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Caracterização tecnológica das zeólitas naturais associadas às rochas 
eruptivas da Formação Serra Geral, na região de Piraju-Ourinhos (SP)

Mirian Chieko Shinzato1, Tarcísio José Montanheiro2, Valdecir de Assis Janasi3, 
Francisco de Assis Negri2, Jorge Kazuo Yamamoto3 & Sandra Andrade3

Resumo  Ocorrências de zeólitas associadas às rochas eruptivas da Formação Serra Geral são encontradas 
na região de Piraju-Ourinhos (SP). Considerando a importância das propriedades tecnológicas desses minerais, 
como na retenção de contaminantes em solos e águas, foram caracterizados dois tipos de amostras: o dacito 
(ZD) e as zeólitas que preenchem suas amígdalas (ZP). Foram determinadas a composição química e minera-
lógica, a superfície específica, a micromorfologia e a capacidade de troca catiônica (CTC). A caracterização 
mineralógica de ZP revelou presença de mordenita, e na amostra de dacito amigdaloidal (ZD): mordenita, 
quartzo, sanidina e plagioclásio sódico. A fórmula química obtida para a mordenita foi: Na0,33 K1,4 Ca0,82 Ba0,12 
Sr0,03 [Al4 Si20,1O48].11,38 H2O, e a relação Si/Al igual a 5,02 - valor típico de mordenitas de simetria ortorrôm-
bica do tipo Cmcm. Valores de superfícies específicas revelaram que a área interna – onde grande parte da troca 
iônica ocorre - corresponde a 93,70% da superfície total em ZP e 89,83% em ZD. A imagem da mordenita em 
microscópio eletrônico de varredura revelou agregados de fibras alongadas e claras. Valores de CTC determi-
nados para a mordenita e o dacito amigdaloidal foram, respectivamente, iguais a 1,2 e 0,1 meq/g. Comparando 
a CTC teórica da mordenita (obtida pela fórmula química) que é de 2,2 meq/g, com os valores experimentais, 
observa-se que a sua troca iônica foi incompleta, provavelmente pelo fato do cátion trocador (K+) ocupar canais 
que dificultam seu deslocamento. Verifica-se, portanto, que o arranjo estrutural da zeólita controla e limita sua 
propriedade de troca catiônica.
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Abstract   Technological characterization of the  natural zeolites associated with eruptive rocks from 
the Serra Geral Formation, Paraná Sedimentary Basin, Piraju-Ourinhos region.  Zeolites associated 
with eruptive rocks from the Serra Geral Formation occur in the Piraju-Ourinhos region (SW of State of  São 
Paulo). These zeolites were selected for a study of their technological properties in retaining some contaminants 
in soil and water. Two samples were analysed: the amygdaloidal dacite (ZD) and a concentrate of zeolites (ZP) 
extracted from the amygdales in this rock. The chemical and mineralogical composition, the surface area, the mi-
cromorphology and the cationic exchange capacity (CEC) of these samples were determined. The mineralogical 
analyses show that the zeolite concentrate (ZP) corresponds mostly to mordenite; the other main minerals present 
in ZD are quartz, sanidine and sodic plagioclase. The chemical formula determined for the mordenite is: Na0.33 
K1.4 Ca0,82 Ba0.06 Sr0.015 [Al4.01 Si20.11O48].11.41H2O; the Si/Al ratio of 5.02 indicates an orthorrombic symmetry and 
space group Cmcm. Surface area determinations indicate that the internal areas of the samples- where most of 
the ion exchange reactions occur – correspond to 93.7% (ZP) and 89.8% (ZD) of their total specific surface area. 
Scanning electron microscopy reveal that the mordenite is formed by aggregates of  light-colored long fibers. The 
CEC are, respectively, 1.2 meq/g (ZP) and 0.1 meq/g ZD), while the theoretical CEC of the mordenite (obtained 
from its chemical formula) is 2.2 meq/g. This indicates that the ionic exchange capacity of the studied mordenite 
is not complete, which is probably related to the position of the exchanger cation (K+), occupying channels in the 
mineral structure, which controls and limits its mobility.

Keywords: zeolite, dacite, technological characterization, cationic exchange capacity.
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ólitas naturais no tratamento de efluentes industriais e 
domiciliares e, na recomposição de solos contaminados 
por metais pesados, devido às suas propriedades de ad-
sorção e de troca iônica (Kalló 2001;  Beyazit et al.2003; 
Pitcher et al. 2004; Jimenez et al. 2004; Wingenfelder et 
al. 2005). Acrescente-se a isso a sua aplicação como car-

INTRODUÇÃO  Nos últimos 50 anos, a família das 
zeólitas tem sido alvo de estudos de identificação mineral 
e caracterização tecnológica, tendo em vista as excelen-
tes qualidades que as suas propriedades físico-químicas 
oferecem para o uso e aplicação em diversas atividades 
humanas. Em particular, ressalta-se a utilização de ze-
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ga na indústria do papel e, na indústria cimenteira, como 
cimento pozolânico ou material diretamente aplicado no 
concreto (Duarte et al. 2002).

Neste trabalho, são apresentados os resultados 
de uma pesquisa direcionada à identificação e caracte-
rização das zeólitas naturais associadas às rochas erup-
tivas da Formação Serra Geral, que afloram na região 
de Piraju-Ourinhos (SP) ou, mais especificamente, no 
município de Timburi-SP.

Contexto geológico  A ocorrência de zeólita de Tim-
buri/SP (Fig. 1) está associada a dacitos amigdaloidais 
que pertencem à Formação Serra Geral da Bacia Sedi-
mentar do Paraná. Eles ocupam, aproximadamente, 65 
x 20 Km de uma área alongada na direção N40W que 
se estende entre o Rio Paranapanema (altitude local de 
450 até 550 m) e a Serra da Fartura, com elevações aci-
ma de 800 m (Janasi et al. 2007).

Os dacitos são as rochas eruptivas mais seten-
trionais da Bacia do Paraná e constituem, localmente, a 
base da pilha vulcânica, em contato direto com sedimen-
tos eólicos da Formação Botucatu. O dacito, em direção 
aos contatos superior e inferior, tem caráter vítreo, e é 
tipicamente mais rico em vesículas, as quais são preen-
chidas apenas parcialmente por zeólitas fibrosas, calcita 
e variedades de sílica microcristalina. Quando em conta-
to com o arenito, a matriz vítrea passa do cinza-escuro ao 
marrom-“chocolate”. O litotipo assim formado corres-

ponde a uma rocha de coloração freqüentemente marrom 
acastanhado porfirítica com fenocristais milimétricos de 
plagioclásio, e matriz vítrea fortemente vesicular (Fig. 
2). As vesículas existentes facilmente ultrapassam 1 cm, 
com possibilidade de atingir mais de 5 cm de diâmetro, 
e variam quanto ao achatamento e preenchimento, que 
geralmente é de zeólitas, quartzo (localmente ametista), 

Figura 1 - Localização e mapa geológico da região de Timburi (SP) (fonte: Negri et al. 2006).

Figura 2 - Foto do dacito amigdaloidal portador de 
zeólita da Formação Serra Geral (Bacia Sedimentar 
do Paraná).
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calcedônea ou localmente calcita.

Zeólitas: aspectos gerais  Zeólitas são aluminossilica-
tos hidratados formados por estruturas tridimensionais 
de tetraedros de SiO4 e de AlO4, cuja deficiência de carga 
- gerada pela substituição isomórfica do Si4+ pelo Al3+ - é 
compensada por cátions alcalinos e/ou alcalinos terrosos 
situados nas cavidades dos anéis de oxigênio. Nessas ca-
vidades, a água e outras moléculas podem-se alojar e/ou 
movimentar, permitindo hidratação reversível e uma tro-
ca iônica equivalente à substituição do Si4+ por Al3+ nos 
tetraedros estruturais (Pabalan & Bertetti 2001).

A uniformidade das cavidades formadas pelos 
anéis de oxigênio nas zeólitas contrasta com a relati-
va variedade de tamanho observada nos poros de uma 
sílica gel, alumina ativada e carvão ativado, permitin-
do-lhe a capacidade de troca catiônica (CTC) de 2 a 4 
meq/g, ou seja, aproximadamente duas vezes a CTC de 
uma argila bentonita (Mumpton 1999). Assim sendo, ao 
contrário da maioria dos trocadores iônicos não-crista-
linos (resinas orgânicas e gels inorgânicos aluminossili-
cáticos), a zeólita impõe uma seletividade entre os íons 
competidores.

A estrutura microporosa das zeólitas faz com 
que elas apresentem uma superfície interna muito gran-
de em relação à externa, e lhes permite a transferência 
de massa entre o espaço cristalino e o meio externo, 
mas que pode ser limitada pelo diâmetro dos poros da 
estrutura zeolítica (Aguiar et al. 2002). 

Mumpton (1984) observou que o processo de 
adsorção do metal é influenciado pela natureza da ze-
ólita, sendo, por conseguinte, fundamental que se co-
nheça a sua composição química, CTC, tamanho dos 
poros e outras características mais específicas. Outra 
particularidade que pode levar à diminuição da CTC da 
zeólita e, até, tornar impossível a troca, ocorre quando 
os cátions ficam presos em algumas partes estruturais, 
como nas cavas sodalitas, por exemplo.

De modo geral, as zeólitas com baixa relação 
Si/Al têm as maiores capacidades de troca, apesar de 
algumas exceções, devido à presença de impurezas ou 
variações na composição (Breck 1984). Colella (1996) 
verificou que zeólitas com baixa relação Si/Al possuem 
carga estrutural relativamente elevada e preferência 
por cátions de maior valência e de raio iônico peque-
no, pelo fato de existir distância média menor entre os 
sítios aniônicos (AlO2) adjacentes da estrutura zeolítica 
(Bosco et al. 2004).

A distribuição geológica dos minerais de zeólita 
é restrita e está associada, preferencialmente, às rochas 
de origem eruptiva ou sedimentar e, raramente formam 
depósitos minerais economicamente explotáveis como 
aqueles conhecidos em Cuba, China, Japão e outros 
poucos países. 

No cenário nacional, Rezende & Angélica 
(1997) destacam três ocorrências: zeólitas na Formação 
Corda  (Bacia do Parnaíba, MA/TO); analcima na For-
mação Adamantina  (Bacia do Paraná, SP) e heulandita 
na Formação Botucatu (Bacia do Paraná, MS). Além 
dessas, os autores ainda mencionam as ocorrências da 

Formação Uberaba na Bacia do Paraná e aquelas da 
Formação Macau na Bacia Potiguar. Destacam-se, ain-
da, as zeólitas associadas aos basaltos amigdaloidais da 
Formação Serra Geral (Bacia do Paraná) descritas por 
Franco (1952) e Murata et al. (1987), entre outros.

O Brasil ainda não registra a lavra deste bem mi-
neral, apesar do reconhecimento de um prospecto com 
cerca de 4 x 109 t de minério associado a arenitos da For-
mação Corda na Bacia do Parnaíba, Estado do Maranhão 
(Rezende 2002). A zona zeolítica da Formação Corda 
compreende um pacote de arenitos eólicos e fluviais 
onde duas espécies de zeólitas – estilbita e laumontita 
– são os constituintes mais abundantes do cimento, que 
corresponde à 20 - 40% da rocha (Rezende 2002).

MATERIAIS E MÉTODOS  Os estudos das pro-
priedades tecnológicas foram executados em frações de 
duas amostras volumétricas coletadas em afloramentos 
típicos da Formação Serra Geral, na área do municí-
pio de Timburi (SP): a primeira, amostra ZP (zeólita 
pura), é constituída por zeólitas extraídas diretamente 
das cavidades dos dacitos  com auxílio de espátula de 
metal; a segunda, amostra ZD (dacito amigdaloidal), é 
constituída pelo dacito amigdaloidal, rocha hospedeira 
das zeólitas. As duas amostras (ZP e ZD) foram pulve-
rizadas até a granulometria inferior a 200 mesh, respec-
tivamente, em moinhos de ágata e em disco de fricção. 
Seguiram-se os ensaios para caracterização tecnológica 
que incluíram: determinação da composição química 
e mineralógica, determinação da superfície específica 
(SE), análise micromorfológica por meio de microsco-
pia de varredura (MEV) e determinação da capacidade 
de troca catiônica (CTC). 

Caracterização tecnológica  A asso-
ciação mineralógica foi identificada mediante técnicas 
de difração de raios X, cujos difratogramas foram gera-
dos por um equipamento Siemens D500 do Laboratório 
de Difração de raios X do Instituto de Geociências da 
Universidade de São Paulo (IGc-USP). A composição 
química das amostras foi obtida por fluorescência de 
raios X no aparelho Philips/PW2400 do Laboratório de 
Caracterização Tecnológica do Departamento de En-
genharia de Minas e Petróleo da Escola Politécnica da 
USP. 

A determinação da superfície específica (SE) 
das amostras pulverizadas se processou segundo duas 
técnicas de análise. A primeira, conhecida como méto-
do de adsorção de N2 (BET) - realizada no Laboratório 
de matérias-primas particuladas e sólidos não metálicos 
do Departamento de Engenharia Metalúrgica e de Mate-
riais da Escola Politécnica da USP - determina somente 
a superfície da área externa do mineral (Inel & Tümsek 
2000; Ruthven 2001). A segunda técnica - proposta por 
Bower & Gschwend (1952) - permite medir as áreas 
externa e interna do mineral por saturação com etileno-
glicol. Nesse procedimento, considerou-se que cada 1 
mg de etileno-glicol é capaz de recobrir uma área de 
3,22 m2, conforme Grohmann (1972). 

Para verificar a feição morfológica da zeólita 
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estudada, frações da amostra ZP foram observadas em 
microscópio eletrônico de varredura em um aparelho 
LEO/440, equipado com espectrômetro de energia dis-
persiva (Si-Li) da Oxford do Laboratório de Microsco-
pia Eletrônica do IGc-USP. 

Nos ensaios para determinação da capacidade 
de troca catiônica (CTC) utilizou-se a técnica em que 
as amostras são previamente saturadas com solução de 
acetato de sódio (N) e, em seguida, com solução de ace-
tato de amônio (N). Primeiramente, com a finalidade de 
deslocar os íons originalmente presentes nas cavidades 
das zeólitas pelo Na+, foram preparadas misturas de 0,4 
g de cada amostra e 40 mL de solução de acetato de só-
dio (N) que foram mantidas sob agitação durante 2 ho-
ras, à temperatura ambiente e, em seguida, centrifuga-
das e filtradas. Na segunda etapa, as amostras saturadas 
com sódio foram misturadas com 40 mL de solução de 
acetato de amônio (N) e agitadas por 2 horas, à tempe-
ratura ambiente, para provocar o deslocamento do Na+ 
pelo NH4

+. As soluções coletadas após a centrifugação 
e filtragem foram encaminhadas para análise via ICP-
OES (ARL/3410) no Laboratório de Química e ICP do 
IGc-USP. Os valores de Na+ quantificados nas soluções 

representam os teores dos íons retidos na estrutura da 
zeólita que, posteriormente, foram deslocados pelo 
amônio. Os teores expressos na unidade miligrama por 
litro (mg/L) foram convertidos em miliequivalente por 
grama (meq/g) para expressarem os respectivos valores 
da capacidade de troca catiônica.

RESULTADOS e discussÃO
Composição mineralógica e química  Os estudos 
de caracterização mineralógica da amostra ZP identifi-
caram como principal componente a zeólita mordenita, 
ao passo que na amostra de dacito amigdaloidal (ZD) a 
composição é de mordenita, quartzo, sanidina e plagio-
clásio sódico. 

A mordenita é uma das oito zeólitas naturais 
consideradas suficientemente abundantes para a explo-
ração comercial que, no entanto, há várias décadas vem 
sendo substituída por suas formas sintéticas (Mortier et 
al. 1978). De acordo com Armbruster & Gunter (2001), 
a estrutura cristalina da mordenita assemelha-se a fo-
lhas franzidas, cujos anéis são formados por seis tetrae-
dros paralelos a (100) (Fig. 3a). As folhas estão ligadas 
por quatro tetraedros que permitem a definição de dois 

Figura 3 - Estrutura da mordenita: (a) folhas pararelas à (100): metade dos ápices dos tetra-
edros aponta para cima; a outra metade, para baixo (fonte: Armbruster & Gunte 2001); (b) 
folhas conectadas ao longo do eixo b constituídas por 4 tetraedros (cinza escuro), formando 
anéis com 12 tetraedros (12MRc) e 8 tetraedros (8MRc) – poros comprimidos - ao longo do 
eixo c (fonte: Simoncic & Armbruste 2004); (c) sistema de canais na mordenita onde se pode 
observar suas conexões, e a estrutura oferecendo passagem apenas em uma única direção, 
para a difusão dos grandes íons ou moléculas (fonte: Simoncic & Armbruste  2004).
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tipos de séries de canais: (1) paralelos ao eixo c (Fig. 
3b), de formato elipsoidal com abertura de 6,5 x 7,0 
Å, constituído por 12 tetraedros (12MRc) e, ainda de 8 
tetraedros (8MRc), fortemente comprimidos, com aber-
tura de 2,6 x 5,7 Å; e (2) paralelos ao eixo b (Fig. 3c), 
formado por 8 tetraedros (8MRb) de abertura de 3,4 x 
4,8 Å, que conecta os grandes canais com aqueles forte-
mente comprimidos (Simoncic & Armbruster 2004).

Esse tipo de sistema com diferentes poros en-
contrado na mordenita – constituído por canais largos 
ligados por canais mais estreitos - favorece a difusão bi-
dimensional de pequenas moléculas como N2, O2, etc., 
mas restringe a difusão unidimensional de moléculas 
maiores, como as orgânicas (Braga & Morgon 2007).

Nas mordenitas, os cátions compensadores de 
carga ocupam três sítios principais: dois estão nos pe-
quenos canais conectores, paralelos ao eixo b (8MRb), 
próximos dos anéis formados pelos 4 tetraedros e, o 
terceiro, no centro do canal formado por 12 tetraedros 
(12MRc) (Armbruster & Gunter 2001). 

Apesar das mordenitas apresentarem, efetiva-
mente, canais largos (12MRc da Fig. 3), na maioria das 
formas naturais, estes se tornam pequenos, seja devido 
à localização dos cátions compensadores de carga ou 
ainda, à presença de material amorfo (impurezas) no 
interior dos poros e, ainda, às falhas no empilhamento 
estrutural (Simoncic & Armbruster 2004). Segundo os 
mesmos autores, tais falhas provocam o rompimento da 
continuidade dos grandes canais e, dessa forma, per-
mitem somente a entrada de moléculas com diâmetro 
menor que 4,5 Å em suas cavidades.

Uma característica comum na composição quí-
mica da zeólita é a presença de O, Si, Al, Ca, Mg, Ba, 
Na, K e H como elementos fundamentais, e de Fe, Sr, Li, 
Be, Cs, Cu e Pb como elementos subordinados ou oca-
sionais (Passaglia & Sheppard 2001). Para esses autores, 
a quantidade de ferro nas zeólitas é desprezível por ser 
proveniente de impurezas, não devendo ser considera-
da no cálculo de sua fórmula química. A ausência desse 
elemento evidencia-se também na coloração das zeólitas 
que são predominantemente brancas ou pálidas.  

A fórmula geral da zeólita pode ser representa-
da como MxDy[Alx+2y Sin-(x+2y) O2n].mH2O, onde M cor-
responde aos cátions monovalentes e D aos bivalentes; 
os elementos encontrados no interior dos colchetes 
ocupam a estrutura tetraédrica e os da  parte externa re-
presentam os cátions trocáveis, que neutralizam a carga 
negativa da estrutura; as moléculas de água presentes 
são, por fim, as que geralmente coordenam os cátions 
trocáveis (Gottardi & Galli 1985).  

Com o resultado da análise química da amostra 
ZP, calculou-se a fórmula química da mordenita, toman-
do por base 48 átomos de oxigênio (Tab. 1), de acordo 
com o método proposto por Jackson et al. (1967); não 
foram incluídos nesse cálculo os óxidos de teor inferior 
a 0,1 mg/L, por serem considerados impurezas.

Assim, de acordo com os valores apresentados 
na tabela 1, a fórmula química da mordenita está repre-
sentada a seguir:

Na0,33 K1,4 Ca0,82 Ba0,12 Sr0,03 [Al4 Si20,1O48] . 11,38H2O

Para garantir a validade da composição mineral 
da zeólita, calculou-se o valor do erro (E%), segundo a 
equação (1) (Gottardi & Galli 1985).

      E(%)= [Al - Alteórico] / [Alteórico]                (1)                 

onde,  
[Al] =  íon/fórmula do alumínio multiplicado pela sua 
valência.
[Alteórico] = soma dos valores de íon/fórmula dos cátions 
monovalentes e bivalentes multiplicados pelas respec-
tivas  cargas.

De acordo com  Gottardi & Galli (1985) valores 
de E(%) superiores a 10% invalidam a fórmula. Consi-
derando a composição química proposta para a morde-
nita estudada, verificou-se que o seu E (%) é de 2,27%, 
validando-na.

O valor da relação Si/(Si+Al) das mordenitas 
(razão R) pode variar entre 0,81 e 0,86 nas amostras 
amigdaloidais e entre 0,80 e 0,85 nas sedimentares 
(Passaglia & Sheppard 2001). A amostra estudada apre-
senta R igual a 0,83, ou seja, dentro da faixa menciona-
da pelos autores acima para os dois tipos de origens.

A análise da composição química da morde-
nita permite verificar que a relação Si/Al é de 5,02 e 
confirma os valores propostos por Colella (1996) para 
este tipo de zeólita, que estariam entre 4,19 e 5,79. Ain-
da, segundo os estudos de Braga & Morgon (2007), as 
mordenitas com Si/Al por volta de 5 possuem simetria 
ortorrômbica do tipo Cmcm.

Segundo a fórmula da mordenita estudada,  o K+ é 
o principal cátion compensador de cargas, seguido do Ca2+, 
Na+, Ba2+ e Sr2+. Segundo Mortier et al. (1978), o K+ trocá-
vel de zeólitas com estrutura do tipo da mordenita (grupo 
espacial Cmcm) ocupam, comumente, os canais interco-
nectores (8MRb) (Fig. 3c). Ressalta-se que nessa posição, 

Tabela 1 - Composição química (% peso) da mor-
denita (amostra ZP) e os respectivos íons de sua 
fórmula à base de 48 átomos de oxigênio.

óxidos % Íon íon/fórmula

SiO2 67,85 Si4+ 20,081

Al2O3 11,48 Al3+ 4,003

CaO 2,59 Ca2+ 0,821

Na2O 0,58 Na+ 0,332

K2O 3,70 K+ 1,398

BaO 1,03 Ba2+ 0,12

SrO 0,17 Sr2+ 0,03

O2- 48,00

H2O
+ 12,60 H2O 11,38
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o cátion trocável apresenta dificuldades de deslocamento 
durante as reações de troca com os íons do meio externo, 
tornando esse processo possivelmente incompleto. 

Superfície específica (SE)  e análise morfológica  A 
superfície específica externa e total (externa e interna) 
das amostras obtidas, respectivamente, pelas técnicas 
de adsorção de N2 (BET) e de etileno-glicol permitiram 
a determinação da superfície interna (Tab. 2).

Os dados da tabela 2 evidenciam que a super-
fície específica total da amostra ZP é maior, por ser ela 
constituída apenas por mordenita – o que justifica o bai-
xo valor obtido na amostra ZD (dacito amigdaloidal), 
composta de 10 a 20% de mordenita.

Observa-se que a área interna nas três amostras 
analisadas, corresponde a 93,70% da superfície total na 
zeólita pura (ZP) e 89,83% no dacito amigdaloidal (ZD). 
Assim sendo, espera-se que a propriedade de adsorção 
(diretamente relacionada à superfície específica) seja 
maior no interior dos poros, e principalmente em ZP.

A análise da imagem de mordenitas, obtida por 
meio do microscópio eletrônico de varredura (MEV), 
revelou que a morfologia da zeólita estudada é formada 
por agregado de fibras longas e claras (Fig. 4).

Capacidade de troca catiônica (CTC)  Os resulta-
dos da capacidade de troca catiônica das amostras de 
mordenita e das rochas portadoras de zeólitas são apre-
sentados na tabela 3. Pabalan & Bertetti (2001) mostra-
ram que a capacidade de troca catiônica teórica pode 
ser obtida com a fórmula química da zeólita mediante a 
determinação do número de equivalente do(s) cátion(s) 
trocável(is) ou, simplesmente, a partir do peso molecu-
lar do Al3+ presente na amostra (Tab. 3). 

As amostras de dacito amigdaloidal (ZD) apre-
sentou 8,3% da capacidade de troca catiônica obtida na 
zeólita pura (ZP). Esse baixo valor era esperado, uma 
vez que, além de zeólitas (10 a 20% no dacito amigda-
loidal), a amostra é constituída principalmente por outros 
minerais como quartzo e feldspatos, que não contribuem 
para o aumento da propriedade de troca iônica. 

O valor de CTC, obtido por meio de saturação 
com acetato de sódio seguido de acetato de amônio, cor-
responde a 54,5% daquele determinado a partir do con-
teúdo de Al3+ da fórmula química da mordenita (ZP), ou 
seja, 2,2 meq/g. Esses dados corroboram os obtidos por 
Townsend & Loizidou (1984), que pesquisaram o equi-
líbrio de troca entre Na+ e NH4

+ de mordenitas naturais 
de Lovelock (Nevada) e os compararam com a CTC cal-
culada a partir do conteúdo de Al3+ (2,11 meq/g). Os au-
tores observaram uma eficiência de 50,1% e concluíram 
que, nas mordenitas naturais, a troca iônica entre Na+ e 
NH4

+ ocorre de forma reversível, porém incompleta. Por 
outro lado, verifica-se que, apesar das mordenitas sin-
téticas (AW-300 e Zeolon) analisadas por Ames (1964) 
serem as mais puras, elas apresentaram capacidade de 
troca catiônica igual, respectivamente,  a 1,6 e 1,9 meq/g, 
não atingindo o valor teórico de 2,11 meq/g.

Considerando que os cátions trocáveis das ze-
ólitas podem ocupar sítios cristalográficos distintos e, 

Figura 4 - Fotomicrografia obtida por meio de MEV 
da mordenita (amostra ZP).

Tabela 2 - Superfícies específicas (SE) externa e total 
das amostras ZP e ZD obtidas, respectivamente, pelos 
métodos de adsorção de N2 (BET) e de etileno-glicol, 
e de superfície específica interna (calculada pela dife-
rença dos valores de BET e etileno-glicol). Comparati-
vamente, são citados alguns valores de SE de mordeni-
tas naturais determinados por  Hernández et al. (2000)
(a) e Covarrubias et al. (2006) (b), a partir das isotermas 
de adsorção de N2 do método de BET.

Tabela 3 - Valores de capacidade de troca catiônica 
obtidos experimentalmente para as amostras ZP e ZD 
segundo o método de saturação com acetato de Na+/
NH4

+. A CTC de mordenitas sintéticas AW-300 e Zeolon 
foram retirados de Ames (1964) para comparação. A 
CTC teórica foi calculada a partir do número de moles 
do alumínio obtido na fórmula química proposta para 
a mordenita.

amostras analisadas Valores de referência de

Método SE 
(m2/g) ZP ZD SE da mordenita 

natural (m2/g)

BET externa 12,37 6,41 120,5 (a) ;  277(b)

Etilenoglicol 
- BET interna 183,93 56,6

Etilenoglicol total 196,30 63,01

Amostras CTC experimental
(meq/g)

CTC teórica
 (meq/g)

ZP 1,2 2,2

ZD 0,1 -

AW-300 1,6 2,11

Zeolon 1,9 2,11
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conseqüentemente, apresentar diferentes propriedades 
de seletividade iônica, a reação incompleta de troca iô-
nica na amostra analisada pode ter ocorrido em virtude 
de o íon K+ (principal cátion compensador de cargas) 
ocupar os canais 8MRb (Fig. 3) e dificultar, devido ao 
seu arranjo estrutural, o acesso dos cátions trocadores. 
Cabe mencionar, ainda, que algumas características 
comuns presentes nas zeólitas naturais como, presença 
de impurezas e defeitos na estrutura cristalina, também 
podem interferir na eficiência da capacidade de troca 
iônica do mineral (Simoncic & Armbruster 2004). 

Apesar da propriedade de troca iônica não ter 
sido completa, a CTC obtida para a mordenita é seme-
lhante às CTCs dos argilominerais expansivos como ver-
miculita e esmectitas que, de acordo com Souza Santos 
(1975), gira em torno de 1,0 meq/g, ao passo que a CTC 
do dacito corresponde a da caulinita, igual a 0,1 meq/g.

Conclusões  As zeólitas naturais associadas aos 
dacitos amigdaloidais da região de Timburi (SP) foram 
identificadas como do tipo mordenita, rica em K e, com 
elevada relação Si/Al (5,02). A sua composição quími-
ca e relação Si/Al estão condizentes com exemplares de 
outras partes do mundo.

Em conseqüência do sistema poroso da morde-
nita e, principalmente pelo fato do K+ ocupar os canais 
8MR, de difícil acesso, a propriedade de capacidade de 
troca pelos cátions Na+ e NH4

+ pode ter sido afetada. 

Razão esta que explicaria o motivo pelo qual se obteve, 
na prática, valor de CTC em torno de 1,2 meq/g, inferior 
à CTC teórica igual a 2,2 meq/g. Esse valor, no entanto, 
ainda é elevado e corresponde às CTCs de algumas ar-
gilas expansivas como vermiculita e esmectitas. 

Por outro lado, a rocha total apresenta em torno 
de 8,3% da CTC da mordenita, o que corresponde ao 
valor de 0,1 meq/g (semelhante à argila caulinita).

A superfície específica determinada para a mor-
denita estudada (196 m2/g) ficou na média dos valores 
encontrados na literatura - 120,5 m2/g segundo Hernán-
dez et al. (2000) e 277 m2/g de acordo com Covarrubias 
et al. (2006) -; e a área interna revelou ser maior que 
a externa, indicando que nessa parte do mineral (área 
interna) ocorre a maioria das reações de troca.

Por fim, verificou-se que apesar da literatura 
pertinente indicar valores elevados de CTC para as ze-
ólitas em geral - baseando-se na sua fórmula química - 
nem sempre, na prática, esse valor é alcançado, devido 
a vários fatores, como natureza e localização do cátion 
compensador de cargas, defeitos estruturais e presença 
de impurezas; revelando-se assim a importância da ca-
racterização tecnológica desses minerais.
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