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SUMMARY

Thousands of biomedical scientific articles, including those describing genes asso-
ciated with human diseases, are published every week. Computational methods
such as text mining and machine learning algorithms are now able to automati-
cally detect these associations. In this study, we used a cognitive computing
text-mining application to construct a knowledge network comprising 3,723
genes and 99 diseases. We then tracked the yearly changes on these networks
to analyze how our knowledge has evolved in the past 30 years. Our systems
approach helped to unravel the molecular bases of diseases and detect shared
mechanisms between clinically distinct diseases. It also revealed that multi-pur-
pose therapeutic drugs target genes that are commonly associated with several
psychiatric, inflammatory, or infectious disorders. By navigating this knowledge
tsunami, we were able to extract relevant biological information and insights
about human diseases.

INTRODUCTION

Thousands of biomedical scientific articles are published every day, piling up with millions of already pub-

lished papers (Fortunato et al., 2018). The task of keeping up-to-date with this ‘‘knowledge tsunami’’ has

become overwhelming for researchers in all areas of science. In this scenario, computational methods

such as text mining, machine learning, and cognitive computing are helping scientists to summarize pub-

lished scientific literature. Recently, machine learning text-mining bibliometric approaches have been used

to analyze and integrate a variety of biological, medical, and environmental science data (Littmann et al.,

2020; Tan et al., 2021; Zitnik et al., 2019). These include methods that integrate electronic health records

(Rajkomar et al., 2018), capture latent knowledge from the material science literature (Tshitoyan et al.,

2019), investigate the evolution of research in environmental sciences (Tan et al., 2021), and discover po-

tential novel drugs to treat psychiatric and neurological disorders using cognitive computing and network

medicine analysis of the medical literature (Lüscher Dias et al., 2020).

Particularly, the field of molecular biology has seen a remarkable increase in the number of new studies in

recent decades. This has resulted in a large number of genes associated with diseases. As a positive conse-

quence of this efflux of genetic knowledge, diseases that were previously not known to have common

etiologies are now being connected through their shared alterations in gene expression and interaction

patterns, which has opened many potential new roads for clinical advances (Brooks et al., 2014; Carson

et al., 2017; Lees et al., 2011; Postma et al., 2011). One significant example of this trend is the association

between psychiatric disorders and immune-related diseases (Gibney and Drexhage, 2013; Marrie et al.,

2017; Wang et al., 2015).

Network medicine (Barabási et al., 2011), a contemporary approach to studying relationships between

genes and diseases, has also been made possible because of the large amounts of data on genes and

diseases available online. Moreover, knowledge networks, that is, complex graphs that connect concepts

according to the established knowledge, can be analyzed under the network medicine framework to pro-

duce novel insights from medical knowledge (Bai et al., 2016; Lüscher Dias et al., 2020).

In this study, we used IBM Watson for Drug Discovery (WDD [Chen et al., 2016a]), a cognitive computing

text-mining application, to extract known relationships between genes and psychiatric, inflammatory,

and infectious diseases from the peer-reviewed literature published between 1990 and 2018. We
iScience 25, 103610, January 21, 2022 ª 2021 The Author(s).
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developed knowledge networks of genes and diseases and monitored the evolution of these relation-

ships yearly. We then quantified and described how genes were connected to each category of disease

over this period and how key biological functions unraveled as new genes were added to the network.

We also found pairs of diseases from different categories that significantly share genes with each other,

indicating underlying clinical proximity between diseases that have not been historically related. Lastly,

we explored the genes that were common to all psychiatric, inflammatory, or infectious diseases and

investigated which drugs target them. By using a network medicine approach, we were able to extract

relevant biological information and new insights of genes, pathways, and therapeutic drugs associated

with complex human disorders.
Methods

Watson for drug discovery

We built knowledge networks containing interactions between diseases and genes using the WDD (Chen

et al., 2016a). The WDD database contains a corpus of data extracted from the biomedical scientific liter-

ature using a cognitive computing text-mining approach (Chen et al., 2016a). WDD has access to millions

of abstracts in the MEDLINE platform and full texts in the PMC (PubMed Central) Open Access platform

(Chen et al., 2016a). The MEDLINE database is controlled by the National Institutes of Health (NIH) and

started in 1960 (NIH, 2021). The PubMed database, for instance, includes all MEDLINE references, which

represents over 28 million of the 32 million references in the PubMed database. These references are

published in over 5,200 journals (NIH, 2021). The PMC Open Access is a free archive for full-text biomed-

ical and life sciences journal articles. Some PMC journals are also MEDLINE journals, and there are also

reciprocal links between the full texts in PMC and corresponding citations in PubMed (NIH, 2021). In each

document, the WDD algorithm detects relevant biomedical concepts, namely genes, chemicals, drugs,

and diseases. This is performed using a machine learning annotator approach (WDD has a Hatz et al.,

2019; High and Bakshi, 2019) dictionary of terms built using the annotator approach based on the thou-

sands of terms extracted from its corpus that reconciles multiple synonyms of a term into a single,

unambiguous concept. Next, WDD searches for meaningful associations between the detected unam-

biguous terms using a set of semantic annotators, i.e. nouns, verbs, and prepositions that convey a se-

mantic relation between the terms. WDD attributes a confidence score (0%–100%) to each association

based on the number of documents in which the relation is found and also on the semantic relevance

of each link, determined by the machine learning annotator approach (Hatz et al., 2019; High and Bakshi,

2019). The detected terms and relationships that compose the WDD corpus then become available for

online or API-mediated searches. The final user performs individual or grouped searches using terms of

interest in the form of keywords (e.g. ‘‘Alzheimer’s disease’’). WDD automatically converts the queried

keyword into the consensus term present in its dictionary. Terms that are not present in the WDD dic-

tionary will not yield results. The search returns tables containing the connections of the queried term

with other terms of interest, the score of each connection, the class to which the connected terms belong

(drug, gene, or disease), the number of documents in which the connection could be detected, and the

PMIDs or PMCIDs of the documents.
WDD queries

We performed independent searches on WDD using the names of 27 inflammatory diseases, 63 infectious

diseases, and 9 psychiatric and neurological disorders (Table S1) as query keywords. All searches were per-

formed in July 2018. WDD allows users to specify a year interval from which relationships will be extracted,

so that only documents published in the defined time period are accessed. We defined 29 time intervals

beginning in 1964 (the first year of records in WDD) and ending in one year from 1990 to 2018. WDD re-

turned 29 lists of genes related to the human diseases extracted from the scientific literature in each inter-

val. These associations are cumulative, that is, the genes associated with the diseases in 2018 include all the

associations present in the previous years. The lists of genes related to human diseases were downloaded

in table format and processed using custom R code. From the extracted relationships, we only kept con-

nections between genes and diseases supported by a WDD confidence score of at least 50% and 2 docu-

ments of evidence, to reduce false-positive associations, as previously demonstrated by our group (Lüscher

Dias et al., 2020). The tables containing the associations retrieved by WDD and the custom R code used to

process, filter, and analyze data and to plot figures are available at https://doi.org/10.5281/zenodo.

5217544 (Luscher Dias et al., 2021). Figure S1 summarizes all the methodological steps performed in this

study.
2 iScience 25, 103610, January 21, 2022
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Evolution of knowledge

We measured the similarity between all pairs of human diseases by calculating a Fisher’s exact test for the

gene overlap between each pair in each year from 1990 to 2018 (Figure S1). We used the total number of

unique genes connected to the diseases in each year’s as the Fisher’s exact test universe. For each year, a

disease-disease knowledge network was developed. In these networks, the nodes are the diseases, and the

edges connect diseases that significantly share genes with each other. The edge weights are proportional

to the significance of the gene sharing between each pair of diseases according to the Fisher’s exact test.

We used the –log10p value of the Fisher’s exact test (also termed ‘‘disease-disease similarity score’’ here) for

each disease pair. We removed edges with a Fisher’s exact test p value > 0.05. The networks were con-

structed using the R package igraph (Csardi and Nepusz, 2006) and plotted using the package ggraph

with the kk layout. We detected new genes each year by comparing the list of genes of the diseases in

one year with the list of genes of the same disease in the previous year. Thus, we obtained a list of new

genes that were added to the network in each year from 1991 to 2018. The total number of genes associ-

ated with each disease was also calculated for each year. Line, violin, and ridge plots were created to illus-

trate the results using ggplot2 (Wickham, 2016).

Evolution of disease relationships between categories

We selected the top 9 diseases of each category (psychiatric, inflammatory, infectious) that were connected

to the most genes in 2018 (‘‘top 9 diseases"). Then, we detected the top diseases from the other two cat-

egories that had the highest disease-disease similarity score with the top 9 diseases (Figure S1). We

analyzed how the relationship between these similar pairs of distinct categories evolved from 1990 to

2018. We used the MeSH.db R package (Tsuyuzaki et al., 2015) to obtain the MeSH IDs and MeSH terms

of all 99 diseases. Using the MeSH terms of the diseases in each pair, we used the easyPubMed R package

to search in PubMed for papers in which both disease MeSHes of each pair were found together. We then

used an adapted version of the fetch_pubmed_data function (see code in [Luscher Dias et al., 2021]) of the

easyPubMed package to retrieve the number of papers that contained the searched MeSH pairs in each

year from 1990 to 2018. We used the disease-disease similarity score and the number of papers in 2018

that contained MeSH terms from both diseases to calculate a similarity-to-paper ratio for each disease

pair as follows:

similarity:paperratio =
dis� dis� similarity

number of papers

Low similarity-to-paper ratios were considered as cases of low knowledge gap between the gene sharing

and the general scientific interest in the disease pairs. Pairs with low ratios included those in which the

diseases did not share a significant amount of genes or pairs of similar diseases for which there is also a

proportional number of papers that cite the two diseases together. Intermediated ratio values were consid-

ered as cases of intermediate knowledge gap, that is, the diseases in the pair are similar in the genes they

share, but the number of papers on the two diseases together is not proportionally high. High similarity-to-

paper ratios were interpreted as cases of a large knowledge gap. The pairs that had high ratios include dis-

eases that share a significant proportion of their genes but that have almost never been studied together,

evidenced by the very low number of papers including the two MeSH terms.

Evolution of biological pathways

We used the enricher function of the R package clusterProfiler (Yu et al., 2012) to perform an ORA against

Reactome pathways of the genes associated with the top 9 diseases of each category in each year. We

selected the significant Reactome pathways (p.adjust <0.01) of the top 9 diseases in 2018 and calculated

the significance of the gene overlap between these pathways with Fisher’s exact test (Figure S1). We

considered only the genes of each significant pathway that were also present in the 2018 gene-disease

network. By doing this, we limited pathways to cluster according to the genes shared from our dataset,

not all the genes in the pathways. We then built a pathway network connecting the significant Reactome

terms using the –log10p value of the Fisher’s exact tests as edge weights, similar to what was done for

the disease-disease network in Figure 1A. We detected clusters of pathways in this network using the

cluster_louvain function (Blondel et al., 2008) of the igraph R package (Csardi and Nepusz, 2006). Edge

weights were considered for the cluster detection. We calculated the weighted degree of each pathway

in the network using the strength function of the igraph package (Csardi and Nepusz, 2006). We manually

annotated the detected clusters for their major biological function using the pathways with the highest

weighted degree in each cluster as reference. The significance values (–log10pval) of ORA for the pathways
iScience 25, 103610, January 21, 2022 3



Figure 1. Evolution of knowledge on the molecular bases of human diseases

(A) Representative disease-disease knowledge networks on infectious, inflammatory, and psychiatric disorders in 1990, 2000, 2010, and 2018. All quantitative

analyses were performed using the 29 yearly networks from 1990 to 2018. Nodes represent diseases and are proportional to the number of genes

associated with each disease in each year. Edge weights are proportional to the significance of gene-sharing between each pair of diseases. Only edges with

a p value < 0.01 are depicted.

(B) Cumulative number of genes associated with each disease category and with all diseases from 1990 to 2018.

(C) Distribution of the number of genes associated with each disease and category in 2018.

(D) Number of new genes added to the network in each category per year.

(E) Number of new genes added to the network in selected diseases each year. Color code: green—infectious diseases, orange—inflammatory diseases, and

blue—psychiatric disorders.
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in each cluster were used to make box and ridge plots to illustrate the results for each disease in 2018 and

how these results changed from 1990 to 2018.

Evolution of drug target hub genes

Using the 2018 gene-disease network, we detected the genes common to all three categories of diseases

(‘‘hub genes’’) (Figure S1). We used the R package UpsetR to visualize the number of genes shared and

exclusive to the disease categories. We downloaded the drug-gene and the drug-disease interaction da-

tabases from the CTD (http://ctdbase.org/ [Davis et al., 2021]). We used the MeSH terms of the 99 diseases

to filter the drug-disease database and kept only interactions between drugs and diseases that were listed

as ‘‘therapeutic’’ by CTD. These are cases of a ‘‘chemical that has a known or potential therapeutic role in a

disease (e.g., chemical X is used to treat leukemia),’’ according to the CTD glossary (Davis et al., 2021). We

filtered the drug-gene database and kept only the interactions between the therapeutic drugs and the hub

genes of our analysis. This final drug-gene list was used to detect the top 20 drugs that target the most hub

genes and the top 20 hub genes most targeted by the therapeutic drugs. We visualized these drug-gene

interactions in a network built with the R packages igraph and plotted with ggplot2 and ggraph. We used

the yearly gene-disease networks to detect when the top 20 drug target hub genes were first connected to

diseases in each category to build a timeline.

Quantification and statistical analysis

All analyzes were performed in the R environment (Version 4.1.0). R packages used to perform the analyses

and plot figures were igraph (v.1.2.6), ggraph (v.2.0.5), ggplot2 (v.3.3.5), clusterProfiler (v.4.0.2), MeSH.db

(v.1.15.1), easyPubMed (v.2.13), and UpSetR (v.1.4.0). Specific details of each analysis are described in

the Method details section and in the Results section, as well as figure legends. The significance of the
4 iScience 25, 103610, January 21, 2022
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difference between the number of published papers between diseases connected to more or less than 100

genes in the 2018 network was determined with a t test (p value < 0.05). Fisher’s exact test result signifi-

cance was established at p values < 0.01 (network edge filter) or p.adjust <0.01 (Reactome functional

enrichment).
RESULTS

Evolution of knowledge on the molecular bases of human diseases

We usedWDD, a cognitive computing text-mining application, to identify connections between genes and

diseases in millions of peer-reviewed studies (Chen et al., 2016a). For each year from 1990 to 2018, we

queried WDD to obtain gene sets related to 99 inflammatory, psychiatric, and infectious diseases (Table

S1). WDD detects terms of interest, such as genes and diseases, in scientific texts (e.g., PubMed abstracts

and full text journal articles) and finds contextual elements connecting them (e.g., prepositions and verbs).

These connections can be extracted from many distinct sources of evidence such as gene expression

alterations, genome-wide association studies, or protein expression experiments. A confidence score is es-

tablished for each relationship based on the strength of the detected semantic association and also the

number of documents in which the connection is found. However, the type of study from which the asso-

ciation is obtained is not considered for the calculation of the evidence score. Here, we kept only gene-dis-

ease relationships with a confidence score equal or higher than 50% and that were supported by at least 2

studies.

Next, we built yearly disease-disease networks connecting inflammatory, infectious, and psychiatric dis-

eases according to the significance of the genes shared by each pair of diseases (Figure 1A). These net-

works were cumulative: the 2018 network (Figure 1A, bottom right network) displays all connections found

in the entire period, whereas the network of the year 2000 (Figure 1A, top right network), for instance, con-

tains all connections from 1990 up to that year. The 1990 network (Figure 1A, top left network) depicts the

relationships between diseases from the beginning of the literature registries up to 1990.

We then assessed how these relationships evolved over the past three decades (1990–2018) and explored

the historical trends of the new genes connected to the network during the period (Figures 1B–1E and

Table S1). In 1990, only 95 genes were connected in the network (Figure 1B), and no association between

psychiatric disorders and inflammatory or infectious diseases could be established through shared genes

(Figure 1A). Accordingly, the overall similarity between diseases (between or within categories) was low in

1990 (Figure S2). From 1990 to 2010, with the constant increase in the number of genes associated with dis-

eases in all categories, a preliminary approximation between inflammatory and infectious diseases was

observed (Figure 1A, second panel, and Figure S2A). During the next 9 years (2010–2018), the new genes

added to the network (Figure 1B) resulted in a strengthening of the connections between infectious and

inflammatory diseases and a fast approximation between psychiatric disorders and the other two cate-

gories (Figure 1A, fourth panel, and Figure S2A). Meanwhile, the proximity of diseases within the same cat-

egories also increased (Figure S2B). Inflammatory diseases occupy a central position in the 2018 network

(Figure 1A, fourth panel), which reflects their high between- and within-category similarities sustained

throughout the 30-year period (Figure S2). Psychiatric and infectious diseases presented the lowest simi-

larity between each other (Figures 1A and S2).

In 2018, a total of 3,723geneswerepresent in thenetwork (Figure 1B). Thenumberof genes associatedwitheach

disease in the three different categories in 2018 also varied (Figure 1C). The infectious diseases with the highest

number of connected genes in 2018 were hepatitis B (414 genes), hepatitis C (506 genes), andHIV infection (856

genes; Figure 1C). However, 55 of 63 infectious diseases were connected to less than 100 genes in 2018 (Fig-

ure 1C). The most connected inflammatory diseases were psoriasis (346 genes), systemic lupus erythematosus

(393 genes), and arthritis (490 genes; Figure 1C). In the category of psychiatric disorders, Alzheimer disease

was the most connected (657 genes), followed by schizophrenia (547 genes) and depression (402 genes; Fig-

ure 1B). The imbalance in the distribution of genes connected to infectious diseases likely reflects a bias in the

research interest toward the discovery of genes related to diseases already connected to more genes. In fact,

wedetectedapositive correlationbetween thenumberof paperspublishedonhumandiseases and the number

of genes connected to the diseases in the 2018 network (Figure S2C).2.

Distinct historical trends of discovery were seen for each disease category (Figures 1D and Table S1). Prom-

inent peaks of gene-association discovery occurred in 1996 for infectious diseases, in 2005 for inflammatory
iScience 25, 103610, January 21, 2022 5
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diseases, and in 2013 for psychiatric disorders (Figure 1C). From 2010 to 2017, the rate of gene discovery in

all three categories increased (Figure 1C). The significant increase in the number of genes associated with

infectious diseases observed in 1996 wasmostly driven by 154 new genes associated with HIV infection (Fig-

ure 1D), which corresponded to 50% of the new genes added to the network in that year (Table S1). The

triple therapy for HIV using nucleoside reverse-transcriptase inhibitors and protease inhibitors was estab-

lished in 1996 (Hammer et al., 1996), which likely influenced this outburst of genetic discovery. The 2005

increase in the number of genes associated with inflammatory diseases was mostly related to the new

genes connected to psoriasis (41 genes) and systemic lupus erythematosus (33 genes; Figure 1D), which

together corresponded to 20% of the new genes associated with all of the diseases in 2005 (Table S1).

The Th17 cell lineage was discovered in 2005 (Langrish et al., 2005), a cell type that has since been strongly

associated with autoimmune and infectious diseases (Zambrano-Zaragoza et al., 2014). In 2013, a large

number of new genes were associated with Parkinson disease (165 genes Figure 1D), which corresponded

to 17% of the new genes in the network in that year (Table S1). We could not detect any specific scientific

landmark in 2013 that could explain this peak. Nevertheless, important genes related to the innate immune

response to pathogens and inflammation are among the new genes associated with Parkinson disease in

2013, such as interleukin 1 beta (IL1B) and the p105 subunit of the nuclear factor kappa B (NFKB1).
Evolution of disease relationships between categories

Next, we investigated the evolution of the similarity between diseases from different categories according

to their shared genes (see STARMethods section). For the top 9 most connected diseases of each category

in 2018 (i.e., diseases connected to more genes), we detected the diseases from the other two categories

with the most significant gene sharing between them and analyzed how these relationships evolved from

1990 to 2018 (Figures 2, S2, S3, and S4). Alzheimer disease was the psychiatric disorder with the highest

similarity to inflammatory diseases in 2018, including arthritis and systemic lupus erythematosus (Figure 2A).

The relationships between Alzheimer disease and these disorders grew steadily in significance from 1990 to

2018 (Figure S3A), which captures the now well-established relevance of inflammatory processes in the

pathophysiology of Alzheimer disease (Newcombe et al., 2018). Surprisingly, fibromyalgia was similar to

several psychiatric diseases: depression, anxiety, bipolar disorder, schizophrenia, and Huntington disease

(Figures 2A and S3). The total number of genes associated with fibromyalgia in 2018 was low (25 genes), but

72% of these (17 genes) are also associated with depression. These are genes related to nervous system

development, such as brain derived neurotrophic factor (BDNF), nerve growth factor (NGF), and neuropep-

tide Y (NPY), and inflammatory response, including interleukin-6 (IL-6), C-X-C motif chemokine ligand 8

(CXCL8), and tumor necrosis factor (TNF). In fact, fibromyalgia patients often present psychiatric comorbid-

ities such as depression and anxiety (Galvez-Sánchez et al., 2020).

Among infectious diseases, herpes was the most similar disease to autism, schizophrenia, and Huntington

disease and was also among the top 5 most similar infectious diseases to depression, Parkinson disease,

and Alzheimer disease (Figures 2B and S4). Herpes infection might be associated with the development

of Alzheimer disease (Harris and Harris, 2015); the typical amyloid-b deposition that occurs in the brain

of Alzheimer disease patients could be an innate immunity mechanism to fight herpes virus infections

(Eimer et al., 2018). Our results indicate that there has been latent evidence of that association since the

early 2000s in the scientific literature (Figure S4A). In the 2005 network, Alzheimer disease and herpes virus

infection shared 14 genes, which represented 58% of the known genes associated with herpes infection at

that time.

Autoimmune inflammatory diseases, such as systemic lupus erythematosus, arthritis, and psoriasis, also

showed strong gene sharing with viral infections such as hepatitis B and C, respiratory syncytial virus

(RSV) infection, influenza, and HIV (Figures 2C and S5). The association between viral infections and auto-

immune diseases is well documented (Getts et al., 2013). For instance, the SARS-CoV-2 virus can trigger

Guillain–Barré syndrome, a neurological autoimmune disease, in COVID-19 patients (Dalakas, 2020).

Dengue patients also present a higher risk of developing autoimmune diseases, such as systemic lupus er-

ythematosus and vasculitis (Li et al., 2018), an association that was also captured in our analysis of the sci-

entific literature since the late 1990s (Figure S5I).

We then examined the number of publications retrieved from PubMed using the topmost similar pairs of

diseases from distinct categories as queries (see STAR Methods section; Figure 3). The goal was to find out

whether the gene-sharing similarities between diseases from different categories detected in our networks
6 iScience 25, 103610, January 21, 2022



Figure 2. Evolution of disease relationships between categories

Disease-disease similarity between diseases of different categories in the 2018 network according to their shared genes.

The similarity score was defined as the –log10pval of the Fisher’s exact test result of the gene overlap between each

disease pair. Each heatmap represents the similarity score between diseases of two different categories: (A) psychiatric

versus inflammatory diseases.

(B) psychiatric versus infectious diseases.

(C) inflammatory versus infectious diseases.
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Figure 3. Evolution of the knowledge gap between diseases of different categories

(A) Number of papers versus disease-disease similarity for all disease pairs from distinct categories. Each point represents a disease pair, and the size of the

point is proportional to the similarity-to-paper ratio for that pair. This index was obtained as a ratio of the similarity score to the total number of papers

published for each disease pair in 2018.

(B) Selected cases of disease pairs with low to high similarity-to-paper ratios depicting the evolution in the number of papers on each pair and the evolution

of the similarity between them.
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could also be captured from direct co-occurrence in the general peer-reviewed literature over the 30-year

period. For each disease pair, we obtained a ratio between the similarity score of the diseases (i.e., the sig-

nificance of the gene sharing between them) and the total number of studies retrieved from PubMed that

mention both diseases of the pairs together (Table S2). This similarity-to-paper ratio was used to detect

potentially understudied pairs of diseases that significantly share genes. Low similarity-to-paper ratio

values (Figures 3A and 3B, and Table S2) represent similar diseases with many papers already published

about them or dissimilar disease pairs. An example of such a pair is fibromyalgia and depression. These

diseases have significant gene sharing and also hundreds of scientific papers that explore their relationship

in the literature (Figure 3B). Conversely, the genetic association between osteoporosis and mycobacterial

infection is low and so is the number of papers that investigate these diseases together (Figure 3B). These

cases were considered as examples of a low knowledge gap between the genetic similarity obtained from

our network analysis and the established literature coverage of the disease pairs.

Cases with an intermediate similarity-to-paper ratio (Figures 3A and 3B and Table S2) were considered as

cases of moderate knowledge gap (Figure 3A), which was the case for arthritis and hepatitis B (Figure 3B).

As previously mentioned, several recent studies have explored the association between viral infections and

autoimmune diseases (Dalakas, 2020; Getts et al., 2013; Li et al., 2018). In 2018, there were over 250 pub-

lished papers in which arthritis and hepatitis B were mentioned together (Figure 3B). Virally mediated

arthritis represents �1% of all arthritis cases, including cases related to hepatitis B infection (Marks and

Marks, 2016). Scientists have detected the hepatitis B virus in the synovial fluid of rheumatological patients,
8 iScience 25, 103610, January 21, 2022
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which could contribute to the pathogenesis of arthritis (Chen et al., 2018a). Although these diseases are

known to be clinically associated at least since the 1970s (Mirise and Kitridou, 1979), our results show

that the knowledge on the gene sharing between them increased rapidly after 2015, which was not fol-

lowed at the same rate by the number of papers published on the two diseases together. This represents

a potential gap to be explored by novel research on the genetic bases of the relationship between arthritis

and hepatitis B.

Lastly, we considered the disease pairs with strong gene sharing and few studies supporting a direct asso-

ciation as cases of a high knowledge gap (Figures 3A and 3B, and Table S2). We suggest that these cases

might represent potentially underexplored fields of research that deserve further investigation. Surpris-

ingly, the number of papers published until 2018 that mentioned psoriasis and malaria together was ne-

glectable (Figure 3B). These diseases share 31 genes, one-third of the genes associated with psoriasis,

and over 10% of the genes associated with malaria in the 2018 network. Hydroxychloroquine, a drug

used to treat malaria (Ben-Zvi et al., 2012) and rheumatic diseases, such as arthritis and lupus (Ben-Zvi

et al., 2012), can trigger psoriatic lesions (Balak and Hajdarbegovic, 2017). Among a few papers in which

malaria and psoriasis are mentioned together, there is a report from 2014 that describes cases of hydroxy-

chloroquine-induced psoriasis in patients undergoing malaria treatment (Gravani et al., 2014). The authors

of this study suggest that there should be guidelines for the management of psoriasis patients who are also

at risk of malaria (Gravani et al., 2014). Our findings corroborate the need for future studies to investigate

the association between these diseases.
Evolution of biological pathways

We performed a gene overrepresentation analysis (ORA) against Reactome pathways with the genes asso-

ciated with the top 9 most connected diseases in each year from 1990 to 2018 (Figures 4–6 and Table S3).

We detected 433 Reactome pathways that presented significant enrichment (p.adjust <0.01) among the

genes of at least one disease (Table S3). Functional enrichment analysis, such as ORA, often yields too

many significant pathways, making these results difficult to interpret at the individual pathway level. For

this reason, we used a network approach to reduce the complexity of the obtained set of enriched path-

ways (see STAR Methods section). Briefly, we built a pathway network (Figure 4) with the significant Reac-

tome pathways obtained from the ORA. We connected these pathways to each other according to the

gene sharing between them, similar to what was done in Figure 1A. We then identified 11 clusters of closely

connected pathways in the network and annotated these clusters according to the main biological func-

tions of the pathways within them (Figure 4 and Table S3). One of the detected clusters grouped several

pathways associated with interferon-stimulated genes, interleukins, and antigen presentation (Figure 4

and Table S3). The pathways in this cluster were significantly enriched among the genes of diseases in

all categories, including malaria, HIV infection, arthritis, lupus, depression, and Alzheimer disease (Fig-

ure 5). The pathways related to interleukin signaling (e.g., ‘‘interleukin 10 signaling’’), for instance, were

among the top enriched pathways associated with depression genes in the 2018 network (Figure 5 and

Table S3). Another cluster of pathways that showed consistent enrichment across all disease categories

was NFkB-mediated inflammation induced by Toll-like receptors (TLRs), T cell receptors (TCRs), and

B cell receptors (BCRs; Figure 4). These results illustrate the most recurring theme detected in our study:

psychiatric, inflammatory, and infectious diseases share common immunological mechanisms that are

mostly related to innate immunity and inflammation.

Conversely, we found a cluster of closely connected pathways related to neurotransmission that were en-

riched mostly among the genes of psychiatric disorders (Figure 4 and Table S3). However, three inflamma-

tory and infectious diseases (hepatitis B, arthritis, and HIV infection) presented enrichment for pathways in

this cluster (Figure 5 and Figure S6). The genes related to these diseases presented enrichment for the

pathway ‘‘transcriptional regulation MECP2,’’ a member of the neurotransmission cluster. Methyl CpG

binding protein 2 (MECP2) is located in the X chromosome, and mutations in this gene are the primary

cause of Rett syndrome (Liyanage and Rastegar, 2014). There is no evidence in the scientific literature

that there is a link between HIV infection or hepatitis B and Rett syndrome, but recent studies indicate a

link between this neurodevelopmental disorder and autoimmune diseases, including arthritis (De Felice

et al., 2016). Moreover, AIDS patients can develop neurological manifestations similar to those observed

in Rett patients, such as cognitive dysfunction and movement disorders (Brew and Garber, 2018). Our

results suggest that the similarity between Rett syndrome and autoimmune diseases might also occur

for infectious diseases of viral etiology.
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Figure 4. Reactome term network built from the ORA results of the genes associated with human diseases in 2018

Significant ReactomeORA terms (p.adjust <0.01) obtained from the genes of the top 9 diseases in the 2018 network were connected to each other according

to the significance of the gene sharing between them (edge weight). Only terms with a gene sharing with a p.adjust <0.01 were connected. We detected 11

clusters (node colors) of closely related terms using the Louvain clustering algorithm in the R package igraph (Csardi and Nepusz, 2006) and compared the

enrichment score distribution of the terms in these clusters in each disease category (boxplots). Boxplots are colored according to the disease categories:

green—infectious diseases, orange—inflammatory diseases, and light blue—psychiatric disorders. Dots in the boxplots represent individual enriched

Reactome pathways that belong to each network cluster.
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We also detected other clusters of pathways with similar enrichment results between diseases of different

categories (Figure 4). The genes related to arthritis and those related to Alzheimer disease presented

enrichment for pathways related to the extracellular matrix organization, coagulation, and lipoprotein

metabolism (Figure 5). In arthritis, fibroblast-like synoviocytes become hyper-inflammatory and disrupt

the extracellular matrix integrity, which leads to the degradation of synovial joint collagen (Nygaard and

Firestein, 2020). In Alzheimer disease, some extracellular matrix macromolecules seem to promote the pro-

duction and stabilization of amyloid b, whereas others act to protect neurons from amyloidosis (Sethi and

Zaia, 2017). The pathways in the signal transduction on growth factor stimulation and GPCR-mediated

signaling clusters were also enriched among the genes of diseases in all categories (Figures 4 and 5,

and S6). This result was expected because the genes involved in signal transduction and intracellular

signaling are usually shared between cellular pathways and are involved in virtually all biological functions

relevant to diseases (Figure 5 and S6).

After determining the major biological functions related to the genes connected to infectious, inflamma-

tory, and psychiatric diseases in the 2018 network, we investigated how this knowledge evolved from

1990 to 2018 (Figure 6). The pathways related to interferon-stimulated genes, interleukins, and antigen

presentation became enriched for the genes associated with inflammatory and infectious diseases

already since the early 1990s (Figure 6). Surprisingly, this enrichment appeared earlier for inflammatory
10 iScience 25, 103610, January 21, 2022



Figure 5. Key biological pathways are enriched among the genes associated with human diseases in 2018

(A) ORA networks depicting the enrichment score of Reactome pathways in selected infectious, inflammatory, and psychiatric disorders. The networks in A

have the same topology of the network in Figure 04. The nodes are colored according to the logarithm of enrichment score (�log10pval) of the terms

represented by each node.

(B) ORA enrichment score distribution of the terms in the clusters and diseases from panel (A). Boxplots are colored according to the category of each

disease: green—infectious, orange—inflammatory, and light blue—psychiatric. Dots in the boxplots represent individual Reactome pathways that belong to

the clusters listed in the y axis and that were enriched in each disease.
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diseases, despite the highly relevant role of interferon-stimulated genes and antigen presentation in in-

fectious diseases. Conversely, there was a significant increase in the enrichment of these pathways for the

genes related to depression, autism, and schizophrenia since 2010 (Figure 6). Recently, the specific roles

of the immune system in psychiatric diseases began to be revealed (Chen et al., 2016b; de Baumont

et al., 2015; Dong et al., 2018b; Madore et al., 2016; Yuan et al., 2019). Particularly, neuroglial cells

have gained importance as key neuroimmune players in the development of autism (microglia and oli-

godendrocytes [Scuderi and Verkhratsky, 2020], Alzheimer disease (microglia [Clayton et al., 2017],

and schizophrenia (astrocytes [Gandal et al., 2018]. The association of pathways related to apoptosis,

senescence, and cell differentiation with psychiatric disorders has also occurred recently, except with

Alzheimer disease, which began early in the period (Figure 6). Alzheimer, Parkinson, and Huntington dis-

eases are neurodegenerative conditions in which chronic neuronal death happens in distinct parts of the

brain (Dugger and Dickson, 2017). We also found an increasing association in recent years of genes

related to autism and depression to cell fate pathways (Figure 6), showing that these disorders might

also have a neurodegenerative component. In fact, apoptosis and cell death in response to stress and

inflammation are relevant factors in the pathogenesis of autism (D. Dong et al., 2018a) and depression

(Leonard, 2018).
Evolution of drug target hub genes

Lastly, we examined how drugs that are used to treat inflammatory, infectious, and psychiatric diseases target

the genes that are shared between the three categories. We found that 345 genes were common to all disease

categories (Figure 7A). Ninety-nine genes were shared only between inflammatory and psychiatric diseases; 259

were common only between psychiatric and infectious diseases; and a total of 409 genes were related exclu-

sively to inflammatory and infectious diseases (Figure 7A). The remaining genes were unique to inflammatory

(493 genes), psychiatric (869 genes), and infectious diseases (1,209 genes; Figure 7A).

We used the comparative toxicogenomics database (CTD [Davis et al., 2021]) to find drugs that have a ther-

apeutic relationship with the top 9 diseases and the list of genes that these drugs affect (see STAR Methods
iScience 25, 103610, January 21, 2022 11



Figure 6. Evolution of knowledge on biological pathways

Ridge plots of the enrichment score of selected clusters from the network in Figure 04 for the top 9 diseases in each category from 1990 to 2018. The height of

the ridges are proportional to the mean enrichment score (mean log10pval) of the Reactome pathways in each cluster listed in the y axis.
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section). From these lists, we highlight the top 20 most common target genes of the therapeutic drugs listed

by CTD (Figure 7B). Among these genes, IL-6, TNF, and interferon gamma (IFNG) were already connected to

inflammatory diseases in the 1990 network and were gradually related to diseases in the other two categories

until 2002 (Figure 7C). Interleukin-1 beta (IL-1B), B cell lymphoma 2 (BCL2), tumor protein P53 (TP53), and

CXCL8 also appeared in our networks in the early 1990s and were first connected to inflammatory diseases

(Figure 7C). Eight drug target genes were first connected to psychiatric disorders (Figure 7C): caspase 3

(CASP3; 1996), prostaglandin-endoperoxide synthase 2 (PTGS2; 1997), heme oxygenase 1 (HMOX1; 2000),

BCL-2-associated X (BAX), mitogen-activated protein kinase 1 (MAPK1; 2001), RAC-alpha serine/threonine-

protein kinase (AKT1; 2003), nuclear factor erythroid 2-related factor 2 (NFE2L2; 2007), and mitogen-activated

protein kinase 1 (MAPK3; 2008). The other 5 genes were first connected to infectious diseases (Figure 7C):

NFkB P65 subunit (RELA; 1996), poly (ADP-Ribose) polymerase 1 (PARP1), ATP binding cassette subfamily

B member 1 (ABCB1; 1999), cyclin-dependent kinase inhibitor 1A (CDKN1A; 2001), and caspase 8 (CASP8;

2010). All top 20 drug target genes were first connected to one of the categories until 2010, with the majority

of new connections happening in the 1990s (Figure 7C). These are very well-known genes involved in inflam-

mation (e.g., IL6 and IL1B), innate immunity (e.g., IFNG), apoptosis (e.g., CASP3 and CASP8), cell cycle (e.g.,

TP53), and other key biological functions that are altered in several diseases.

Next, we found the top 20 therapeutic drugs that affect the most hub genes of inflammatory, psychiatric,

and infectious diseases (Figure 7D). Valproic acid, a class I histone deacetylase (HDAC) inhibitor (Göttlicher

et al., 2001), was the drug that affected the most hub genes, 259 (Figure 7D). According to CTD, among the

diseases we analyzed in this study, valproic acid is a therapeutic drug for anxiety, autism, bipolar disorder,

and schizophrenia (Figure 7E). This drug is also an efficient anti-convulsant used to treat epilepsy (Tomson

et al., 2016) because it facilitates gamma-aminobutyric acid (GABAergic) neurotransmission (Chateauvieux

et al., 2010). There is extensive evidence in the literature of the anti-inflammatory effects of valproic acid

and its potential use to treat conditions such as spinal cord injury (Chen et al., 2018b), renal ischemia (Cos-

talonga et al., 2016), and sepsis-induced heart failure (Shi et al., 2019). Valproate was also speculated as a

potential repurposing candidate to treat diseases caused by infectious agents, such as COVID-19 (Pitt

et al., 2021) and toxoplasmosis (Goodwin et al., 2008). HDAC inhibitors promote epigenetic modifications

in the genome that induce the expression of genes in many biological functions and cell types (Hull et al.,

2016). This could explain valproic acid’s versatility and why it ranked first in our analysis.
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Figure 7. Evolution of drug target hub genes

(A) Upset plot showing the common genes between all categories (hub genes), between two categories exclusively and

genes that are unique to each category.

(B) Number of therapeutic drugs of inflammatory, infectious, and psychiatric diseases that target the top 20 target hub

genes according to the comparative toxicogenomics database (CTD).

(C) Timeline of the association of the top 20 target hub genes to the gene-disease network. The year in which each gene

was associated with the first disease of each category is depicted by the circles with distinct colors for each category.

(D) Number of hub genes targeted by the top 20 drugs that target more hubs according to CTD. (E) Drug-gene network

depicting the top 20 drugs and that target hub genes. We selected a few drugs and illustrated their molecular structure

and diseases for which they are listed as therapeutic according to CTD.
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Among the other top 20 drugs, we found molecules that are currently under investigation for repositioning

from one disease category to another. Methotrexate (Figure 7D), which affects 141 genes among the 345

hubs, is used to treat several inflammatory diseases, including psoriasis, lupus, and arthritis (Figure 7E).

Recently, a randomized clinical trial revealed a potential for methotrexate to treat positive symptoms in
iScience 25, 103610, January 21, 2022 13
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schizophrenia patients (Chaudhry et al., 2020). The authors of the trial argue that this effect of methotrexate

might be achieved through resetting of systemic regulatory T cell control of immune signaling, which is also

the way this drug is thought to act in autoimmune diseases (Chaudhry et al., 2020). The use of anti-inflam-

matory drugs for the treatment of neuropsychiatric diseases gained traction in recent years (Kohler et al.,

2016; Ozben and Ozben, 2019; Pandurangi and Buckley, 2020; Rosenblat et al., 2016) influenced by the

increasing evidence that these disorders have underlying immune causes, which we have extensively

demonstrated in this study. Dexamethasone (Figure 7D) is a glucocorticoid anti-inflammatory drug listed

in CTD as a therapy for arthritis and depression (Figure 7E), but it is also used to treat several other inflam-

matory disorders. Indeed, dexamethasone was one of the few drugs submitted to randomized clinical trials

that reduced mortality in COVID-19 patients subjected to invasive ventilation (RECOVERY Collaborative

Group et al., 2021). Several of the other top 20 drugs were also listed in CTD to be used as therapy for dis-

eases of different categories, such as cyclosporine (hepatitis C and psoriasis), indomethacin (Alzheimer and

autoimmune diseases), dronabinol (neuropsychiatric diseases and HIV infection), and quercetin (anxiety

and influenza; Figure 7E).
DISCUSSION

Similar to the exponential increase in the number of published papers seen in the past decades (Fortunato

et al., 2018), the number of genes associated with psychiatric, inflammatory, and infectious diseases have

also increased significantly in the past 30 years. This rapid growth in knowledge about the genetic under-

pinnings of these diseases can be directly attributed to at least two historical landmarks: the publication of

the human genome in 2001 (International Human Genome Sequencing Consortium et al., 2001; Venter

et al., 2001) and the advent of high-throughput DNA-sequencing technologies (Margulies et al., 2005).

Discrete advances in genes associated with specific diseases could also be spotted throughout the period

analyzed here. In 1996, the triple therapy for HIV was developed using nucleoside reverse-transcriptase in-

hibitors and protease inhibitors (Hammer et al., 1996). In the same year, 50% of the new genes added to the

knowledge network were connected to HIV infection. In 2005, a peak of novel genes associated with

psoriasis and systemic lupus erythematosus was detected. This year also saw the discovery of the Th17
cell lineage (Langrish et al., 2005). The central role of these pro-inflammatory cells in the pathogenesis

of autoimmune and infectious diseases was later identified (Zambrano-Zaragoza et al., 2014). Indeed,

the key genes of the differentiation and maintenance of the Th17 phenotype in CD4+ T lymphocytes,

such as interleukin 17F (IL17F), interleukin-21 (IL21), the peroxisome proliferator-activated receptor gamma

(PPARG), and the fatty acid-binding protein 5 (FABP5), were connected to psoriasis and systemic lupus er-

ythematosus in the network in 2005 (Hwang, 2010; Nalbant and Eskier, 2016).

One of the advantages of using text mining and network medicine to study the relationships between

genes and diseases is the possibility of detecting novel connections from established scientific knowledge.

When two diseases share a genetic mechanism, they can also present common clinical or epidemiological

characteristics, despite having distinct etiological backgrounds (Barabási et al., 2011). These similarities

can inform researchers of potential treatment options (Lüscher Dias et al., 2020). Here, we showed that dis-

eases from inflammatory, psychiatric, and infectious etiologies significantly share genes with each other.

This sharing was strong between disease pairs that were well studied together, such as depression and fi-

bromyalgia. Conversely, the gene sharing between psoriasis and malaria could be perceived in our knowl-

edge networks since the 2000s, but the number of papers featuring the two conditions together in PubMed

is virtually null. We detected a few such cases, mostly involving neglected infectious diseases, which could

explain the knowledge gap. We also found cases of diseases that just recently began to share genes that

also lack many publications directly connecting them in the literature. A case in point is autism and RSV. We

also found disease pairs, such as dementia and Toxoplasma gondii infection, for which there have been

direct associations in the literature since 1990 but that just recently started to share genes in the network.

Our results reveal potentially underexplored pathways for future research on the association between dis-

eases of distinct categories and also for the discovery of new genes related to well-studied disease pairs.

The sharing of genes between diseases from distinct categories also reflects in the overlap of biological

functions, particularly those related to immunological processes. The genes of several diseases in all cat-

egories presented enrichment for Reactome pathways related to the interferon response, cytokines, and

NFkB-mediated inflammation. This pattern was detectable in our networks since the early 1990s for inflam-

matory diseases and gradually appeared for infectious and psychiatric diseases as well. Pathways associ-

ated with neurotransmission were almost exclusively enriched among the genes of psychiatric diseases.
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Nevertheless, we found enrichment for a neurotransmission-related pathway, ‘‘transcriptional regulation

by MECP2,’’ among the genes of HIV infection and hepatitis B that could point to a connection between

these disorders and Rett syndrome, a neurological condition. Our functional enrichment results also high-

lighted the relevance of core cellular functions in diseases of all categories, such as signal transduction and

the regulation of gene expression by transcription factors.

Our network medicine text mining approach also revealed how shared genes between disease categories

can signal toward common therapeutic solutions. The findings presented in the last section of our study

emphasize the relevance of drugs that target shared genes for the treatment of distinct diseases. Our re-

sults show that the genes targeted by therapeutic drugs shared by inflammatory, psychiatric, and infectious

diseases have been associated with these disorders early in the past 30 years of scientific research. These

genes are associated with inflammation, the cell cycle, apoptosis, and central pathways of cellular function.

We also demonstrated that well-established and promising cases of repositioning involve drugs that target

shared genes between diseases. Future studies should aim to reveal more commonmolecular mechanisms

between these categories of diseases as well as to harness that knowledge for novel drug discovery and

repurposing.

In summary, we could apply a machine learning and cognitive computing text-mining strategy using WDD

to extract knowledge about genes related to inflammatory, infectious, and psychiatric diseases from the

scientific literature and depict how this knowledge evolved during the past 30 years.
Limitations of the study

Previous work from our group (Lüscher Dias et al., 2020) revealed that WDD occasionally includes false

gene-disease associations due to misleading or ambiguous sentences in the source documents. We

made an effort to prevent those mistakes here by restricting associations supported by at least two docu-

ments and with a WDD confidence score higher than 50%. However, because the number of associations

detected in this work was too high, we were not able to manually curate them to guarantee that every

connection was supported by the documents used by WDD. Moreover, the gene-disease associations ob-

tained with WDD were retrieved from diverse types of scientific documents, including low-throughput sin-

gle-gene studies, omics, and genome-wide association studies. Therefore, the nature of the association of

a gene with a given disease in our results might differ from the nature of the association of the same gene

with other diseases. We treated all associations between genes and diseases equally, regardless of their

nature, so the interpretation of the results reported here must take this into consideration. Lastly, as has

been discussed previously in this manuscript, the number of genes associated with each disease is likely

biased toward more studied diseases. Therefore, the results presented here might significantly change,

as new genes are associated with the analyzed diseases, especially those that are less well studied.
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Layé, S. (2016). Neuroinflammation in autism:
Plausible role of maternal inflammation, dietary
omega 3, and microbiota. Neural Plast. 2016,
3597209. https://doi.org/10.1155/2016/3597209.

Margulies, M., Egholm, M., Altman, W.E., Attiya,
S., Bader, J.S., Bemben, L.A., Berka, J.,
Braverman, M.S., Chen, Y.-J., Chen, Z., et al.
(2005). Genome sequencing in microfabricated
high-density picolitre reactors. Nature 437,
376–380. https://doi.org/10.1038/nature03959.

Marks, M., and Marks, J.L. (2016). Viral arthritis.
Clin. Med. 16, 129–134. https://doi.org/10.7861/
clinmedicine.16-2-129.

Marrie, R.A., Walld, R., Bolton, J.M., Sareen, J.,
Walker, J.R., Patten, S.B., Singer, A., Lix, L.M.,
Hitchon, C.A., El-Gabalawy, R., et al.; CIHR team
in defining the burden and managing the effects
of psychiatric comorbidity in chronic
immunoinflammatory disease (2017). Increased
incidence of psychiatric disorders in immune-
mediated inflammatory disease. J. Psychosom.
Res. 101, 17–23. https://doi.org/10.1016/j.
jpsychores.2017.07.015.

Mirise, R.T., and Kitridou, R.C. (1979). Arthritis and
hepatitis. West. J. Med. 130, 12–17.

Nalbant, A., and Eskier, D. (2016). Genes
associated with T helper 17 cell differentiation
and function. Front Biosci. (Elite Ed.) 8, 427–435.
https://doi.org/10.2741/e777.

Newcombe, E.A., Camats-Perna, J., Silva, M.L.,
Valmas, N., Huat, T.J., and Medeiros, R. (2018).
Inflammation: The link between comorbidities,
genetics, and Alzheimer’s disease.
J. Neuroinflammation 15, 276. https://doi.org/10.
1186/s12974-018-1313-3.
iScience 25, 103610, January 21, 2022 17



ll
OPEN ACCESS

iScience
Article
Nygaard, G., and Firestein, G.S. (2020). Restoring
synovial homeostasis in rheumatoid arthritis by
targeting fibroblast-like synoviocytes. Nat. Rev.
Rheumatol. 16, 316–333. https://doi.org/10.1038/
s41584-020-0413-5.

Ozben, T., and Ozben, S. (2019). Neuro-
inflammation and anti-inflammatory treatment
options for Alzheimer’s disease. Clin. Biochem.
72, 87–89. https://doi.org/10.1016/j.clinbiochem.
2019.04.001.

Pandurangi, A.K., and Buckley, P.F. (2020).
Inflammation, antipsychotic drugs, and
evidence for effectiveness of anti-inflammatory
agents in schizophrenia. Curr. Top. Behav.
Neurosci. 44, 227–244. https://doi.org/10.1007/
7854_2019_91.

Pitt, B., Sutton, N.R., Wang, Z., Goonewardena,
S.N., and Holinstat, M. (2021). Potential
repurposing of the HDAC inhibitor valproic acid
for patients with COVID-19. Eur. J. Pharmacol.
898, 173988. https://doi.org/10.1016/j.ejphar.
2021.173988.

Postma, D.S., Kerkhof, M., Boezen, H.M., and
Koppelman, G.H. (2011). Asthma and chronic
obstructive pulmonary disease: common genes,
common environments? Am. J. Respir. Crit. Care
Med. 183, 1588–1594. https://doi.org/10.1164/
rccm.201011-1796PP.

Rajkomar, A., Oren, E., Chen, K., Dai, A.M.,
Hajaj, N., Hardt, M., Liu, P.J., Liu, X., Marcus,
J., Sun, M., et al. (2018). Scalable and accurate
deep learning with electronic health records.
npj Digital Med. 1, 18. https://doi.org/10.1038/
s41746-018-0029-1.

Rosenblat, J.D., Kakar, R., Berk, M., Kessing, L.V.,
Vinberg, M., Baune, B.T., Mansur, R.B., Brietzke,
E., Goldstein, B.I., and McIntyre, R.S. (2016). Anti-
inflammatory agents in the treatment of bipolar
depression: A systematic review and meta-
18 iScience 25, 103610, January 21, 2022
analysis. Bipolar Disord. 18, 89–101. https://doi.
org/10.1111/bdi.12373.

Scuderi, C., and Verkhratsky, A. (2020). The role of
neuroglia in autism spectrum disorders. Prog.
Mol. Biol. Transl. Sci. 173, 301–330. https://doi.
org/10.1016/bs.pmbts.2020.04.011.

Sethi, M.K., and Zaia, J. (2017). Extracellular
matrix proteomics in schizophrenia and
Alzheimer’s disease. Anal. Bioanal. Chem. 409,
379–394. https://doi.org/10.1007/s00216-016-
9900-6.

Shi, X., Liu, Y., Zhang, D., and Xiao, D. (2019).
Valproic acid attenuates sepsis-induced
myocardial dysfunction in rats by accelerating
autophagy through the PTEN/AKT/mTOR
pathway. Life Sci. 232, 116613. https://doi.org/10.
1016/j.lfs.2019.116613.

Tan, H., Li, J., He, M., Li, J., Zhi, D., Qin, F., and
Zhang, C. (2021). Global evolution of research on
green energy and environmental technologies:A
bibliometric study. J. Environ. Manage. 297,
113382. https://doi.org/10.1016/j.jenvman.2021.
113382.

Tomson, T., Battino, D., and Perucca, E. (2016).
The remarkable story of valproic acid. Lancet
Neurol. 15, 141. https://doi.org/10.1016/S1474-
4422(15)00398-1.

Tshitoyan, V., Dagdelen, J., Weston, L., Dunn, A.,
Rong, Z., Kononova, O., Persson, K.A., Ceder, G.,
and Jain, A. (2019). Unsupervised word
embeddings capture latent knowledge from
materials science literature. Nature 571, 95–98.
https://doi.org/10.1038/s41586-019-1335-8.

Tsuyuzaki, K., Morota, G., Ishii, M., Nakazato, T.,
Miyazaki, S., and Nikaido, I. (2015). MeSH ORA
framework: R/Bioconductor packages to support
MeSH over-representation analysis. BMC
Bioinformatics 16, 45. https://doi.org/10.1186/
s12859-015-0453-z.
Venter, J.C., Adams, M.D., Myers, E.W., Li,
P.W., Mural, R.J., Sutton, G.G., Smith, H.O.,
Yandell, M., Evans, C.A., Holt, R.A., et al.
(2001). The sequence of the human genome.
Science 291, 1304–1351. https://doi.org/10.
1126/science.1058040.

Wang, Q., Yang, C., Gelernter, J., and Zhao, H.
(2015). Pervasive pleiotropy between psychiatric
disorders and immune disorders revealed by
integrative analysis of multiple GWAS. Hum.
Genet. 134, 1195–1209. https://doi.org/10.1007/
s00439-015-1596-8.

Wickham, H. (2016). ggplot2 - Elegant Graphics
for Data Analysis, 2nd (Cham: Springer
International Publishing). https://doi.org/10.
1007/978-3-319-24277-4.

Yu, G., Wang, L.-G., Han, Y., and He, Q.-Y. (2012).
clusterProfiler: An R package for comparing
biological themes among gene clusters. OMICS
16, 284–287. https://doi.org/10.1089/omi.2011.
0118.

Yuan, N., Chen, Y., Xia, Y., Dai, J., and Liu, C.
(2019). Inflammation-related biomarkers in major
psychiatric disorders: A cross-disorder
assessment of reproducibility and specificity in 43
meta-analyses. Transl. Psychiatry 9, 233. https://
doi.org/10.1038/s41398-019-0570-y.

Zambrano-Zaragoza, J.F., Romo-Martı́nez, E.J.,
Durán-Avelar, M.de J., Garcı́a-Magallanes, N.,
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METHOD DETAILS

Watson for drug discovery

We built knowledge networks containing interactions between diseases and genes using the WDD (Chen

et al., 2016a). The WDD database contains a corpus of data extracted from the biomedical scientific liter-

ature using a cognitive computing text-mining approach (Chen et al., 2016a). WDD has access to millions

of abstracts in the MEDLINE platform and full texts in the PMC (PubMed Central) Open Access platform

(Chen et al., 2016a). The MEDLINE database is controlled by the National Institutes of Health (NIH) and

started in 1960 (NIH, 2021). The PubMed database, for instance, includes all MEDLINE references, which

represents over 28 million of the 32 millions references in the PubMed database. These references are

published in over 5,200 journals (NIH, 2021). The PMC Open Access is a free archive for full-text biomed-

ical and life sciences journal articles. Some PMC journals are also MEDLINE journals and there are also

reciprocal links between the full texts in PMC and corresponding citations in PubMed (NIH, 2021). In each

document, the WDD algorithm detects relevant biomedical concepts, namely genes, chemicals, drugs,

and diseases. This is performed using a machine learning annotator approach (WDD has a Hatz et al.,

2019; High and Bakshi, 2019) dictionary of terms built using the annotator approach based on the thou-

sands of terms extracted from its corpus that reconciles multiple synonyms of a term into a single, un-

ambiguous concept. Next, WDD searches for meaningful associations between the detected unambig-

uous terms using a set of semantic annotators, i.e. nouns, verbs, and prepositions that convey a semantic

relation between the terms. WDD attributes a confidence score (0–100%) to each association based on

the number of documents in which the relation is found and also on the semantic relevance of each link,
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determined by the machine learning annotator approach (Hatz et al., 2019; High and Bakshi, 2019). The

detected terms and relationships that compose the WDD corpus then become available for online or

API-mediated searches. The final user performs individual or grouped searches using terms of interest

in the form of keywords (e.g. ‘‘Alzheimer’s disease’’). WDD automatically converts the queried keyword

into the consensus term present in it’s dictionary. Terms which are not present in the WDD dictionary will

not yield results. The search returns tables containing the connections of the queried term with other

terms of interest, the score of each connection, the class to which the connected terms belong (drug,

gene, or disease) the number of documents in which the connection could be detected, and the PMIDs

or PMCIDs of the documents.
WDD queries

We performed independent searches on WDD using the names of 27 inflammatory diseases, 63 infectious

diseases, and 9 psychiatric and neurological disorders (Table S1) as query keywords. All searches were per-

formed in July 2018. WDD allows users to specify a year interval from which relationships will be extracted,

so that only documents published in the defined time period are accessed. We defined 29 time intervals

beginning in 1964 (the first year of records in WDD) and ending in one year from 1990 to 2018. WDD

returned 29 lists of genes related to the human diseases extracted from the scientific literature in each in-

terval. These associations are cumulative, that is, the genes associated with the diseases in 2018 include all

the associations present in the previous years. The lists of genes related to human diseases were down-

loaded in table format and processed using custom R code. From the extracted relationships, we only

kept connections between genes and diseases supported by a WDD confidence score of at least 50%

and 2 documents of evidence, to reduce false positive associations, as previously demonstrated by our

group (Lüscher Dias et al., 2020). The tables containing the associations retrieved by WDD and the custom

R code used to process, filter, and analyze data and to plot figures are available at https://doi.org/10.5281/

zenodo.5217544 (Luscher Dias et al., 2021). Figure S1 summarides all the methodological steps performed

in this study.
Evolution of knowledge

We measured the similarity between all pairs of human diseases by calculating a Fisher’s exact test for the

gene overlap between each pair in each year from 1990 to 2018 (Figure S1). We used the total number of

unique genes connected to the diseases in each year’s as the Fisher’s exact test universe. For each year, a

disease-disease knowledge network was developed. In these networks, the nodes are the diseases and the

edges connect diseases that significantly share genes with each other. The edge weights are proportional

to the to the significance of the gene sharing between each pair of diseases according to the Fisher’s exact

test. We used the–log10p value of the Fisher’s exact test (also termed ‘‘disease-disease similarity score’’

here) for each disease pair. We removed edges with a Fisher’s exact test p value > 0.05. The networks

were constructed using the R package igraph (Csardi and Nepusz, 2006) and plotted using the package

ggraph with the kk layout. We detected new genes in each year by comparing the list of genes of the dis-

eases in one year to the list of genes of the same disease in the previous year. Thus, we obtained a list of

new genes that were added to the network in each year from 1991 to 2018. The total number of genes asso-

ciated with each disease was also calculated for each year. Line, violin, and ridge plots were created to illus-

trate the results using ggplot2 (Wickham, 2016).
Evolution of disease relationships between categories

We selected the top 9 diseases of each category (psychiatric, inflammatory, infectious) that were connected

to the most genes in 2018 (‘‘top 9 diseases"). Then, we detected the top diseases from the other two cat-

egories that had the highest disease-disease similarity score with the top 9 diseases (Figure S1). We

analyzed how the relationship between these similar pairs of distinct categories evolved from 1990 to

2018. We used the MeSH.db R package (Tsuyuzaki et al., 2015) to obtain the MeSH IDs and MeSH terms

of all 99 diseases. Using the MeSH terms of the diseases in each pair, we used the easyPubMed R package

to search in PubMed for papers in which both disease MeSHes of each pair were found together. We then

used an adapted version of the fetch_pubmed_data function (see code in [Luscher Dias et al., 2021]) of the

easyPubMed package to retrieve the number of papers that contained the searched MeSH pairs in each

year from 1990 to 2018. We used the disease-disease similarity score and the number of papers in 2018

that contained MeSH terms from both diseases to calculate a similarity-to-paper ratio for each disease

pair as follows:
20 iScience 25, 103610, January 21, 2022



ll
OPEN ACCESS

iScience
Article
similarity:paperratio =
dis� dis� similarity

number of papers

Low similarity-to-paper ratios were considered as cases of low knowledge gap between the gene sharing

and the general scientific interest in the disease pairs. Pairs with low ratios included those in which the

diseases did not share a significant amount of genes or pairs of similar diseases for which there is also a

proportional number of papers that cite the two diseases together. Intermediated ratio values were consid-

ered as cases of intermediate knowledge gap, that is, the diseases in the pair are similar in the genes they

share, but the number of papers on the two diseases together is not proportionally high. High similarity-to-

paper ratios were interpreted as cases of a large knowledge gap. The pairs that had high ratios include dis-

eases that share a significant proportion of their genes but that have almost never been studied together,

evidenced by the very low number of papers including the two MeSH terms.
Evolution of biological pathways

We used the enricher function of the R package clusterProfiler (Yu et al., 2012) to perform an ORA against Re-

actome pathways of the genes associated with the top 9 diseases of each category in each year. We selected

the significant Reactome pathways (p.adjust <0.01) of the top 9 diseases in 2018 and calculated the signifi-

cance of the gene overlap between these pathways with Fisher’s exact test (Figure S1). We considered only

the genes of each significant pathway that were also present in the 2018 gene-disease network. By doing

this, we limited pathways to cluster according to the genes shared from our dataset, not all the genes in

the pathways. We then built a pathway network connecting the significant Reactome terms using the

–log10p value of the Fisher’s exact tests as edge weights, similar to what was done for the disease-disease

network in Figure 1A. We detected clusters of pathways in this network using the cluster_louvain function

(Blondel et al., 2008) of the igraph R package (Csardi and Nepusz, 2006). Edge weights were considered for

the cluster detection. We calculated the weighted degree of each pathway in the network using the strength

function of the igraph package (Csardi and Nepusz, 2006). We manually annotated the detected clusters for

their major biological function using the pathways with the highest weighted degree in each cluster as refer-

ence. The significance values (–log10pval) of ORA for the pathways in each cluster were used to make box and

ridge plots to illustrate the results for each disease in 2018 and how these results changed from 1990 to 2018.
Evolution of drug target hub genes

Using the 2018 gene-disease network, we detected the genes common to all three categories of diseases

(‘‘hub genes’’) (Figure S1). We used the R package UpsetR to visualize the number of genes shared and

exclusive to the disease categories. We downloaded the drug-gene and the drug-disease interaction da-

tabases from the CTD (http://ctdbase.org/ [Davis et al., 2021]). We used the MeSH terms of the 99 diseases

to filter the drug-disease database and kept only interactions between drugs and diseases that were listed

as ‘‘therapeutic’’ by CTD. These are cases of a ‘‘chemical that has a known or potential therapeutic role in a

disease (e.g., chemical X is used to treat leukemia)’’, according to the CTD glossary (Davis et al., 2021). We

filtered the drug-gene database and kept only the interactions between the therapeutic drugs and the hub

genes of our analysis. This final drug-gene list was used to detect the top 20 drugs that target the most hub

genes and the top 20 hub genes most targeted by the therapeutic drugs. We visualized these drug-gene

interactions in a network built with the R packages igraph and plotted with ggplot2 and ggraph. We used

the yearly gene-disease networks to detect when the top 20 drug target hub genes were first connected to

diseases in each category to build a timeline.
QUANTIFICATION AND STATISTICAL ANALYSIS

All analyzes were performed in the R environment (Version 4.1.0). R packages used to perform the analyses

and plot figures were: igraph (v.1.2.6), ggraph (v.2.0.5), ggplot2 (v.3.3.5), clusterProfiler (v.4.0.2), MeSH.db

(v.1.15.1), easyPubMed (v.2.13), and UpSetR (v.1.4.0). Specific details of each analysis are described in the

Method details section and in the Results section, as well as figure legends. The significance of the differ-

ence between the number of published papers between diseases connected to more or less than 100 genes

in the 2018 network was determined with a t test (p value < 0.05). Fisher’s exact test result significance was

established at p values < 0.01 (network edge filter) or p. adjust <0.01 (Reactome functional enrichment).
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