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 A B S T R A C T

We investigate the persistence of US unemployment applying seasonal fractional integration (FARISMA) models 
to assess both seasonal and non-seasonal long-range dependence. The analysis is carried out at three levels 
of data aggregation: state, regional census division, and national aggregation. Using wavelet multiresolution 
decomposition, we separate out irregular components to assess changes in persistence in unemployment 
dynamics. Our findings indicate strong evidence of hysteresis in US unemployment rates, with both seasonal 
and non-seasonal long memory contributing to the persistence of unemployment. These results are evidence 
that challenges the NAIRU hypothesis, suggesting that exogenous shocks to unemployment have prolonged 
effects that do not dissipate within a finite time horizon.
1. Introduction

There are important issues in applied economic analysis for policy 
planning purposes that require the evaluation of aggregate data over 
broad time spans. One of these cases is persistence in unemployment 
rates, understood in economics as rigidity in the labor market (Coakley 
et al., 2001). The question of persistence has been explored in many 
macroeconomic and finance areas, such as business cycles, permanent 
income theory, exchange rates, purchasing power parity, inflation, 
etc. Renowned references in these areas are Campbell and Mankiw 
(1987), Diebold and Rudebusch (1989), Cheung and Lai (1993), Baillie 
and Bollerslev (1994), and Baillie et al. (1996). According to Alogosk-
oufis et al. (1988), Pissarides (1992) and Pries (2004), persistence in 
the labor market is understood to be the result of different mechanisms 
that involve economic growth, technology, institutional benchmarking, 
and others. Blanchard and Summers (1986) were the first to describe 
evidence that persistence plays an important role in the analysis of un-
employment, with significant implications for policy makers’ decisions. 
These authors studied unemployment in Europe in the 1980’s and found 
that economic shocks have persistent effects that traditional theories 
cannot fully explain. This persistent behavior in unemployment series 
was termed ‘‘hysteresis’’ in reference to the physical phenomenon. 
According to Smith (1994), the phenomenon of hysteresis is the result 
of a high positive correlation between past and present unemployment. 
Using physical concepts, Ball and Mankiw (2002) explain that hystere-
sis in the unemployment rate implies the existence of a stochastic trend 
in the economic variable. As a consequence, the memory structure 
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of the unemployment series becomes permanently influenced by past 
shocks. Thus, the Hysteresis Hypothesis (HH) diverges from the concept 
of a Natural Rate as postulated by Friedman (1968) and Phelps (1968), 
as well as from the Non-Accelerating Inflation Rate of Unemploy-
ment (NAIRU) doctrine. Based on the principles of the Phillips curve, 
Friedman’s theory relates expected inflation to the extent that current 
unemployment deviates from the long-run NAIRU dynamic. Following 
the NAIRU concept, the equilibrium dynamic in the unemployment rate 
is time-reversible (Srinivasan and Mitra, 2012; Caporale et al., 2022).

The NAIRU doctrine predicts that the effects of exogenous shocks on 
the labor market dissipate in a finite time, leaving little room for active 
policy. In contrast, HH allows for countercyclical policies; in fact, Ca-
porale and Gil-Alana (2007) argue that under HH monetary policy 
can combat unemployment without immediately triggering accelerated 
inflation. The implications for monetary policy are discussed further 
in Ball (2009). Additional details on series dynamics and theoretical 
implications can be found in Ayala et al. (2012) and Amable and 
Mayhew (2011).

This paper offers new perspectives on persistence in US unem-
ployment by focusing on two different sources of persistence. Unlike 
previous comparative studies, we explore the total persistence by de-
composing the seasonal and non-seasonal long-memory components 
through a fractional integration framework, addressing the gap in the 
existing literature. State, divisions, and national series were analyzed 
to consider the effect of regional aggregation on series persistence. 
We contribute to the literature showing evidence that the hysteresis 
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phenomenon in the US unemployment emerges from the interaction of 
the seasonal and non-seasonal long-memory components.

The remainder of this study is organized as follows: Section 2 ex-
plores the econometric approaches used in previous research; Section 3 
presents some key concepts related to seasonal long-memory processes 
and addresses the maximum likelihood estimator; Section 4 provides a 
brief description of wavelet analysis and Section 5 describes the data 
and the main results; we conclude the study in Section 6 with final 
remarks.

2. Econometric approaches

Persistence in unemployment has been tested using several econo-
metric frameworks. For example, Song and Wu (1997) analyzed the HH 
in US unemployment series using traditional unit root tests on annual 
data from 48 states and found evidence of stochastic trends. Clemente 
et al. (2005) revisited these results using unit root tests that allow 
structural breaks, finding evidence that sometimes contradicts previous 
research (some series rejecting the unit root hypothesis or the HH only 
at the 10% significance level). Ewing and Wunnava (2001) included 
structural breaks in their analysis of monthly, seasonally-adjusted un-
employment data for the US, Canada, and Mexico, suggesting that the 
series are trend-stationary around a breaking trend.

According to Doukhan et al. (2003), long-memory models capture 
low-frequency information more adequately through the mathemat-
ical concept of fractional integration. Persistence in unemployment 
was one of the first topics explored using long-memory models. For 
example, Diebold and Rudebusch (1989) examined the persistence 
of economic shocks on US GDP and unemployment, providing evi-
dence in favor of fractional integration orders consistent with persistent 
mean-reversible behavior. Using quarterly, seasonally-adjusted unem-
ployment series, they contested the HH based solely on unit root 
tests. Shimotsu (2010) found that point estimates for the US unemploy-
ment rate are mean-reversible, although the HH cannot be rejected at a 
5% significance level. In Latin America, Ayala et al. (2012) identified a 
mean-reverting pattern in most countries after accounting for structural 
changes. Caporale et al. (2022) have also contributed to this body 
of research by applying fractional integration methods to seasonally 
adjusted and unadjusted data of the 27 member states of the EU.

Some economic time series are influenced by periodic phenomena 
such as temperature changes, rainfall levels, cultural celebrations such 
as Christmas, Black Friday, Valentine’s Day, Easter, Mother’s Day, 
Cyber Monday, Memorial Day (see, e.g. Hylleberg et al., 1990; del 
Barrio Castro and Rachinger, 2021; Gil-Alana and Poza, 2024). In 
particular unemployment series are strongly affected by these cyclical 
or seasonal behaviors originating from different sources that affect 
industrial and agricultural productions, tourism, and others (Abbring 
et al., 2001; Yi et al., 2021; Kajal and Yimeng, 2024). The seasonal 
phenomena have prompted the extension of fractional integration mod-
els to account for seasonal long memory. Such seasonal long-memory 
models have been widely applied in the natural sciences and in climate 
research (see, e.g., Gil-Alana and Robinson, 2001, Ooms and Franses, 
2001; Lohre et al., 2003; Caporale et al., 2021; Koycegiz, 2024; Yosh-
ioka, 2024; Caporale et al., 2025). In economics, these models were 
used by and Porter-Hudak (1990) and Ray (1993) to analyze aggregate 
monetary data and forecast product revenues, respectively. Gil-Alana 
(2008), examined seasonal fractional integration and cointegration in 
Denmark labor demand series and pointed to the misspecification 
problem if the seasonal long-memory component were not taken into 
account in the models. To avoid neglecting these effects, this study 
evaluates the joint influence of seasonal and regular long memories 
on US unemployment persistence. Early works such as Carlin et al. 
(1985) and Carlin and Dempster (1989) highlight both the sensitivity 
of seasonal adjustments to modeling assumptions and the potential of 
Bayesian methods to provide a coherent framework for such analyses.
2 
The influences of trends and nonlinearities on US unemployment 
persistence were also assessed in this study using wavelet analysis. For 
this purpose, the analytical strategy adopted was to compare the frac-
tional integration parameters estimated from two groups of data: the 
original series and series whose nonlinear components and trends have 
been extracted using wavelet decomposition procedures. We follow the 
procedures used by Craigmile et al. (2004, 2005) in a broad sense. 
However, instead of choosing the decomposition levels to take just 
trends relative to low order polynomials into account, they were chosen 
with reference to the most important asymmetries in the data. Thus, 
the irregular components were extracted from the data by filtering 
the coarse-scale component and making the respective phase shift 
adjustments. Fig.  1 exemplifies the filtering results for the total U.S. 
unemployment rate. The original series and the scale S4 component 
calculated using the Maximal Overlap Discrete Wavelet Transform 
(MODWT) are shown in panel (a), and the filtered series is depicted in 
panel (b). This non-endogenous procedure of full filtering the irregular 
components allowed us to assess these components with respect to 
unemployment persistence and, thus, evaluate their influence on the 
acceptance of the HH.

3. Seasonal fractionally integrated processes

Fractional integration theory allows for generalizations of long-
memory models to capture persistent seasonal movements. Hosking 
(1981) proposed a generalized long-memory model with a single spec-
tral pole at a nonzero frequency: 
(

1 − 2𝜆𝐵 + 𝐵2)𝑑 𝑋𝑡 = 𝜀𝑡, (1)

where 𝐵 is the lag operator, 𝑑 is the fractional integration parameter, 
𝜆 = cos(𝜔) for −𝜋 < 𝜈 < 𝜋 and 𝜀𝑡 is white noise with variance 𝜎2𝜀 . The 
process (1), known as the Gegenbauer process, since it can be expanded 
in Gegenbauer polynomials (Gray et al., 1989). More details can be 
seen in Hunt et al. (2022). Further studies include Andel (1986), Chung 
(1996), Giraitis and Leipus (1995), Woodward et al. (1998), Hsu and 
Tsai (2009).

In our empirical analysis, we use the FARISMA model, closely 
related to both the ARUMA and Gegenbauer models. Researchers such 
as Porter-Hudak (1990), Hassler (1994), Arteche and Robinson (2000), 
Arteche (2002), Reisen et al. (2006a,b) and Diongue et al. (2008) 
have examined FARISMA models, which extend the autoregressive 
fractionally integrated moving average (ARFIMA) model to incorporate 
seasonal effects.

For our study, we use the definition of the FARISMA process as 
follows. The stochastic process {𝑋𝑡} is defined as a multiplicative 
FARISMA(𝑝, 𝑑, 𝑞) × (𝑝𝑠, 𝑑𝑠, 𝑞𝑠) model if it satisfies 

𝛷(𝐵)𝛷𝑠(𝐵𝑠)(1 − 𝐵)𝑑 (1 − 𝐵𝑠)𝑑𝑠 (𝑋𝑡 − 𝜇) = 𝛩(𝐵)𝛩𝑠(𝐵𝑠)𝜖𝑡, (2)

where 𝜇 is the mean, 𝜖𝑡 is a Gaussian white noise process with zero 
mean and variance 𝜎2; 𝛷(𝐵) and 𝛷𝑠(𝐵𝑠) are the autoregressive and 
seasonal autoregressive polynomials; 𝛩(𝐵) and 𝛩𝑠(𝐵𝑠) are the moving 
average and seasonal moving average polynomials; and 𝑠 is the seasonal 
period. More details of FARISMA models can be seen in Bisognin and 
Lopes (2009) and Reisen et al. (2006a).

The polynomials in (2) have no common roots, and all characteristic 
roots lie outside the unit circle. The short-memory components are 
captured by these polynomials, while the fractional difference operators 
model long-memory behavior. The non-seasonal fractional difference 
operator (1 − 𝐵)𝑑 = 𝛥𝑑 is given by 

(1 − 𝐵)𝑑 =
∞
∑

𝑘=0

(

𝑑
𝑘

)

(−𝐵)𝑘 =
∞
∑

𝑘=0

𝛤 (−𝑑 + 𝑘)
𝛤 (−𝑑)𝛤 (𝑘 + 1)

𝐵𝑘, (3)

which is better defined in the frequency domain 𝛥𝑑 = (1 − 𝑒−𝑖𝜔)𝑑 . The 
analogous seasonal fractional difference operator is 𝛥𝑑𝑠𝑠 = (1 − 𝑒−𝑖𝜔𝑠)𝑑𝑠 , 
which applies the filter in time domain to seasonal lags 𝑠 and zero 
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(a) US Unemployment vs S4 Component

  
(b) Filtered US Unemployment

 

Fig. 1. US Total Unemployment rate (log).
 
(a) FARISMA(0, 0, 0) × (0, 0.35, 0)12

  
(b) FARISMA(0, 0.35, 0) × (0, 0.25, 0)12

 

 
(c) FARIMA(0, 0.25, 0)

  
(d) FARISMA(0, 0.25, 0) × (0, 0.15, 0)12

 

Fig. 2. Example of theoretical Spectral Density Function (SDF) of FARISMA models.
otherwise. Bisognin and Lopes (2009) demonstrate that the stationarity 
conditions for the pure FARISMA processes are that 𝑑 + 𝑑𝑠 < 0.5, 
𝑑𝑠 < 0.5.

According to Bisognin and Lopes (2009), the spectral density func-
tion (SDF) of the FARISMA model is given by 

𝑓𝑋 (𝜔) =
𝜎2𝜖
2𝜋

(

|1 − 𝑒−𝑖𝜔|−2𝑑 |1 − 𝑒−𝑖𝑠𝜔|−2𝑑𝑠
)

× 𝑓ARMA(𝜔), (4)

where 𝑓ARMA(𝜔) denotes the transfer filters of the ARMA part of the 
process, as defined in Brockwell and Davis (2009).

Persistent time series (𝑑, 𝑑𝑠 > 0) exhibit a pole at zero frequency 
for non-seasonal persistence and at seasonal frequencies for seasonal 
persistence. They are characterized by a pole at their power spectrum 
(meaning 𝑓𝑋 (𝜔) → ∞, 𝜔 → 0) and at frequencies 𝜈𝑗 = 2𝜋𝑗∕𝑠, 𝑗 =
1, 2,…[𝑠∕2] for seasonally persistent time series. Generally, singularity 
in the spectral density function at frequency 𝜔0 represents a cycle of pe-
riod 2𝜋∕𝜔0. However, several peaks at the seasonal frequencies indicate 
that the time series has a periodic or seasonal component. Fig.  2 depicts 
four graphic examples of the theoretical spectral density function of 
the FARISMA process with a seasonal period of 𝑠 = 12 months. The 
first plot in Fig.  2(a) represents the SDF of a pure seasonal, stationary 
fractional noise and the plot in Fig.  2(b) represents the SDF of a non-
stationary process with both seasonal and non-seasonal long memory. 
Fig.  2(c) exhibits a pure, non-seasonal long-memory process with 𝑑 =
0.25 with intermediate memory and no seasonal long memory effects. 
Finally, in Fig.  2(d) displays a stationary FARISMA with 𝑑 = 0.25 and 
𝑑𝑠 = 0.15.

Through factorization of the filter transfer functions, Reisen et al. 
(2006b) showed that the pure FARISMA process is a particular case 
of the multifactor ARUMA model, and could also be connected to 
Gegegenbauer processes.
3 
Under normality assumption, the exact Gaussian maximum likeli-
hood estimator (MLE) maximizes the log-likelihood function 

𝓁(𝜃) = −1
2
log |𝛴(𝜃)| − −1

2
(𝑋𝑡 − 𝜇)′𝛴(𝜃)−1(𝑋𝑡 − 𝜇) −

𝑛
2
log(2𝜋), (5)

where 𝑋𝑡 is the vector of observations, 𝜃 is the vector of parame-
ters, and 𝛴 is the variance–covariance matrix for 𝑋𝑡. Beran (1994) 
noted that the ML estimator for 𝜃 is obtained by solving 𝑙′(𝜃) = 0, 
while Haslett and Raftery (1989) provided an ML solution involving 
extensive computation with many trial values 𝜃0. Whittle (1953) pro-
posed a maximum likelihood estimator for short-memory processes that 
avoids these computational difficulties. The resulting Whittle Maxi-
mum Likelihood (WML) method minimizes the approximate likelihood 
computed in the frequency domain: 

𝐿(𝜃) = ∫

𝜋

−𝜋

[

log 𝑓 (𝜔; 𝜃) +
𝐼(𝜔)
𝑓 (𝜔; 𝜃)

]

𝑑𝜔, (6)

where 𝑓 (𝜔; 𝜃) is the spectral density function and 𝐼(𝜔) is the peri-
odogram.

4. Wavelet analysis: A brief description

Wavelet analysis has recently become popular in many scientific 
areas. A historical and technical perspective on signal processing, from 
Fourier analysis to wavelets, is found in Meyer (1993), and a non-
technical description is provided in Hubbard (1998). It is beyond the 
scope of this work to provide an extensive description of wavelet theory 
and methods. Thus, we will focus on the fundamental concepts of 
wavelet frameworks used in the empirical approach and give the ap-
propriate bibliographical references for the most important remaining 
issues.
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Wavelets are functions 𝜓 ∈ 𝐿2 with ∫R 𝑑𝑡 𝜓(𝑡) = 0, ‖𝜓‖ = 1 and 
are centered in the neighborhood of 𝑡 = 0, localized in time and scale. 
It is possible to construct wavelets such that the dilated and translated 
families form an orthonormal basis of 𝐿2.

The wavelet basis are generated from binary rescales and transla-
tions of the wavelet function 𝜓 or scaling function 𝜙, also referred 
to as mother and father wavelets, respectively. This means that, for 
the wavelet and scaling functions, we set 𝜓𝑗,𝑘 = 2−𝑗∕2𝜓(2−𝑗𝑥 − 𝑘) and 
𝜙𝑗,𝑘(𝑡) = 2−𝑗∕2𝜙(2−𝑗 𝑡 − 𝑘), where 𝑗, 𝑘 ∈ Z (Mallat, 2009).

It can be shown that the family of subspaces generated by {𝜓𝑗,𝑘}
and {𝜙𝑗,𝑘} form a multiresolution analysis (MRA) in the sense of Mallat 
(1989). A sequence of nested and closed subspaces 𝑉𝑛, 𝑛 ∈ Z in 𝐿2(R)
forms an MRA if:

1. {0} ⊂… ⊂ 𝑉2 ⊂ 𝑉1 ⊂ 𝑉0 ⊂ 𝑉−1 ⊂ 𝑉−2 ⊂… ⊂ 𝐿2
2. 𝐿2(R) =

⋃∞
𝑗=−∞ 𝑉𝑗

3. ⋂∞
𝑗=−∞ 𝑉𝑗 = {0}

4. 𝑓 ∈ 𝑉𝑗 ⇔ 𝑓 (2𝑗 ⋅ −𝑘) ∈ 𝑉0
5. There exists a scaling function 𝜙 ∈ 𝑉0 such that {𝜙(𝑥−𝑘), 𝑘 ∈ Z}
forms a Riesz basis of 𝑉0.

Whenever 𝜙 and 𝜓 fulfill the requirements for a MRA, using equa-
tions in 𝜓 and 𝜙, a multiresolution decomposition can be considered as 
of the subspaces 𝑉𝑗 in 𝐿2 as: 

𝑉𝑗 = 𝑉𝐽 ⊕
𝐽−𝑗−1
⨁

𝑘=0
𝑊𝐽−𝑘, (7)

where 𝑊𝑗 is the subspace generated by {𝜓𝑗,𝑘}𝑘∈Z and 𝑉𝐽  is the sub-
space generated by {𝜙𝐽 ,𝑘}𝑘∈Z. 1 When these conditions are met, it is 
possible to generate a wavelet multiresolution decomposition (MRD) 
of square-integrable signals into different scales which ensure perfect 
reconstruction under orthonormal wavelet families. Therefore, a time 
series {𝑋𝑡}𝑇𝑡=1 can be decomposed as 

𝑋𝑡 = 𝑐𝐽 ,0𝜙𝐽 ,0(𝑡) +
𝐽
∑

𝑗=1

2𝐽−𝑗−1
∑

𝑘=1
𝑑𝑗,𝑘𝜓𝑗,𝑘(𝑡) = 𝑆𝐽 (𝑡) +

𝐽
∑

𝑗=1
𝐷𝑗 (𝑡), (8)

with the coefficients given by the inner product 𝑑𝑗,𝑘 = ⟨𝑋,𝜓𝑗,𝑘⟩ and 
𝑐𝑗,𝑘 = ⟨𝑋,𝜙𝑗,𝑘⟩ (Bruce and Gao, 1996). The signal 𝑆𝐽 (𝑡) is commonly 
referred to as the ‘‘smooth signal’’ of level 𝑗, while 𝐷𝑗 (𝑡) is known as 
the ‘‘detail signal’’ of level 𝑗.

In practice, the wavelet decomposition of a signal is calculated using 
standard filterbank theory, where signal 𝑥𝑡 is convolved and downsam-
pled by 2 with high-pass {𝑔𝑘} and low-pass {ℎ𝑘} filters, associated, 
respectively, with 𝜓(𝑡) and 𝜙(𝑡), which are obtained as ℎ𝑘 = ⟨𝜙, 𝜙1,𝑘⟩

and 𝑔𝑘 = (−1)𝑘ℎ1−𝑘 (Vidakovic, 1999). This procedure of convolution 
and decimation would require that the signal be of length 𝑇 = 2𝐽  for 
𝐽 ∈ Z.

In this article, we consider the non-decimated wavelet transform, 
also referred to as the maximal overlap discrete wavelet transform 
(MODWT) as described by Percival and Walden (2002), which can be 
applied to signals of all lengths, since there is no decimation step. The 
difference is that the filters {ℎ̃𝑘} and {𝑔̃𝑘} are periodized on the basis 
of scaled versions of the original high-pass and low-pass filters. In this 
case, filters ℎ̃ and 𝑔̃ are rescaled by ℎ̃𝑘 = ℎ𝑘∕

√

2 and 𝑔̃𝑘 = 𝑔𝑘∕
√

2 and 
transforms are performed by circular convolution with no decimation.

The wavelet detail 𝐷𝑗 will capture changes in 𝑥𝑡 as scales 𝑗 < 𝐽 as-
sociated with frequencies in the band (1∕2𝑗+1, 1∕2𝑗 ]. These components 
decompose the series deviation from its trend related to its smaller time 
scales. The smooth component 𝑆0, captures the mean level at the 𝑗 = 0
scale and evaluates the trend of a time series related to its longest time 
scale.

The MRA provided by the MODWT overcomes some of the limita-
tions of the traditional Discrete Wavelet Transform (DWT). In contrast 
to the latter, the MODWT is not restricted to sample sizes of a multiple 
of 2 and it is not translation invariant. The association of the MODWT 
4 
with zero-phase filters results in detail and smooth components that 
are perfectly aligned with the original series. Two important features of 
wavelet MRA in the analysis of time series were highlighted by Kumar 
et al. (2011). First, wavelet analysis can be performed on non-stationary 
series without the need for prior transformation and, second, it can 
isolate any low-frequency nonlinear component, while maintaining all 
high-frequency details. For the purposes of our analysis, the MRA 
provides a versatile way to filter time series components associated 
with specific time scales, as well as polynomial trend and local irregular 
components. In the next section, the procedure used in our empirical 
comparative analysis to filter trends is described in detail. The techni-
calities of filterbank theory and of MODWT in particular can be seen 
in Nguyen and Strang (1996) and Percival and Walden (2002).

5. Persistence in US unemployment series

The aim of adopting the FARISMA models in this empirical study 
was to investigate the simultaneous occurrence of seasonal and non-
seasonal long-memory processes in the US unemployment rate se-
ries and their conjugated effect on series persistence. The integration 
parameters were estimated using model (2).1 The maximum likeli-
hood method described in Section 3 was used for the estimations. 
We were also interested in investigating whether trends and irregular 
movements in the series, such as breaks, regimes, and high-order 
polynomial trends, could have any influence on the evaluation of 
the persistence level. In practice, we have investigated whether the 
HH would be rejected after all these components have been excluded 
from the unemployment series. In order to answer this question, we 
follow a customized version of the algorithm proposed by Bisaglia and 
Gerolimetto (2009). Instead of using the procedures developed by Bai 
and Perron (1998, 2003) to detect neglected breaks, we applied wavelet 
multiresolution decomposition to access the main sources of possible 
non-linearities and trends.

First, the series were decomposed into four levels using the
Daubechies’ Least Asymmetric wavelet [LA(8)], also known as Symm-
lets. As a result of the properties of filterbanks, when Symmlets are 
used in MODWT, the transform coefficients can be rotated circularly 
so that they are approximately aligned (in time) with events of the 
original time series (Nguyen and Strang, 1996; Bruce and Gao, 1996). 
Therefore, we adjust the wavelet S4 decomposition for zero-phase 
alignment and they are subtracted from the log-unemployment series. 
Lastly, the filtered series were generated taking the difference between 
the original series and their respective S4 components.2

We are aware that, when applying this procedure, some of the true 
low-frequency components of the series might be eliminated and long-
memory parameters may be underestimated.3 However, our argument 
in favor of this methodology is that, even with this possibility, if we find 
non-stationary, non-mean-reversible fractional orders of integration, 
this would be a sign of more robust evidence against the NAIRU hypoth-
esis. When applying procedures like endogenous break identification, 
researchers cannot be sure if the remaining low-frequency components 
are an integral part of the series or not, leading to wrong conclusions 
about series persistence. Thus, it should be clear that our goal in 

1 First estimates have shown the possible presence of short-memory com-
ponents in the series, as in MA(5). In practice, these components have no 
influence on long-term estimates given the algorithm we employ. Thus, we 
avoid the cumbersome short-memory model selections for the 61 series.

2 The LA(8) wavelet was chosen based on its technical properties, as 
reported in Percival and Walden (2002)

3 In our earlier simulation experiments, based on the same procedures used 
in this study and involving deterministic polynomial trends, the following 
relation between the long-memory parameters estimated based on the original 
series (𝑑) and on the filtered series (𝑑 ∗) was encountered: 𝑑 ∗≤ 𝑑. The 
experiment also showed that this result depends primarily on the number of 
decompositions chosen in the multiresolution analysis.
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Fig. 3. Map depicting of US Census Divisions and States used in the analysis.
Fig. 4. Unemployment Series of US Census Divisions: Original Series (in log) and Filtered Series.
this empirical study is not to find the true data generating process 
for the series. Rather, our main goal remains to find solid evidence 
of persistence in the US unemployment series, excluding all possible 
sources of breaks and trends.

The dataset comprises 61 series, with 𝑇 = 588 monthly observations 
at three levels of aggregation: US state (51 series including the District 
of Columbia), regional (9 series), and the US national unemployment 
rate.4 Fig.  3 shows the composition of the nine geographical regions. All 
data were provided by the US Census Bureau, and the period covered 
by the study was January 1976 to December 2024.

Fig.  4 depicts the original and filtered series in the nine regions. For 
the sake of parsimony, we avoid showing the 51 graphs for the state 
series. The filtered series shown at the bottom of each graph reveal that 
the wavelet S4 component is responsible for most of the low-frequency 
information and captures virtually all of the ‘‘irregularities’’ and ‘‘ir-
regular low-frequency components’’ present in the series. Traditional 
spectral analysis confirmed that information in other frequency bands, 
including seasonality, was barely affected.

Tables  1 and 2 display the national, regional, and state estimations 
of 𝑑 and 𝑑𝑠 calculated using the original and filtered series, respectively. 

4 The District of Columbia was included in the state group to facilitate the 
presentation of the results.
5 
Our analysis focuses on the long-term dynamics of unemployment 
series, specifically the interaction between seasonal and non-seasonal 
long-memory components. In practice, short-memory components such 
as autoregressive (AR) and moving average (MA) terms do not affect 
long-run behavior. Consequently, the series were modeled as fractional 
noise processes (𝑝 = 0, 𝑞 = 0, 𝑝𝑠 = 0 and 𝑞𝑠 = 0), with the innovation 
process 𝜖𝑡 in (2) specified either as a stationary SARMA process or, in 
the simplest case, a white noise.

Fig.  5 displays the superimposed empirical and theoretical spectra 
for the nine regions in decibels. The empirical spectra were estimated 
using the periodogram method and the theoretical spectra were calcu-
lated using the estimated parameters for the FARISMA model following 
(4). The continuously slow spectrum decay silhouettes from low to high 
frequencies indicate the presence of ‘‘traditional’’ or ‘‘non-seasonal’’ 
long memory, while their decaying singularities in the seasonal fre-
quencies reflect the typical seasonal long memory.

The results using the original series show that 11 of the 61 regions 
analyzed have 𝑑 > 1 and 48 of them are such that 𝑑 > 0.9. Taking into 
account the confidence intervals, 21 of them contain 1. The national 
unemployment series and 6 of the 9 regional series displayed the 
same characteristics. The minimum point estimate for non-seasonal 
long-memory was 𝑑 = 0.78 for the state of South Dakota.

The mean of the estimated seasonal long-memory parameter for 
the states, regions, and national series is around 0.34. Together, the 
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Table 1
Estimated long-memory parameters using original and filtered series for US regions.
 Original series (log) Filtered series
 Region 𝑑 𝑑𝑠 CI(𝑑) CI(𝑑𝑠) 𝑑 𝑑𝑠 CI(𝑑) CI(𝑑𝑠)  
 USA 0.987 0.300 (0.955 ; 1.02) (0.272 ; 0.329) 0.749 0.319 (0.716 ; 0.781) (0.29 ; 0.347)  
 ENCD 0.957 0.299 (0.925 ; 0.99) (0.271 ; 0.328) 0.717 0.308 (0.684 ; 0.749) (0.279 ; 0.336) 
 ESCD 0.881 0.334 (0.848 ; 0.913) (0.305 ; 0.362) 0.562 0.329 (0.53 ; 0.595) (0.301 ; 0.358) 
 MAD 1.001 0.291 (0.968 ; 1.033) (0.262 ; 0.32) 0.751 0.325 (0.718 ; 0.783) (0.296 ; 0.354) 
 MTD 1.007 0.340 (0.974 ; 1.039) (0.311 ; 0.368) 0.750 0.359 (0.717 ; 0.782) (0.331 ; 0.388) 
 NED 0.985 0.329 (0.953 ; 1.018) (0.3 ; 0.358) 0.715 0.362 (0.683 ; 0.748) (0.334 ; 0.391) 
 PCD 1.063 0.302 (1.03 ; 1.095) (0.273 ; 0.33) 0.857 0.317 (0.825 ; 0.89) (0.289 ; 0.346) 
 SAD 0.964 0.274 (0.931 ; 0.996) (0.245 ; 0.302) 0.728 0.297 (0.696 ; 0.761) (0.269 ; 0.326) 
 WNCD 0.936 0.402 (0.904 ; 0.969) (0.373 ; 0.431) 0.691 0.418 (0.658 ; 0.723) (0.389 ; 0.446) 
 WSCD 0.983 0.344 (0.951 ; 1.016) (0.315 ; 0.372) 0.731 0.347 (0.698 ; 0.763) (0.318 ; 0.376) 
Table 2
Estimated long-memory parameters using original series for US states.
 Original series (log) Filtered series
 Region 𝑑 𝑑𝑠 CI(𝑑) CI(𝑑𝑠) 𝑑 𝑑𝑠 CI(𝑑) CI(𝑑𝑠)  
 AK 0.910 0.393 (0.877 ; 0.942) (0.365 ; 0.422) 0.714 0.428 (0.682 ; 0.747) (0.399 ; 0.456) 
 AL 0.909 0.323 (0.877 ; 0.941) (0.294 ; 0.352) 0.628 0.319 (0.596 ; 0.66) (0.29 ; 0.347)  
 AR 0.985 0.391 (0.953 ; 1.018) (0.362 ; 0.42) 0.811 0.448 (0.778 ; 0.843) (0.419 ; 0.477) 
 AZ 0.980 0.276 (0.948 ; 1.013) (0.248 ; 0.305) 0.707 0.333 (0.674 ; 0.739) (0.304 ; 0.362) 
 CA 1.082 0.319 (1.05 ; 1.114) (0.29 ; 0.348) 0.860 0.332 (0.827 ; 0.892) (0.304 ; 0.361) 
 CO 1.062 0.345 (1.029 ; 1.094) (0.316 ; 0.373) 0.792 0.334 (0.759 ; 0.824) (0.305 ; 0.363) 
 CT 0.995 0.394 (0.963 ; 1.027) (0.365 ; 0.423) 0.742 0.483 (0.709 ; 0.774) (0.454 ; 0.511) 
 DC 0.919 0.354 (0.886 ; 0.951) (0.326 ; 0.383) 0.547 0.365 (0.514 ; 0.579) (0.337 ; 0.394) 
 DE 1.002 0.383 (0.969 ; 1.034) (0.355 ; 0.412) 0.810 0.403 (0.778 ; 0.842) (0.374 ; 0.432) 
 FL 1.009 0.247 (0.977 ; 1.042) (0.218 ; 0.276) 0.817 0.284 (0.784 ; 0.849) (0.255 ; 0.312) 
 GA 0.920 0.269 (0.887 ; 0.952) (0.24 ; 0.298) 0.655 0.290 (0.622 ; 0.687) (0.262 ; 0.319) 
 HI 0.897 0.243 (0.864 ; 0.929) (0.215 ; 0.272) 0.601 0.241 (0.569 ; 0.634) (0.212 ; 0.269) 
 IA 0.851 0.387 (0.818 ; 0.883) (0.358 ; 0.415) 0.566 0.395 (0.533 ; 0.598) (0.366 ; 0.424) 
 ID 0.923 0.375 (0.891 ; 0.956) (0.346 ; 0.403) 0.689 0.390 (0.656 ; 0.721) (0.362 ; 0.419) 
 IL 0.990 0.287 (0.958 ; 1.022) (0.258 ; 0.316) 0.770 0.289 (0.738 ; 0.803) (0.26 ; 0.318)  
 IN 0.920 0.293 (0.888 ; 0.953) (0.264 ; 0.321) 0.666 0.289 (0.633 ; 0.698) (0.261 ; 0.318) 
 KS 0.860 0.377 (0.827 ; 0.892) (0.349 ; 0.406) 0.579 0.365 (0.547 ; 0.612) (0.337 ; 0.394) 
 KY 0.807 0.293 (0.774 ; 0.839) (0.265 ; 0.322) 0.465 0.295 (0.432 ; 0.497) (0.266 ; 0.324) 
 LA 0.975 0.375 (0.942 ; 1.007) (0.347 ; 0.404) 0.773 0.368 (0.741 ; 0.805) (0.339 ; 0.397) 
 MA 0.967 0.304 (0.934 ; 0.999) (0.275 ; 0.333) 0.676 0.325 (0.644 ; 0.709) (0.296 ; 0.353) 
 MD 0.950 0.344 (0.918 ; 0.983) (0.315 ; 0.373) 0.632 0.361 (0.6 ; 0.665) (0.332 ; 0.389) 
 ME 0.999 0.333 (0.967 ; 1.032) (0.305 ; 0.362) 0.821 0.376 (0.789 ; 0.854) (0.348 ; 0.405) 
 MI 0.930 0.288 (0.898 ; 0.963) (0.259 ; 0.317) 0.671 0.295 (0.639 ; 0.704) (0.266 ; 0.324) 
 MN 0.910 0.446 (0.878 ; 0.943) (0.417 ; 0.474) 0.707 0.478 (0.674 ; 0.739) (0.45 ; 0.507)  
 MO 0.930 0.370 (0.898 ; 0.963) (0.341 ; 0.398) 0.624 0.387 (0.591 ; 0.656) (0.358 ; 0.415) 
 MS 0.859 0.394 (0.826 ; 0.891) (0.365 ; 0.423) 0.456 0.387 (0.424 ; 0.488) (0.358 ; 0.416) 
 MT 0.869 0.378 (0.837 ; 0.901) (0.35 ; 0.407) 0.608 0.413 (0.576 ; 0.641) (0.384 ; 0.441) 
 NC 0.916 0.296 (0.883 ; 0.948) (0.267 ; 0.324) 0.643 0.306 (0.611 ; 0.675) (0.277 ; 0.334) 
 ND 0.895 0.486 (0.863 ; 0.928) (0.457 ; 0.515) 0.670 0.491 (0.637 ; 0.702) (0.463 ; 0.52)  
 NE 0.828 0.407 (0.796 ; 0.861) (0.378 ; 0.436) 0.522 0.412 (0.489 ; 0.554) (0.384 ; 0.441) 
 NH 0.929 0.287 (0.896 ; 0.961) (0.258 ; 0.316) 0.616 0.310 (0.584 ; 0.648) (0.282 ; 0.339) 
 NJ 1.031 0.306 (0.998 ; 1.063) (0.277 ; 0.335) 0.802 0.326 (0.77 ; 0.835) (0.297 ; 0.355) 
 NM 0.974 0.418 (0.942 ; 1.007) (0.39 ; 0.447) 0.640 0.476 (0.607 ; 0.672) (0.448 ; 0.505) 
 NV 1.038 0.290 (1.006 ; 1.07) (0.261 ; 0.319) 0.827 0.299 (0.794 ; 0.859) (0.27 ; 0.327)  
 NY 1.013 0.234 (0.981 ; 1.046) (0.205 ; 0.263) 0.788 0.270 (0.756 ; 0.821) (0.242 ; 0.299) 
 OH 0.958 0.332 (0.926 ; 0.991) (0.304 ; 0.361) 0.692 0.333 (0.66 ; 0.725) (0.304 ; 0.362) 
 OK 0.942 0.296 (0.91 ; 0.975) (0.268 ; 0.325) 0.671 0.306 (0.639 ; 0.703) (0.277 ; 0.334) 
 OR 1.003 0.331 (0.971 ; 1.036) (0.303 ; 0.36) 0.795 0.352 (0.763 ; 0.828) (0.324 ; 0.381) 
 PA 0.903 0.350 (0.87 ; 0.935) (0.321 ; 0.378) 0.565 0.379 (0.533 ; 0.597) (0.35 ; 0.407)  
 RI 0.953 0.372 (0.921 ; 0.986) (0.344 ; 0.401) 0.678 0.375 (0.646 ; 0.711) (0.347 ; 0.404) 
 SC 0.918 0.294 (0.886 ; 0.951) (0.266 ; 0.323) 0.650 0.297 (0.617 ; 0.682) (0.269 ; 0.326) 
 SD 0.779 0.397 (0.746 ; 0.811) (0.368 ; 0.426) 0.511 0.409 (0.478 ; 0.543) (0.38 ; 0.438)  
 TN 0.897 0.324 (0.865 ; 0.93) (0.295 ; 0.352) 0.603 0.323 (0.571 ; 0.635) (0.294 ; 0.352) 
 TX 0.986 0.341 (0.954 ; 1.019) (0.313 ; 0.37) 0.723 0.337 (0.691 ; 0.755) (0.308 ; 0.366) 
 UT 0.916 0.371 (0.884 ; 0.949) (0.342 ; 0.399) 0.627 0.378 (0.595 ; 0.66) (0.35 ; 0.407)  
 VA 0.911 0.266 (0.879 ; 0.944) (0.238 ; 0.295) 0.650 0.298 (0.618 ; 0.682) (0.269 ; 0.327) 
 VT 0.888 0.357 (0.856 ; 0.921) (0.329 ; 0.386) 0.570 0.377 (0.537 ; 0.602) (0.348 ; 0.406) 
 WA 0.972 0.268 (0.94 ; 1.005) (0.239 ; 0.297) 0.802 0.284 (0.769 ; 0.834) (0.255 ; 0.313) 
 WI 0.889 0.336 (0.857 ; 0.921) (0.308 ; 0.365) 0.643 0.368 (0.61 ; 0.675) (0.339 ; 0.396) 
 WV 0.939 0.355 (0.906 ; 0.971) (0.326 ; 0.384) 0.681 0.372 (0.648 ; 0.713) (0.343 ; 0.4)  
 WY 0.906 0.395 (0.874 ; 0.938) (0.366 ; 0.424) 0.562 0.417 (0.53 ; 0.594) (0.388 ; 0.446) 
estimated seasonal and non-seasonal parameters imply a divergent non-
stationary pattern for all original series. On average, the sum of both 𝑑
and 𝑑𝑠 is of 1.27. Following Bisognin and Lopes (2009), we know that 
as 𝜔 → 0, then 𝑓 (𝜔) ∼ 𝐶 |𝜔|𝑑+𝑑𝑠 . Since 𝑑 + 𝑑 ≈ 1 for many series, it 
1 𝑠

6 
follows that a more simplistic analysis might suggest unit root behavior 
when considering only low frequencies of the power spectrum, and this 
could interfere with typical unit root tests. However, a more careful 
examination of the spectral density of the signal strongly suggests the 
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Fig. 5. Spectral density function for all US Census Regions.
Fig. 6. Histograms of the Long-Memory Parameters for all estimates.
presence of seasonal long memory, as shown in Fig.  5.
On the other hand, almost all (96.7%) estimated non-seasonal 

parameters from the filtered series lie in the non-stationary mean-
reversible interval, with the exception of Kentucky and Mississipi. Fig.  4 
shows that the exclusion of S4 components eliminates a large part of the 
spectral energy in the extreme low frequency bands. Consequently, a 
significant reduction in values was observed. However, even in this case 
the combination of seasonal and non-seasonal long memory processes 
implies 𝑑 + 𝑑𝑠 > 1 for 38 of 61 evaluated series and 𝑑 + 𝑑𝑠 > 0.5 for all 
series.

The estimated seasonal parameters lie on the non-stationarity
threshold for the two types of series. Using the original series, the 
lowest value 𝑑 = 0.2405 was found in the Mississippi series, followed 
by Kentucky and South Dakota, with 0.4667 and 0.5109 respectively. 
The highest values were 0.8596, 0.8269 and 0.8213 for the states of 
California, Nevada, and Maryland, respectively. The 𝑑 estimate for the 
national series is 0.7489, versus 0.9873 in the unfiltered national series.

The histograms of 𝑑 and 𝑑𝑠 for the 61 series are shown in Fig.  6. The 
differences between the parameters estimated using the filtered and 
original series are clearly seen in the box plot representation presented 
in Fig.  7. The group of results from the original series shows that 
the distribution of 𝑑, shows a leptokurtic pattern with values highly 
concentrated around the mean of 0.9436 with a standard deviation 
7 
of 0.061. These findings indicate strong non-seasonal persistence in 
unemployment in states. Using filtered data, the mean and standard 
deviation of 𝑑 were 0.6815 and 0.09, respectively. Thus, in this case, 
the empirical distribution of the parameter has higher variability than 
the distribution based on the original series.

We can draw from this empirical analysis that, for both original and 
filtered data, the combination of the two long-memory effects implies 
a non-stationary dynamic in the unemployment series and therefore 
strong persistence in this variable. Even excluding an important part 
of the low-frequency components where the non-linearity is located, 
the joint contribution of the non-seasonal and seasonal long memory 
effects does not allow us to reject the HH for the national, regional, 
and state series, with the exception of the District of Columbia.5

5 In order to compare the traditional I(1)-I(0) analysis with our results, we 
applied the ADF and KPSS unit root tests on the same series analyzed in this 
study, but seasonally adjusted by the X13 method. Following Enders (1995) 
algorithm with the ADF test, for all original series, except VT, the unit root 
hypothesis was not rejected with significance 5%. The inverse result was found 
for all detrended series. Similar conclusions were obtained using the KPSS test. 
These results help support our suspicions about seasonal long-memory effects 
on time series behavior. Tables of results may be obtained upon request.
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Fig. 7. Boxplot of the Long-Memory Parameters for all estimates.
6. Final remarks

The main objective of our study has been to understand how the 
conjunction of seasonal and non-seasonal long-memory processes af-
fects the long-term dynamics of US unemployment series. The ap-
plied analysis was based on the natural extension of the long-memory 
concept to the seasonal phenomenon. Using FARISMA models, long-
memory parameters were estimated for state, regional, and national ge-
ographic areas, providing the basis for the analysis of total persistence 
in US unemployment.

Previous studies have analyzed persistence in unemployment series 
based on seasonally adjusted values. Some of them have suggested 
that US unemployment might follow a long-term mean-reversible dy-
namic, especially when breaks and regimes are taken into account. 
However, as in the natural sciences, seasonal phenomena can represent 
an important source of persistence in economic variables.

Wavelet multiresolution decomposition was used to address po-
tential effects of trends and non-linear changes on series persistence, 
accessing the specific frequency band where these components are lo-
cated. The long-memory parameters were estimated with both original 
and filtered series in order to evaluate the influence of breaks on 
the persistence of the series. Seasonal long-memory estimations were 
virtually the same using the filtered and original series. Non-seasonal 
long-memory estimates based on original data have revealed an ex-
tremely persistent non-stationary unemployment dynamic. However, 
the parameters estimated using filtered series have fallen in the long-
term mean-reversible interval, in line with other studies. Surprisingly, 
however, the average estimated seasonal long-memory parameters lie 
in the same interval, representing a very high non-stationary level 
for seasonal persistence. Therefore, even assuming that the wavelet 
filtering has eliminated a number of low-frequency components, the 
joint effect of non-seasonal and seasonal long-memory processes still 
implies strong persistence dynamics in unemployment series across 
national, regional, and state levels.

The aggregate effects of exogenous shocks from seasonal and non-
seasonal dynamics on the labor market are not decreasing within a 
finite horizon of time, supporting therefore the HH over the NAIRU 
as the most plausible hypothesis for explaining the unemployment rate 
behavior in the US. This could open space for sustained countercyclical 
policies without the immediate threat of inflation acceleration.

In future research, we intend to evaluate the preliminary evidence 
shown in the results that indicates that states with lower GDPs suf-
fer higher seasonal persistence in their unemployment rates. Based 
on this analysis further studies can assess the policy implications of 
hysteresis in a spatially heterogeneous labor market, as well as perform 
comparative studies with other filtering methods and long memory 
models. Finally, we intend to extend the analysis to similar models 
using semiparametric approaches, in which distortions from short-run 
dynamics could be diminished.
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