the transition graph and transition ma- 

rix shown below. 

The right-hand side of ( 3 . 6 ) in this case can be calculated us- 

ng basic Linear Algebra techniques (see the Appendix for the com- 

utation), to conclude that the asymptotic growth h is between 

og ( ( 1 + 

√ 

5 ) / 2 ) e log 2 . We then conclude that 

og 

(
1 + 

√ 

5 

2 

)
≤ h ≤ log 2 (3.7) 

here h is the asymptotic growth of the map f . 

Furthermore, a numerical estimative, as illustrated in Fig. 3 , 

here we directly locate and count the periodic points, gives us 

 ≈ 0 . 49 , meaning that the asymptotic growth of P (k ) is given ap-

roximately by 

 ( k ) ∼ exp ( 0 . 49 k ) (3.8) 

The method consisted in partitioning the domain [ −π, π ] in 

hin intervals { [ x i , x i +1 ] : i = 0 , . . . , n } and identifying, for each iter- 

te f k , when does the graph intersects the line y = x . This can eas-

ly be done by analyzing the sign of ( f ( x i ) − x i ) · ( f ( x i +1 ) − x i +1 ) 

if the sign is negative, then the graph certainly crossed the line 

 = x ). The number of intersections gives a lower bound to F (k ) .

hen, we use Eq. (3.2) to estimate P (k ) and, finally, round it up to

he nearest multiple of k . Notice that, after this last step, the value 

s still a lower bound, because of Eq. (3.1) . 

Thus, we prove that the growth of unstable periodic orbits is 

xponential and provide an estimative for its rate. 

Now we would like to extend this estimative to the largest pos- 

ible region of the parameter space. For this extension, the notion 

f “path-connectedness” will play an important role. We recall that 

 subset S of the plane is path-connected if for every pair of points 

, y ∈ S, there exists a continuous curve γ : [ 0 , 1 ] → S connecting x

nd y , that is, satisfying γ (0) = x and γ (1) = y . Furthermore, given

 set A of the plane and a point x ∈ A , we say that C is the con-

ected component of A containing x if C is the largest subset of A 

ontaining x that is path connected. 
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Fig. 4. Bifurcation diagram for b = 

1 
3 

and a ∈ [ 0 , 0 . 55 ] , inside the period-3 stable 

region, illustrating that the orbit’s ordering doesn’t change if we identify the upper 

and lower boundaries of the interval. 

p  

p

t

w

(

t

i

t  

e

m

p

t

p  

t  

t

g

n

s

l  

p

k

o

S

c

i  

d

M

 

a

p  

f

g

r

i

t

n

Fig. 5. Schematics of the general result proposed for a generic period. The green 
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We immediately see that the extension can be done to the 

art of the period-3 regime, in Fig. 1 , such that a > 0 . 5 (for those

arameters the considered map is continuous and, therefore, the 

ransition matrix method can be applied) consisted of points to 

hich we can trace a path inside the periodic regime area from 

 0 . 55 , 0 . 343 ) (in other words, the path-connected component of 

he period-3 regime containing ( 0 . 55 , 0 . 343 ) ). 

What if we want a similar estimative for regions correspond- 

ng to other periodic regimes? We would then have to deal with 

ransition matrices of order k − 1 , where k is the period. In a gen-

ral setting, this would be highly unpractical, since there are many 

atrices corresponding to periodic orbits, some of them very com- 

licated and others simply not providing any positive lower bound. 

However, the key observation we make is that the ordering of 

he periodic orbit doesn’t change up to cyclic permutation inside a 

eriodic regime. This fact can be visualized in Fig. 4 , where is plot-

ed the bifurcation diagram for a ∈ [ 0 , 0 . 55 ] with b = 1 / 3 . Notice

hat, if we glued the upper and lower boundaries of the rectan- 

le together, the period-3 orbit form three continuous paths who 

ever crosses each other. Using this fact, we can make some re- 

trictions. In fact, if the parameter is close enough to the vertical 

ine a = 0 . 5 , we can trace it back to a rational rotation (that is, a

arameter for which a = 0 and b is rational and produces period- 

 orbits). Therefore, the only matrices we have to analyze are the 

nes corresponding to a periodic orbit of a rotation (see Fig. 5 ). 

implifying even further, we can iterate the rotation p times, for 

ertain p, such that, if { x 1 . . . , x k } is the periodic orbit in increas- 

ng real order, then f p ( x 1 ) = x 2 , f 
p ( x 2 ) = x 3 , . . . , f 

p ( x k −1 ) = x k and

f p ( x k ) = x 1 . The transition matrix associated is the ( k − 1 ) -th or- 

er matrix: 

 k = 

⎛ 

⎜ ⎜ ⎝ 

0 1 . . . 0 

. . . 0 

. . . 
. . . 

0 . . . 0 1 

1 . . . . . . 1 

⎞ 

⎟ ⎟ ⎠ 

(3.9) 

That is, the matrix element a i j = 1 , if j = i + 1 or i = k − 1 , and

 i j = 0 otherwise. Let r k be the largest eigenvalue of M k . As com- 

uted before, for k = 3 , it can be shown that 1 < r k < 2 and, there-

ore, log r k gives us a positive lower bound for the periodic orbits’ 

rowth number (in fact, our previous estimative for ( 0 . 55 , 0 . 343 ) 

elies on the fact that r 2 = log ( ( 1 + 

√ 

5 ) / 2 ) ). 

More than that, it can be proved that those values get arbitrar- 

ly closer to log 2 , which is the universal upper bound. Therefore, 

he largest the period of the region, the more precise is the growth 

umber estimative, using this method. More precisely, if h de- 
k 

4 
otes the growth number for a parameter ( a, b ) inside a period- k 

egime, with a > 0 . 5 , and in the same path-connected component 

f a rotation, then 

og r k ≤ h ≤ log 2 (3.10) 

ith log r k → log 2 , as k → ∞ . 

Thus, we extend the initial counting predictions from a partic- 

lar choice of parameters a, b to parameters in a larger area of the 

arameter space. 

. Optimal Trajectories 

Many applications of dynamical systems involve maximizing 

he average of a real valued function over the orbits of a map. We 

ill call these maximizing orbits “optimal”. 

In this section, we will make clear the hypothesis over the sys- 

em and the performance measuring function, briefly recall well- 

nown results of Ergodic Theory and some conjectures about op- 

imal orbits, and finally bring those questions to the specific case 

f the dissipative circle maps family, identifying patterns through 

umerical simulations. 

The objects we will be dealing with are pairs ( f, ϕ ) , where f :

 → X is a map on a measure space X (in our case, X is the unitary

ircle S 1 or the interval [ −π, π ] ), and ϕ : X → R is a measurable

unction. 

Furthermore, our interest is restricted to atypical orbits. By that 

e mean orbits that generate time averages different from almost 

very orbit, which generates a default performance. 

Not every system makes this restriction possible. Take, for ex- 

mple, a system with two periodic attractors, each with a positive 

easure basin, providing two different performances. For such a 

ystem, we wouldn’t have a default performance, since there are 

wo different average values, each one achieved by a positive mea- 

ure set of initial conditions. Hence the importance of the Birkhoff

rgodic Theorem [14] , that states the following: 

If f : X → X have an invariant measure μ (we may assume 

(X ) = 1 ), then for any ϕ : X → R measurable, 

lim 

 →∞ 

1 

n 

n ∑ 

k =1 

ϕ 

(
f k ( x ) 

)
xists and is the same for μ-almost every x ∈ X . By that we mean

hat if A is the set of points that doesn’t satisfy the property, 
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Fig. 6. Optimal periods for the family of functions f γ (x ) = cos ( x − 2 πγ ) , for each 

γ ∈ [ 0 , 1 ] . 

Fig. 7. For each p ≤ 100 , we plot the measure of the set of parameters γ that pro- 

duce an optimal period greater or equal to p. 
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hen μ(A ) = 0 . We call such limit the time-average and denote it

y 〈 ϕ〉 (x ) . Furthermore, if f is ergodic with respect to μ, mean-

ng that the only subsets A ⊂ X satisfying f −1 (A ) = A must have 

(A ) = 0 or μ(A ) = 1 , this average equals the spatial average, that

s 

 ϕ 〉 ( x ) = ∫ 
X 

ϕ ( x ) d μ( x ) (4.1) 

This reduces the task of checking the limit for every initial con- 

ition to prove ergodicity, for which there are several techniques. 

In the following, we run some numerical simulations to see 

ow the family of circle maps behaves with respect to optimal tra- 

ectories. The family of real valued functions is chosen to be 

f γ ( x ) = cos ( x − 2 πγ ) 

s is usual in the literature. The parameters chosen are a = 0 . 57

nd b = 0 . 343 . 

A more insightful way to look at the information of Fig. 6 , at

east towards the conjectured in [13] , is displayed in Fig. 7 , where

e consider how the probability of a period- p orbit being optimal 

ecays with increasing p. 

The literature on ergodic optimization usually talks about maxi- 

izing measures, rather than orbits. So, in order to discuss the cur- 
5 
ently known results, it is important to explain the link between 

he concepts. 

To every initial condition x 0 of a map f can be assigned a nat- 

ral measure, given by 

x 0 = lim 

n →∞ 

1 

n 

n −1 ∑ 

i =0 

δ f i ( x 0 ) 

here, for a point y and a set A , δy (A ) = 1 if y ∈ A and 0 if y / ∈ A .

his measure represents the proportion of the orbit inside the set 

 and it is called the measure generated by the orbit of x 0 . The time

verage of an orbit under a performance function can also be given 

n terms of the generated measure, through the following formula: 

 ϕ 〉 ( x 0 ) = 

∫ 
X 

ϕ ( x ) d μx 0 ( x ) (4.2) 

Then, is natural to switch the focus to the question of what in- 

ariant measures maximizes the time average, since those encap- 

ulate the ones generated by orbits. 

In particular physical problems, it is often easier to estimate 

he spatial average of an observed quantity. Eq. 4.2 in this context 

eans that, if a measure generated by certain initial condition is 

ell distributed, then we can expect the same behavior for a large 

ortion of the phase space, without having to iterate countless ini- 

ial conditions. This proves useful specially in statistical mechan- 

cs, where the dimension of the phase space is large enough that 

s impractical to observe the behavior of each particle separately 

nd, therefore, mean properties on the space at a given time are 

ssential. 

We call the support of a probability measure μ the smallest 

losed set F such that μ(F ) = 1 . In this language, the question pro-

osed in [13] becomes: when is an optimizing measure supported 

n an orbit, and how often is this orbit periodic? In this direction, 

t was suggested that natural measures can be obtained in chaotic 

ystems from the analysis over the unstable periodic orbits [28] . 

In a general setting, we can construct spaces that allow fam- 

lies of functions for which optimality is never achieved in pe- 

iodic orbits. The idea is that if two functions in a vector space 

re optimized by the same orbit, then the functions in the line 

egment between them is also optimized by that orbit and, more 

trongly, if one of the extremities is strictly optimized by that or- 

it, then the whole segment (except possibly the other extremity) 

ave that same property. With that in mind and the simple obser- 

ation that a constant function is optimized by any orbit, including 

on-periodic ones, we can construct a whole semi plane of func- 

ions that are strictly optimized by the same non-periodic orbit. 

or the computation, see the Appendix. 

Even though this allows pathological families of functions to be 

onstructed, we believe, based on the numerical simulation in sim- 

ler cases, that simple additional hypotheses concerning how the 

urve is distributed in function space should be helpful in the path 

o answering that question. 

In this section we gave numerical evidence for a circle mapping 

hat the optimal orbit, for generic smooth functions, is typically a 

eriodic orbit of low period, as it was conjectured in [13] . How- 

ver, it was pointed out in [29] that this may not be valid gen-

rally for continuous system, once optimal time averages may be 

chieved by long-period unstable orbits. In fact, in [29] it was pre- 

ented an example of optimal long-period orbits that spend sub- 

tantial amounts of time in a region of phase space that is close 

o large values of the performance function. However, an essen- 

ial difference for flows is that chaotic attractors can have em- 

edded within them, not only unstable periodic orbits, but also 

nstable steady states, and optimality can often occur on steady 

tates [30] . Nonetheless optimality is typically achieved at low pe- 

iod [30]. Furthermore, optimal periodic orbits are insensitive to 
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mall perturbations of a smooth performance function of the sys- 

em state, while the optimality of a non-periodic orbit can be 

estroyed by arbitrarily small perturbations [31] . Complementary, 

nly a few unstable orbits with low periods give good mean statis- 

ical properties in dynamical systems in fluid dynamics [32] . 

. Conclusion 

In this article we analyzed properties of periodic orbits of a dis- 

ipative circle map, obtained from a system of differential equa- 

ions with a stable limit cycle and an unstable fixed point in the 

enter. The analyzed map was useful to apply our methods of 

ounting the number of periodic orbits and determining the main 

haracteristics of the optimal trajectories. 

We illustrated how the asymptotic growth of periodic orbits of 

 system can be extracted from very little information. In this case, 

ust the existence of a low period orbit and the way it is ordered 

llowed us to construct the transition graph and matrix, through 

hich we estimated the lower bound for the growth number. We 

lso observed that this information is carried through a continu- 

us path inside a periodic regime, allowing the estimative to be 

xtended from one point to a large region. 

Furthermore, we’ve searched for optimal trajectories under a 

inusoidal performance function and, through numerical simula- 

ions, provided evidence to conclude that optimal trajectories are 

ften periodic ones with low periods. More precisely, the probabil- 

ty of a given unstable periodic orbit being optimal seems to decay 

xponentially with the period. However, for continuous systems, as 

entioned in section 4, even so the optimality is typically achieved 

t low periods, examples have been found of optimal time averages 

chieved by long-period unstable orbits. 
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ppendix 

This material was prepared for the reader interested in fill in 

he technical gaps left by some of the claims made in the article. 

ven though, from a rigorous point of view, those arguments and 

omputations are necessary to validate the ideas presented, they 

ely solely on standard techniques and the proofs does not required 

ophisticated or new ideas. Therefore, we decided to include them 

eparately to maintain the rigor without sacrificing the readability 

f the main text. 

Fixed and Periodic Points Growth 

In the following we’re going to prove a result very useful and 

ften assumed automatically as true. It states that the asymptoti- 

al growth of periodic points and of fixed point for the iterations 

s the same, provided that both exists. Once we guess the initial 
6 
ound for the difference between the sequences, the computation 

s a simple exercise of analysis and the interested reader could fill 

n the gaps. Yet, since the whole proof never displays in the exam- 

ned literature, we decided to include it. 

Let 

 = lim 

k →∞ 

log ( F ( k ) ) 

k 

We clearly have P (k ) ≤ F (k ) . Hence, lim 

k →∞ 

log ( P( k ) ) 
k 

≤ h . 

Define R (k ) = F (k ) − P (k ) . Eq. (3.2) gives us 

 ( k ) = 

∑ 

i | k/i � = k 
P ( i ) 

It will suffice to show that lim 

k →∞ 

R (k ) 
N(k ) 

= 0 . 

For that we consider the following upper bound for R : 

R ( k ) ≤
k 
2 ∑ 

i =1 

P ( i ) 

k 

2 

max 

{
P ( i ) : i ≤ k 

2 

}
k 

2 

max 

{
F ( i ) : i ≤ k 

2 

}

By hypothesis, lim 

k →∞ 

log ( F ( k ) ) 
k 

= h , so ∀ ε > 0 , there exists N ∈ N

uch that for every k ≥ N, log F (k ) 
k 

< h + ε ⇒ F (k ) < e ( h + ε ) k . 
To conclude the construction of the upper bound, note that for 

ach ε > 0 there is only finite k such that F (k ) ≥ e ( h + ε ) k and, there-

ore, we can take the maximum, say m ε . Hence, there is k 0 ∈ N, 

we can take it greater than N) such that for larger values of k , the

unction e ( h + ε ) k > m ε . For those values the following holds: 

 ( k ) ≤ k 

2 

e ( h + ε ) 
k 
2 

That gives us automatically a lower bound for F (k ) : 

 ( k ) = F ( k ) − R ( k ) ≥ F ( k ) − k 

2 

e ( h + ε ) k 

Taking k sufficiently large such that log F (k ) 
k 

> h − ε, we obtain: 

 ( k ) ≥ e ( h −ε ) k − k 

2 

e ( h + ε ) k 

Hence: 

N ( k ) 

R ( k ) 
≥ e ( h −ε ) k 

k 
2 

e ( h + ε ) 
k 
2 

− 1 ≥ 2 e ( h −ε ) k −( h + ε ) k 2 

k 
= 

2 e 
k 
2 ( h −3 ε ) 

k 

Since h > 0 and the inequalities holds for every ε > 0 , we

hoose ε < 

h 
3 , implying h − 3 ε > 0 . A simple application of the

’Hospital rule (extending, of course, the function’s domain) gives 

2 e 
k 
2 

( h −3 ε ) 

k 
→ + ∞ , if k → ∞ and, therefore, N(k ) 

R (k ) 
goes to infinity as 

ell 

To conclude the proof: 

lim 

 →∞ 

log ( F ( k ) ) 

k 
− log ( P ( k ) ) 

k 
= lim 

k →∞ 

log 
(

F ( k ) 
P ( k ) 

)
k 

= lim 

k →∞ 

log 
(

P ( k ) + R ( k ) 
P ( k ) 

)
k 

= lim 

k →∞ 

log 
(
1 + 

R ( k ) 
P ( k ) 

)
k 

Since P(k ) 
R (k ) 

→ + ∞ , we have R (k ) 
P(k ) 

→ 0 and, therefore, the above 

imit is zero. 
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Going back to the beginning, we have lim 

k →∞ 

log ( P( k ) ) 
k 

= 

lim 

 →∞ 

log ( F ( k ) ) 
k 

= h , finishing the proof. 

Asymptotic growth for a = 0 . 55 and b = 0 . 343 

In this section we present an application of the transition ma- 

rix technique to bound the asymptotic growth of the considered 

ap with parameters a = 0 . 55 and b = 0 . 343 . 

Denote by h the desired asymptotic growth. We already know 

hat h ≤ log 2 , since it is a universal upper bound for the family. 

Now, we obtain the lower bound using inequality ( 3 . 6 ) , where 

 f = 

(
0 1 

1 1 

)
The eigenvalues of this matrix are the roots of the characteristic 

olynomial P (t) = t 2 − t − 1 , λ1 = 

1+ √ 

5 
2 and λ2 = 

1 −√ 

5 
2 . Thus, we 

ave 

r 
(
M 

k 
f 

)
= 

(
1 + 

√ 

5 

2 

)k 

+ 

(
1 − √ 

5 

2 

)k 

nd since ( 1 −
√ 

5 
2 ) k → 0 , in the limit we have 

lim 

 →∞ 

log 

[(
1+ √ 

5 
2 

)k 

+ 

(
1 −√ 

5 
2 

)k 
]

k 
= 

lim 

 →∞ 

log 

(
1+ √ 

5 
2 

)k 

k 
= log 

(
1 + 

√ 

5 

2 

)
Finally, taking the limit on both sides of ( 3 . 6 ) gives us h ≥

og ( 1+ √ 

5 
2 ) . 

Optimality Regions 

Let T : X → X be a map, where X = [ −π, π ] or S 1 , and V a vec-

or space of functions f : X → R (for example, it could be the space

f k −Lipchsitz functions, C r functions, measurable functions or in- 

ersection of these spaces, as long as the property that defines it 

s preserved by linear combination). For abbreviation, let’s call a 

unction for which optimality is achieved in a non-periodic orbit 

typical . 

We can write the space V as the following union over x ∈ X: 

 = 

⋃ 

x ∈ X R x 

here R x = { f ∈ V : 〈 f 〉 (x ) ≥ 〈 f 〉 (y ) , ∀ y ∈ X } is the set of functions 

hat make the orbit of x optimal. Notice that those sets are not 

isjoint, for example any constant function is contained in R x , for 

very x . If we want the disjointness property for points in different 

rbits, as well as identify strict optimality, we can simply define 

 

+ 
x = { f ∈ V : 〈 f 〉 (x ) > 〈 f 〉 (y ) , ∀ y ∈ X } . 

The key observation is that those optimality and strict optimal- 

ty regions behave simply with respect to linear combinations. The 

ext claim makes that precise: Let f and g be performance func- 

ions such that 

 f 〉 ( x ) > 〈 f 〉 ( y ) 
〈 g〉 ( x ) ≥ 〈 g〉 ( y ) 

Then, for each α > 0 , β ≥ 0 , defining h = α f + βg, we have 

 h 〉 ( x ) > 〈 h 〉 ( y ) 
This follows from the linearity of the time average and the sim- 

le calculation: 

 h 〉 ( x ) = 〈 α f + βg〉 ( x ) = α〈 f 〉 ( x ) + β〈 g〉 ( x ) > α〈 f 〉 ( y ) + β〈 g〉 ( y )
= 〈 h 〉 ( y ) 

As a consequence, if f is atypical, then for α > 0 and any con- 

tant c ∈ R , the function h = α f + c is also atypical. To see that,
7 
ake x as a point of the optimal orbit, y a generic point and g a

onstant function. 

From that, we conclude that for each example of functions 

ielding optimality at a non-periodic orbit, there is at least a semi- 

lane of functions with that same property and, therefore, one- 

arameter families of functions chosen inside these semiplanes 

ill never make a periodic orbit optimal. 

That being said, there are two important points as why the con- 

ectures in [13] can still hold under a mild restriction. First, this 

s not a constructive result, it depends on first locating examples 

f atypical functions. Second, since we’re talking about spaces of 

unctions, the number of dimensions involved makes it almost im- 

ossible, in normal examples, for a one-parameter family to be 

ontained in a two-dimensional space, unless one chose it to be 

hat way (for example, there are arbitrarily large finite sets of pa- 

ameters in the sinusoidal family considered in section 4 that gives 

inearly independent functions, therefore the family is not con- 

ained in any finite dimensional vector space). In that matter, we 

elieve a “transversality” hypothesis, guarantying that the family 

oesn’t stay inside those atypical spaces too long, should not be 

ery restrictive and yet provide new tools in the direction of giv- 

ng a positive answer to the conjecture. 
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