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Abstract. Apresentamos pela primeira vez uma implementacdo do método multiescala MRCM
(Multiscale Robin Coupled Method) com resolutores locais H(div) gerais em malhas de
simplices ndo estruturadas, na plataforma de elementos finitos de codigo aberto FeniCS. A
implementagdo é testada em problemas bidimensionais, primeiro, considerando um caso de
permeabilidade suave com uma solu¢cdo manufaturada para avaliar a convergéncia do método
e segundo, num caso de permeabilidade altamente heterogénea para avaliar a qualidade da
aproximag¢do quando comparada com a solug¢do de malha fina do problema.
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1. MOTIVACAO

Os métodos multiescala baseados em esquemas de decomposicio de dominio nao
sobrepostos sdo uma escolha natural para resolver problemas elipticos de grande porte que
tipicamente aparecem na simulagao de reservatorios de petréleo, principalmente pelos seguintes
motivos: (1) Simplicidade de implementagdo; (ii) Possibilita a inclusdo de detalhes de escala
fina do problema com reduzido custo computacional; (iii) Poténcial de speed up ideal em
arquiteturas multicore. Neste tipo de métodos a resolugdo do problema se dd em duas etapas.
Primeiro, uma colecao de problemas definidos nos subdominos sio resolvidos. Estes problemas
sdo independentes um dos outros e sdo resolvidos em paralelo. Segundo, um problema
global de dimensdo reduzida posto sobre o esqueleto da particdo € resolvido para acoplar
as solucdes locais. Estes métodos podem ser pensados como uma alternativa aos métodos
tradicionais de upscaling baseados em teoria de homegeneizacdo, os quais ndo sdo inteiramente
rigorosos do ponto de vista matematico, pois os problemas tipicos encontrados nas aplicagdes de
interesse nao admitem separacao de escalas. Recentemente, o método multiescala misto MRCM
(Multiscale Robin Coupled Method) foi introduzido em Guiraldello(2018). Neste os problemas
locais nos subdominios sdo definidos via imposi¢do de condi¢des de contorno do tipo Robin
no esqueleto da particio. O método tem sido extensamente avaliado por Guiraldello(2019),
Rocha(2020), Rocha(2021),Guiraldello(2020) e Jaramillo(2021). Nestes trabalhos, a precisao
das solugdes com respeito a solucdes de malha fina sdo avaliados para diferentes escolhas
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de espacos de interface adotados no esqueleto da decomposicio do dominio, tais como
espacos polinomiais vistos por Guiraldello(2018), Guiraldello(2020), Jaramillo(2020), espacos
informados presentes em Guiraldello(2019), Rocha(2020) e espacos baseados na fisica do
problema (Rocha,2021). No entanto, um ponto em comum de todos estes trabalhos é que
o método adotado para resolugdo dos problemas locais nos subdominios € realizada por um
método de volumes finitos de baixa ordem em malhas cartesianas ortogonais. A proposta no
presente trabalho € justamente preencher esta lacuna e avaliar outros esquema de discretizagao
espacial para os problemas locais. Fazendo uso da plataforma de elementos finitos de cédigo
aberto Fenics (Fenics,2012), iremos testar diferentes espagos conformes H (div) em malhas ndo
estruturadas de tridngulos. Outras formulagdes baseadas em métodos de Galerkin descontinuo
também sdo possiveis, assim como a possibilidade de realizar refinamentos locais e considerar
geometrias ndo regulares, aspectos estes que ndo foram considerados até agora nas referéncias
antes citadas.

No que resta do artigo apresentaremos a formulagdo matemadtica do problema de Darcy
e a sua discretizacdo pelo método de elementos finitos como preparagdo para introduzir
o método de decomposicdo de dominio multiescala MRCM. Detalhes relacionados com a
sua implementacdo na plataforma de cédigo aberto FeniCS sdo fornecidos. Na sequéncia,
resultados numéricos sdao apresentados considerando diferentes combinacdes de espacos
discretos H (div) nos subdominios e polinomiais no esqueleto da decomposi¢@o. Finalmente,
algumas conclusoes sdo apresentadas.

2. DEFINICAO DO PROBLEMA

Neste trabalho consideramos o problema de transporte de massa em meios porosos, o qual
¢ de interesse para a industria de Oleo e Gis. O problema € governado pela lei de Darcy e
a equacdo de conservagdo da massa num dominio Q@ C R? (d = 2 ou 3) e pode ser escrito
como um sistema ndo linear de equacgdes a derivadas parciais acopladas, em que as incognitas a
determinar sdo a velocidade de Darcy u(x), a pressdo p(x) e a saturacdo de uma das fases, por
exemplo, a saturacdo da fase dgua S, as quais satisfazem o problema eliptico

- (k;m(Sw) L Kol . Sw>> KX)Vp em O

u =
How M
V-ou = f(x,t) em 2 (1
P = Gp sobre I,
u-n = g, sobre I',,.

e o problema hiperbdlico que governa o transporte da saturacao

% + V- (p(Sy)u) = 0 em )
Sw(x,0) = Sp(x) em Q (2)
Sw(x,t) = Sp emI, ={xel',,u-n<0}

em que k,, € [, sA0 respectivamente a permeabilidade relativa e a viscosidade da fase «
(o = w,0), K € [L®(02)]7%? € o tensor de permeabilidades absolutas, f € L*(Q) é o termo
fonte, n é a normal exterior a 992 = I',UI",,, I') e I, sdo as fronteiras de Dirichlet e de Neumann
respectivamente que satisfazem I, N T, = (). Finalmente, §, € H2(I,) e g, € H 2(,) e
© sdo funcdes conhecidas. Neste trabalho serd considerado, por simplicidade, o caso em que
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o coeficiente de permeabilidade absoluta K é um tensor isotrépico, i.e., K(x) = Ljxqr(x),
sendo I, o tensor identidade. Apesar desta simplificacdo, € importante destacar que o campo
de permeabilidades x(x) podera apresentar grandes contrastes espaciais, i.e., Fmax/Kmin > 1
nos problemas que serdo resolvidos no presente trabalho. E justamente neste caso que resulta
importante caracterizar o comportamento do ponto de vista da precisdo dos métodos multiescala
para resolver o problema global. Finalmente, note que no modelo acima, dado pelas equacdes
(1)-(2), tem sido considerados despreziveis os efeitos de gravidade e capilaridade .

2.1 Formulacao de elementos finitos para o problema de Darcy

Uma das estratégias mais usuais para resolver o problema acoplado (1)-(2) consiste em
resolver este de modo segregado, i.e., o problema de Darcy (1) é primeiramente resolvido
a fim de obter um campo de velocidades u, o qual é usado para resolver o problema de
transporte (2). Este método se conhece como IMPES (Implicit Pressure - Explicit Saturation)
(Chen,2004). A resolucdo numérica de ambos problemas apresenta desafios. Em particular,
€ essencial que esta seja feita por métodos localmente conservativos para assim predizer
corretamente o transporte de massa e consequentemente, as chamadas curvas de producao de
um reservatorio. A resolucdo numérica do problema hiperbdlico (2) e do acoplamento nao
linear com o problema eliptico ndo serd considerada aqui por questdes de brevidade e serd
abordada em trabalhos futuros. Como dito anteriormente, o foco principal do presente trabalho
serd a resolu¢do numérica do problema de Darcy (1) por métodos multiescala mistos baseados
em decomposi¢ao de dominio sem sobreposi¢do na presenca de campos de permeabilidade
altamente heterogéneos. Nesta classe de métodos, o problema de Darcy € resolvido localmente
em cada subdominio e as solu¢gdes acopladas através de condicdoes de compatibilidade nas
interfaces da decomposicio. E essencial que a formulagio seja conservativa localmente, no
nivel da malha fina dos subdominios, e globalmente, no nivel dos macroelementos da parti¢do.
Neste trabalho, o método multiescala MRCM serd adotado como resolutor multiescala. Tal
método generaliza uma familia de métodos multiescala através de um parametro algoritmico
relacionado com a condi¢@o de acoplamento entre subdominios. Isto permitird, posteriormente,
comparar diferentes variantes do método. Independente do método multiescala misto adotado,
um ingrediente essencial na formulacao € a resolugdo local do problema de Darcy por métodos
conservativos, o qual deve fornecer a velocidade nas interfaces da decomposicao. Por este
motivo € usual adotar formulacdes de elementos finitos mistas. Por completude, apresentamos
na sequéncia as formulagdes variacionais continua e discreta do problema, ingrediente essencial
no estudo proposto.

Primeiramente, o problema de Darcy sera rescrito de maneira simplificada como

u=—k(x)Vp, V-u=f(x,t), xeQ 3)

Vamos considerar métodos de elementos finitos mistos baseados na formulacdao de Galerkin
para resolver o problema (3). O marco funcional correto para formular o problema € dado pelos
espagos de Sobolev H (div, ) e L?(£2), que estdo definidos como

L2(Q) = {q:Q—)R, /Q|q($)|29<oo}, 4)
H(div,Q) = {v e [12)]", V-ve LQ(Q)}. 5)

Note que, no caso em que I', = (), a solu¢do p deve ser procurada no espago L*(Q)/R. A
formulacao variacional continua do problema € definida de maneira usual. Esta pode ser obtida
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multiplicando as equagdes (3) por fungdes teste e integrando por partes, i.e.,

/Fdlll'VdX—/pv'VdX:—/ gy (v-m)ds =0, VYve H(dv,Q), (6)
Q Q r

P

/qV~udx:/fqu, Vg € L*(Q). (7
Q Q

O problema em sua forma abstrata pode ser escrito como: Encontrar o par (u,p) €
H(div, Q) x L*(Q), tal que

a(u,v) + b(v,p) = c(v)

b(u, q) = q) ®
Vv € H(div,Q) e Vg € L*(2), com as formas dadas por
a(w,v) = / Ku-vdx, b(v,q)=—[,qV-Vvdu, )
Q
c(v) = —/ gp(v -m)ds, U(q) = — [, fq dx. (10)
Fp

2.2 Formulacao variacional discreta: O problema de malha fina

Para formular o problema no caso de dimensdo finita vamos considerar aproximacoes
conformes. Assim sendo, vamos considerar subespacos de dimensao finita de H(div,(2) e
L*(Q2). Aproximagdes ndo conformes baseadas em métodos de Galerkin discontinuo (dG)
também podem ser consideradas,como visto por Brezzi(2005), porém isto € deixado para
trabalhos futuros. Dentre os métodos conformes vale lembrar que nem toda combinacao de
espacos para velocidade e pressao leva a uma formulagao discreta estavel do problema. Dentre
as escolhas mais populares temos os espagos de Raviart-Thomas (RT) (Raviart,1977) e os
espacos de Brezzi-Douglas-Marini (BDM) (Brezzi, 1985) de diferente ordem, os quais possuem
continuidade da componente normal do fluxo nas arestas/faces entre elementos. Estes espacos
sdo usados em conjunto com aproximacdes descontinuas para a pressdao. Estes elementos
estdo definidos para o caso de quadrilateros/hexaedros e para o caso de tridngulos/tretaedros
(em 2D/3D, respectivamente) e, em particular, para o caso de elementos triangulares, estes
estdo disponiveis na plataforma de elementos finitos FeniCS que serd usada neste trabalho.
Consideremos uma familia regular de triangulacdes 7;, do dominio §2, como ilustrado na Fig. 1.
Primeiramente, vamos lembrar o espaco de Raviart-Thomas, o qual € definido por

Vi ={ve H(div,Q) :v|g € RI,(E)VE € T,}, (11)
Qn=1{¢€L*Q) :qlp € P.:VE € T)}. (12)

Desta forma, dado um ndmero inteiro k£ > 0, o espago de Raviart-Thomas (RT}) de ordem k,
definido no elemento de referéncia F, no caso bidimensional é dado por

RTW(E) = P2 + (21, 12) Py, (13)

tal que se v € RT,(E), entdov-n|gp € P(F). Para o espago de Brezzi-Douglas-Marini
temos

Vi ={v € H(div,Q) : v|p € BDMy(E)VE € T},}, BDM(E) = P} (14)
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o qual é também usado em combinagdo com o espaco (), definido em (12). Os graus de
liberdade destes elementos estdo associados as arestas e/ou faces dos elementos.

Para incorporar as condicdes de borda para a velocidade em I',,, introduzimos o espagco
Vig={veV,:v-n=g¢g, xel,} (15)

Note que na formulac¢do mista a condicao de borda essencial € definida para o fluxo u enquanto
a condicdo de borda natural aparece para o campo de pressdes p, ao contrario do que acontece
na formulagdo primal do problema. Com estas definicdes ja estamos em condi¢des de escrever
a formulacao variacional discreta do problema de malha fina. Este problema sera resolvido
para obter a solucdo do problema global, a qual serd comparada com a solugdo fornecida pelo
método multiescala. O problema é: Encontrar o par (uy,, pp) € Vig, X Qp, tal que

a(up,vp) + b(vi,pn) = c(vi)

b(um Qh> = g(Qh) (16)

Y (Vi, qn) € Vio X Qp,. Como dito anteriormente, na formulagdo do método multiescala também
serd necessario resolver o problema de malha fina no nivel dos subdominios sujeito a condi¢des
de Robin. Neste ponto, resulta conveniente lembrar a forma geral de uma condi¢cdo de Robin e
como esta € tratada na forma variacional do problema. De maneira geral esta condicao pode ser
escrita como

—y(x)u-n+p=g,, x€lg (17

em que, dependendo do valor adotado para o paramétro ~y, a imposi¢ao fraca do valor do fluxo na
interface sera favorecida (se v — +00) ou a imposicao fraca do valor da pressao sera favorecida
(se v — 0). Neste caso o problema variacional muda para

a(up,vy) + b(Vh,pr) + (yuwp -0, vy -R)p, = c(Vh) = (Gr, Vi - R)p, (18)
b(uhaqh) = g(qh)

em que (-, -)r representa o produto escalar L?(T).

3. UM METODO MULTIESCALA BASEADO EM CONDICOES DE ROBIN

Antes de introduzir o método multiescala MRCM € conveniente considerar uma
formulacao variacional do problema baseada na decomposi¢ao do dominio computacional em
macroelementos ou subdominios a serem acoplados através de condi¢des de Robin para resolver
o problema global de malha fina. Vamos tomar a formulagdo apresentada por Guiraldello
(2018). Consideremos uma decomposicdo do dominio sem sobreposi¢do 2 = [J;" ;. Nas
bordas de 0f2;, considere a normal tnica n definida como igual a normal exterior de 02 nas
bordas em que 9; N I # () e como a normal exterior do subdominio de menor indice
em 0€); N I';;, em que, I';; = 0€; N 0 (como exibido em Fig. 1). Consideremos também
uma partigdo 7;" em cada €2; e os espagos Vi, C H(div,;), @ C L*(€;). O problema é:
Encontrar o par (w),,p;) € Vi, x Qj,parai = 1,...,m,eo par (Uy, P,) € Uy, X P tais
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que

(K7, V), — (04, V- V)g, + (P — BiUR' -2+ Biwy -0, v-0')r, = ¢(v),
(qa V- uZh)Ql = (fa q)Qi )
> (' M) =0,

S (B (wh v~ Uy R), Vi), = 0,

V(v,q) € VigxQi, i =1,....m,V(My,V,) € Pn X U,. As duas primeiras equagdes
correspondem respectivamente a lei de Darcy e a equacdo de conservacdao da massa em cada
subdominio €2; (ver Eq.(16)) e as duas ultimas equagdes correspondem respectivamente as
condi¢des de continuidade fraca do fluxo e da press@ao no esqueleto I' da decomposic¢ao,
respectivamente. Os campos auxiliares P, € P, e U, € U, estdo definidos em [' com a
finalidade de acoplar as solu¢des dos subdominios. Como sugerido por Guiraldello(2019), o
parimetro de Robin (3;(x) é tomado igual a “’é’(?()L , em que L € uma medida de cumprimento
caracteristica (tipicamente o tamanho da interface entre subdominios) e vy um parametro
algoritmico a ser escolhido.

3.1 A formulacao multiescala

E importante notar que a formulacdo apresentada acima ndo é nada mais do que um
método para resolver o problema global de malha fina em 2 via decomposicdo de dominio.
Em Guiraldello(2018) prova-se que a solu¢do deste problema é a mesma que a do caso nao

& i
r
" | i * |t i
T 47 3 |
24
n no
* | 1h ° | 1h 6
VoAl T VT AL
24 24
n' ns
1 2 3

Figure 1- Esquema de decomposi¢do de dominio adotado.
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decomposto. Nesta situacdo tivesse sido suficiente introduzir apenas um multiplicador de
Lagrange no esqueleto, p.e., a pressdo P, € Pj para impor de forma fraca a continuidade
do fluxo. Isto € equivalente a tomar 5; = 0, Vi. Note que a dimensdo do espagco P, estd
relacionada com a discretizacao induzida no esqueleto pela malha dos subdominios e de modo
similar para U;,. Portanto, acabamos com o dobro de incognitas do que seria necessario para
resolver o problema. No entanto, quando consideramos a chamada formulagdo multiescala, a
qual surge quando sdo escolhidos em I" espacos Py C P, e Uy C Uy, com dim Py < dim Py,
e dimUy < dimUj,, o método proposto pode fornecer uma aproximacdo do problema de
malha fina a um custo computacional reduzido, como avaliado de maneira exaustiva em
Guiraldello(2019), Rocha(2021), Guiraldello(2020) e Jaramillo(2021), em diferentes contextos
e aplicacdes. Neste trabalho iremos considerar espacos polinomiais no esqueleto, tanto para Uy
como para Py . Considerando uma parti¢ao do esqueleto 7 (I"), temos

Uy =P = {v, ¥(x)|. € Pi(e) Ve € Tu(I')} (20)

Notar que a formulagdo é localmente conservativa, pelo fato de espacos H(div) serem usados
nos problemas locais € também € conservativa na escala grossa, pelo fato do espaco Py conter
as fugdes constantes, o que surge claramente da terceira equacao em (19), i.e., toda a massa que
sai de um dominio através de uma interface entra no dominio vizinho. Para concluir esta secao,
€ interessante notar que dependendo do valor adotado para o pardmetro v na condi¢ao de Robin
e da escolha para os espacos Py e Uy, podem ser recuperados outros métodos disponiveis na
literatura. Concretamente, temos:

(a) Multiscale Mixed Mortar Finite Element Method (MMMFEM) (Arbogast,2007 e
Ganis,2009);

(b) Multiscale Hybrid Mixed Method (MHM) (Harder, 2013);

(¢c) Multiscale Mixed Method (MuMM) (Francisco, 2014);

4. EXEMPLOS NUMERICOS
4.1 Avaliacao do método com uma solucao manufaturada

Vamos considerar a solucdo manufaturada empregada por Guiraldello(2018) para avaliar
as propriedades de convergencia da implementagdo. Tomando f = 872 cos(27mzy) cos(2mxs)
em = [0,1]?, uma permeabilidade homogénea x(x) = 1, a solugdo do problema
corresponde a um campo de pressdes p = cos(27xy) cos(2mx2) e um campo de velocidades
u = [27sin(27rzy) cos(2masy), 27 cos(2mxy) sin(2mx4)]T. Notar que a média de p é zero e que
u-n = 0em 0f). O problema € resolvido impondo a solu¢do exata como condicdo de borda.
Especificamente, em 2y = 0 e 2; = 1 tomamos g, = peemem 22 = 0 € 3 = 1 tomamos
Gu = 0. Serdo calculados o erro na pressdo e, = ||p — pal[22(q) € no fluxo e, = |[u — up||r2¢0).
Ha varias formas de avaliar a convergéncia do método no caso multiescala. Neste trabalho sera
realizado um estudo de refinamento no qual o tamanho dos subdominios é variado deixando
o nimero de incdgnitas de malha fina fixo em cada €;, i.e., H/h sera mantido constante com
h = H/20. A sua vez, serdo consideradas aproximagdes lineares P, (") e quadraticas P,(I")
no esqueleto e o elemento BD M, k = 1,2. Outras variantes sdo certamente possiveis, mas
nao serdo consideradas aqui por brevidade. Na tabela 1 apresentamos os resultados obtidos.
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Table 1- Erros de discretizagdo do método multiescala para um problema com a solu¢do manufaturada.

P () Py (L)
Na X Ny | [lp = prllze) | la=unllzz) | Ip = pallzee) | la = unlliz@)

44 0.0143 0.198 0.0130 0.0249
0.0057 0.198 0.00052 0.0245

6 x 6 0.0089 0.104 0.0087 0.0089
0.0020 0.103 0.00015 0.0087

3 x 8 0.0066 0.071 0.0065 0.0044
0.0011 0.071 0.00007 0.0043

10 x 10 0.0052 0.055 0.0052 0.0026
0.0007 0.055 0.00004 0.0025

12 % 19 0.0044 0.045 0.0043 0.0017
0.0005 0.045 0.00002 0.0016

Para cada caso IV, x N, a primeira linha corresponde a BDM, e a segunda a BDM,. O
primeiro que podemos notar € que o erro na velocidade ndo € afetado pela escolha do espaco de
elementos finitos nos subdominios, o que significa que o erro de discretizagdo € dominado
pelo aproximagdo multiescala relacionada a escolha dos espagos de interface. As ordens
estimadas sdo O(Hz2) e O(H?3) para P;(T) e P5(T) respectivamente. O contrdrio acontece
com a pressao quando usado o elemento B D M, em que se observa o mesmo erro € uma ordem
de convergéncia O(H ), independente da escolha para P (I"). No entanto, para o caso BD M, a
ordem de convergéncia tomando P;(T') é O(H?) e tomando P,(T') é O(H?). Estes resultados
mostram que a implementagado proposta do método MRCM € convergente quando a particao em
subdominios de € € refinada e os espacos de interface enriquecidos. Também, fixando a ordem
da aproximagdo em I', se o interesse € o determinar uy, uma aproximagao de baixa ordem
para os problemas locais pode ser escolhida sem detrimento no erro, porém, se o interesse é
determinar p;, com precisao, o erro exibido pelo elemento B D M, é significativamente menor.

4.2 Avaliacao do método em formacdoes altamente heterogéneas

Para estudar o comportamento do método num caso mais desafiante em que o campo
de permeabilidades € heterogéneo, vamos considerar a camada 36 do benchmark SPE10.
Adicionalmente, iremos considerar em cada subdominio uma cavidade circular, como ilustragao
do tratamento de geometrias irregulares, o que € possivel com a implementacdo proposta.
Estas cavidades podem ser pensadas como vugs ou cavernas que estdo presentes em muitos
reservatorios carstificados. Na figura 2 mostra-se o campo de permeabilidades em escala
logaritmica, o qual € definido como constante por elemento e a particdo em 4 X 2 subdominios
adotada. Também mostra-se a solu¢do obtida pelo método de malha fina (ndo decomposto)
para fins de comparacdo considerando g, = 10 na borda de baixo (z2 = 0) e g, = 1 na borda
de cima (zo, = 11/3). Na figura 3 mostra-se o campo de pressoes e velocidades obtido com
a formulag@o proposta tomando v = 1 e o espaco de Raviart-Thomas de mais baixa ordem e
fungdes constantes para Py e Uy (primeira e terceira figuras) e o espaggde Brezzi-Douglas-
Marini de ordem 2 junto com fungdes quadraticas no esqueleto (segunda e quarta figuras).
Um detalhe da malha de tridngulos ndo estruturada utilizada é mostrado para o subdominio
0, possuindo aproximadamente 2400 — 2700 elementos, dependendo do subdominio. Note
as descontinuidades que aparecem nas interfaces entre os subdominios, tanto no campo de
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pressdes quanto no campo de velocidades. Também, observa-se que o problema de malha fina
possui aproximadamente 21K elementos, o que leva a 224K graus de liberdade para o elemento
BDM,. No caso decomposto sdo resolvidos vérios problemas de menor porte envolvendo
apenas ~ 27K incégnitas. Embora, a comparacdo apresentada seja qualitativa, o resultados
mostram o potencial da implementacdo proposta para resolver problemas de interesse para a
industria em geometrias nao regulares.

Figure 2- Permeabilidade do benchmark SPE10, pressdo e velocidade obtidos pelo método de malha fina
(no decomposto) usando BD M.

Figure 3- Pressdo e velocidade para o benchmark SPE10 usando RTj com P;(I') e BD My com P(T').

Anais do XXIV ENMC — Encontro Nacional de Modelagem Computacional e XII ECTM — Encontro de Ciéncias e Tecnologia de Materiais,
13 a 15 Outubro 2021



XXIV ENMC e XII ECTM
13 a 15 de Outubro de 2021

5. CONSIDERACOES FINAIS

Neste trabalho apresentamos uma implementacdo do método multiescala misto MRCM na
plataforma de cddigo aberto de elementos finitos FeniCS. A implementacdo permitiu avaliar
pela primeira vez o uso malhas ndo estruturadas e espagos H(div) gerais para os problemas
locais. A implementagdo foi testada em problemas envolvendo permeabilidades suaves para
avaliar as ordens de convergéncia do método e em problemas envolvendo permeabilidades
altamente heterogéneas. Os resultados apresentados mostram o potencial de formulagdo
proposta para lidar com geometrias ndo regulares. Trabalhos futuros incluem o estudo de
reservatorios que apresentam estruturas carstificadas, presenca de cavernas ou vugs, redes de
conduites imersas ou outras heterogeneidades que precisam ser resolvidas com a geometria
detalhada. Este tipo de simulagdes poderiam fornecer coeficientes efetivos a serem utilizados
em simuladores multiescala baseados em outros esquemas de discretizagdo que niao permitam
malhas que adaptadas as caracteristicas geometricas do problema.
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APENDICE A

IMPLEMENTATION OF THE MRCM MULTISCALE METHOD WITH LOCAL
HDIV RESOLVERS FOR THE DARCY’S PROBLEM

Abstract. We present for the first time an implementation of the multiscale method MRCM
(Multiscale Robin Coupled Method) with general H(div) local solvers on unstructured meshes
made of simplices in the open-source finite element platform FeniCS. The implementation is
tested in two-dimensional problems, first considering a case of smooth permeability with a
manufactured solution to assess the convergence of the method, and second a case of highly
heterogeneous permeability to assess the quality of the approximation compared to the fine-
mesh solution of the problem.

Keywords: Darcy Flow, Porous Media, Multiscale Method, Decomposition of Domain,
Finite Elements
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