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Resumo

Esse trabalho apresenta um método numérico para resolver escoamentos viscoeldsticos com
superficies livres. As equagGes que governam o escoamento de um fluido tipo Oldroyd-B sio
consideradas. Um novo tratamento para o célculo das componentes do tensor extra-tensio em
contornos rigidos é apresentado em detalhes. As condigdes de contérno na superficie livre sido
aplicadas sem recorrer a simplificagées. As equagdes governantes sio resolvidas pelo método de
diferengas finitas numa malha diferenciada. Resultados numéricos demonstrando a capacidade
desse novo método numérico para resolver escoamentos viscoeldsticos sio apresentados.

Abstract

This work is concerned with the development of a numerical method capable of simulating
viscoelastic free surface flow of an Oldroyd-B fluid. The basic equations governing the flow of
an Oldroyd-B fluid are considered. A novel formulation is developed for the computation of
the non-Newtonian extra-stress components on rigid boundaries. The full free surface stress
conditions are employed. The resulting governing equations are solved by a finite difference
method on a staggered grid, influenced by the ideas of the marker-and-cell (MAC) method.
Numerical results demonstrating the capabilities of this new technique are presented for a
number of problems involving unsteady free surface flows.
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1. Introduction

A great deal of effort has been expended over the last 15 years or so in attempting to find
robust and stable numerical methods for viscoelastic flow problems. The models that have
been studied tend to be the classical Oldroyd-B model or the upper convected Maxwell model
with the constitutive equation either of differential or integral form. Numerical methods have
included finite difference methods (eg. Yoo and Na [1]), finite element methods (eg. Marchal
and Crochet [2], Carew et al. [3], Brasseur et al. [4]), finite volume methods (eg. Huang et
al. [5], Mompean and Deville [6], Xue et al. [7], Phillips and Williams [8]), spectral methods
(eg. Beris et al. [9]), and boundary integral methods (eg. Fan et al.[10]) and there now exists
some measure of agreement for a class of test problems. These test problems have arisen
because of the so called “High Weissenberg Number Problem”. Rather like the Reynolds
number in Newtonian fluids, it has been found that a Weissenberg number is eventually
reached above which convergence of the numerical method under consideration fails. And
indeed this number was not very large and nearly all existing codes have difficulty with a
Weissenberg number greater than about 4 (however, see Mompean and Deville [6]). In this
paper viscoelastic flows with multiple free surfaces are considered. The approach employed
is loosely based upon the marker-and-cell (MAC) ideas of Harlow and Welch [11] and has
been honed for many problems in Newtonian fluid mechanics (see eg. Tomé and McKee [12],
Castelo et al. [13], Tomé et al. [14] and Tomé et al. [20]). It has also proved effective for
solving generalised non-Newtonian fluid flow (see eg. Tomé et al. [25]).

We should say at this point that fluid flow with a free surface (or surfaces) is a very active
research area among the Newtonian fluid mechanics community. The main focus has been
on tracking, or capturing the free surface, or in the case of multiphase flows, the material
interface. Indeed, interface tracking methods may be classified into three types. The first
involves finding a piecewise polynomial to approximate the front. This class includes bound-
ary integral methods (eg. Oguz et al. [22]) and the methods of Glimm and McBrian [22],
Agresar et al. [23], and Udaykumar et al. [24]. The second is the so-called level set methods
introduced by Osher and Sethian [15] and described in detail in two books by Sethian [16],
[17]. The third approach is the so-called volume of fluid (VOF) that is used in the code
FLOW3D (Hirt [18]); higher order approximations have been recently proposed by Puckett
et al. [19].

This paper is, we believe, one of the first to treat viscoelastic free surface flow problems. The
method described herein is applied to Couette flow, jet impingement and extrudate swell.
The Couette flow results agrees with those of Mompean and Deville [6] and the analytic
solution of Schaftingen [30]. The paper is organised as follows. The governing equations
are set out. The boundary conditions, especially for the non-Newtonian contribution to the
extra-stress tensor, are discussed at length. The essence of the method is given in Section 4
while in Section 5, the basic finite difference discretization is discussed. Section 6 includes
some general comments and Section 7 provides validation results for channel flow and a start-
up Couette flow. Section 8 presents some numerical results and finally, Section 9 completes



the paper with some concluding remarks.

2. Governing equations

The basic equations governing the flow of an Oldroyd B fluid are (see Crochet, Davies and
Walters [26]) the constitutive equations

v v
Tie + M Tik= 2p0 ( dig + Dy dy, (1)

together with the equation of motion
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and the continuity equation (assuming incompressibility)
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where Ty is the symmetric extra-stress tensor. The upper convected derivative Tk is defined
by
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is the rate-of-deformation tensor and A; and )\, are time constants (retardation) and p, is
the solvent viscosity. The vector v;, (¢ = 1,2) denotes the velocity, p the pressure, p the
density and g;, ( = 1, 2) the components of gravity. £ denotes the material derivative. We
observe that by making A, = 0 we obtain the Maxwell model. In order to solve (1)—(3) we

introduce the splitting

A
Tik = 2p0 </\—f> dik + Sik (4)

where Sy represents the non-Newtonian contribution to the extra-stress tensor. By intro-
ducing (4) into (1) and (2) we get
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If we consider two-dimensional Cartesian coordinates then equations (5), (6) and (3) can be

written in the form
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respectively. In equations above, vy = po/p is the kinematic viscosity and g,, gy are the
gravity components in the z and y directions respectively.

By letting L, U and vy denote “typical” length, velocity and viscosity scales, we introduce

the nondimensionalization

w=Ul, v= i

.
U,D) :E:Li‘a yng) t:_t,p:PU2ﬁ7 v =y, Sik_'( OU/L) lk) gzggy

which upon introduction into (7)-(12) produces the following nondimensional equations (the

bars have been dropped for convenience)

o8 ast  98% 6 8 A2\ Ou
T TT _ TY — = = N ==
S 4+ We ( 5 +u 5 v a9 BmS ByS ) 2 (1 /\1> 5 (13)
oSy 0S¥ 9SW  _du 811 A2\ v
vy Y gay _ w) — 22
SW 4 We ( 5 TUug TV 59 23$S 6 —S ) 2 (1 ) By (14)
0S¥ 0S¥ aS® v ou )\2 Ou Ov
Ty — _—__QIr _ ~ " Quy — -
S —f—We( 5 +u pe +v B9 BmS 8yS ) (1 ) (3y+8:1;> (15)
ou  Ou? O(uw) dp 1 (X (0% O%u 1 (85 Q5% 1
atTm ey T e E(A—l) a2 T o +Ee‘(——am +—ay)+p—ggz (16)
v Owv) w* _ dp L L 1 (ﬁ) P N v " 1 (BSW 4 asvy 1 T
ot oz dy "8y | Re \ )/ \ 0z2 Oy? Re \ Oz dy >+ —F?gy L,
ou Ov
5ta =" (18)

respectively, where Re = v,/UL denotes the Reynolds number, We = ), (U/L) is the
Weissenberg number, F'r = U/+/Lg is the Froude number and De = \;/); is the Deborah

number.



3. Boundary Conditions

In order to solve (13)—(18) one needs to impose boundary conditions for u and S. For the
momentum equations it is sufficient that we have

u=20
on rigid boundaries. We also have the following inflow boundary conditions for the velocity
Uy = U and e =10

where n and 7 denote the normal and tangential directions to the inflow, respectively.
3.1 Computation of the stress on rigid boundaries.

As rigid boundaries may be regarded as characteristics, the stresses S%%, S¥¥ and S* on the
boundary may be computed from (13)—-(15), which we assume to hold on rigid boundaries
with the initial condition

8 =0,
Firstly, let us introduce the change of variables:
S = e we'S (19)
By introducing (19) into (13)—(15) we obtain
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e Rigid boundary parallel to the z-axis.
In this case we have:
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from the mass conservation equation (18). In this case, the stress equations (20)—(22)
reduce to:
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Now, eqgs. (23)—(25) may be solved for the components Sz Sv and S%¥. For example,
from (24) with S = 0 initially we get

S¥w =0 ‘ (26)

In this case, (25) reduces to
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which gives on integration over the interval [t , t + 6]
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We may write (after making use of the mean value theorem for integrals)
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where g—;‘ takes the value at some t* € (¢,t + dt), giving
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Thus, on rigid boundaries parallel to the z-axis, S*¥ is given by
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To calculate S** we integrate (23) over [¢, ¢+ dt] to obtain
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Finally, multiplying (32) by the factor e~ we(t+%) we obtain
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e Rigid boundary parallel to the y-axis. Here we have
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from the continuity equation (18). Introducing these values into (20)—(22) yields
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Likewise the derivation of S** S*¥ and SY on rigid boundaries parallel to the z-axis
gives

S*= (2,9, 1) 0 (37)
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3.2 Inflow and Outflow boundaries

These can be specified as follows:

e Inflow boundary: At the fluid entrance we impose the velocity components
By == UL and =0

while for the non-Newtonian extra stress tensor components S we adopt the strategy
of Crochet et al. [2] and Mompean and Deville (3], namely:

S =0, S%=0 and S¥=0. (40)

e Outflow boundary: At fluid exit we impose homegeneous Neumann conditions for
both the velocity components and the extra stress components, namely

ou ou,

) T

on on

a8t  9S*™  9Sw 0
on = On  On

In the equations above the subscripts n and 7 denote directions normal and tangential
to the boundary, respectively.

(41)

3.3 Free Surface Stress Conditions

We shall consider unsteady free-surface flows of viscous fluid moving into a passive atmo-
sphere (which we may take to be at zero pressure). In the absence of surface tension the
normal and tangential components of stress must be continuous across any free surface, so
that.on such a surface (see Batchelor [27])

n-(oc-n)=0 and m-(oc-n)=0 (42)
where o = 0;; is the stress tensor given by:
oij = —poi; + Ty, 1,7 =1,2

and Tj; is given by (4). The finite difference equations approximating these conditions are
given in Section 4.2.



4. Method of Solution

To solve equations (13)—(18) we employ a procedure similar to that introduced by Tomé et
al. [25] for a generalized Newtonian fluid. '

Let us suppose that at a given time, say tn, the velocity field u(x, ¢,) and the non-Newtonian
extra stress tensor S(x, ¢,) are known and boundary conditions for the u and S and pressure
are given. To compute the velocity field, pressure field and the non-Newtonian extra-stress
tensor at the advanced time t,,; =, + dt, we proceed as follows:

Step 1: Let j5(x,t,) be a pressure field which satisfies the correct pressure condition
on the free surface. This pressure field is computed from the stress conditions (42).

Step 2: Calculate the intermediate velocity field, @(x, ¢,41), from

0u  0(u?*) A(wv) 8 1 [N (0% O 1 {35 g5 1
%" " ox oy oo Re\n)\02 T oE) TR\ s Yoy ) T ()
09 _ _O(wv) 9(v?) 8 , 1 (/\2) (a% a%) 1 (asw asw) 1

AR LR L — g, (4
A1 3$2+3y2 Re\ 8z T Oy +F,2gy(4)

ot or dy Oy ' Re

with (x,¢,) = u(x,%,) using the correct boundary conditions for u(x,t,). These
equations are solved by a finite difference method which is usually, but not necessarily,
explicit.

Step 3: Solve the Poisson equation
V21/)(x, tn+1) = V.ﬁ(x, tn+1)' (45)

The appropriate boundary conditions for this equation are (see Tomé et al. [25))

g_¢ =10 on rigid boundaries and Pp=0 on the free surface.
n
Step 4: Compute the velocity field

u(x, tny1) = 0(X, tng1) — VH(X, tng1). (46)

Step 5: Compute the pressure

P, tuin) = Bl 1) + L) (47)

Step 6: Update the components of the non-Newtonian extra-stress tensor on rigid
boundaries according to the equations given in Section 2.1

9



Step 7: Compute the components of the non-Newtonian extra-stress tensor, ST (X, tny1),
S (Xa tn+1)7 Syy(xa t’rH-l)a from:

asm a(usn) d(vS™) B du 1 ou .
. - Ngon | gQRgay | T g1 _22) 2 _g
[ G e i T tn(48)
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Equations (48)—(50) are solved by finite differences. Details of the difference equations
are given in the next Section.

Step 8: Update the markers positions: The last step in the calculation is to move the
markers to their new positions. This is done by solving

dz dy
——’Uz, %

dt
for each particle. The fluid surface is defined by a list containing these markers and

the visualization of the free surface is obtained simply by connecting them by straight
lines.

=, (51)

10



5. Basic Finite Difference Equations

Equations (43)-(50) will be solved by finite differences. A staggered grid is employed and
typical cell is displayed in figure 1. '

vi,j+1/2

— @

Sxx
u. g
.1/2,j s}} @ St Y12
y

ij

—

Uij-112
Fig. 1. Typical cell for an Oldroyd-B fluid flow calculation.

The components of the non-Newtonian extra-stress tensor (48)—(50) are applied at the centre
of a cell. They are approximated by finite differences as follows: the time derivative is
approximated by an explicit discretization while the spatial derivatives are approximated by
central differences. The convective terms are approximated by a high order bounded upwind
scheme employing the VONOS method [28]. Details of the implementation of this high
order bounded upwinding scheme can be found in [29] where it was employed to simulate a,
Newtonian hydraulic jump. Thus, equations (48)—(50) are approximated by

ot (ui+l i Uil j)
zr(n+1) __ TT T\ | TT) 2 2 TT
S’i,j( +1) — (1 - —W—e) Si7 — ot [conv(uS )i,j + conv(vS™®); ; — 2— 5 Si?j
(“i,j+% i “i,j—%) 2y 2 (A 1 (“i+§,j n “z‘—%,j) . (52)
e 5 iw T e \ %, 5z !
' ot (v; J+t = Uij—l)
yy(n+1 ’ )
Si{j( = (1 - m)Sny — 0t [conv(uSyy)i,j + conv(vS%); ;i — 2 2 5 =5
(Vigdj = Vi1 ;) 2 4 (V41 — V1)
_ 3 377 gmy T | M =2 53
2 oz Sij + We \ \; dy (53)
ot (Ui+l,j — Y1 j)
zy(n+1 zyy . vy, i/ qza
Sij’(" ) =(1- m)Sny -0t [conv(uS Y)ij + conv(vS™); ; L ro -
(Wigs = Uije3) 0 1 (N Yijrd —Yig-3 | Yitds T U=l ]
. 2, 3 vy s il Y 1 ) 2 ) 2 + 2 2 . 54
oy 55 +We A1 dy ox (54)
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In equations (52)—(54), terms which are not defined at cell position are obtained by averaging,
that is:

Uil + Uil g T %i-gy %t

U’L,]+-21- — 4 )

Vit Vs T 051 Vi -1
Ui_*_%,j . 4 .

For instance, if we consider the momentum equations, the discretization is performed as
follows: the time derivative is discretized explicitly while the spatial derivatives are ap-
proximated by central differences. The convective terms of (43) and (44), conv(-), are
approximated using a high order upwind scheme using the Vonos scheme [28]. The terms
involving the components of the non-Newtonian extra-stress tensor are approximated by

9s=s e =8

o ki = —%;—x—— + 0(62%)

a5 s, —sw

gy liatd T Ty + 0(6y%)

oSy Sivti+d ~ Sit

Sy b = it = YT 4 06y

where terms like ij j+} are obtained by averaging the four nearest values, e.g.
2)
Szfz’ +2 =0.25 * (Sfy Sz—f—lg S ,J+1 + Sz+1 J+1) (55)

Thus, equations (43) and (44) are approximated by

Uiy = Uir},; — OF [Con"(“z) + conv (wv) + %ﬂ
Re \ )\ 53;2 592
Ty TY
__1_ qu:—fl - Smf 4 SI+2,_7+2 S1.+2,]—— _ 1 . (56)
Re oz oy Fr27®
and
U; ;01 =, .1 — 6t [conv(vu) + conv(v? Pij+1 = Pij
i,j+3 T Tujt+3 V(’U )+ T+
L L (D2 (Pimioey T Biged gy Yiiod T Bigeg Ve
Re \ M dz2 52
Ty Ty
__1_ Sz+2,]+ Sz——,_7+2 n S,j+1 Syy _ 1 . (57)
Re oz Sy Fr29¥
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The Poisson equation (45) is discretized at cell centres using the five-point Laplacian, namely,

Vit1,j — 2i + i1 4 Vij+1 = 25 + ¥ i1
ox? oy?

=D, ; (58)

where

- Uyl o — Uy 1. Desyl —Tes 1
Di = 1+2:.7 =35 z).7+§ ©I—3

! oz 13 oy
Equation (58) leads to a symmetric and positive definite linear system for 4; ;. In order
to solve this linear system we employ the conjugate gradient method as implemented in
GENSMAC (see Tomé and McKee [12]). The final velocities are obtained by discretizing

(46) at the respective nodes, namely

bl . <¢i+1,j . ¢m‘)
)

i+ Yt o

u

59
e N ¥ NS Gk 2 (5%)
Lty ity ars _(5y"_ e
The pressure is obtained by applying (47) at the cell centres, giving
Pij = Dij + Vi (60)

ot

Consequently, each calculational cycle consists of solving equations (562)—(60) at each time-
step.

5.1 Cell Flagging

As the fluid is continuously moving, a procedure for identifying the fluid region and the free
surface is employed. To effect this, the cells within the mesh are flagged as:

e Empty (E) - Cells that do not contain fluid

o Full (F) - Cells full of fluid. These cells do not have any face contiguous with an Empty
cell.

e Surface (S) - Cells that contain fluid and have at least one face contiguous with an
Empty cell face. These cells contain the free surface.

e Boundary (B) - Cells that define a rigid boundary. In these cells the no-slip condition
is applied.

13



° Inﬂdw (I) - Cells that define an inflow boundary.

Figure 2 illustrates the cell structure for a two—dimensional flow at a glven instant of time.
For clarity, the empty cells are left blank.

Fig. 2. Types of cells used in a GENSMAC calculation.
5.2 Free Surface Stress Conditions

By using two-dimensional cartesian coordinates, the stress conditions (42) can be written as

1

B Re )\1 ax ay oz
1 ov Ou ou Ov 2 2
= [ (2 <8y 830) ngmy + (@ + 8_51;) (nz — ny)>
+(5% = 5 ngn, + 5% (nf - )| =o. )

14



Equations (61)—(62) represent the appropriate boundary condition on a free surface (see
Batchelor, page 153 [27]). To apply these conditions we proceed as follows:

Let us assume that the mesh spacing is sufficiently small so that the free surface will intercept
a mesh cell at two edges. Then conditions (61)~(62) can be applied according to three cases:

(i) Surface cell (S) having only one face contiguous with an empty cell (E): In
these cells it is assumed that the free surface is either horizontal or vertical according
to which side is contiguous with the empty cell. In this case the normal vector takes
the form n = (n,, 0) or n = (0, Ty )

S E

VitLj+1/2

(N W
Yy gxy
S ety sty
XX
Uieting itlj

S E

Fig. 8. Surface cell having only the right side contiguous with an empty cell.

For instance, if we consider the surface cell shown in figure 8 we take n = (1,0). In
this case the stress conditions (61)-(62) reduce to

- 1 /\2 6'1.1, ‘
EEs ) P [ kit Tz =, 63
P~ Re [)\1 (28:1:) ik J (58)
/\2 ou ov
— =+ — S5V =, 64
A1 (ay + 82:) 5 (64)

We observe that when computing the tilde velocities using (56)—(57), the values of 7 ;,
Uit Yit1,j+2 and the extra-stress components S5, St4, SEh 4y SYY 5, and Sit1; are
reqlzlired. They can be obtained as follows:

Firstly, discretizing the continuity equation (18) at the cell centre we obtain

Oz

i . =Y. L —— s —V:. 1).
u"+%y] ul_%)] 6y (’Uz)]_*'% ’Uz)]_f)

15



(ii)

Now, applying condition (64) at cell corner (i + 1,5 + 3) we get

Ag (Yirdj+t1 T Yitdi | Virni+d T Yigeg zy
e 2 2. 2 2 - ) —_ O
A1 ( oy i ox + SHF%’H‘%
which yields
v, 1= 1——@ AW Tl T —6:1:&5“’
i+lj+3 T Vijt+p 6y i+3,J+1 i+3,J Ao i+%,j+%'
Ty
The value of S +hitd
ities, the pressure p; ; follows from (63) applied at the cell centre:

- 1 [, A2 “i+lj—“i—lj>
== 2 —2 L see |
Pij Re { )\1( or t 24

The values of Si}, ;, S& ; and S, ; are obtained by assuming that they satisfy the
Neumann condition at the boundary, namely

Ty __ QTY TT __ QIT vy — Qyy
St =95t  Sih;=95u St =S

is obtained by averaging (see (55)). Having computed the veloc-

There are 3 other possible configurations of surface cells having only one face contiguous
with an empty cell. They are treated in a similar manner.

Surface cells with two adjacent faces contiguous with empty cells: For these
cells we assume that the outward normal direction lies at 45° between the two faces
contiguous with empty cells so that n = (£v/2/2,+v/2/2). In this case, the stress
conditions (61)—(62) reduce to

~ 1A fO0u  Ov oz i @Ei 1 G
p_iRe[/\l(By+3m>+S + S 4 S¥W|, (65)
Ay /OU  Ou - o
/\1<6y 3z)+5 _ 5% =0, (66)

respectively. The sign in (65) is chosen according to which sides are contiguous with
the empty cells.
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(iii)

Fig. 9. Surface cell with the right and top sides contiguous with empty cells.

For instance, by considering figure 9, we observe that the values of p;j, u; 1, v; .1,
" 27 Thity

T T . . .
o5 Sty Sitigy P31, Sij4 and SiY,, are necessary when computing the tilde
velocities and the extra stress components. They are obtained from the conditions

08S/0z = 0 and 8S/dy = 0 which we have assumed to hold. In this case we get

TT — Qzz vy — Qyy Y — Qzz
g =Oi P =S Siky = Si
TT _ Qzz vy — QY Ty — QT
=5 Siin =905 Sijn =55

Now, in order to compute ;1 ; and v; ;. 1 the continuity equation (18) and the tan-
gential stress condition (66) are used which, when discretized at a cell centre, produce
Yirds — %34 Vig+g T Y-

ox + oy

2)\1 ( 6y (Sm + 2Y) .7 ( )

0 (67)

Equations (67) and (68) give now a 2 X 2 linear system for u;, 1 ; and v, ;, 1, yielding

0
4 Ay

0z A1
_ _ %M (gm_gw). 4=,
Uitds = %i-3i T LN, (ST-51):  wgsg =gt

(sez - S;{gf) . (69)

Having computed ;1 and v; ;,1, the pressure at the cell centre follows from (65)

giving

»J

_ 1 [/\2 <“i+%,j T UL~ Uil -1~ Yol
Rig |7 Re )\1 0z
| ity Vigmg T VioLgy T ”i—l,j—%)

or

4575 + 5 + 571,

The remaining configurations of surface cells having only two faces contiguous with
empty cells are handled similarly.

Surface cells having two opposite sides contiguous with empty cells: For
these cells we cannot obtain an approximation for the normal vector. In these cells
one velocity is adjusted so that the continuity equation is satisfied. The pressure and
the extra-stress components are set to zero. If these cells appear, a finer mesh should

be employed to minimize their presence.
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5.3 Computation of the non-Newtonian extra-stress components on rigid bound-

aries

When the discretized momentum equations (56)—(57) and the extra-stress components (52)—
(54) are applied on nodes that are adjacent to the boundary then the values of S**, S¥ and
S® on the boundary cells are required. They can be obtained from the boundary conditions

given in Section 3.1 The following cases are considered:

(i) Boundary cells having only the top (or bottom) side contiguous with an
interior cell: In this case we assume that the boundary is a horizontal surface (see
figure 10) and apply the equations derived in Section 3.1.

B
xx

Si,j

| siit, |
J Yy
SU

——

i,j-1

Uiv1/2,j

| Se——

ui-1/2,j|:

F

Fig. 10. Boundary cells having only the bottom side contiguous with an interior cell.

For instance, from consideration of figure 10 and from equations (26), (30) and (33),
the values of the non-Newtonian extra-stress components are given by

vy o
Sy =0 (70)

T T Ou * —l
Si3-1(tnp1) =€ WLt r3-1(t) + (1 - /\—1) 5 = (i, Y51, ") le7we?t — 1] (71)
TT TT a * T Ty
25 buw) = €TRSIE (1) 5 01,y ) [eHHSTY (1) + S ()]
(72)
where the value of 2% (:c,, yj__,t*) is obtained by averaging ‘g—:(xi, Yj-1s t) at times t,
and t,,1, namely,
ou " 1 |0u ou
6_y(xi7yj—-%at ) = 5 I:'a_y(mi, yj_%at'n) + a—y'(xia yj-—%a tn+1):|
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(ii)

and the derivatives are approximated by

ou ul.—ul, ou u
%(zi) y]—-%ytn) = ’JdTJa 'ég(zn yj—%) tn+1) —

where the velocities at cell positions (i, j) and (z,j — 1) are given by

n+l
1,J

n+1

Ui -1

dy

Uipdj + Uil Yitlj—1 T U1,
and izq =
2 N 2

U5 = , respectively.
Finally, the values of 577 and Sf’g are obtained by performing linear interpolation using
the nodes (4, j — 3) and (4, j — 1), respectively.

Boundary cell having only the right (left) side contiguous with a interior
cell: In these cells (see figure 11) we assume that the rigid boundary is parallel to the
y-axis. The computation of the non-Newtonian extra-stress components is performed
according to the equations derived in Section 3.1 as follows.

Yij-1/2
Fig. 11. Boundary cells having only the right side contiguous with' an interior cell.

Considering figure 11, the values of the extra-stress components are obtained through
equations (37)-(39) and are given by ’

SEape=in0 (73)
S, (tny1) = e WeSW(1) 4 (1 = ﬁ) @(x. Ly, t7) [ewet — 1] (74)
i+t n N\ ) Byt ID
SW, (tns1) = e WEUSW(¢ )+5t§2(x- 1,95, t7) [e'WL’“S”‘”(tn)+S’y(tn+1)](75)
i, \bnt n By i+1) Y5

where g—;’(mi +%,yj,t*) is obtained by averaging g—;(mi +%,yj,t) at times ¢, and t,44,

namely

Oov . 1|0ov Jv :
gg(mi+%,yj,t )= 5 [@(wi%»%’tn) + ’é;(mi+%;yj1tn+l) .
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These derivatives are approximated by

ov vl — vl v Pt — o
@(xw%’yj’tn) = L,_st_w7 @(mﬂé;yjatn—f-l) = #
The velocities at cell positions (%, 7) and 7 + 1, j) are given by
1 J 1 J g
1+ ;1 1+ V5 1
Vij = —-—Ji-—é-L and Vitl,j = i) 5 e , respectively.

The required values of S77 and S}4 are then computed by linear interpolation using
the nodes (i + 3,7) and (¢ + 1, 7).

Boundary cells having the left side contiguous with an interior cell are treated similarly.
5.4 Inflow and Outflow boundaries

On inflow boundaries it is assumed that S** = S* = S% = (0. In this case, the extra-stress
components are given as follows:

Inflow (I) on the left side: For illustrative purposes it is assumed that the boundary is
a vertical surface (see figure 12).

iz
I
xx
s’?’.f‘l" @ +
Wy i+1,j
=

Fig. 12. Inflow cell with the right side contiguous with an interior cell.

In this case, the required values of the extra-stress components are given by (see Section 3.2)

TT __ __ QIT TY __ vy
Si,j - i+1,7 2 Si,j - Sz+1] ) Si,j - S+1]

Other configurations of inflows (e.g. inflow on top side) are handled in a similar manner.
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On outflow boundaries it is assumed that the homogeneous Neumann condition holds for ST

and SY while S is set to zero. In this case, the values of the non-Newtonian extra-stress
components are obtained as follows.

Outflow (O) on the right side: Here we assume that the boundary is a vertical surface
(see figure 13).

—
-0
xx
xy Sij
+ . Sij +
i-1 s
)
D>

Fig. 13. Outflow cell with the right side contiguous with a interior cell.

Considering figure 13, the values of the extra-stress are given by

T __ QIT Ty _ QTy Yy _ Quy
Sij =515, Sij=S%;, SH =S,

6. General comments

The finite difference equations described in this paper have been implemented into the GENS-
MAC code (see Tomé and McKee [12]) in order to simulate free surface flow of an Oldroyd-B
fluid. The discretized momentum equations (56) and (57) are solved by the GENSMAC
code; it was only necessary to modify the routine to include the terms involving the non-
Newtonian component of the extra-stress tensor. The discretized Poisson equation (58), the
final velocities (59) and the pressure equation (47) are solved as in the GENSMAC code
as they do not change from those for a Newtonian fluid. A number of routines have been
written to set up the boundary conditions on inflows, outflows, rigid boundaries and free
surface. The following routines have been created:

e Tildevisco: this routine computes the tilde-velocities for an Oldroyd-B fluid according
to equations (56) and (57).

e Extrastress: This routine calculates the components of the non-Newtonian extra-stress
tensor S as given by equations (52)—(54).

e Ptildevisco: This routine sets the pressure on the surface cells according the finite
difference equations derived in Section 5.2.
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e InflowOutVisco: Sets the values of the non-Newtonian extra-stress components on
inflows and outflow boundaries (see Section 5.4).

e Tanoutvisco: Computes the velocities on empty cells according the stress conditions
given in Section 5.2.

e Surempvisco: Calculates the velocities on empty cell faces according to the equations
derived in Section 5.2.

e Setboxvisco: Sets up the initial condition for the velocity field and the non-Newtonian
extra-stress components.

e Bcondvisco: Sets up the non-Newtonian extra-stress on rigid boundaries (see Section
5.3)

7. Validation of the approach

7.1 Fully developed channel flow

We validate the treatment of the viscoelastic extra-stress tensor on rigid boundaries and
on interior points by simulating the flow in a two-dimensional channel. We consider a 2D-
channel formed by two parallel plates at a distance L from each other and having a length of
4L (see figure 14). At the channel entrance we impose fully developed flow and at the exit
the conditions described in this paper for outflow boundaries are assumed. On the channel
plates the no-slip condition and the expressions for the viscoelastic extra-stress tensor (see
Section 3.1) are applied. We start with the channel empty and inject fluid at the inflow at
a prescribed velocity. The fully developed flow imposed at the inflow is given by

u(y) = —6y(y— L), wv=0 (76)

Tz — _ﬁ 3_u2 Ty _ A2 Ou ‘yy_
sm=awe (i) (B, () (B), svmo

f

L

:

Fig. 14. Channel flow set up parameters.

- 4L ——

Initialy the channel is empty and fluid is injected at the inflow until it reaches the outflow
and steady state is established. Under steady state conditions the velocity field and the
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viscoelastic extra-stress on the channel must have the same values as those on the inflow. To
verify this, we performed one simulation for the Weissenberg number, We = 1. The input
data used were L =1, U = 1,z = dy = 0.25, v = 1, \; = 1 and the ratio Xe/A1 was
set equal to 0.5. In this run we have Re = LU/v = 1 and We = MU/L = 1. Figure 15
displays several snapshots taken from this simulation at different times. Figure 16 displays
the values of the non-Newtonian extra-stress components S** and S® at the lines £ = 2
(middle of the channel) and z = 4 (at the end of the channel) together with the respective
analytic values (see eq. (77)). The solid lines in figure 16 are the analytical solutions while
the dotted lines and the dotted-dashed lines are the numerical solutions of the extra-stress
components at the positions z = 2 and z = 4 respectively. As can be see in figure 16 the
agreement between the exact and the numerical solutions is very good. Indeed, the relative
la-norm of the errors,

2
— Z (S:agxlact il S::Zmerical)Q E*% — Z (Sg::act - Sz;fmer'ical)
Z(S:;:jact)z ’ Z( g:fact)z

are £% = (0.00038 and E** = 0.00179 for z = 2 and E*¥ = 0.00022 and E** = 0.00093 for
x = 4.

E™

Figure 15. Numerical simulation of the channel flow. Fluid surface and velocity contours at
times: a) t = 1.0, b) t = 2.5, c) t = 4.0 and d) t = 49.5.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Y
Figure 16. Numerical and analytical solutions of S* and S** at time ¢ = 49.5 at positions
r = 2 and at z = 4. The dotted-dashed line represents the numerical solution at z = 2 while
the dotted line displays the numerical solution obtained at z = 4. The solid lines represent
the exact solutions given by (77).
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7.2 Start-up Couette flow

Mompean and Deville [3] validated their finite volume approach for time dependent start-up
Couette flow of a Newtonian and an Oldroyd-B fluid. They compared their numerical solu-
tions to the analytic solution for this problem as given by Schaftingen [30]. We shall employ
this analytic solution to validate the procedure presented in Section 3 and the boundary
stress treatment (see Section 3.1).

We simulated the shear flow sketched in figure 17. In this problem, the upper plate is
moved from rest to velocity U instantaneously, producing the so-called start-up Couette
flow. Following Mompean and Deville [3], figure 17 shows three equidistant points used to
observe the time evolution of the velocity. For an Oldroyd-B fluid the exact solution for the
velocity field is found to be (see Schaftingen [30])

S RS (—_7-11)—nsin (mr%) T (%) (78)

fynt) T o nimiug\ . e o Animiug
i — —_—— nt _ _——m——
T () = exp < - [cos(w ) + ( 2w, pLiar sin(wnt)| if v I <0

or
T.(t) = (5271 % n27r2;J’iL%) exp(Bint) — (ﬂln s nzﬂsz—z) exp(Bant) i 2 4n’7 o >0
" - /3271 - ,Bln Tn ,0)\1L2 -
where
S SN b O s s A
n— 5 ) n — ) n ) n — ~ In~ FMln-
SYRWE 2 2
(79)

The viscosities appearing in equations above are related to the Oldroyd-B model by setting
P = (1 — g\f) Lo,y Mo = %) Lo, where pg is called the solvent viscosity. By making Ao = A\;
a Newtonian flow is obtained. We used the problem described above and carried out a
Newtonian validation by setting A, = A; in the Oldroyd-B model and performed three
simulations. We set L =1 and U = 1. A grid of 10 x 20 cells (§z = dy = 0.05) was used for
all these runs and a time-step of

dt = 0.25Redy? if Re < 1
0t = 0.250y? otherwise

was employed. Figure 18, displays the numerical velocity profiles obtained together with
the analytical solution given by (78) for Re = 0.5, 1.0 and Re = 5 (we used po = 2,1 and
o = 0.2, respectively). The numerical results are in excellent agreement with the analytical
solution: indeed, from figure 18 we see that the numerical and analytic solutions coincide.
We can see in Figure 18 that the time for the velocity profile becoming linear is ¢ = 0.2 for
Re = 0.5, t = 0.4 for Re = 1 and ¢t = 2 for Re = 5 displaying a linear dependence on the

Reynolds number.
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Figure 17. Flow geometry for the start up Couette flow.
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Figure 18. Velocity variation at spatial positiong 1, 2 and 3 (see figure 17) for a Newtonian
fluid in a start-up shear flow for various Reynolds numbers: a) Re = 0.5 , b) Re = 1.0 ¢)
Re =5.0
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7.3 Oldroyd-B validation

One can see that for the start up Couette flow, the equations for the extra-stress components
(7)-(9) reduce to '

05*® ou
TIT A 2 9 "gqw =
9Svy
vy =

S+ A\ T 0, (81)

0S%  Ou Ao ou

Ty _ %oy _— 22\ (=
S™+ A\ ( 5 ayS ) Lo <1 )\1> (67,/) . (82)

By using the solution given by (78) we can find the solutlons of (80)—(82). We proceed as in

Section 3.1 and make the change of variables S = e ~31'§ and transform equations (80)—(82)
into

o5e= ou

P _9ZT3my _—
- ipt 0, (83)
HSvy
I Ntd ou ~ _ ,LLO )\2 ,\Lt(?u
ot Bys = (1 )‘1) € By (85)

respectively. Equations (83)-(85) together with the initial condition S = 0 can be solved.
Firstly, from (84) we obtain
SvW =0

and (85) can then be written as
~ t Lo Ao s ou ‘
S /0 " (1 )\1> e ayds (86)
Introducing (78) into (86) we get
~ V,uo Ao L > nmwy
S W2 <1 /\1> / 1 [1 +2n§=1( 1)" cos ( 7 ) Ta(s)| ds

_ V/J‘O )‘2 ;Lt = n nmy t Ls
- 3 (=)ot B () [

which after integration we obtain




where I,(t) = J§ eN°T, w(8)ds and is given by

: e—ant ’ ‘
L(t) = PR [Bn sin(Bnt) — an cos(Bnt) — Ry (ansin(But) + Bn cos(Bat))]
n n :
dnmpg
-f 2 -
YW E <0
or
nzwzﬂ A l“'_'\lﬁl.n.t 2,2 A 1+218 ¢
I(t) = (Bon + ") Trigme ™ - (Bin + 254) iigme if 2 T H
n = 9 =T N Th
ﬂ2n - IBIn n p)\1L2 -
where ) 5
_ T 1 _ _ Tn T U
=3 A=en B=g
Having computed S*¥ using (87) the value of S* is given by
S%(y,t) = e M5 . (88)

We considered the Couette flow described in Section 7.2 and used the analytic solutions
given by (78) and (88) to validate the numerical method presented in this paper. This
validation was carried out by varying the Reynolds number and the Weissenberg number
(We = \MU/L). The input data were the same as those employed for the Newtonian valida-
tion; only the data regarding the non-Newtonian extra stress tensor was changed. We used
A\, = 1,10, 100 producing Weissenberg numbers of We = 1, 10, 100, respectively. The ratio
A2/ was kept constant and equal to 0.1. A time-step size of

Re
= 0.25—dy?% i
at=10 Weéy if Re <1

1
ot = 0.25-1/%(51/2 otherwise

was employed. We varied the the Weissenberg number and the Reynolds number. In total
9 runs were performed for We = 1,10, 100 and Re = 0.5,1,5. For each run we printed the
time evolution of the velocity and the non-newtonian extra-stress component S* at the 3
points shown in figure 17. The results are displayed in figure 19, figure 20 and figure 21.
Figure 19 displays the results for Re = 0.5 and figure 20 shows the results for Re = 1 while
the results for Re = 5 are displayed in figure 21. As we can see, the agreement between
the numerical solutions and the analytic solutions are excellent: the numerical solution is
overlaid on top of the analytic solution and so, to the accuracy of the printer, the numerical

results appear exact.

29



1 T T T T T T T T T T T T T T T T T T
a) 09
0.8 [ p
08 J
07 |
06 g 0.6
05
0. 1
4 04 |
03}
0.2 b
0.2
[ | 0.1
. n ° L L s " s
0 1 2 3 4 5 [ 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
1 T T T T T T T 0.6 .
) 05 [ g
0.8 [ g
04 4
06 p
03t 4
0.4 4
02 E
0.2 L
0.1 | B
0 4
s ° s L s L L L L
0 1 2 3 4 5 6 7 ) 9 10 0 1 2 3 4 5 6 7 8 9 10
1 T T 0.1 T
08 0.08 -
06 p
0.06
d
04 |
0.04 ’- 4
0.2 4
0.02 [ p
0
L . ) L L o A n L s L ' n 2
0 1 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

Figure 19. Time evolution of the start up Couette flow. Comparison between the analytical
and the numerical solutions. Velocity variation (left column) and the non-Newtonian extra-
stress component S*¥ (right column). Reynolds number Re = 0.5 and various Weissenberg
numbers:

a) We=1,b) We=10, c) We = 100.
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Figure 20. Time evolution of the start up Couette flow

. Comparison between the analytical

and the numerical solutions. Velocity variation (left column) and the non-Newtonian extra-
stress component S® (right column). Reynolds number Re = 1 and various Weissenberg

numbers:

a) We=1,b) We =10, c) We = 100.
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Figure 21. Time evolution of the start up Couette flow. Comparison between the analytical
and the numerical solutions. Velocity variation (left column) and the non-Newtonina extra-
stress component S*¥ (right column). Reynolds number Re = 5 and various Weissenberg

numbers:
a) We=1,b) We =10, c) We = 100.
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8. Numerical examples of unsteady viscoelastic free surface flows

To demonstrate that the technique presented in this paper can cope with unsteady viscoelas-
tic free surface flows we present three problems which clearly display viscoelastic behaviour.
In each case the ratio ), /A1 was set to unity to represent a Newtonian fluid.

8.1 Numerical simulation of the transient extrudate swell of a planar jet

We present a simulation of the flow of a planar jet emerging from a die which exhibits
the characterist phenomenon known as “extrudate swell’ or “jet swell”. This problem has
attracted the attention of many researchers and various techniques for the simulation of jet
swell have been proposed (e.g. [4], [34], [35], [36]).

We consider the time-dependent flow of a two-dimensional jet flowing through a slit and
extrudated into air. The no-slip condition is imposed on the wall of the slit while full
developed flow is imposed at the fluid entrance (see equations (76) and (77)). On the fluid
free surface we imposed the full stress conditions (see (61) and (62)). The flow domain is
sketched in figure 22.

L Dmax

5L

2L

10L

Fig. 22. Definition of the flow domain for the extrudate swell simulation.
The following input data were employed:

Slit width: L = 10 mm.

0z = dy = 0.5 mm

Poisson solver tolerance EPS = 10710,

Gravity is acting in the z-direction with g = 9.81m?2s~.

Fluid definition: po = 0.01, p =1, A\; = 0.01, Ay = 0.0075, 0.005 and 0.0025.
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e Scaling parameters: L = 0.01, U = 1, pp = 0.01. Hence, Re =1 and We = 1.

To demonstrate that the technique presented in this paper can cope with viscoelastic fluids
governed by the Oldroyd-B model, we used the data above and performed three simulations.
The first simulation we set Ay = 0.75)\;; in the second simulation a value of Ay = 0.5)\; was
employed and in the third simulation we chose A, = 0.25);. At this point we observe that
the value of We = 1 used in these simulations is not the effective Weissenberg number. The
effective Weissenberg number for the Oldroyd-B model, as pointed out by Yoo and Na [1], is

Weeﬁ'ect o (1 - %) We

1

Thus, in these simulations we used Weegect = 0.25,0.5,0.75, respectively. The results of
these simulations are displayed in figure 23 and figure 24. Figure 23 shows different time
frames of the jet flowing through the slit and then being extrudated into the air. The swelling
ratio S, = Dpaz/L is also shown in the figures. For the times ¢ = 2 and ¢ = 4.5 the flow
is still inside the slit and the differences between the three cases are small. However, as
the jet is extrudated into the air the differences are noticeable as we can see by comparing
the size of the jet swelling for the three cases. Figure 24 shows the jet at the later time
t = 24.5 after entering the outflow boundary. At this time the flow is close to reaching the
steady state except for the case Weegrect = 0.25 where there is still an undulation on the free
surface propagating downstream. The gravity effect is to pull the fluid to the right causing
a downstrean reduction in the jet diameter. The maximum swell occurs close to the slit exit
at a distance of approximately 1.5L. The swelling ratio varies approximately from 1.06 (in
the case of Weegrect = 0) to 1.88 for the highest Weesrect-
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Figure 23. Numerical Simulation of the extrudate swell. Fluid surface and swelling ratio
(Sr = Dpag/L) at different times for Weegeet = 0.25,0.5, and 0.75. At times ¢ = 2.0 and
t = 4.5 the swelling ratio is S, = 1 (as the jet has not yet been extrudated into the air).
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Weeftect = 0.25, Sr = 1.50 Se = 1.50

Weestect = 0.5, Sr = 1.75 ' Sy = 1.66

W eottect = 0.75, S, = 1.81 ' S, =1.88
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W eetrect = 0.25, S, = 1.56
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W eestoct = 0.5, Sy = 1.66

W eegtect = 0.75, S, = 1.81

t=16.5

Figure 23. Continued.
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Figure 24. Numerical Simulation of the extrudate swell. Fluid surface and swelling ratio
at time ¢t = 24.5 for Weegect = 0.0,0.25,0.5, and 0.75.



8.2 Numerical simulation of jet buckling of a viscoelastic fluid.

To demonstrate further that the numerical technique described in this paper can cope with
viscoelastic fluids, we present in this section two calculations that simulate the buckling of
a thin viscoelastic jet hitting a rigid plate. This problem has been investigated by a number
of researchers (e.g. Cruickshank [31], Cruickshank and Munson [32], Tomé and McKee [33]).
In particular, Cruickshank and Munson [32] has presented experimental results where they
argue that a planar jet will buckle if the following restrictions are satisfied:

Re < 0.56 and H/D > 3w,

where Re is the Reynolds number based on the slit width D and H is the height of the
inlet above the plate. To illustrate that a fluid modelled by the Oldroyd-B model has a
considerable effect on the buckling phenomenon, we present two calculations that contrast
Newtonian and non-Newtonian behaviour; in both cases, the conditions above are satisfied,
predicting buckling of a Newtonian jet. The calculations concern a thin jet injected into a
rectangular cavity of size 5 cm, with the inlet slot size of D = 5 mm (so that H/D = 20).
A mesh size of éz = dy = 0.0005 mm was employed (giving 100 x 200 cells). At the
inlet we imposed the uniform input velocity U = 0.5 ms™! and the components of the non-
Newtonian extra stress were set to zero (see Section 3.2). Gravity is considered to be acting
in the negative y-direction with ¢ = 9.81 ms™2. The fluid parameters were chosen to be

y=001, A=00l, A =0001.

The scaling parameters were U, D, v, giving We = )\1% = L (Wesmes = 0:9); Re = Q —
12
U
0.25 and Fr = ——— = 2.258. We point out that the only data differing between these two
vDg

calculations is the ratio A/A; which took the value of 0.1 in the non-Newtonian calculation
and was set equal to 1 producing Weegrect = 0. Figure 25 displays a comparison of the
Newtonian and viscoelastic fluid configurations at different times. The difference between
the two flows as displayed in figure 25 is dramatic. As the Newtonian jet hits the plate it
becomes thicker while the non-Newtonian jet produces a wave which travels upwards along
the jet creating an instability which causes the jet to buckle dramatically much earlier than
the Newtonian jet. We observe that at time ¢ = 30.0 the non-Newtonian viscoelastic jet thins
to almost a filament, then accelerates the fluid behind the filament at time ¢ = 36.25, and
thereafter behaves more like an ‘ordinary’ Newtonian jet. As this is occurring the Newtonian
fluid jet continues to thicken at the base with only a hint of initial buckling at time ¢ = 30.0.
At the time the Newtonian jet starts to buckle the non-Newtonian jet has already produced
many folds.

38
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Figure 25. Numerical simulation of jet buckling. Fluid flow visualization at different times:
Newtonian jet (on the left) and non-Newtonian (on the right). Times shown are (£t): a)
12.5, b) 15.0, ¢) 17.5, d) 23.75, €) 27.5, f) 30.0, g) 36.25, h) 42.5, i) 48.75, j) 55.0.
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Figure 25. Continued.
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Figure 25. Continued.
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h)

Figure 25. Continued.
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Figure 25. Continued.
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8.3 Numerical simulation of impacting drop.

To further show that the numerical method presented in this paper can handle unsteady vis-
coelastic free surface flows a drop of a viscoelastic fluid impacting a rigid plate was simulated.
Again, to emphasize the viscoelastic effects the results of the simulation were compared with
the results obtained from a Newtonian drop simulation. We considered a two-dimensional
drop of viscoelastic fluid modelled by the Oldroyd-B equations. The following data were
used: drop diameter D = 2 cm; initial velocity of the drop V' = —1 ms™!; height of the drop
to the plate H = 4 cm; domain size 5 cm X 5 cm; mesh spacing dz = dy = 0.0005 mm
(giving a mesh size of 100 x 100 cells within the domain); gravity is acting downwards with |
g = —9.81 ms™2; Poisson solver tolerance EPS = 107'%; the fluid properties are » = 0.004,
A1 = 0.02, Ay = 0.002; the scaling parameters were D, V and v giving Re = 5 and We =1
(W eereet = 0.9). The non-Newtonian extra stress components in the drop were initially set
to zero. No-slip conditions are imposed on the plate.

As may be seen in figure 26, the Newtonian drop hits the plate and spreads out evenly
retaining its concave shape. The flow of the viscoelastic drop may be regarded as having
three phases. The initial phase, between the time the drop hits the plate and ¢ = 2.5, is
associated with the negative vertical velocity. In this phase the viscoelastic flow displays a
greater tendency to spread horizontally than its Newtonian counterpart. The second phase,
for 2.5 < t < 3.75, may be associated with a positive vertical velocity. During this phase, the
flow underwent a contraction, caused by the elasticity of the fluid, resulting in the formation
first of an indentation and then the formation of a dome at the centre of the domain.
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t=1125

t = 1.500

t=1.750

Figure 26. Simulation of falling drops of Newtonian (on the left) and viscoelastic (on the
right) fluids. Fluid flow visualization at different times. .
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Figure 26. Continued.
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Figure 26. Continued.
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Figure 26. Continued.
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Concluding Remarks

these derivations have been validated against known analytic expressions. Three examples of
viscoelastic flows have been simulated: the classical extrudate swell, viscoelastic jet buckling
and the falling viscoelastic fluid drop impinging on a horizontal surface. It is seen that
viscoelasticity produces a greater swelling than the Newtonian case as would be anticipated.
For viscoelastic jet buckling a wave is seen to travel rapidly back up the jet after impingement
causing the jet to buckle much earlier than the corresponding Newtonian case. Jet buckling,
whether it be a Newtonian fluid or otherwise, depends upon the accuracy of the computation.
The analogy is with flow in a pipe: transition to turbulence is dependent upon the internal
surface roughness. Similarly, with a jet the transition to buckling is sensitively dependent
upon the degree of precision with which the inlet nozzle is manufactured (see Tome et al.
[37]). Thus not only is it not surprising that jet buckling is dependent on the accuracy of
the computation; it is to be expected - a small perturbation (round-off error) is necessary to
initiate this physical instability. In the viscoelastic case an elastic lateral wave travels back
up the jet after impingement causing a large perturbation and almost immediate buckling.
Finally the viscoelastic drop falling on to a horizontal surface could be dough thrown on a
pastry tray: it deforms in a very distinct manner before relaxing to roughly the same profile

as a Newtonian fluid.

We believe this paper is the first serious attempt to solve the Oldroyd B model of unsteady
viscoelastic fluid flow with a free surface. We are currently modifying the methodology to
allow for cyclindrical geometry so as to simulate the rod-climbing effect.
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