


THE DIRICHLET AND SUBSTITUTION FORMULAS 
FOR RIEMANN-STIELTUES INTEGRALS IN BANACH SPACES

Chaim Samuel Honig

Instituto de Matematica e Estatística 
Universidade de Sao Paulo 

Sao Paulo, Brazil

An equality of the form

Id ■ J ««d
s )h(t, s) d£(s)da(t) • h(t, s) d$(s)

a aa

for iterated Riemann-Stieltjes integrals is called a VZKZc.hZo.t 
^oKmuJLoL.

An equality of the form

f drJ a w a

b
da(t) • h(t) g(t)da(s) • h(s) g (t) =

a

for Riemann-S tie It j es integrals is called a 4 abòtZtuutZon 
Z(l.

Without some restriction these formulas are not valid. In 
13 for instance, we give an example, with a(s) = s, 

where the formula of substitution is not true. A counterexample 
for the formula of Dirichlet is given in the Remark preceding 
Theorem 2.1.
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In Secs. 2, 3, and 5 of this chapter we prove these formu­
las under adequate hypothesis and for different types of inte­
grals (in Banach spaces). We need these formulas in our study 
of differential and integral equations with linear constraints 
(that is, generalized boundary conditions); see [l-4]. The 
different types of Riemann-Stie1tjes integrals we use are neces­
sary for the integral representation formulas of certain classes 
of linear operators (see [l , Theorems 2, 3, and 4] , [3, Theorem
l], and [4]); however neither the representing function a nor 
the function h or g is necessarily measurable (in the sense of 
Bochner and Lebesgue), and this fact makes their study more 
difficult. For instance, the identical automorphism of C([a, b] ) 
has the representation

-r. <?(t) da(t) , tp 6 C( [a, b] ) ,¥

[a, b], and the functionwhere ot(t) = X]a,t]> t 6

6 Lro ( [ a , b] )[a, b] X]a,t]a: t 6

is not measurable (see [2, p. 59]).

In Sec. 4 we take a of bounded variation (hence measurable) 
and consider a more restricted class of functions h for which 
the analog of the Darboux criterion for integrability is valid 
(and which are measurable).

Sections 2 to 5 are independent of each other and may be 
read in any order; only Sec. 5 uses some results of Sec. 4.

1. BASIC DEFINITIONS

In order to make this discussion more self-sufficient we
repeat here many of the definitions given in [4] (see also
[3, i, 2]).
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DEFINITION 1.1. Given an interval [a, b] of the real line, a 
d-ivA-A-ion d of [a, b] is a finite sequence tg 

= b: we write d - n and Ad = sun » ii

D or D

1 < t2 * 
piUi - ti_11 I 1 =

denotes the set of all divisions

= a < t
< t

1, 2, |d|}.
of [a, b].

• • •

[a.b]

For every e > 0 we define D£ = {d 6 D | Ad < e}; the class 
(D£ | E > 0} is a

We say that a division d2 is i than a division d^ ,
we write d^ < d^, if every point of d^ is in 
define Dd = id' 6 D | d < d1}; the class ÍD^ | d 6 D) is a 
filter basis on D finer than the preceding one and therefore 
we have

filter basis on D.
an d

For d e D we

Given a topological space X and a function
f(d), i.e., according to the 

f(d) , i.e.,
according to the second filter basis, and we have the equality 
of both limits.

PROPOSITION 1.1,
f: D ■+ X, the existence of limAd+0
first filter basis, implies the existence of lim d6D

Given a Banach space X and a function f: [a, b] X, for 
every d £ D we define the 06 C.Á,ttdt-íon6

[t ‘il>p{II f (t) - f (S)II I t,UK(f) = SU S 6 i-1’

|d|i = 1, 2,

and the IntiKion. o6 cÁ.ZZa^tZonó

]t . t.pu>!!(f) = sup{||f(t) - f(s)|| | t,

.... |d|.

S 6 i-1

i = 1, 2,

We write to^(f) = sup{üK(f) | i = 1, 2, ...» | d| } and üi^(f) = 
sup{w!(f) | i = 1, 2, ...» |d|}. Given <5 > 0 we define
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[a, b] , | t - I 5 «>•( f ) = sup t II f (t) - f ( S ) II I t, S 6 s

We denote by V the set of all pairs (d, £), where d e D

[t tj,] . V* denotes the

■ «i-
«!•and Ç =

set of all pairs (d, £*), where d 6 D and Ç*
Ç|d|) with Ç. 6• » i-1*

•••> 5|d| )
‘it-with £! e ]t i-1*

If t and s are real numbers, we write t A s = inf(t, s) 
and t y s = sup(t, s). Given real numbers c < d, |c, d| denotes 
any of the intervals [_c, d] , [c, d[, ]c, d] and Jc, d[. If A is
a subset of 1R, denotes its characteristic function: = *
if t 6 A andXA(t) = 0 if t i A.

A bZZZmaA tfiZpZt (BT) is a set of three Banach 
spaces E, F, and G with a bilinear continuous mapping B: E * F 

-*■ G whose norm is < 1; we write x • y * B(x, y) and denote the 
BT by (E, F, G).

DEFINITION 1.2.

Examples. Let W, X, and Y denote Banach spaces:

E = L(X, Y), F = L(W, X), G = L(W, Y), and B(v, u) -1.
v 0 u.

E = L (X, Y) , F = X, G = Y, and B(u, x) = u(x); 2 is a 
particular case of 1: take W = C.

2.

E = x1, F = X, G = C, and B(x', x) = <x', x>; 3 is a 
particular case of 1: take Y = W = C.

3.

E = G = Y, F = C, and B(y,.\) » Ay; 4 is a particular 
case of 1: take X = W = C.

4.

Given a BT (E, F, G) and functions a: [a, b] ■+■ E 
f: [a, b] -*• F, for (d, £) 6 V and (d, £*) e V‘ we write respec­

tively

and

Ul c 
- .1.1 = 1 '•

ad>c(f; a) - a (t • f(£.))i-1
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and

(
i=l ^

• f(ç-)(f; o) a(t.) - a(t )a i-1i

and we define

fJ a °d,ç(f; °°’da( t) • f(t) = lim 
A d**0

f (f; a),da(t) • f(t) = lim ad,Çd6Da

b
(f Í <*) ,• da(t) • f(t) = lim a d,rd6Da

when these limits exist.

The first two integrals generalize the usual Riemann-
Stieltjes integral (see [5] and also [6, 2, 4]) and the third 
one generalizes the Dushnik or ZntZAioA intzgAaZ (see [7, p. 96] 
and [3, 4] ) .

Given a function a: [a, b] denote by Ra([a, b] , F) , 
b] , F) , and R^([a, b] , F) the vector spaces of all func-

->■ E we

V[
tions f: [a, b] F such that there exist, respectively, the 
integrals da(t) • f(t), da(t) • f(t), and da(t) • f(t).
For a(t) = t we write R([a, b], F) etc.

By Proposition 1.1 we have R^ífa, b] , F) C Ra([a, b] , F)
C R^([a, b] , F) with the equality of the corresponding integrals. 

Given d e d, tkz zxA.4tzn.ee. 0Ó tkz in.tzgA.al4

a,

t.

I;: , Idl,dcx(t) • f(t) , i - 1, 2,
i-1

impZiz4 tkz zxi4tzncz 06

■ K
i-1 Jt.Í-1 a

da(t) • f(t) ;da(t) • f(t)
i-1

&oa tkz intzgAaZ fb an anaZogou.4 AZ4uZt Í4 not tAuz;
a k

^OA. tkz intzAioA intzgAaZ tkz intzgAation by 
paAt4 1ÇoAmuZa Í4 not vaZid, but we have

on the
other hand,
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Let (E, F, G) be a BT and ct: [a, b] -*■ E , f: [a, b]THEOREM 1.2.

F be bounded functions; if a or f is continuous, the existence 
of /Í da(t) • f(t) implies the existence of the other two inte­
grals and the three coincide (see [4, Theorem 1.1.2]).

More generally we have:

THEOREM 1.2T Let (E , F, G) be a BT and a: [a, b] -*■ E, f: [a, b] 
F, bounded functions such that there exists da(t) • f(t); 

if a and f have no common points of discontinuity then there 
exis ts

f -fda(t) • f(t) da(t) • f(t) .
a a

THEOREM 1.2*. Let (E , F, G) be a BT and a: [a, b] E , f: [a, b]
F, bounded functions such that there exists da(t) • f(t);a

if a and f have no common points of left or right discontinuity 
then there exists

fJ a ■fdct(t) • f(t) da(t) • f(t).
a

In this chapter in general we give only results for the 
integrals and ; the corresponding theorems for ,

a â 3
proofs, are then obvious. Also, the proofs of the results for
/ in general follow from the corresponding results for /• , a a
applying Theorem 1.2, and often they are much simpler than the 
direct proofs which do not use the interior integral.

Given f 6 Ra([a, b], F), for every (d, £) e V we define

and the

Ul
I f(Ci> x-i

i = 2 1 J
fd,ç ■ x[a>ti] ♦ ti-l,ti^ *

we have

b
ad>ç(í; a) = • da(t) • fA

aa
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and

I:ib* a
(t) .da(t) •da(t) • f(t) = lim 

Ad-^0
fd,C

a

More generally we have

Ra([a, b], F), for every t 6 [a, b]PROPOSITION 1.3. If f 6 we

have

i: í fd,5(s)-da(s) •da(s) • f(s) = lim 
Ad+0 a

Given f 6 R^([a, b], F), for every (d, £*) € V'

- f(5i} X[a,tl] +

we define

Ul
I f(5p X]

i = 2 J
f ti-l,tJ ’d,£*

we have

-p
* n

At)da(t) •ad,Ç*(f; °°
a

and

PJ a I■ At).da(t) •da(t) • f(t) = lim fd,Ç
deD a

In an analogous way we have

[a, b]If f 6 R^([a, b] , F) , for every t 6PROPOSITION 1.3*.

we have

ff! .(s).da(s) •da(s) • f(s) = lim fdA
d6D a

[a. , bj] C RnGiven a parallelotope I = IIDEFINITION 1.3. 1< j <n
and a Banach space X, E(I, X) denotes the vector space of all
finite linear combinations of characteristic functions of
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[cj , dj] contained in I (4-tep £u.nc££on6) .p ar al le lotopes II 
G(I, X) denotes the vector space of all tiQ.gu.ZaÁ£d ^unct-ionÁ , i.

1< j <n

e., functions that are uniform limits of step functions. Endowed 
with the norm g 6 G(I, X)
Banach space.

II g ( t) II , G(I, X) is aSUPC6I

It is not difficult to prove the following theorem.

For f: [a, b] + X the following properties areTHEOREM 1.4.
equivalent:

(a) f 6 G( [a , b] , X) .
(b) For every t 6 [a, b[ there exists f(t + ) and for every 

t e ]a, b] there exists f(t-).

(c) For every £ > 0 there exists d 6 D such that w^(f)
< e. See, for instance, [4], Theorem 1.3.1.

We say that functions f, g 6 G([a, b] , X) are equivalent 
if for every t e ]a, b[ we have f(t+) = g(t + ) [and hence also 
f(t-) = g(t-)]; we denote by 6([a, bj , X) the Banach space of 
these equivalence classes.

Given a BT (E, F, G), f 6 G([a, b] , E) and 
g 6 G([a, b], F), we have f . g e G([a, b], G).
P ROPOSITION 1.5.

Given a BT (E, F, G) and a: [a, b] E weDEFINITION 1.4.
define the B vdfvia.££0n of a (where B denotes the bilinear 
mapping of the BT) by SB[a] ■ SBd[ct] , wheresupd6D

(
i-l l

SBd[a] I yjL e F, II y. II < 1>.a(t.) - a(t )■ sup • yii i-l
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SB([a, b], E) denotes the vector space of all functions of 
"bounded" (i.e., finite) B variation.

Examples.

In the case of Examples 1 and 2 of a BT we obtain the 
same space (see [4, Theorem 1.4.4]), which we denote by 
SV( [a, b] , L(X, Y)), and we call its elements function* otf 
bounded 6 emZvaAÃaXZon; in this case Sv[a] = SB [a] is called the 
6emÁvaJu.a£ion of a.

1.

In the case of Example 3 of a BT we obtain the space 
BV([a, b] , X’) of functions of bounded variation and we have 
v[a] = SB [a] , where V [a] = 
ct (on [a, b] ) : V [a] = sup 

Ia(t.) - a(t

2.

j [a] denotes the vaKlat^ion of 
Vd [a] with Vd [a] =

V[a,b]

dsDr|d| )«.i = l i-1
In the case of Example 4 of a BT we obtain the space 

BW([a, b] , Y) of ^unct^ionò weak bounded valuation; in this 
w[a] = SB[o] is called the weak vafUat+on of a. See [2, 
or 6] .

3.

case
4, 5,

Let (E, F, G) be a BT and a 0 SB([a, b] , E);THEOREM 1.6.

(a) For every f 6 C([a, b], F) there exists Fa[f] = 
f(t); we have F& 6

(b) For (d, Ç) e V we have dct(t) • f(t) - <?d ^(f; ot) |j 
< SB [a] ü>A d ( f ) .

(See [2, Theorem 1.1.5] .)

da(t) • 
SB [a] .

L [C ([a, b] , F) , G] with ||Fa|| <

Let (E, F, G) be a BT and a 6 SB([a, b] , E) ;THEOREM 1.6*.

(a) For every f € G([a, b] , F) there exists FaCf] = 
da ( t) • f (t) ; we have || F [ f ] || < SB[a]|[f|.

“ u -
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Fa[f] depends only on the class of f in G([a, b], F) 
L [6 ( [a, b] , X), Y] with |fo| < SB [a].

have ||/^ da(t) • f(t) -

(b)
and hence Fa 6

For every (d, £') 6 V‘ we

ad,ç*(f; a)l - SBta] Wd(f) *

See [4, Theorem 1.4.12],

(c) a

A Banach space system with an associative 
system of bilinear continuous mappings, or shortly, a bÁ.tÁ.YlQ.a.ft.
DEFINITION 1.5.

<146 0c-tCLti.\)e òyòtzm (BAS) is a system of six Banach spaces E^, 

E2 ’ E 3 *
B12: E x E E 

1,23 1

with four bilinear continuous mappings 
12,3E12’ E23> and E123 

12 * B : E x E_ + Ex E„ E 23 * B: E 123*12 32 3
such that for every x 6 E., y 6 E., and

1,23 1
B : E. x e -*■ E 123

3 we have the "associative" relation B
(x, y) , z] . Unless otherwise stated we suppose that

12(x, y) ,

1 23
[x, B2 3(y, z)]z 9 E

= b12»3[b12
the bilinear mappings have norm < 1; we write x • y

23(y, z)] ,
= B

etc., and we write (E^, •1,23 [x, E123)x • yz = B 
to denote the BAS.

B • • »

Examples.

Ex - L(Y , Z) , E2 
L(X, Y), E3 = L(W, X), El2 - L(X, Z), E23 = L(W, X), and 
E123 = ^(W, Z) ; the bilinear mappings are the natural com­
positions .

1. W, X, Y, and Z are Banach spaces;

X, Y, and Z are Banach spaces; E^ = L(Y, Z) , 
E12 = L (X, Z) , E23 = Y, and E123

2. E2 " 
= Z ; theL(X, Y), E3

bilinear mappings are the natural ones; 2 is a particular case
- X,

of 1: take W = <E etc.

3. All spaces are equal to a Banach algebra A (]for in­
stance, L(X)] the bilinear mapping being the product.

4. A BT (E, F, G) is a particular case of a BAS: we take
- G;E1 E2 - C, E3 - F,

B^2(x, X) = Xx, B23(X, y) = Xy, B^»23 = B
- E, E12 = E’ E23 0 F» and E123 

= B12»3.



DIRICHLET AND SUBSTITUTION FORMULAS 145

If (E, F, G) is a BT we may define the following BAS:
= G\

2 3 (y, z’) is the element x' 6 E’ such that 
x*> = <xy, z’> for every x 6 E (since the linear form x 6 E

5.

E1 = E, ~
B*2(x , y) = x 
<x,

E2 = F’ E3 - E*, = C andE 12 = G, E1 23E23
B• y;

<xy, z'>6 C is continuous, x1 is well-defined); we write 
x' = yz’ = B2 3(y, z’) ; B 
<x,

1,2312,3 (x, x') =
x*>; it is immediate that |yz'|| < || y II1 z * || , i.e., ||b23|| < 1.

(z , z ') = <z , z ’> , B

For certain theorems one needs systems with four 
The definitions in these cases are

Remark.
or even five base spaces E 
obvious; in the case n = 4, for instance, we write the BAS 
(Ej, •
“appings, and four "associative" equalities.

i*

.> Ei234^i is formed by ten spaces, eight bilinear

THEOREM 1.7. E123) be a BAS that satisfies theLet (E1, 
following property:

• >

12,3 ( u , z) || IPÍ II B(*) For every u 6 E^ we have u II = s u
IUI < 1}.

1,23 ([a, b] , E ^), we have a 6 SB12([a, b] , E^)Then if a e SB 
and SB12 [a] < SB1>23[a] .

Proof. For every d e D we have

d2MSB

U| , l [a(t.) 
1C1 ^

I X2 6 E2, I X? J < 12" Ct( t )- sup • X . 
1i-1

•I d| 1 ir1 fl a(t.) 
-i-1 1 1

2» 1x£I 1 1) x2- a( t e EX
1

= sup s up 
X3|<1

i-1

1*1 fl a( 
i-1 '•

4) - ot c ti __ x ) ] X23 l*i3l < 1I 23I X. 6 E< sup 23*

1,23 [a].- SBd
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The notion of BAS allows us to unify in a natural way many 
different situations. Let us also mention that all results of 
Chapter II of [4] , particularly the Dirichlet and substitution 
formulas, extended trivially to BAS that satisfy the property 
(*) of Theorem 1.7.

There are also results for BT whose proof is very much 
simplified if we consider them as part of an adequate BAS. For 
instance, all results of Chapter II of [4] 
instead of functions of bounded semivariation (and the semi­
variation norm) we consider functions of bounded variation (and 
the variation norm). The verification of this assertion is 
trivial but for Lemma 1.2, whose proof does not change if we use 
an adequate BAS (see Theorem 1.8 that follows).

are still true if

Let (E, F, G) be a BT, a 6 BV([c, d] , E) , h:

[c, d] x [a, b] **■ F a function that is regulated as a function 
of the first variable and that is uniformly of bounded variation 
as a function of the second variable (i. e., for every t e [c,d] 
we have h1" e BV ([a, b] , F) and 
s e [a, b] we

he BV ([a, b] , G) and v[h] < V [a]

THEOREM 1.8.

vfh1"] < 00) ; for everysup c< t<d
define h(s) = /• da(t) • c h(t, s). Then we have

v[hc].sup c< t<d

By Theorem 1.6*, h is well-defined (since SB[a]

< v[a]). Let us take the BAS associated to the BT (E, F, G) as 
in Example 5. It is immediate that for d € D

Proof.

we have[a,b]

VdM
|d|

“ l l|h(s.) - h(s )|| = 
i = l

Idl
*i>ll I <h(si) - h( ) ,sup s i-1||z!||<l i-1

lál
<h(s^) - h(s z! > z ! e G ' . 

1), wheres up i-1 iI i-1
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., |d|, we haveGiven z! 6 G' with ||z|| < 1, i = 1, 2,

Ul
l <h(s.) - h( ) ,si i-1i=l

I'i1 <[!
i = l J c

I'f r
1 i=l ;c

• |h(t z!>si-l) ’da(t) , s . ) - h (t,i

)) «ís^) - h(t, s<da(t), h (t, i-1

(
i = l 1■ ir* c

z'i>)<da(t) , h (t, si} - h(t, s i-1

T (
i-1 1

>)< V [a] h(t, s^) - h(t, ss up 
c< t<d i-1

l.dl
)ll < v[«] sup v[hCl.

c<t<d
< V [a] l II h ( t , si) - h(t ,s up 

c< t< d
s i-1i = l

hence the result.

By the application of (c) of Theorem 1.6’ 
also prove Theorem 1.8 without the consideration of BAS.

Remark. one may

2. THE DIRICHLET FORMULA

) be a BAS that satisfies theLet (E1, ... , E123
property (*) of Theorem 1.7; for a 6 SB ’ 3([a, b] , E^), 
h 6 G ([a, b] x [a> b] , E2) , and 3 6 BV C ( [ a, b] , E3> - 
BV([a, b] , E3) O C([a, b] , E3) we have

THEOREM 2 . 1’ .

f (i:; a £
(D*) d$(s)da(t) • h(t, s)

a

r rb
■I ]•da (t) h(t, s) d&(s)

ta
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We will show that both members of (D*) are well 
defined and that they depend continuously on h; thereafter it 
will be enough to prove the equality when h is a step function.

We define h(t) = h(t, s) d$(s); by Theorem 1.6* 
and by Theorem 1.2, for every t e [a, b] this integral is well 
defined and we have ||h(t)|| < || h || v[s], Therefore the mapping

Proof.

la.

G ( [a , b] x [a, b] , E 2) B([a, b] , E23)h 6 h e

is continuous. (B([a, b] , X) denotes the Banach space of all 
bounded functions f: [a, b] -*■ X) . Let us prove that h 6 
G([a, b] , E23^ * enou8h to do it when h is a step function
because the general case follows by uniform convergence. Any 
step function is a finite linear combination of functions of

® X and for this function we havethe form h = X Ia»d|y*a, c
b

h(t) = (s) y d0(s)XU,cp> t x la»dl

>c|(t) y[e(b) - (5(t V d)j ,= X

which is really regulated.

/• da(t) 
a 12 3

The mapping g e G([a, b] , E23>
E^23 is well defined and continuous, since a e SB

• g(t) e
(Ca* ^1» E^);

lb.

hence the composed mapping

i b ]h 6 G([a, b] x [a, b] , E2) h(t, s) d8(s)da (t) e E 123ta

is well defined and continuous.

la. and lb remain true if we suppose only 
6 e BV([a, b] , E3) and replace by .

Remark.

We define h(s) = da(t) • h(t, s); by Theorem 1.6* 
this integral is well defined, since a e SB12([a, b] , E^ by

2a.
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Theorem 1.7. We have ||fi(s)|| < || h || SB12[a] < 
therefore the linear mapping

1,23 [a] andh || SB

h e G ( [a, b] x [a, b] , E2) h 6 B([a, b] , E12)

is continuous.

x [a, b] ,We will now prove that for every h e G([a, b]
E2) the integral S^ K(s) d3(s) is well defined and depends 
continuously on h. Let h^ € E( [a, b] x [a, b] , E2) be a sequence 
of step functions that converges uniformly to h. Let us first

2b.

prove that there exists

I • Í [(! 8)] d$(s) .hn(s) d3(s) da(t) • hn(t,
a aa

® X ; in this caseIt is enough to show it for hR = X 
we have

I a , d | ya, c

f *J a F1 a ] d$(s)(t)(s) da(t) . y XI a , d | a , c

■i« )•(•< y dp(s)sac)- a(a)(s)| a , d|a

■ I (•< • y d3(s) ,s A c) - a(s)
a

, cuing in.tzgA.cutlon by paAXò , that 
ca d

and 3 bzing continuous we see 
this integral exists because /

From 2a it follows that tends uniformly to h [and that
the sequence K (s) d3(s) converges] . We will now prove that an
the integral /b h(s) d$(s) exists: we have to show that for a _
every £ > 0 there exists a 6 > 0 such that for d, d e D with

dcx(s) • y3(s) exists.a

Ad, Ad < 6 we have

II S (K; 5) - P)H < e.

We have
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(K; 3) - 3)||

1 Had>Ç<K ■ ■ Kn;

|a d,C

+ || a (Kn ; 3) - ad ,Ç (^n ; *d,Ç

The first summand is < 2|| K - || V [3] and becomes < £/2 for n
sufficiently large because converges uniformly to h; if we
fix such an n, there exists a 6 > 0 such that for Ad, A"d < 6 
the second summand becomes smaller than £/2 because we already
proved that there exists h (s) d3(s).a n

From || /k K(s) d3(s)|| < || h || v[b] it follows that the inte­

gral depends continuously on K; by 2a it follows, through 
compositions, that the linear mapping

s
h e G ([a, b] x [a# b] , •da(t) • h(t, s) dB(s) e ei23

a

is continuous.

By our initial remarks it is now enough to prove the 
Dirichlet formula (D*) for h = X

3.
© X We haveI a , d | y ‘a , c

n s ]• da(t) . y X (t) x (s) dB(s)| a, d|a, caa
tc Ad rrs 

= ia U: •y]da(t) d3(s)

■ r (a(s) - a(a) d3(s)
a

an d

b [<: *! ]• da(t) (t) X (s) y d3(s)| a,d|a,ca
■( • y(s(c Ad) - e (t a d)|da(t)

a
rcAd

= Ja
and the equality of these two integrals follows through inte­
gration by parts.

da(t) • y B(c A d) - 3(t) ,
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Theorem 2.1* remains true for 3 6 BV([a, b] , E^) 
if we suppose that a is also regulated and if we replace / by

Remark.

/• (under these hypothesis fi is regulated: it is enough to prove 
it for h = X ® X and this is immediate).|a,d|y*

Without these restrictions the Dirichlet formula may not
a,c

be valid.

We take a e BW([a, b] , L^Cfa, b] )) defined by 
Xr «I and 3 = X r ,*i

L_c»dj i v
do not have [/| da(t)J d3(s) = f^ da(t) /• d3(s),

[a(s) - a(a)] d3(s) * /j? da(t)[$(b) - 3(t)] because 
■^a d$(s) does not exist: it should be a(c-),

Example.
e BV([a, b] ) , where a < c < b.a(t) = We

i .e . ,

and this limit
does not exist since for t' < t" < c we have ||a(t") - a(t*)|| =

= 1.

By the way, if the integration by parts formula

i: i-J a
a(t) • d3(t)da(t) . 3(t) = a(b) • 3(b) - a(a) • 3(a)

is not valid for two functions a and 3, then neither is the 
Dirichlet formula

/:j- [JS da(t)j dg(s) ■J: d3(s)da(t)
a a a

that is equivalent to it.

, E ?.) be a BAS that satisfies the 
1,23

Let (Ex,
property (*) of Theorem 1,7; for a 6 SB 
h e C ([a, b] x [a, b] , E2) , and 3 6 BV C([ a, b] , E3) we have

THEOREM 2.1. • • •
([a, b] , E ) ,

i:ti s

>](D) da(t) . h(t, d3(s)s
a

■rJ a [i: >]•h(t, s) d3 (sda (t)
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The proof follows immediately from Theorem 2.1* by 
Theorem 1.2 (since under the hypothesis of Theorem 2.1 the func­

tion t 6 [a, b] 
it is easy to see) .

Proof.

h ( t, is continuous, ass) d$(s) e E23

(D) remains true for 3 6 BV([a, b] , E^) if a is 
also continuous, as follows from the remark after Theorem 2.1* 
(under these hypothesis K is continuous).

Remark.

E ) be a BAS that satisfies the 
1 J 1,23

THEOREM 2.2*. Let (Ex,

property (*) of Theorem 1.7; for a e SB 
h 6 G([a, b] , E2) and $ 6 BV C ([a, b] , E^) we have

• »
([a, b] , E ) ,

-I11 ab *.[fa LJ a ] da(s) • h(s) 3(s) .da(t) • h(t) $(s)

By Theorem 2.1* we haveProof.

-rC [Í: C ]•] d 3 ( s) h(t) d3(s)da(t) • h(t) dot ( t)
a

Integrating by parts we get

Í i: ‘.ui . h(t)J 3 (s)da(t) • h(t) 3(b) da(t)
a

■I- l )da(t) • h(t) 3(b) - 3(t)
a

and hence the result.

Let (E1#

property (*) of Theorem 1.7; for a 6 SB 
h e C ( [a, b] , E 2 ) ,

THEOREM 2.2. , E.. ) be a BAS that satisfies the 
1,23 ([a, b] , Ex) , 

and 3 6 BV C([a, b] , E^) we have

r. -r; a
• h(t)J 3 (s)dot (t) da(s) • h(s) 3 (s) .
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The proof follows from Theorem 2.2* by Theorem 1.2.Proof.

Along the same line we have the following results for 
iterated integrals.

E ) be a BAS that satisfies the 
1,23([c, d] , El} ,

THEOREM 2.3 * . Let (E1#
property (*) of Theorem 1.7; for a 6 SB 
h e G([c, d] x [a, b] , E2) , and 8 e BV([a, b] , E3) we have

• »

[• ir' a LJ c I'lJ a■I-* c h(t, s) d$(s) .da( t)da(t) • h(t, s) d8(s)

The proof follows the steps of the proof of Theorem 2.1 
with some simplifications, mainly in the part corresponding to 
2b since now the function s 6 [a, b]
E^2 is regulated.

f- da(t) • h(t, s) e
c

Theorem 2.1* cannot be deduced from Theorem 2.3 
since the function (t, s) 6 [a, b] x [a, b] '- Y(s

2 is, in general, not regulated!

Remark.
t)h(t , s)

e E

E be a BAS that satisfies the
1-23([c, d] , El),

Let (Ex,
property (*) of Theorem 1.7; for a 6 SB*-* 
h e C ( [c, d] x [a, b] , E2> and 6 6 BV([a, b] , E3) and we have

THEOREM 2.3. • »

= [d dot (t > r fb
* c ar ir1 a c

h(t, s) d0(s)da(t) • h(t, s) d0(s)

Proof. Since the functions

rd

c
[a, b] da(t) • h(t, s) e E12s e

and
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f.[c, d] h(t, s) d3(s) e E23t 6
a

are continuous the result follows from Theorem 2.3* by Theorem 
1.2.

3. THE SUBSTITUTION FORMULA (I)

The purpose of this section is to prove the following 
versions of the substitution formula:

1,23 ([a,b] ,EX) ,THEOREM 3.6*. Let (E , E123) be a BAS, a 6 SB 
f 6 R^(La* b] , e2^ » and 8 e G ( [a, b] , E3) J we have

• »

b -pJ a

t

](S*) da(t) • f(t) g(t).• da(s) • f(s) g(t)• dt
a a

1,23 ([a,b] ,E 1> ,THEOREM 3.6. Let (E , . E123) be a BAS, 
f 6 Ra(La» b] » E2) » and 8 6 C(ta» b] , E 3) ;

a € SB• • »
we have

b rrt 

a a ■i](S) da(t) • f(t) g(t) .da(s) • f(s) g (t)
a

In order to prove these theorems we need several preliminary
results.

THEOREM 3.1*. Under the hypothesis of Theorem 3.6* we have

12,3 ([a, b], E12) where If(t) = da(s) • f(s).

[lf] £ If II SB
There exists /j? df[^^ da(s) • f(s)] g(t).

(a) Xf 6 SB

SB12,3 1,23 M.(b)

(c)
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Proof. We first prove (b). Given d 6 D and z^ e with 
we havelzfl < 1,

Id|
)] zl C1 fcti) - if(t ii-1i=l

'l1 p
L = 1 J t .

da(t) • f(t) z i
i-1

b
= • da(t) • fz(t)

a

1,23 W,i II f z II SB

since we have obviously f 6 R*([a, b], E ), where f (t) =
Z Ci J z

f(t)zi for t e ]t

Part (a) follows from (b),and (c) follows from (a).

t.[; hence the result, since fl f || < || f (|. l z —i-1*

By Theorem 1.2, Theorem 3.1* implies the following:

Under the hypothesis of Theorem 3.6 we haveTHEOREM 3.1.

12,3 ([a, b], E^) > where If (t) = da(s) • f(s).

[lf] 1 If II SB
There exists d.da(s) • f(s)] g(t). a t a

(a) If 6 SB

(b) SB12»3

a
1 ,23 W.

(c)

With the notations of Theorem 3.6*, if 
f 6 G([a, b] , E^) and if g: [a, b] + E3 is such that one of the 
integrals in (S*) exists, then so does the other and we have

THEOREM 3.2' .

(S*).

Let us take approximating sums for both integrals 
in (S*); for (d, £*) 6 V* we have

Proof.
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lfpi = lJ t .

Ul f
- ““i1

1 = 1 v

• [f(s) - f(ç:)j g(Ç:)

)] • f(q)g(q>- a(tda(s)f(s) • g(Ç i-1
i-1

t. 
1Idl

l da(s)rz

i=l fci-l

1,23 [a] o)*(f) || g II,< SB

hence the result by (c) of Theorem 1.4.

With the notations of Theorem 3.6, if f e
is such that one of the

THEOREM 3.2.
C([a, b], E2) and if g: 
integrals in (S) exists, then so does the other and we have (S).

[a, b] E3

Let us take approximating sums for both integrals 
in (S); for (d, Ç) 6 V we have

Proof.

Id| ,ci Ul , 
l <*<q)

i-1 1
)) • £(q)g(q)[I da(s)f(s) • g(Ç.) - - a(t i-1i = V t i-1

't'fi = lJ t
( )•da(s) f(s) - f(Ç,) g(5t)i

i-1

1,23 [*] wAd(f) g II;< SB

hence the result because + 0 if Ad + 0, since f is
uniformly continuous in £a, b] .

Under the hypothesis of Theorem 3.6* (S*) is trueLEMMA 3.3'.
if f 6 G([a, b] , E2) .

By Proposition 1.5 the second integral in (S*) 
exists; by Theorem 3.1* the first one exists, hence the result 
by Theorem 3.2*.

Proof.



157dirichlet and substitution formulas

LEMMA 3.3. Under the hypothesis of Theorem 3.6 (S) is true if
£ e C( [a, b] , e2) .

Proof. The proof follows from Lemma 3.3’ by Theorem 1.2.

Under the hypothesis of Theorem 3.6* we havePROPOSITION 3.4’.

I-a a
• £(s)Jda(s) g(t)

p *.[(5J a a ]= 1 im 
dGD

da(s) • g(t) .(s)fd,C’

Propf. f^ has been defined in Sec. 1. By Theorem 3.1* 
the first integral exists; we define I(t) = /• da(s) • f(s) anda

= da(s) • f w. (s). For (d, X') e P* we have a a , t,1(d,ç•)(t)

!i; 4P / -,[[•:] ]dot(s) • f (s) (s) g(t)g(t) da(s) • £d,Ç-
aa

b
j- ax• dl(t) • g(t) (t) • g(t)(d,£*)a a

< f - ax
J a -I(t) • g(t) da(t) • fd (t) g(t)(d,Ç*) a

Tl‘
j=lJ t.•IÍ; £d)Ç.(£) 8(5])da(t) • fd,5-(t) g(t) da(t) •

j-1

JiJ
j»l Jt.

fd,Ç*(t) 8(Çj}da(t) •+

j-1\f j 
j = i v I(d,Ç*)(tj) " I(d,Ç*)(tj-l) g(Ç:)j

T (
j = i i

(t:) - Kt,)> - (i (d,ç*>(tj-i) -d+
(d,Ç*) j j j

I1?1 Í -
I j«l V J

)) 8(?j) - j-" Kt dl(t) • g(t) .+
j-1
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the third summand is zero; by Lemma 
6 G([a, b] , E2) . By

By the definition of I 
3.3’
Theorem 3.1*

1,23

(d,D
the first summand is zero, since f d,r

(c) and by Theorem 1.6* (c) the fifth summand is

[a] u>^-(g) and the

1$0A aZZ (d, £*) e V‘ . Hence, given E > 0, there exists d^. 
such that for d > d£ the second and the fifth summands are < e/3 
for all d e D; we fix such a d > de; then, by Proposition 1.3, 
the fourth summand becomes < e/3 for all d sufficiently "large."

< ||f || SB is true for the second summand,s ame
e D

Under the hypothesis of Theorem 3.6 we havePROPOSITION 3.A.

r <.[f■'a a ] g(t)da(s) • f(s)

f -t[i-J a a
fd,ç(s)] g(t).= lim 

Ad-»-0
da(s) •

The proof follows the steps of the proof of the 
if we take V instead of V* , lim

P roof.
instead ofProposition 3.4’ 

lim
Ad^O

^A’d(g) *-nsteaci <J>^(g) , Theorem 1.6 (b) instead ofd6D*
Theorem 1.6* (c), etc.

LEMMA 3.5*. Under the hypothesis of Theorem 2.6*, for all 
(d, £’) 6 P* there exists /• da(t) • (t) g(t) and we havefd,ra

Ul f
J, a(ti}
i = l vIf; >) * »<«i)da(t) • fd,Ç*(t) 8(t) - o(t i-1

1,23 [a] || f || w^(g).< SB

6 E ( [a , b] , E2) C G ( [a , b] , E2) , the 
existence of the integral follows from Lemma 3.3*. The inequality 
is obvious.

Proof. Since fd,r

In the same way one proves the following:
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LEMMA 3.5. Under the hypothesis of Theorem 3.6, for all
(d, £) 6 V there exists da(t) • f, r(t) g(t) and we have

d , s.

)] • fcei) g(c£)J
a

I d | f
T, a(ti>1C da(t) • - a(tfd>Ç(t) 8(0

t“] Ilf II <^Ad(g)-

i-1

1,23< SB

The first integral in (S') exists 
by Theorem 3.1* and is, by Proposition 3.4’, equal to

Proof of Theorem 3.6*.

f! *«[/: 1 g(t) ,(s)lim
deD

da(s) • fd,ra a

which by Lemma 3.3’ is equal to

b
(O g(t) ;• da(t) •lim

deD fd,ra

by Lemma 3.5* this limit is equal to

1*1 f lim 2. 1 °tCt - )
deD i=l

)] • f(q) g(q)- a (t i-1

and by definition this is

I da(t) • f(t) g(t).
a

The proof follows the steps of the 
proof of Theorem 3.6* (applying Theorem 3.1, Proposition 3.4, 
etc. instead of Theorem 3.1*, Proposition 3.4*, etc.).

Proof of Theorem 3.6.

4. THE DARBOUX-STIELTJES INTEGRAL

If X is a Banach space and a e BV([a, b] , X), we define
[a, b]; given deD,5 e BV ([a, b] , R) by a(t) - V ^ t*j [a] , t 6
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[a] =we write V^[a] = V ^ _ tij [a] = a(ti) - a(t ) ,v[titi] i-1-1» -1 *ur.i * 1, 2,

Let F be a Banach space and f: [a, b] •+• F a bounded func­
tion. We write f e D^([a, b] , F) , and we say that f 4 oXi.it fate.6 
the. tnte.nÃ.oh. VaAboux condttton (with respect to a) if

• »

|d|
lim l v [a] w-(f) = 0.
d6D i=l

We have D^([a, b], F) = ([a, b], F). We write f 6 Da([a, b],F),
and we say that f òattò^ÍQ.Ò the. V(Uibou.X concLCtton (with respect 
to a) if

Id|
lira l V. [a] a) .(f) = 0.
Ad+0 i = l 1 1

We have DQ([a, b] , F) = D~([a, b] , F) . Analogously we write 
f 6 Da([a, b] , F) if we have

|d|
lim l V.[a] 03.(f) = 0; 
deD i=1 1 1

we have ‘^([a, b] , F) = D~([a, b] , F) . If a(t) = t we write 
simply D([a, b] , F).

For the numerical Riemann integral we have

R([a, b] , IR) = D( [a, b] , R) = R ([a, b] , IR)

- D"([a, b] , R) = R* ( [a, b] , R) 

= D’([a, b] , R) ;

analogously we will prove that for a 6 BV([a, b] , R) we have

R^([a, b] , R) = D^([a, b] , R), b] , R) = D~([a, b] , R),

and

Ra([a, b] , R) - Vt*. > R)
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(see Corollaries 4.10’, 4.10~, and 4.10) and if a is continuous 
these six spaces coincide (by Theorem 1.2); these facts and 

(and the analogous results, "Theorem 4.1 " and 
"Theorem 4.1" for i and /, respectively) justify the definitions 
given above.

Theorem 4.1*

Given a BT (X, F, G) , a e BV([a, b] , X), andTHEOREM 4.1*.
f 6 D;([a, b] , F) , we have:

(a) There exists da(t) • f(t) 6 G.a

(b) || f\ da(t) • f (t)|| < V[a] || f D.

Proof. (a) Given d, d e D with d < d, we write 1^ - 
t.] , Ij = tj] . The existence of the integral[t i-1» 

follows from

ICJ (f; a)II(f; a) ■ ad,ri,V

U| r fl _ I
i = l I.Cl. *• 

J 1

)] (f«p - í(C:>a(t.) - a( t
j j-i

ui idis l _ l VjW “i<f> ■ I V.[a] w! (f).
i-1 I.Cl. 

J i
i = l

. The proof of (b) is immediate.

In particular there exists dS(t) f(t) e F.Example.

THEOREM 4.2'. Given a e BV([a, b], X), a BT (E, F, G), 
£ 6 D^([a, b] , E), and g e D^([a, b] , F) ,
I>;([a. b] . G).

we have f • g e
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For d 6 D we have to! (f • g) < || f || w^Cg) + || g w: (f) ;Proof.

hence the result follows from

lâiUl ui
I V [a] u: (£ • g) < |[f] I V [a] w: (g) + II g 1 I V.[a] w:(f).

i=1 i=1i=l

It is immediate that for Da with -f0 
we have theorems analogous to 4.1‘

and for DaRemark.
a

with /k and 4.2*.a

Given a function cp: [a, b] *> IR+ and d e D, we write M^(cp)

= sup{cp(t) | te]ti_1, ti[} and M^cp) = sup(cp(t) | t e [ti_1,ti]}, 
i =

consider the interior upper sums
, | d | • If v: [a, b] ** IR is nondecreasing, we1, 2,

Ul f= I
i = l 1 >1s^(cp, v) v ( t . ) - V ( t i-1i

and the intQ.sU.OSl U.ppO.Si intO.QSial

I Cp(t) dv (t) = inf S'(cp, v) ; 
deDa

analogously we define de upper sums

Ul f
■ l M.(cp) v(t.) 

i = 1 ^ L
Sd(¥, v) - v(t )i-1

and the uppO.Si into.QSia.JL

f Cp(t) dv (t) » inf S (<p, v) .
d6D Q

If F is a Banach space, f: [a, b] -► F a bounded function, and 
a 6 BV([a, b], X), we define

a

fb _ rb
lfll~ = * da(t) and I f |U = |- I f (t) |

'a •'a

R~([a, b] , F) ^R~([a, b] , F) denotes the 

functions f: [a, b] -*■ F endowed with the seminorm

da(t) ;

space of all bounded

à [I I?-
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Rg([a, b] , F) [R~([a, b] , F)] dependsPROPOSITION 4.3* (4.3 ) .
only on a and not on a.

We write f 6 S^([a, b] , F) [f e S~([a, b] , F)] if for 
every e > 0 there exists a step function f£ 6 E([a, b] , F) such 
that || f - f£||~ < E [II f ~ fe ||^ < e] . By Proposition 4.3’ (4.3 ) 
we have

s;([a, b] , F) [s"([a, b] , F)] dependsPROPOSITION 4.4* (4.4).
only on ã.

If a 6 BV([a, b] , X) , for every t 6 ]a, b] there exists
a(t - e) and we have 5(t) - a(t-) = ||a(t) - ct(t-)|| ; 

for every t 6 [a, b [ there exists a(t + ) and we have a(t + ) - ct(t) 
see [2, Theorem 1.2.7 and Proposition 1.2.8]);

a(t-) = lime4-0

“ 1 ct(t + ) - a(t)I (
since a is nondecreasing we have

l (S(t)
a< t<b V-

< v[a],l a(t+) - a(t)- a(t-) +
a< t <b

||a(t) - a(t-)[ andit follows that the series £ a<t<b
||a(t+) - ot(t) |[ are absolutely convergent and therefore£ a< t<b

the jump component a of a is well defined:s

)X]x,b]XL,b]( )*I l + ) - ct(T) ;a(x) - a(T-)a 2

S a<T<b a<T <b

the conttnuouò component = a
of bounded variation (a^ is continuous, since for every
t e ]a, b] (t 6 [a, b[) we have a (t) - 
p s _
[as(t+) - ag(t) = a(b+) - a(t)]). It is immediate that ag -
(a)_ and a - (a) .c c

If v: [[a, b] + R is nondecreasing, we denote by mv

a is a continuous functions

ct(t-) - a(t) - a(t-)s

s
the

(We recall that for a<c<d<bwe havemeasure defined by v.
mv([a> c[) = v(c-) - v(a) , mv(]c, d[) = v(d-) “ v(c+) ,
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mv(]d, b] ) = v(b) - v(d+), tn^({c}) = v(c+) 
a Banach space F and a function f: [a, b] + F we denote by D 
the set of all points of discontinuity of f.

- v(c-) , etc.) Given

Let X and F be Banach spaces, a G BV(£a, b] , X) 
and f: [^a, b] + F a bounded function; the following properties 
are equivalent:

THEOREM A.5 *.

f 6 D~([a, b] , F) . 

f e Sj([a, b] , F) .

>1 - o.

f 6 D^([a, b] , F) ; 

f e S<x([a, b] , F) ;
I d I

lim 1 {üT (f) || a (t.) - a(t 
deD i=l 1 1

mv(D^) - 0

If a(t+) ^ a(t) then there exists f(t+), 
and if a(t-) ^ a(t) then there exists f(t-).

f*.I*.

rr.ii*.

nr. i-l

where v = a .IV a. c

IV ‘ b a

Proof. I* <=> T* follows from the definition of 
D^([a, b}, F), and II* <=*=■> II* follows from Proposition A.A"; 
it is obvious that I* ----- > III*.

Ill* 1----- > I*: From the definition of V[a] it follows that
for every £ > 0 there exists a d£ 6 D such that for d > d£ we 
have

U|
V[«] - I |a(t.) - a(t )ll < e;i-li = 1

hence in

|d|
l V [a] ca: (f)

i = l
|d|

53 l II otcti) - a(ti_1)|| u;(f) 
i= 1

Ulr I d j
* 'iW l II «(11) - a(ti_1)|| w^(f)w!(f) -

i = 1
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dl< l II ct (t.) - a(t. )|| w:(f)
i = 1

l.dl [vja] )|^ I - I a(t .) - a(t i-1i = l

the first summand becomes arbitrarily small by the hypothesis 
III* and the second one by the reasoning we have just given.

I* —> II*: Given f 6 ([a, b] , F) ,
V.[a] ü)!(f) < e. Then we have f

we take d 6 D such 
e E([a, b] , F)I dthat E d,5-i = l

and

- 'i1 K
i = 1 1 t .

|[ fit) - £ (S:) I dâ(t)1f - fd,ç- I's
i-1

Ul
< I V [a] to: (f) < e. 

i = l 1

II- —> I-: Given f e S^([a, b] , F) let g e E([a, b] , F) 
be such that fl f - g||~ < e, hence there exists d € D such that

| d | f
l m: (|| f( ) - g( )||)[5(t.) >)- a(t < e.i-1i = l

We may refine the division d and suppose that g = c

and therefore we have

.X. „i lti-1,1

|d| ID («(t.)I M-(|| f ( ) - - act > < e.c . 
1 i-1i = l

But

]tP {II f ( t) - f ( s) II I t,to. ( f ) = S U S 6 i-1*

,ti 0]t< sup {ll f(t) - ci II + II C^ - f(s)|| I t,

< 2m: (II f ( ) - c.||)

s e i-1

Id| v.Mand therefore E to: (f) < 2e.ii=l
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We complete the proof of the theorem by showing that
+ SX* <■ *—> IV*. Since a = a 

I* if and only if we ha-ye I* a and I’b, where
it is immediate that we haves *c

Idl . r.. lim I lú.(f) a (t.) 
deD i-1 1 v c 1

(w -

)) " 0,- sc(tI* a i-1

U|
I * b . lim £ ü)! ( f ) 

d6D i-1
a.(t ) = 0.i-1s

■> IV* a and I’b <=~> IV’b. The equiva-We will prove that I’a <- 
lence of I'a and IV’a follows immediately from the following
theorem.

If v: [a, b} -*■ IR is continuous nondecreasing and 
a bounded function, the following properties are

THEOREM 4.6.

f: [a> bl F
equivalent:

Idl r
lim l u.(£) v(t.)
deD i-l '•

(a) i . e . ,- v (t ) = 0,i-1

f 6 D;([a, b] , F).

|a| f
,1 •*”>(b) - 0 , i . e . ,lim

Ad+0 i-1 

£ 6 Dv([a, b] , F) .

mv(Df)

v(t.) - v(t )i i-1

(c) = 0.

(a) > (c): the set Dg of points where the os-
«. üf , ; hence if^ neN 1/n’ f

m (D ) > 0, there exist an n 6 N and m > 0 such that m (D. v v 1
- m. Hence for any d e D we have

Proof.
cilation of f is > 6 is closed and D1 = U

)1/n

Idl f
I U (£) v(t.)

1 = 1 V

-1 iui‘£> (h(v

>)
- V ( t i-1

>) I ] ‘it nDl/n * ♦> if- V ( t ti-l*i-1
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= 0 then we have m^CD^(c) —=> (a): if mv(Df) ) < £ for1/nfall e > 0 and n e N. Since D is compact it may be covered by 
I such that £?

1/n
a finite number of intervals 1^, . 
< E .

m (I.) 
v J

At every point of F = l(I^ ^ • * « U_-I«^) the oscilation of 
f is < 1/n and since F is the union of a finite number of closed

• • > WP

intervals, by subdivisions we may suppose that the oscilation 
of f in every one of these intervals is < £. Hence, if d denotes 
the division of [a, b] formed by the extremities of all these 
intervals we have

. U| r
l w.(f) v(t ) - 

i=l 1 ^ 1
>)v(t i-1

- I {fc>.(f) [v(C.)

+ l {üK(f) ^vO^)

< 2j! f|e + i[v(b) - v(a)] ;

Df t.] + <J>) 

t.] - *}

n [t- v(t ) 1/n i-1*i-1

Df n [t- v(t ) i-1*i-1 1/n

hence the result, since e and n are arbitrary.

>> (b) we need the following lemma.In order to prove (a)

I j »If d, d 6 D are such that Ad < inf{t 
1, ...» |d|} then we have
LEMMA 4.7. j'Vl

I V I Í
Llml “i(£) - v(t )i-1

131 (1 l + (5 j d | - 6)|| f || wAd(v).s: (f> v ( t . ) - V ( t )j j-1jj=l

We write 1^ = l»K(f) [v(t^) - )];v(tProof. 1 d vd *i-1
Ii* etc., have analogous meanings. We may suppose that for 
j f 0, |d| we have t^ t t^ for i = 1, 2,
is continuous and f bounded, hence we may move slightly the 
points t\, 0 < j < |d|, changing I~ by an arbitrarily small 
amount.

Ni 1 since v. . • ,
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We denote by d the division obtained from "3 = d v d by
i a. We
wi th

omitting the points t. which are such that t 
denote by 
w:(f) if t

j + lj j-1*
the sum obtained by replacing 0K(f) in I-j 

£ d or t. ^ d; then we have I~ < Ig.

We have Id - 1^ < (|d| - 2)1 f |d)
of the 1d| - 2 points of d that

d v d then in I we have to replace (i)r^ 
d)] by

j j-1 j
^^(v) because if t^ is 

we add to d in order toone 
obtain 3 = (f) x

[v(t ) - V ( tj+l j-1

-]Hi>- -j (f) ^ v (t ) - v(t.) ;v (t(f)W[tj.i,tj] 

hence we increase 1^ by

+ (JÚ jj-i j + lj j + l

ci 12|ifi Kv(i )] 1 II fJ wAd(v) ‘) “ v(t
j + l j-1

Hence

xd - Tdva + (la| " 2)l|fH wad(v)

- + ( I 31 - 2)1 £ II ioid(v)

- txã - 4^ + 4 + (lal ' 2)1 f|l “Ad(v)
< 2 ( | d | - l)2|f|o>Ad(v) +4 + ( I 3 | - 2)1 f 1 wAd(v)

< Ij + C51 a 1 - 6)1f 1 uAd(v) q.E.D.

Proof of (a) =*=> (b) (of Theorem 4.6). Given e > 0 we
take d £ D such that I~ < e/2, since v is uniformly continuous 
there exists <5 > 0 such that for Ad < 6 we have

“Ad(v) - 2 ( 5 | d | E - 6 ) |[ f t|

hence by Lemma 4.7 for Ad < 6 we have

Idl rl co.Cf) v(t.) 
1 = 1 v

>)- V ( t < e.i-1

It is obvious that (b) ===> (a).
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Let us writeProof of I * b <==> IV * b (of Theorem 4.5‘).
v = a .s

For every t 8 [a, b[ we 
(f); hence we have <0*+(f) = 0 if and only if

write to ' . ( f ) =I * b —> IV * b :
1 im , - (O-i* re + 0 J t, t+el _ _
there exists f (t + ) . If we have v(t + ) í v(t) , then for any d 6

t +

that contains t = we havet. 
J

I'll f
“i(f) [v(ti) ( ) - v(t.)v(t(f)- v(t ) > (0Jtj’ViC jj+1i-1

( V(t +) - v(t)> w- (f)t +

and analogously for the discontinuities at the left.

By the definition of v = a 

0 < S1 <

for every 
< s = b such that

IV *b => I * b : s
e > 0 there exist a = s • • • n

n-1 f
+ 1 

j=0 1
1 ( 

j=l l
v(s, + ) - v(s . )v(s.) - v(s.-) jjj j

(3)

e> V [v] -
6|| f II

We take a division

+ 6" 61 1 < C4d: a = a + 50 < c2 

2 “ 62 <

< t. = s = s< tco = S 11311

< t< t = s• • •s 3n5 n

We have

Ul (
J, “i(f) v(t )i-1

= I «3j<f) (v(t3j )) - v(t3j-lj = l
n-1 + l Sj-l(f)(v(t3j-l) ‘(f)(v(t3j+l) "V(t3j)- I > •v (t“33 + 1 3j-2

3=1j=0

. 6 so small that we have (a), (b) , (c) , nWe take 6^, 
and (d) where

V
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w3j Í e/3nV[v] if 

v(tQ.) - v(t

) - v(t3j-) > 0.V(t3j

) < 0 / 6 n || f || if v (13 j — ) = v(t3j).

(a)

(b) 3 j "1

a)*j + 1(f) < e/3nV[v] if v(t3^ + ) 

v(t3j) < e/6n|f | if

3 j

) > 0.- v(t3.(c)

3j)>v (3j + ) “v(t(d) )3 j + 1

Then we have

n
l ( < | [by (a) and (b)] ,

< j [by (c) and (d)] ,

- 2||f“ (vW - ?)
< | [by (3)] .

co'.Cf) v(t3j) - v(t )3 j “13-1
n-1
l (f) v(t ) - v(t„ .)W3j + 1 3j + l 3 jj=0

n
l *3j-l(f) v(t ) “ v(t )3j-l 3 j -2

j = l
Q.E.D.

In an analogous way as Theorem 4.5’ we prove

BV ( [a , b] , X)THEOREM 4.5 . Let X and F be Banach spaces, a e 
and f: [a, b] F a bounded function; the following properties
are equivalent:

£ 6 D~( [a, b] , F) 

f e S~([a, b] , F)

I d |
lim [ a. it) || ot(c .) - a(t 
d6D i=l 1

m ( Df ) = 0 v

a and f have no common left or right discontinuity, 
i.e., if a(t+) £ a(t) then there exists f(t+) = f(t) 

if a(t-) t a(t) then there exists f(t-) ■ f(t).

f 8 Ds([a, b] , F) 

f 8 S:([a, b], F)

r.i .

rt“.ii .

)ll - ohi . i — 1

where v = SIV a. c

b.

and
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Analogously to Theorem 4.5’ and 4.5 we have

Let X and F be Banach spaces, a e BV([a, bj, X) 
and f: [a, b] *> F a bounded function; the following properties 
are equivalent:

THEOREM 4,5.

f e Ds([a, b] , F)f 6 Da([a, b] , F)

r. 1

I w.(f) |a(t.) - a(t

Í.I.

|d|
)ll = 0III. lim 

A d+0 i = 1 i-1

mv(Df) = 0 where v = aIV a. c

ct and f have no common points of discontinuity

m~(Df) - 0.

b.

V.

I <—> t follows from the definition of 
Da([a, b] , F) ; I ==> III is obvious and the proof of III 
is analogous to the proof of III’ => I* in Theorem 4.5*. The 
equivalence of t, IV, and V follows immediately from Theorem

Proof.
—> I

4.6 and from

Under the hypothesis of Theorem 4.5 the following 
properties are equivalent:
LEMMA 4.8.

| d | r
Tb. lim l 03. (f) a (t.) - 

Ad+0 i=l 1 l s 1

>)■

a_ (t 0.i-1s

a and f have no common points of discontinuity.IVb.

m^(D^) = 0 where u = 2 .Vb. s

We have m^CD^)
[where we take u(b+) = u(b) and u(a-) * u(a)J. Hence if we have 
mu(D^) > 0 there exists t e such that u(t+) - u(t-) > 0. Let

f [u(t + > - u(t-)]Proof. tb =—> Vb : = E teD
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us suppose that t 6 ]a, b[ (if t = a or t = b, the reasoning is 
analogous); for any d 6 D and ]t^_^, t ^ [ 9 t we have

Ul f
0).(f) ^u(ti) >)u(t,) - u (t> CO. c f)- u ( t ) j-1ji-1 j

u(t+) - u(t-)> W^-(f)

i.e., we do not have lb. Vb =*=> IVb is obvious since for every 
t e we have

mu(Df) > mu({t}) = u(t+) u(t-) = Ia(t+) - a(t-)I.

If a and f have no common point of discon­

tinuity then given e > 0, for every s 6 [a, b] there exists 
<5g > 0 such that if s e ]a, b[_ we have

IVb —=> lb:

ee 6 ) <u (s + <5 ) u ( s(f) <“[s-6s)S + 6s] or - 2[fir- 2V[U] ss

if s = a we have

ee u(a+) - u(a) <(f) < or ‘ 21 f 1’ 2vM

+ 5 ; [»and analogously for s = b. Let [a, a +

]b - 6b, b] , j - 1, .
subcovering of the open covering [a, a +
(s e ]a, b[), ]b - <$b, b] of [a, b] . If 6 > 0 is such that any 
interval [c, d] C [a, b] with d - c < <5 is contained in one of

6 ss jr jj
m (where 6 = 6 ) be a finite• • » j s

*.[• ] + 6 [ s L6 ss s *

the intervals of the finite subcovering then for d 6 D with 
Ad < 6 we have

Ui f
l

i=l v
u (t. ) - u (t ) < e.i i-1

Theorem 4.6 implies

THEOREM 4.5C. Let X and F be Banach spaces; if a e BV([a, b] , X) 
is a continuous function we have D^([a, b] , F) = Da([a, b] , F)
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and the following properties are equivalent: I*, t‘, 
III*,
4.5’, 4,5 , and 4.5).

II*, II*,
i”, T”, II”, II", III”, I, 1, III, and V (of Theorems

Given a BT (E, F, G) , a 6 AC([a, b] , E) (i.e.,COROLLARY 4.9.
cx: [a, b] E is absolutely continuous) and f e D([a, bj , F) 
then there exists dot(t) • f(t) and f e Da([a, b] , F) .a

______ By Theorem 4.5 (and by Theorem 4.1) it is enough
to prove that f 6 Da([a, b] , F) or that m~(Df) =
D([a, b] , F) , has (Lebesgue) measure zero and since a is

and therefore m(D )

Proof.
0. Since f e

absolutely continuous so is a, 
®S(Df) = 0.

= 0 implies

If v e BV([a, b] , R) we have R^([a, b] , R) = 
VU, b] , R) = DA ([a, b] , R) = R~([a, b] , R) .
COROLLARY 4.10*.

have D^([a, bj , R) C R^ ( Ca, b], R) ;By Theorem 4.5* we 
hence it remains to prove that R^([a, bj , R) C D^([a, b] , R). 
If f e R^([a, b], R) then given e > 0 there exists a d£

Proof.

e D such
that for every d 6 D with d > d£ we have

v)| < f;(f;(f; v) ad,n*

., I d I we take Ç!, e ]t

d,r

t^[ suchfor every i = 1, 2, 
that

i-1*

ef(C:) - f(ut) > w-(f) - if v(t^) - v(t ) > oi-12v[v]

and such that

ef(n!) - f(£!) > w!(f) - ) < 0;if v(t£) - v(t i-12v[v]

then we have
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líl f lml ui(f) [v(ti>
l<l f~ A l,<5;>

- v (t )i-1

(e- f(nt) + V ( t . ) - V ( t )i i-12v[v]

Ldl
+ . -L -

2 V [v]
I |v(ti) - v(ti_1)|1 \° (f; v)|(f; v) “ ad,u*

<-!♦*-«»

i = l

hence by the equivalence of III’ and I* of Theorem 4.5* we have 
£ e D;([a, b] , E).

In an analogous way one proves the

If v 6 BV([a, b], R) we haveCOROLLARY 4.10 (4.10 ).

= R-([a, b] , R)

R^Ca, b], R))

Rvc[a, b] , R) - Dv([a, b] , R) = D-([a, b] , R)

(«‘([a, b]. - ([a, b] , R) = D-([a, b] , R) =R)

In Corollaries 4.10’, 4.10, and 4.10Remark. we may
replace R by a finite-dimensional Banach space F (- Rn) consid­
ering the components of the function f.

COROLLARY 4.11’. If v 6 BV([a, b] , R) we have

f 6 R;([a, b], R) ----- > |f | 6 R;([a, b] , R) .

By Corollary 4.10* we have f 6 D~([a, b] , R) , 
D£([a, b] , R) [since 0)!(|f|) < and therefore

Proof.
hence |f| e
we have |f| e R^([a, b], R), again by Corollary 4.10*.
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Remark. It is not difficult to prove that if v: [a, b] 
R is such that v è BV([a, b] , [R) then there exists f e 

Ry(ta> b] , (R) such that |f| £ R^([a, b] , IR) .

If v e BV([a, b] , IR) we haveCOROLLARY 4.11 (A.ll~).

f e Rv([a, b] , IR) ----- - | f | e Rv([a, b] , IR)

[f e R"([a, b] , R) -=> | £ | e lT([a, b] , R)

If X and Y are Banach spaces and a e BV([a, b] , X) , 0 6 
®V([.a, bj , Y) we write a < 0 if there exists X > 0 such that 
XB - a is nondeere asing.

Given a < 0 for any BanachPROPOSITION 4.12* (4.12, 4.12“).
space F we have

VC3, b], F) D Dg ( [a, b] , F), 

, F) D Do ( [a, b] , F) , VC*, b] , F) D D"([a, b] , F) .(■Via, b]

The proof follows immediately fromProof.

V. [a] = V.[S] < xv.[g] = XV. [e].

Given v e BV([a, b] , IR) we denote by v+ and v+, respec­
tively, its nondecreasing and nonincreasing components (v^ =
-j-(v + v) and v^ = y(v - v)).

THEOREM 4.13* * Given a Banach space F and v 6 BV(£a, b]J , IR)

we have
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n;([a, b] , F) = d; ([a, b] , F) n ([a, b] , F) 
t +

- Di([a, b] , F) .

Since < v < v = we have, by Propo-P roof. vt + v +
sition 3.12*, that

= ( [a , b] , F) ;d; ([a, b], F) 0 d; <[a, b],
+ +

from V^[v] = + V^fv^] follows the other inclusion.

F) D D;([a, b] , F)

Analogously we have

Given v e BV([a, b] , IR) and a BanachTHEOREM 4.13 (4.13 ).
space F we have

- ( La » bl » »
“ ( [_a , b} , F) |

Dv ([a, b] , F) O Dv ([a, b] , F) 

\ ([a, b], F) n D~ ([

Dv([a, b], F) - 

(\([a, b], b] , F)F) = a,

Let v: [a, b] + R be a nondecreasing function; given a 
Banach space F and a bounded function f: [a, b] -*■ F we write

fd,Ç (v-almost everywhere)+ f v-a.e.

) e V with Adnif for any sequence (d^, £ -► 0 we have

f

for all points t 6 [a, b] outside of a set of v-measure zero.
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Let X and F be Banach spaces and ct e BV([a, b] , X) ; 
we have f e D^([a, b], F) if and only if f
THEOREM 4.14 .

*+• f S-a.e.d,C

Proof. We write v = 3; if there exists a sequence
£ n^) 6 V with Ad^ 0 and such that f^ ^(n)(t)"K at

all points of a set M C [a, b] with m^CM) > 6 > 0,
every p 6 N let M be the set of all points t € M such that 

P

(t) - f(t)| > I

(d n *
then for

If Ç (n)
dn’

for an infinity of elements n e N. Since we have M C M p+1*P
^p6N ^p = » anc* mv(M) > d there exists a q € N such that

mv(V > 6> i. , such that at every point t e M^ we havee.

(t) - f ( t) || > TIf (n) qdn,Ç
for an infinity of elements n 6 N. If t 6 M we have

q

(f) > -(f> + <*>“[t-e.t] q

for all £ > 0, hence for any d 6 D the union of the intervals
has v-measure > 6, and[t t/) that contain points of M^i-1*

therefore we have

1*1 f2 ^ W.(f) ^v(t£) - v ( t )i-1

, f * Dv([a, b] , F).
Reciprocally we will show that if f: fa, b] -*■ F is a bound­

ed function such that f ^ D^Cfa, b] , F) then there exists a
sequence (d , 6 V with Ad -► 0 such that we do not haven n
£d * f

n *
Indeed, since f is bounded and f ^ D (fa, b] , F) , by

£ ^
Theorem 4.5 we have m (D ) > 0, hence there exists 6 > 0 suchv

i. e.

v-a.e.



CHAIM SAMUEL HÕNIG178

that m (d!) v o = m > 0. Therefore if we take any division d = d^
e D we have

|d| ld|
»v(] ti-i> tiC H Dg) >Í n Dg> + i m ;

i = 0 i = l

t.[ n ) > 0 we have diam f (] t^[) > 6 andif m (It. , v J l-l
if in^Cit. } C\ d|) > 0 we have diam f (] t^_^, ) > 6/2 or
diam f([t^, ti + iC) > 6/2. Hence we have

ti-l ’

tj ) I diam f(]ti_1, t/] ) > j) >j

tit) > > §•

(a) I imv(]t

(b) l {mv([t

i-1*
or

t^[) | diam f ( £ti-1* i-1*

Let us consider case (a) (the reasoning is analogous in 
case (b)); if m^(]t
> 6/2 there exist points s^, t^. 8 3 t
f(t^)|| > 6/3, and by the theorem of Hahn-Banach there exist

e F* and c 8 IR such that

t /] O D^) * nu > 0 and diam f(]ti_1> t.] ) 
t.] such that ||f(s^) -

i-1*
i-1*

H - cf>'1(]-“, c] ) 3 {x e F I II x - f(s.)|| < |}

an d

Ch = <p_1(]c, »[) 3 {x e F | 1 x - f (t i > I < |}.

We have

t.] n f-1(H)) > i m.mv(]t i-1’

or

tj n n f-1 <Qh)) > im..m (] t v J

In the first case we take e ^
f(Ç^n^) = f(t^), then we have || f (Ç^n^ ) - f(t)| > 6/6 for every

t 6 ]*._!, t.] n D* A f"1 (H)

> *5- nu 5 analogously we take f(£^

i-1*

such that

, i.e.9 on set with v-measure 
) = f(s.) in the second case(n)

i
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6 arbitrarily if we do not have
t.] H D^) > 0 with diam f(]t^_^, t^] ) > 6/2. Thus we

and we choose £

■v0t i-1’
have

(n)(o - f(o| > |
dn’^

Ilf

a set of points t e [a, b] that [by (a)] has v-measure greateron

then

V«(n)

1i t-vo t£] n D*) | diam f (] tCi-1’ i-1*

Hence by the theorem of Egoroff we cannot have f 
v-a.e.

-*■ f

The elements of ([a, b] , F) are Bochner-Le- 
besgue integrable (see Sec. 5) with respect to the measure 
defined by a.

COROLLARY 4.15.

With the notations of Theorem 4.14, if f 6
we have f, d

follows by the theorem of dominated convergence.

Proof.
D0([a. b], F) Ç(n) - f S-a.e.; hence the result

n »

5. THE SUBSTITUTION FORMULA (II)

The purpose of this section is to prove the following 
versions of the substitution formula:

E123} be 3 BAS’ “ 6 BV(ta* * Ei)> 
E3);

THEOREM 5.8*. 
f 6 R^([a, b] , , and g G D^([a, b] ,

f • g e R^([a, b] , E^) and

Let (E , . • • »
then we have
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f- *.[|:'a w a -f;(S’) da(s) • f(s) da(t) • f(t) g(t).g(t)

E123) be a BAS, a e BV ( [a, b] , E.^), 
f 6 Ra^a* b] » E2^ » and g e Da([a» b] , E3); then we have 
f • 8 6 Ra([a, b], E23) and

THEOREM 5.8. Let (E , . • • »

I *41: ■/:i(S) da(s) • f(s) da(t) • f (t) g(t) .g(t)
a a

In order to prove these theorems we need several preliminary
results.

Let (E, F, G) be a BT, a e BV([a, b] , E) , and 
b], F); we define 1^ ^(t) = /| da(s)

6 BV ( [a , b] , G) .

THEOREM 5,1*.
f e Ra([a • f(s); we have

(a)

(b) < a.

Vfrf.a] < Hfil v[a].(c)

Proof. (a) and (c) follow from

U1 IdlI III
1 = 1

f;a(ti) da(s) • f(s)
i = 1 ci-i

idi
1 l V.to] (£ ||

i = l

- v[a] If ||.

(b) follows from the fact that for a<s<t<bwe have

■II|i (t) - If;a(s)| da(a) • f(a)f ;a s
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[a] Ilf I< V [-.t]

= 1 fI[a(t) - a(s)] .

In the same way we have the following:

THEOREM 5.1. Let (E , F, G) be a BT, a e BV([a, b] , E), and 
f 6 Ra([a, b] , F) ; we define I^ ^Ct) = da(s) • f(s); we have

0 BV([a, b] , G) .(a)

(b) < a.

v[if;a] 1 MI v[a] .(c)

Under the hypothesis of Theorem 5.8* we haveTHEOREM 5.2*.

([a, b] , E3).(a) g 6 D*
f ;a

í '.ti:(b) g(t)da(s) • f(s)
a a

'i' p
i=i jt.

Idls l.da(s) f(s> . g(s;)i i = l
i-1

By Theorem 5.1* and Proposition 4.12* we have (a); 
hence the first integral in (b) exists; (b) is then immediate.

P roof.

Analogously we have

Under the hypothesis of Theorem 5.8 we haveTHEOREM 5.2.

([a, b], E3).(a) g 6 D
Xf ;o
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h: (i:(b) g(t)da (s ) • f(s)

-1?1 r
i=l 1 t .

idl
1 l V.[l ] 0) (g) . 

1 = 1 1
da(s) f(s) • gi )

i-1

E123) be a BAS, a e BV([a, b] , E^, 
f 6 D^([a, b] , E^) , and g: [a, bj "► E^ ; if one of the integrals 
in (S*) exists, so does the other and both are equal.

THEOREM 5.3*. Let (E1# . • • »

Given (d, £*) e P* we consider the approximating 
sums to both integrals; we have

Proof.

I I d| rfci
1 r“ i=ij t.

I d| i- (•"*>

-I1?' j-‘
i = 1 J t.

| d |
< |g| I V [a] u>*(f),

i = l

da(s) f(s) . g(Ç‘)

i-1

- a(t • f(C:) g(c:)

• lf(s) - fM g(çp
)i-1

da(s)

i-1

and hence the result because f e D^([a, b] , E2>.

In the same way one proves

, e123) be a BAS> a 6 BV(Ca» b] > Ex)>
and g: [a, b] “► E^; if one of the integrals

Let (Er

f e Da ^ [a» b] , E2), 
in (S) exists, so does the other and both are equal.

THEOREM 5.3.

LEMMA 5.4*. With the notations of Theorem 5.3*, if g 6 
([a, b] , Ej)t then we have f • g G R^([a, b] , E23> and (S*).r:

1f;a
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By the hypothesis, the first integral of (S') 
exists; the result follows from Theorem 5.3*.

Proof,

With the notations of Theorem 5.3, if g 6 
then we have f • g e

LEMMA 5.4.
([a, b] , E3) , Ra([a, b] , E23) and (S).RI, f ;a

LEMMA 5.5*. With the notations of Theorem 5.3*, if g 6
D^([a, b] , E ) , then g 6 D* ([a, b] , E ) and we have (S*).

1 f ; a

• g e D^([a, b] , E23) and 
< a; hence by Proposition 4.12* 

([a» b], E ) and so by Lemma 5.4*

Proof. By Theorem 4.2’ we have f 
in Theorem 5.1* we saw that I f ;a
we have g e D* the second

f ;aintegral exists too and we have (S*).

With the notations of Theorem 5.3, i f g & (£a, b] ,E3),
( [a, b] , E3) and (S) .

LEMMA 5.5.

then we have g e
f ;a

Under the hypothesis of Theorem 5.8* we havePROPOSITION 5.6*.

P MPJ a w a p -,(pJ a w a
(s) g(t).da(s) •da(s) • f(s) fd,Ç*g(t) = lim

deD

By Theorem 5.2* the first integral exists. We writeProof.

■P' a■P
* a

da(s) • (s).1(0 da(s) • f(s) (O fd,Ç*1(d » Ç *)and

For (d,!T*) 6 Vm we have

IP; *JP -PMP (s)| g(t)da(s) •da(s) • f(s) f d , Ç ’g (t)
a a

b b
(t) • g(t)• dl(t) • g(t) • dl (d,£*)a a
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[• dl 
J a

b
(t) • g(t) £d>r(t) g(t>• da(t) •<

(d,£‘) a

J:j
j=lI (t) g(ç:)da(t) • fd,ç-(t) 8(0 da(t) • £d,V+

j
tj-la

* II1!1 |-j
11 j-1 Jt.

fd>ç.(t) g(ç:>da(t) •

Vl

T( (t/) <tw> g (T:)rcd.c-) 1(d,Ç *)j jj-1

T (
j-i 1 i(I(d,Ç-)(tj) ‘ " (I(d,Ç-) (tj_1) - Kt-.j))+

'!' ( 

j-i 1
/i(t.) - Kt ) g(X\) - dl(t) • g(t) .+

j-1j j a

By the definition of I
5.5* the first summand is zero because f 
s;c[a, b] E2) = D;([a, b] ,
< If I V^[a] a>! (g) |$0A all (d, Ç*) 6 V, and so is the fifth
summand by Theorem 5.2* and by Theorem 5.1* (c). Hence, given 

there is a d£ e D such that for <i > d£ 
fifth summands are < e/3 for all d 6 D, we fix such a d; then 
by Proposition 1.3* the fourth summand becomes < e/3 for all d 
sufficiently "large."

the third summand is zero; by Lemma 
8 E ( [a , b] , E2> C

(d,5“)
d,r

The second summand isE2>.

e > 0, the second and

PROPOSITION 5.6. Under the hypothesis of Theorem 5.8 we have

b r ft

. Ml. k *.(Ta w a fd,e(s)J 8(t)-da(s) • f(s) g(t) - lim 
Ad-^-0

da(s) •

proof. The proof follows the steps of the proof of
Proposition 5.6*.
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LEMMA 5.7*. Under the hypothesis of Theorem 5.8* we have

Ul f 
l **<*£>

i-1 1 1IP" a
• f(^:> g(c:>da(t) • fd,Ç*(t) 8(0 -

l vi[a] w!(g). 
i = l 1

- a(t )i-1

Ul
< Ilf

The proof is obvious.

LEMMA 5.7. Under the hypothesis of Theorem 5.8 we have

'f (IP • 8«i>Ida(t) • a(t.) - a(tfd,5(t> g(t) )i-1ia

Ulí I £ II l V [a] u. (g) . 
i = l 1

The first integral in (S*) exists 
by Theorem 5.2* and is, by Proposition 5.6*, equal to

Proof of Theorem 5.8 * .

P <.(PJ a w a fd,r(s)J 8(t)’lim
deD

da(s) •

which by Lemma 5.5* is equal to

P da(t) • fd ^. (t) g (t) ;lim
deD a

by Lemma 5.7* this limit is equal to

lim l a(t.) 
deD i-1 '•

• f(C-) g(ç:>)- a (t i-1

and by definition this is /• da(t)a • f(t) g(t).

The proof follows the steps of the 
proof of Theorem 5.8* (applying Theorem 5.2, Proposition 5.6, 
etc. instead of Theorem 5.2*, Proposition 5.6*, etc.).

Proof of Theorem 5.8.
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Let (E, F, G) be a BT, v € BV([a, b] , R) , 
f e R^([a, b] , E) , and g 6 D^([a, b] , F) ; we have
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COROLLARY 5.9*.

J! *.(j;* a w a J a
f (t) g (t) dv ( t) .f(s) dv(s) g(t)

Let (E, F, G) be a BT, v e BV([a, b] , R) , 
f e Rv([a, b] , E) , and g 6 Dv([a, b] , F) ; we have

COROLLARY 5.9.

r *,(rJ a '••'a
I 8(t) = fb
' * a

f(t) g(t) dv ( t) .f ( s) dv(s )

Let (E, F, G) be a BT, v 8 BV([a, b] , R) , 
R^([a, b] , E) , and g e ([a, b] , F) ; we have

COROLLARY 5.10*.
f e

l! b(J!f(t) dt g (s) dv(s) • f (t) g (t) dv (t ) .
a a

By Theorem 5.8* the second member exists, and by 
Theorem 5.3* it follows that the first one exists and that they 
are equal.

Proof.

Let (E, F, G) be a BT, v e BV([a, b] , R) , 
f e Rv([a, b] , E) , and g e D^([a, b] , F) ; we have

COROLLARY 5.10.

b bu:f(t) dt g(s) dv (s) f (t) g(t) dv (t) .
a a

Even in the particular case of Corollary 5.9, when 
we take v(t) = t the proof of dt[^a f(s) ds] g(t) =

f(t) g(t) dt does not become essentially simpler then the 
proof of the general Theorem 5.8*!

Remark.

Let E be a Banach space and 1 < p < °o; L (fa, bl , E) denotes— — p
the Banach space of (equivalence classes of) functions
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f: [*» bj E that are p-^int egrabl e in the sense of Bochner and 
Lebesgue (see [8^]). It is easy to prove that S (£a, b]] , E) C 
L^([a, b] , E) , hence by Theorem 4.5C we have D([a, b] , E) C 

([a, b] , E) and
Corollary 4.15). We write a e L^X^([a, b] , E) if there exists 
8 & E^([a, b] , E) such that

D( [a, b] , E) C Lw( [a, b] , E) (see alsoeven

í: 8(s) dsa(t) = a(a) +

‘i denotes the integral of Bochner-Lebesgue), then a is 
absolutely continuous, differentiable a.e., and satisfies a' = 8 
a.e. (see [8]); we have also

(whe re

v[a] = || a' 1 = «-[ || a' (t)| dt.
* a

Indeed: given d 9 D we have
t.

a'(t) dt < u|
J t

t.

i: I a'(t)I dt,[a(t.) - a(t._1)|| =i
i-1i-1

hence V [a] < L/b ||a,(t)|| dt. Reciprocally, 
we have |a'(t)| < a'(t) a.e., hence

it is immediate that

rb ;bLJ || Ct ’ (t) [ dt < j S'(t) dt = S'(b) = V[a] .

____________ Let (E, F, G) be a BT, a e L^([a, b] , E), and

f 6 R([a, b] , F) ; then there exists /b da(t) • f(t).
COROLLARY 5.11.

Proof. Let us take a sequence 8^ e C([a, b] , E) such that
II 8 - Ct' I -*■ 0 and define Ct (t) = Ot(a) + 8 (s) ds , t e [a, b] .n i n â n
Given d, d 6 D with d > d we write Ij = [tj_^, cj] an<* *£ = 

t.] and we have

<*) - od>ç(£; a)I =

tt i-X’
|d| L bv

X |f(I.) - f(Ç.)

I - a(t )j-1i=1 XjCli
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lâl
> - •(n(V )-(I l - vy <x(t<

j-111 i=l I .CI .
J 1

- (t(T.) - i<5t>)|

*l'f _i K
i = l I .CI . V n 

J 1

< V [a - aj 21| f 0 + lad,I(f ;an>

- f(Çi))l
- od>ç(f; «n)|

since v[a - aj = || a * - = [a1 - 3nl|1» given e > 0 there
- Sj ]_ < e/2>exists an n e N such that for n > n we have II a'£ - e 11

and if we fix such an n by Corollary 5.9 there exists
/b da (t) • f(t) = /b a’(t:) f(t) dt. Hence there exists Ô > 0 
an an

such that for Ad < Ô we have

lad,£(f; °n> - 0d,Ç(£-> “n>l 1 I' Q.E.D.

Let (E, F, G) be a BT, a e L^L)([ 
f 6 D([a, bj , F) ; then there exists L/b a'(t) f(t) dt = 
fh da(t) •

b] , E) , andCOROLLARY 5.12. a ,

f(t).

Since D ([ a, b] , F) C ^([a, b] , F) , the first 
integral exists. For every d e D we have

Id! ,
L Ia (y

a'(t) |f(t) - f(ç.)

Proof.

b )) f(5i>a *(t) f(t) dt - - a(tL
i-1

t . 
1Id

l *- d t
i = l fci-l

< i l|a'(t)||f(t) - f(ç.)l dt
i = X Ci-1

lâl< l v.[«] u.(f)
i-l

that goes to zero when Ad *► 0 since by Corollary 4.9 we have

f e Da([a> b] , f).
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