

MENU

SIGN IN/REGISTER SEARCH

AIP Journal of Applied Physics

SUBMIT YOUR ARTICLE

HOME

BROWSE

INFO

FOR AUTHORS

 SIGN UP FOR ALERTS

COLLECTIONS

[Home](#) > [Journal of Applied Physics](#) > [Volume 117, Issue 17](#) > [10.1063/1.4906434](#)

< PREV

NEXT >

No Access • Submitted: 17 September 2014 • Accepted: 07 October 2014 • Published Online: 23 January 2015

 PDF

Metal-insulator transition in Nd_{1-x}Eu_xNiO₃: Entropy change and electronic delocalization

Journal of Applied Physics 117, 17C105 (2015); <https://doi.org/10.1063/1.4906434>

R. F. Jardim^{1, a)}, V. B. Barbeta², S. Andrade¹, M. T. Escote³, F. Cordero⁴, and M. S. Torikachvili⁵

[View Affiliations](#)

[View Contributors](#)

[Topics](#) ▾

◦ [Collections](#) ▾

▪ [Magnetism and Magnetic Materials](#)

ABSTRACT

The metal-insulator (MI) phase transition in Nd_{1-x}Eu_xNiO₃, 0 ≤ x ≤ 0.35, has been investigated through the pressure dependence of the electrical resistivity

PDF

increasing Eu substitution and decreases with increasing pressure. Two distinct regions for the Eu dependence of dT_{MI}/dP were found: (i) for $x \leq 0.15$, dT_{MI}/dP is nearly constant and $\sim -4.3 \text{ K/kbar}$; (ii) for $x \geq 0.15$, dT_{MI}/dP increases with x and it seems to reach a saturation value $\sim -6.2 \text{ K/kbar}$ for the $x = 0.35$ sample. This change is accompanied with a strong decrease in the thermal hysteresis in $\rho(P, T)$ between the cooling and warming cycles, observed in the vicinity of T_{MI} . The entropy change (ΔS) at T_{MI} for the sample $x = 0$, estimated by using the dT_{MI}/dP data and the Clausius-Clapeyron equation, resulted in $\Delta S \sim 1.2 \text{ J/mol K}$, a value in line with specific heat measurements. When the Eu concentration is increased, the antiferromagnetic (AF) and the MI transitions are separated in temperature, permitting that an estimate of the entropy change due to the AF/Paramagnetic transition be carried

Metal-insulator transition in $\text{Nd}_{1-x}\text{Eu}_x\text{NiO}_3$: Entropy change and electronic delocalization: Journal of Applied Physics: Vol 117, No 17
much smaller than that expected for a $s = 1/2$ spin system. The analysis of $\rho(P, T)$ and $C_P(T)$ data indicates that the entropy change at T_{MI} is mainly due to the electronic delocalization and not related to the AF transition.

The authors gratefully acknowledge support from Brazil's agencies FAPESP (Grant No. 2013/07296-2), CNPq, CAPES, and USA's NSF Grant No. DMR-0805335 (MST).

SELECT YOUR ACCESS

INDIVIDUAL ACCESS

If you have an individual subscription, a subscription provided by one of AIP's Member Societies, have claimed access to a Conference

Proceeding, or have made an individual purchase, sign in below.

Username:

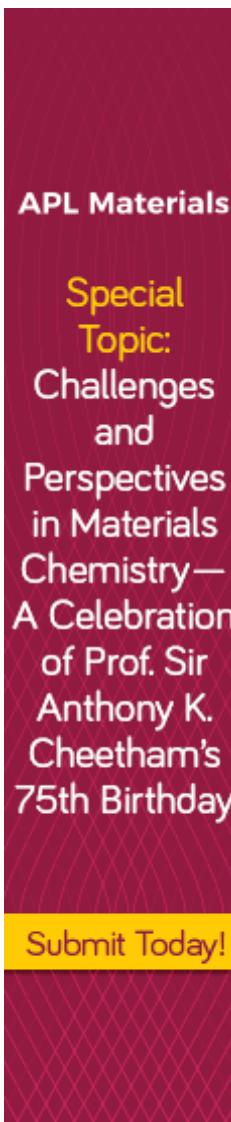
Password

Remember me

LOG IN

[Forgot password?](#)

INSTITUTIONAL ACCESS


Access through
your institution

PURCHASE

Standard PPV for \$35.00

[ADD TO CART](#)

PDF

APL Materials

Special
Topic:
Challenges
and
Perspectives
in Materials
Chemistry—
A Celebration
of Prof. Sir
Anthony K.
Cheetham's
75th Birthday

Submit Today!

APL Materials**Submit Today!****Special Topic: Challenges and Perspectives in Materials Chemistry—
A Celebration of Prof. Sir Anthony K. Cheetham's 75th Birthday****Resources**

AUTHOR

LIBRARIAN

ADVERTISER

General Information

ABOUT

CONTACT

HELP

PRIVACY POLICY

TERMS OF USE

FOLLOW AIP PUBLISHING:

Website © 2022 AIP Publishing LLC.

Article copyright remains as
specified within the article.**Scitation**

PDF