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Abstract. Apresentamos pela primeira vez uma implementação do método multiescala MRCM
(Multiscale Robin Coupled Method) com resolutores locais H(div) gerais em malhas de
simplices não estruturadas, na plataforma de elementos finitos de código aberto FeniCS. A
implementação é testada em problemas bidimensionais, primeiro, considerando um caso de
permeabilidade suave com uma solução manufaturada para avaliar a convergência do método
e segundo, num caso de permeabilidade altamente heterogênea para avaliar a qualidade da
aproximação quando comparada com a solução de malha fina do problema.
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1. MOTIVAÇÃO

Os métodos multiescala baseados em esquemas de decomposição de domı́nio não
sobrepostos são uma escolha natural para resolver problemas elı́pticos de grande porte que
tipicamente aparecem na simulação de reservatórios de petróleo, principalmente pelos seguintes
motivos: (i) Simplicidade de implementação; (ii) Possibilita a inclusão de detalhes de escala
fina do problema com reduzido custo computacional; (iii) Potêncial de speed up ideal em
arquiteturas multicore. Neste tipo de métodos a resolução do problema se dá em duas etapas.
Primeiro, uma coleção de problemas definidos nos subdomı́nos são resolvidos. Estes problemas
são independentes um dos outros e são resolvidos em paralelo. Segundo, um problema
global de dimensão reduzida posto sobre o esqueleto da partição é resolvido para acoplar
as soluções locais. Estes métodos podem ser pensados como uma alternativa aos métodos
tradicionais de upscaling baseados em teoria de homegeneização, os quais não são inteiramente
rigorosos do ponto de vista matemático, pois os problemas tı́picos encontrados nas aplicações de
interesse não admitem separação de escalas. Recentemente, o método multiescala misto MRCM
(Multiscale Robin Coupled Method) foi introduzido em Guiraldello(2018). Neste os problemas
locais nos subdomı́nios são definidos via imposição de condições de contorno do tipo Robin
no esqueleto da partição. O método tem sido extensamente avaliado por Guiraldello(2019),
Rocha(2020), Rocha(2021),Guiraldello(2020) e Jaramillo(2021). Nestes trabalhos, a precisão
das soluções com respeito à soluções de malha fina são avaliados para diferentes escolhas
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de espaços de interface adotados no esqueleto da decomposição do domı́nio, tais como
espaços polinomiais vistos por Guiraldello(2018), Guiraldello(2020), Jaramillo(2020), espaços
informados presentes em Guiraldello(2019), Rocha(2020) e espaços baseados na fı́sica do
problema (Rocha,2021). No entanto, um ponto em comum de todos estes trabalhos é que
o método adotado para resolução dos problemas locais nos subdomı́nios é realizada por um
método de volumes finitos de baixa ordem em malhas cartesianas ortogonais. A proposta no
presente trabalho é justamente preencher esta lacuna e avaliar outros esquema de discretização
espacial para os problemas locais. Fazendo uso da plataforma de elementos finitos de código
aberto Fenics (Fenics,2012), iremos testar diferentes espaços conformes H(div) em malhas não
estruturadas de triângulos. Outras formulações baseadas em métodos de Galerkin descontı́nuo
também são possı́veis, assim como a possibilidade de realizar refinamentos locais e considerar
geometrias não regulares, aspectos estes que não foram considerados até agora nas referências
antes citadas.

No que resta do artigo apresentaremos a formulação matemática do problema de Darcy
e a sua discretização pelo método de elementos finitos como preparação para introduzir
o método de decomposição de domı́nio multiescala MRCM. Detalhes relacionados com a
sua implementação na plataforma de código aberto FeniCS são fornecidos. Na sequência,
resultados numéricos são apresentados considerando diferentes combinações de espaços
discretos H(div) nos subdomı́nios e polinomiais no esqueleto da decomposição. Finalmente,
algumas conclusões são apresentadas.

2. DEFINIÇÃO DO PROBLEMA

Neste trabalho consideramos o problema de transporte de massa em meios porosos, o qual
é de interesse para a indústria de Óleo e Gás. O problema é governado pela lei de Darcy e
a equação de conservação da massa num domı́nio Ω ⊂ Rd (d = 2 ou 3) e pode ser escrito
como um sistema não linear de equações a derivadas parciais acopladas, em que as incógnitas a
determinar são a velocidade de Darcy u(x), a pressão p(x) e a saturação de uma das fases, por
exemplo, a saturação da fase água Sw, as quais satisfazem o problema elı́ptico

u = −
(
krw(Sw)

µw
+
kro(1− Sw)

µo

)
K(x)∇p em Ω

∇ · u = f(x, t) em Ω
p = ḡp sobre Γp

u · ň = ḡu sobre Γu.

(1)

e o problema hiperbólico que governa o transporte da saturação
∂Sw
∂t

+∇ · (ϕ(Sw)u) = 0 em Ω

Sw(x, 0) = S0(x) em Ω
Sw(x, t) = SD em Γ−u = {x ∈ Γu, u · ň < 0}

(2)

em que krα e µα são respectivamente a permeabilidade relativa e a viscosidade da fase α
(α = w, o), K ∈ [L∞(Ω)]d×d é o tensor de permeabilidades absolutas, f ∈ L2(Ω) é o termo
fonte, ň é a normal exterior a ∂Ω = Γp∪Γu, Γp e Γu são as fronteiras de Dirichlet e de Neumann
respectivamente que satisfazem Γp ∩ Γu = ∅. Finalmente, ḡp ∈ H

1
2 (Γp) e ḡu ∈ H−

1
2 (Γu) e

ϕ são funções conhecidas. Neste trabalho será considerado, por simplicidade, o caso em que
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o coeficiente de permeabilidade absoluta K é um tensor isotrópico, i.e., K(x) = Id×d κ(x),
sendo Id×d o tensor identidade. Apesar desta simplificação, é importante destacar que o campo
de permeabilidades κ(x) poderá apresentar grandes contrastes espaciais, i.e., κmax/κmin � 1
nos problemas que serão resolvidos no presente trabalho. É justamente neste caso que resulta
importante caracterizar o comportamento do ponto de vista da precisão dos métodos multiescala
para resolver o problema global. Finalmente, note que no modelo acima, dado pelas equações
(1)-(2), tem sido considerados desprezı́veis os efeitos de gravidade e capilaridade .

2.1 Formulação de elementos finitos para o problema de Darcy

Uma das estratégias mais usuais para resolver o problema acoplado (1)-(2) consiste em
resolver este de modo segregado, i.e., o problema de Darcy (1) é primeiramente resolvido
a fim de obter um campo de velocidades u, o qual é usado para resolver o problema de
transporte (2). Este método se conhece como IMPES (Implicit Pressure - Explicit Saturation)
(Chen,2004). A resolução numérica de ambos problemas apresenta desafios. Em particular,
é essencial que esta seja feita por métodos localmente conservativos para assim predizer
corretamente o transporte de massa e consequentemente, as chamadas curvas de produção de
um reservatório. A resolução numérica do problema hiperbólico (2) e do acoplamento não
linear com o problema elı́ptico não será considerada aqui por questões de brevidade e será
abordada em trabalhos futuros. Como dito anteriormente, o foco principal do presente trabalho
será a resolução numérica do problema de Darcy (1) por métodos multiescala mistos baseados
em decomposição de domı́nio sem sobreposição na presença de campos de permeabilidade
altamente heterogêneos. Nesta classe de métodos, o problema de Darcy é resolvido localmente
em cada subdomı́nio e as soluções acopladas através de condições de compatibilidade nas
interfaces da decomposição. É essencial que a formulação seja conservativa localmente, no
nı́vel da malha fina dos subdomı́nios, e globalmente, no nı́vel dos macroelementos da partição.
Neste trabalho, o método multiescala MRCM será adotado como resolutor multiescala. Tal
método generaliza uma familia de métodos multiescala através de um parâmetro algorı́tmico
relacionado com a condição de acoplamento entre subdomı́nios. Isto permitirá, posteriormente,
comparar diferentes variantes do método. Independente do método multiescala misto adotado,
um ingrediente essencial na formulação é a resolução local do problema de Darcy por métodos
conservativos, o qual deve fornecer a velocidade nas interfaces da decomposição. Por este
motivo é usual adotar formulações de elementos finitos mistas. Por completude, apresentamos
na sequência as formulações variacionais contı́nua e discreta do problema, ingrediente essencial
no estudo proposto.

Primeiramente, o problema de Darcy será rescrito de maneira simplificada como

u = −κ(x)∇p, ∇ · u = f(x, t), x ∈ Ω (3)

Vamos considerar métodos de elementos finitos mistos baseados na formulação de Galerkin
para resolver o problema (3). O marco funcional correto para formular o problema é dado pelos
espaços de Sobolev H(div,Ω) e L2(Ω), que estão definidos como

L2(Ω) =

{
q : Ω→ R,

∫
Ω

|q(x)|2 Ω <∞
}
, (4)

H(div,Ω) =
{
v ∈

[
L2(Ω)

]d
, ∇ · v ∈ L2(Ω)

}
. (5)

Note que, no caso em que Γp = ∅, a solução p deve ser procurada no espaço L2(Ω)/R. A
formulação variacional contı́nua do problema é definida de maneira usual. Esta pode ser obtida
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multiplicando as equações (3) por funções teste e integrando por partes, i.e.,∫
Ω

κ−1u · v dx−
∫

Ω

p ∇ · v dx = −
∫

Γp

ḡp (v · ň) ds = 0, ∀v ∈ H(div,Ω), (6)

∫
Ω

q∇ · u dx =

∫
Ω

f q dx, ∀q ∈ L2(Ω). (7)

O problema em sua forma abstrata pode ser escrito como: Encontrar o par (u, p) ∈
H(div,Ω)× L2(Ω), tal que

a(u,v) + b(v, p) = c(v)
b(u, q) = `(q)

(8)

∀v ∈ H(div,Ω) e ∀q ∈ L2(Ω), com as formas dadas por

a(u, v) =

∫
Ω

κ−1u · v dx, b(v, q) = −
∫

Ω
q∇ · v du, (9)

c(v) = −
∫

Γp

ḡp(v · ň) ds, `(q) = −
∫

Ω
fq dx. (10)

2.2 Formulação variacional discreta: O problema de malha fina

Para formular o problema no caso de dimensão finita vamos considerar aproximações
conformes. Assim sendo, vamos considerar subespaços de dimensão finita de H(div,Ω) e
L2(Ω). Aproximações não conformes baseadas em métodos de Galerkin discontı́nuo (dG)
também podem ser consideradas,como visto por Brezzi(2005), porém isto é deixado para
trabalhos futuros. Dentre os métodos conformes vale lembrar que nem toda combinação de
espaços para velocidade e pressão leva a uma formulação discreta estável do problema. Dentre
as escolhas mais populares temos os espaços de Raviart-Thomas (RT) (Raviart,1977) e os
espaços de Brezzi-Douglas-Marini (BDM) (Brezzi, 1985) de diferente ordem, os quais possuem
continuidade da componente normal do fluxo nas arestas/faces entre elementos. Estes espaços
são usados em conjunto com aproximações descontı́nuas para a pressão. Estes elementos
estão definidos para o caso de quadrilateros/hexaedros e para o caso de triângulos/tretaedros
(em 2D/3D, respectivamente) e, em particular, para o caso de elementos triangulares, estes
estão disponı́veis na plataforma de elementos finitos FeniCS que será usada neste trabalho.
Consideremos uma familia regular de triangulacões Th do domı́nio Ω, como ilustrado na Fig. 1.
Primeiramente, vamos lembrar o espaço de Raviart-Thomas, o qual é definido por

Vh = {v ∈ H(div,Ω) : v|E ∈ RTk(E)∀E ∈ Th}, (11)

Qh = {q ∈ L2(Ω) : q|E ∈ Pk : ∀E ∈ Th}. (12)

Desta forma, dado um número inteiro k ≥ 0, o espaço de Raviart-Thomas (RTk) de ordem k,
definido no elemento de referência E, no caso bidimensional é dado por

RTk(E) = P 2
k + (x1, x2)Pk, (13)

tal que se v ∈ RTk(E), então v · ň|E ∈ Pk(E). Para o espaço de Brezzi-Douglas-Marini
temos

Vh = {v ∈ H(div,Ω) : v|E ∈ BDMk(E)∀E ∈ Th}, BDMk(E) = P 2
k (14)
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o qual é também usado em combinação com o espaço Qh definido em (12). Os graus de
liberdade destes elementos estão associados às arestas e/ou faces dos elementos.

Para incorporar as condições de borda para a velocidade em Γu, introduzimos o espaço

Vhg = {v ∈ Vh : v · ň = g, x ∈ Γu}. (15)

Note que na formulação mista a condição de borda essencial é definida para o fluxo u enquanto
a condição de borda natural aparece para o campo de pressões p, ao contrário do que acontece
na formulação primal do problema. Com estas definições já estamos em condições de escrever
a formulação variacional discreta do problema de malha fina. Este problema será resolvido
para obter a solução do problema global, a qual será comparada com a solução fornecida pelo
método multiescala. O problema é: Encontrar o par (uh, ph) ∈ Vhḡu ×Qh, tal que

a(uh,vh) + b(vh, ph) = c(vh)
b(uh, qh) = `(qh)

(16)

∀(vh, qh) ∈ Vh0×Qh. Como dito anteriormente, na formulação do método multiescala também
será necessario resolver o problema de malha fina no nı́vel dos subdomı́nios sujeito a condições
de Robin. Neste ponto, resulta conveniente lembrar a forma geral de uma condição de Robin e
como esta é tratada na forma variacional do problema. De maneira geral esta condição pode ser
escrita como

−γ(x)u · ň + p = ḡr, x ∈ ΓR (17)

em que, dependendo do valor adotado para o paramêtro γ, a imposição fraca do valor do fluxo na
interface será favorecida (se γ → +∞) ou a imposição fraca do valor da pressão será favorecida
(se γ → 0). Neste caso o problema variacional muda para

a(uh,vh) + b(vh, ph) + (γ uh · ň,vh · ň)ΓR
= c(vh)− (ḡr,vh · ň)ΓR

b(uh, qh) = `(qh)
(18)

em que (·, ·)Γ representa o produto escalar L2(Γ).

3. UM MÉTODO MULTIESCALA BASEADO EM CONDIÇÕES DE ROBIN

Antes de introduzir o método multiescala MRCM é conveniente considerar uma
formulação variacional do problema baseada na decomposição do domı́nio computacional em
macroelementos ou subdomı́nios a serem acoplados através de condições de Robin para resolver
o problema global de malha fina. Vamos tomar a formulação apresentada por Guiraldello
(2018). Consideremos uma decomposição do domı́nio sem sobreposição Ω =

⋃m
i Ωi. Nas

bordas de ∂Ωi, considere a normal única ň definida como igual a normal exterior de ∂Ω nas
bordas em que ∂Ωi ∩ ∂Ω 6= ∅ e como a normal exterior do subdomı́nio de menor ı́ndice
em ∂Ωi ∩ Γij , em que, Γij = ∂Ωi ∩ ∂Ωj (como exı́bido em Fig. 1). Consideremos também
uma partição T ih em cada Ωi e os espaços Vi

hḡu
⊂ H(div,Ωi), Qi

h ⊂ L2(Ωi). O problema é:
Encontrar o par (uih, p

i
h) ∈ Vi

hḡu
× Qi

h, para i = 1, . . . ,m, e o par (Uh, Ph) ∈ Uh × Ph tais
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que

(κ−1uih, v)Ωi
− (pih,∇ · v)Ωi

+ (Ph − βiUhňi · ň + βi u
i
h · ňi,v · ňi)Γi

= c(v),

(q,∇ · uih)Ωi
= (f, q)Ωi

,∑m

i=1

(
uih · ňi,Mh

)
Γi

= 0,

∑m

i=1

(
βi (u

i
h · ňi − Uhňi · ň), Vhň

i · ň
)

Γi
= 0,

(19)

∀(v, q) ∈ Vi
h0 × Qi

h, i = 1, . . . ,m , ∀(Mh, Vh) ∈ Ph × Uh. As duas primeiras equações
correspondem respectivamente à lei de Darcy e à equação de conservação da massa em cada
subdomı́nio Ωi (ver Eq. (16)) e as duas últimas equações correspondem respectivamente às
condições de continuidade fraca do fluxo e da pressão no esqueleto Γ da decomposição,
respectivamente. Os campos auxiliares Ph ∈ Ph e Uh ∈ Uh estão definidos em Γ com a
finalidade de acoplar as soluções dos subdomı́nios. Como sugerido por Guiraldello(2019), o
parâmetro de Robin βi(x) é tomado igual a γ(x)L

κ(x)
, em que L é uma medida de cumprimento

caracterı́stica (tipicamente o tamanho da interface entre subdomı́nios) e γ um parâmetro
algorı́tmico a ser escolhido.

3.1 A formulação multiescala

É importante notar que a formulação apresentada acima não é nada mais do que um
método para resolver o problema global de malha fina em Ω via decomposição de domı́nio.
Em Guiraldello(2018) prova-se que a solução deste problema é a mesma que a do caso não

Ω Th
Γ

Ω1

Ω4

Ω7

Ω2

Ω5

Ω8

Ω3

Ω6

Ω9

ň3

ň

ň1

ň

ň4

ň

ň5

ň

ň ň

ň ň8 ň6

Figure 1- Esquema de decomposição de domı́nio adotado.
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decomposto. Nesta situação tivesse sido suficiente introduzir apenas um multiplicador de
Lagrange no esqueleto, p.e., a pressão Ph ∈ Ph para impor de forma fraca a continuidade
do fluxo. Isto é equivalente a tomar βi = 0, ∀i. Note que a dimensão do espaço Ph está
relacionada com a discretização induzida no esqueleto pela malha dos subdomı́nios e de modo
similar para Uh. Portanto, acabamos com o dobro de incógnitas do que seria necessário para
resolver o problema. No entanto, quando consideramos a chamada formulação multiescala, a
qual surge quando são escolhidos em Γ espaços PH ⊂ Ph e UH ⊂ Uh, com dimPH � dimPh
e dimUH � dimUh, o método proposto pode fornecer uma aproximação do problema de
malha fina a um custo computacional reduzido, como avaliado de maneira exaustiva em
Guiraldello(2019), Rocha(2021), Guiraldello(2020) e Jaramillo(2021), em diferentes contextos
e aplicações. Neste trabalho iremos considerar espaços polinomiais no esqueleto, tanto para UH
como para PH . Considerando uma partição do esqueleto TH(Γ), temos

UH = PH = {ψ, ψ(x)|e ∈ Pk(e) ∀e ∈ TH(Γ)} (20)

Notar que a formulação é localmente conservativa, pelo fato de espaços H(div) serem usados
nos problemas locais é também é conservativa na escala grossa, pelo fato do espaço PH conter
as fuções constantes, o que surge claramente da terceira equação em (19), i.e., toda a massa que
sai de um domı́nio através de uma interface entra no domı́nio vizinho. Para concluir esta seção,
é interessante notar que dependendo do valor adotado para o parâmetro γ na condição de Robin
e da escolha para os espaços PH e UH , podem ser recuperados outros métodos disponı́veis na
literatura. Concretamente, temos:

(a) Multiscale Mixed Mortar Finite Element Method (MMMFEM) (Arbogast,2007 e
Ganis,2009);

(b) Multiscale Hybrid Mixed Method (MHM) (Harder, 2013);

(c) Multiscale Mixed Method (MuMM) (Francisco, 2014);

4. EXEMPLOS NUMÉRICOS

4.1 Avaliação do método com uma solução manufaturada

Vamos considerar a solução manufaturada empregada por Guiraldello(2018) para avaliar
as propriedades de convergencia da implementação. Tomando f = 8π2 cos(2πx1) cos(2πx2)
em Ω = [0, 1]2, uma permeabilidade homogênea κ(x) = 1, a solução do problema
corresponde a um campo de pressões p = cos(2πx1) cos(2πx2) e um campo de velocidades
u = [2π sin(2πx1) cos(2πx2), 2π cos(2πx1) sin(2πx2)]ᵀ. Notar que a média de p é zero e que
u · ň = 0 em ∂Ω. O problema é resolvido impondo a solução exata como condição de borda.
Especificamente, em x1 = 0 e x1 = 1 tomamos ḡp = p e em em x2 = 0 e x2 = 1 tomamos
ḡu = 0. Serão calculados o erro na pressão ep = ‖p− ph‖L2(Ω) e no fluxo eu = ‖u− uh‖L2(Ω).
Há várias formas de avaliar a convergência do método no caso multiescala. Neste trabalho será
realizado um estudo de refinamento no qual o tamanho dos subdomı́nios é variado deixando
o número de incógnitas de malha fina fixo em cada Ωi, i.e., H/h será mantido constante com
h = H/20. A sua vez, serão consideradas aproximações lineares P1(Γ) e quadráticas P2(Γ)
no esqueleto e o elemento BDMk, k = 1, 2. Outras variantes são certamente possı́veis, mas
não serão consideradas aqui por brevidade. Na tabela 1 apresentamos os resultados obtidos.
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Table 1- Erros de discretização do método multiescala para um problema com a solução manufaturada.
P1(Γ) P2(Γ)

Nx ×Ny ‖p− ph‖L2(Ω) ‖u− uh‖L2(Ω) ‖p− ph‖L2(Ω) ‖u− uh‖L2(Ω)

4× 4
0.0143
0.0057

0.198
0.198

0.0130
0.00052

0.0249
0.0245

6× 6
0.0089
0.0020

0.104
0.103

0.0087
0.00015

0.0089
0.0087

8× 8
0.0066
0.0011

0.071
0.071

0.0065
0.00007

0.0044
0.0043

10× 10
0.0052
0.0007

0.055
0.055

0.0052
0.00004

0.0026
0.0025

12× 12
0.0044
0.0005

0.045
0.045

0.0043
0.00002

0.0017
0.0016

Para cada caso Nx × Ny a primeira linha corresponde a BDM1 e a segunda a BDM2. O
primeiro que podemos notar é que o erro na velocidade não é afetado pela escolha do espaço de
elementos finitos nos subdomı́nios, o que significa que o erro de discretização é dominado
pelo aproximação multiescala relacionada à escolha dos espaços de interface. As ordens
estimadas são O(H

3
2 ) e O(H

5
2 ) para P1(Γ) e P2(Γ) respectivamente. O contrário acontece

com a pressão quando usado o elemento BDM1, em que se observa o mesmo erro e uma ordem
de convergência O(H), independente da escolha para Pk(Γ). No entanto, para o caso BDM2 a
ordem de convergência tomando P1(Γ) é O(H2) e tomando P2(Γ) é O(H3). Estes resultados
mostram que a implementação proposta do método MRCM é convergente quando a partição em
subdomı́nios de Ω é refinada e os espaços de interface enriquecidos. Também, fixando a ordem
da aproximação em Γ, se o interesse é o determinar uh, uma aproximação de baixa ordem
para os problemas locais pode ser escolhida sem detrimento no erro, porém, se o interesse é
determinar ph com precisão, o erro exibido pelo elemento BDM2 é significativamente menor.

4.2 Avaliação do método em formações altamente heterogêneas

Para estudar o comportamento do método num caso mais desafiante em que o campo
de permeabilidades é heterogêneo, vamos considerar a camada 36 do benchmark SPE10.
Adicionalmente, iremos considerar em cada subdomı́nio uma cavidade circular, como ilustração
do tratamento de geometrias irregulares, o que é possı́vel com a implementação proposta.
Estas cavidades podem ser pensadas como vugs ou cavernas que estão presentes em muitos
reservatórios carstificados. Na figura 2 mostra-se o campo de permeabilidades em escala
logarı́tmica, o qual é definido como constante por elemento e a partição em 4× 2 subdomı́nios
adotada. Também mostra-se a solução obtida pelo método de malha fina (não decomposto)
para fins de comparação considerando ḡp = 10 na borda de baixo (x2 = 0) e ḡp = 1 na borda
de cima (x2 = 11/3). Na figura 3 mostra-se o campo de pressões e velocidades obtido com
a formulação proposta tomando γ = 1 e o espaço de Raviart-Thomas de mais baixa ordem e
funções constantes para PH e UH (primeira e terceira figuras) e o espaçøde Brezzi-Douglas-
Marini de ordem 2 junto com funções quadráticas no esqueleto (segunda e quarta figuras).
Um detalhe da malha de triângulos não estruturada utilizada é mostrado para o subdomı́nio
0, possuindo aproximadamente 2400 − 2700 elementos, dependendo do subdomı́nio. Note
as descontinuidades que aparecem nas interfaces entre os subdomı́nios, tanto no campo de
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pressões quanto no campo de velocidades. Também, observa-se que o problema de malha fina
possui aproximadamente 21K elementos, o que leva a 224K graus de liberdade para o elemento
BDM2. No caso decomposto são resolvidos vários problemas de menor porte envolvendo
apenas ∼ 27K incógnitas. Embora, a comparação apresentada seja qualitativa, o resultados
mostram o potencial da implementação proposta para resolver problemas de interesse para a
indústria em geometrias não regulares.

Figure 2- Permeabilidade do benchmark SPE10, pressão e velocidade obtidos pelo método de malha fina
(não decomposto) usando BDM2.

Figure 3- Pressão e velocidade para o benchmark SPE10 usando RT0 com P1(Γ) e BDM2 com P2(Γ).

Anais do XXIV ENMC – Encontro Nacional de Modelagem Computacional e XII ECTM – Encontro de Ciências e Tecnologia de Materiais,
13 a 15 Outubro 2021



XXIV ENMC e XII ECTM
13 a 15 de Outubro de 2021

5. CONSIDERAÇÕES FINAIS

Neste trabalho apresentamos uma implementação do método multiescala misto MRCM na
plataforma de código aberto de elementos finitos FeniCS. A implementação permitiu avaliar
pela primeira vez o uso malhas não estruturadas e espaços H(div) gerais para os problemas
locais. A implementação foi testada em problemas envolvendo permeabilidades suaves para
avaliar as ordens de convergência do método e em problemas envolvendo permeabilidades
altamente heterogêneas. Os resultados apresentados mostram o potencial de formulação
proposta para lidar com geometrias não regulares. Trabalhos futuros incluem o estudo de
reservatórios que apresentam estruturas carstificadas, presença de cavernas ou vugs, redes de
conduites imersas ou outras heterogeneidades que precisam ser resolvidas com a geometria
detalhada. Este tipo de simulações poderiam fornecer coeficientes efetivos a serem utilizados
em simuladores multiescala baseados em outros esquemas de discretização que não permitam
malhas que adaptadas às caracterı́sticas geometricas do problema.
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APÊNDICE A

IMPLEMENTATION OF THE MRCM MULTISCALE METHOD WITH LOCAL
HDIV RESOLVERS FOR THE DARCY’S PROBLEM

Abstract. We present for the first time an implementation of the multiscale method MRCM
(Multiscale Robin Coupled Method) with general H(div) local solvers on unstructured meshes
made of simplices in the open-source finite element platform FeniCS. The implementation is
tested in two-dimensional problems, first considering a case of smooth permeability with a
manufactured solution to assess the convergence of the method, and second a case of highly
heterogeneous permeability to assess the quality of the approximation compared to the fine-
mesh solution of the problem.

Keywords: Darcy Flow, Porous Media, Multiscale Method, Decomposition of Domain,
Finite Elements
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