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Abstract
Having a direct or indirect band gap can inuence the potential applications of a semiconductor, for indirect band gap 
materials are usually not suitable for optoelectronic devices. Even though this is a fundamental property of semicon-
ducting materials, discussed in textbooks, no unied theory exists to explain why a material has a direct or indirect 
band gap. Here we used an interpretable machine learning model, the multiVariate dAta eXplanation (VAX) method, 
to gather information from a dataset of materials extracted from the Materials Project. The dataset contains more than 
10000 entries, and atomic properties such as the number of electrons, electronic anity and orbital energies were used 
as features to build random forest models that successfully explain the directness of the band gaps. Our results indicate 
that symmetry is an important feature that dictates the target property, which is the reason why our analysis is made 
based on sub-groups with similar structures. These sub-groups include materials with zincblende, rocksalt, wurtzite, and 
perovskite structures. Besides the symmetry of the materials, the existence or not of d bands and the relative energy of 
atomic orbitals were found to be important in dening whether a material’s band gap is direct or indirect. In conclusion, 
interpretable machine learning methods such as VAX can be useful in obtaining physical interpretation from materials 
databases.

1 Introduction

Machine learning methods are now an integral part of materials research [1, 2] thanks to the increasing availability 
of curated datasets containing structural and electronic data derived from quantum-mechanical calculations. Also, 
the accessibility and user-friendliness of Machine Learning algorithms and software have extended their utility to 
a broader scientific community. Machine Learning has been mostly used for predictive purposes, where algorithms 
are trained on data concerning a specific material property Pi with a set of features that can be related to Pi (i.e., 
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the feature space {fn} ). Information such as numerical patterns and tendencies of Pi in the feature space {fn} is then 
inferred for new materials that are not in the initial dataset. An ultimate goal for Machine Learning, however, is to 
build models that can go beyond prediction, with scientific concepts being discovered via descriptive models. This 
is a formidable task, either because the feature space is too large, or because the physical mechanisms behind a 
specific phenomenon are unknown, barely understood or complex. Some cases of success have been reported [3–8], 
including one that looks towards the discovery of semiconductors [9].

In this article, we use interpretable Machine Learning methods to analyze a fundamental property of semiconduc-
tors which lacks a detailed understanding: the reason why some semiconductors have a direct band gap while others 
have an indirect one. In semiconductors, the top of the valence band (representing occupied states) and the bottom 
of the conduction band (representing empty states) are separated by an energy gap, as shown in the blue region in 
Fig. 1. The top of the valence band and the bottom of the conduction band can be located at different momentum 
k-wavevectors (i.e., indirect band gap, as shown in Fig. 1a) or at the same k-wavevector (i.e., direct band gap, as shown 
in Fig. 1b). Determining the type of band gap is relevant for semiconductor applications. For instance, indirect band 
gap materials are usually not suitable for applications in optoelectronic devices because the absorption or emission 
of a photon requires an electron-lattice momentum exchanged, and such two-step process is less likely to occur. 
The most used material in the microelectronics industry, i.e. silicon, has an indirect band gap and thus is not suit-
able for optoelectronic devices such as light emitting diodes (LEDs). Transforming indirect band gap materials into 
direct band gap ones is still challenging. Common strategies for tuning indirect-direct band gaps include alloying 
[10, 11], exploring strains [12, 13], and quantum confinement [14]. The directness of the band gap is not difficult to 
determine, either theoretically or experimentally, as discussed in fundamental physics textbooks [15]. However, no 
unified theory exists to explain why one material has a direct or an indirect band gap. Semicondutors encompass a 
variety of materials and crystal structures, from simple diamond structures as Si to perovskites containing at least 
three different types of atoms and many structural distortions that can change their properties [16]. To the best of our 
knowledge, only a couple of works have focused on the explanation of the band gap directness in semiconductors. 
Yuan and collaborators [17] focused on Zincblende semiconductors, and have shown that materials with cations with 
occupied d-levels tend to have direct band gaps owing to the symmetry of the zincblende lattice. In the zincblende 
point group, the deep d-band interacts with the VB/CB at the Γ , L and X high- symmetry points in the reciprocal 
space according to wavefunction symmetry at this point which is dictated by their symmetry at the k-point and the 
band symmetry representation. The d-bands do not interact with the bottom of the conduction band at the Gamma 
point (red dots in Fig. 1). This means that in the presence of occupied d-orbitals (Fig. 1b), the band repulsion at other 
k-points leads the CB higher in energy with respect to the Gamma point, which is kept fixed regardless the presence 
of d-orbitals due to the lack of interaction. This mechanism controls the direct/indirect gap for this specific crystal 
structure. In another paper, Choubisa and collaborators [9] proposed general rules to explain when a material has 
a direct or indirect band. The rules include the occupation of p orbitals, the position of the LUMO and the electron-
egativity of the constituent atoms. As we will show below, our rules are considerably different from these, providing 
new ways to design direct or indirect band gap materials.

Fig. 1  Schematic representa-
tion of a band structure show-
ing indirect and direct band-
gaps (respectively, left and 
right panels). The blue regions 
stand for the bandgap and the 
blue dot at k

1
 is the top of the 

valence band. The bottom of 
the conduction band changes 
from the k

2
-wavevector (blue 

point) for indirect bandgap to 
the k

1
-wavevector (red dots) 

for direct bandgap
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Herein, we conduct a broad analysis using data science and interpretable Machine Learning methods such as Decision 
Trees (DT) [18] and Random Forests (RF) [19]. In particular, we perform a descriptive analysis using the VAX method [20], 
extracting Jumping Emerging Patterns (JEPs, descriptive logic rules) [21, 22] from Machine Learning models, and then 
look for causal relations or insights to explain why a material has a direct or indirect band gap. Detailed information of 
the VAX method is provided in the Methodology. Our ndings indicate that the directness of the band gap depends on 
the symmetry of the dierent materials. No general pattern (rule) was encountered which would apply to all structural 
families of materials. However, if we divide the materials in smaller groups of compounds with similar symmetries (e.g, 
Zincblende, Wurtzite, Rock Salt, and Perovskite structures), VAX generates specic patterns that explain their bandgap 
directness. Specically, we recovered the known result for Zincblende structures, i.e., the existence of d orbitals. Fur-
thermore, we have also found that relative energies of highest occupied states determine the direct–indirect bandgap 
transitions in other structures. We believe that these results demonstrate that explainable machine learning is promising 
to advance the understanding of physics problems.

2  Materials and methods

2.1  Materials and features

The data used in the Machine Learning algorithms was derived from online materials databases containing detailed 
band structure for thousands of materials. These include synthesized inorganic materials taken from the Inorganic Crystal 
Structure Database (ICSD), [23] and thousands of hypothetical materials whose properties were obtained in calcula-
tions using an extrapolating approach where chemical elements are replaced by similar ones within the same crystal 
structure. We used the Materials Project [24] database, version 2022, that contains 76022 gapped materials (from a total 
of 126335 entries) with their band structures, including information on whether their band gap is direct or indirect. All 
these calculations were performed with a GGA exchange correlation functional. To make our database more suitable for 
the Machine Learning analysis, a data curation process was conducted where we screened out some problematic materi-
als. Below we list the main lters used in this process, together with the number of available materials after each lter:

• We removed all materials with either a ferromagnetic or antiferromagnetic ground state conguration, leaving 41241 
materials that have no spin polarization. This is done in order to simplify the analysis, and remove the complexity of 
magnetic systems;

• Compounds that have more than 18 atoms in the unit cell were removed, leaving our dataset with a total of 10477 
materials. Owing to the reduction of the size of the Brillouin Zone in very large unit cells, it becomes harder to dif-
ferentiate among direct and indirect band gap materials.

To make our dataset more suitable for an interpretable analysis, as discussed in detail in the results section, we split
our data into smaller datasets of materials with the same crystal structure. We chose to concentrate on the following 
structures: Zincblende (ZB) structure (61 materials), Wurtzite (WZ) structure (38 materials), and Rock salt (RS) structure 
(61 materials). The choice of these groups facilitates the analysis, since all these compounds are binaries (A is the cation 
and B is the anion). Table 1 lists the features used together with the labels employed in other gures for reference. We’ve 
used the Mendeleev package for retrieving the atomic features [25]. We have also analyzed perovskites, with chemical 
formula ABX

3
 (ABC

3
 in our nomenclature). The features used for the ternary perovskites are basically the same as those 

for binary materials (Table 1), however we needed to add another C element. Also, when the features are related to dif-
ferences among two values (e.g. ΔX for the dierence in electronegativity), we included the dierences among atoms 
A and B, B and C, and A and C.

To select the materials from a specic group on the Materials Project, we restrict our search for a specic space group 
and number of sites in the primitive cell. For ZB we chose only the entries with space group F-43 m (216) and having only 
two sites in the primitive cell; for Rocksalt we selected space group Fm-3 m (225) with only 2 sites in the primitive cell and 
composition AB; for wurtzite we selected materials with space group P63mc (186) with only 4 sites and composition AB; 
for cubic perovskites we used the Pm-3 m symmetry with 5 sites in the primitive cell and composition  ABC3; nally, for 
non-cubic perovskites we manually selected the compounds with compositions  ABC3 with the characteristic topology 
of interlinked octahedra. The space groups were dened by the Materials Project database, using the package spglib 
with the default tolerance metrics.
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2.2  The VAX method

The multiVariate dAta eXplanation (VAX) method [20] provides multivariate data analysis leveraging Machine Learning 
models’ descriptive power [26]. The main idea is to extract, select, and aggregate the so-called Jumping Emerging Pat-
terns (JEPs) [22, 27] from Random Forest (RF) models [19, 28]. JEPs are descriptive logic rules [21, 22] where the variable 
selectors describe inter, and intra-class relationships. Once the JEPs are extracted, selected, and aggregated maximiz-
ing condence and support, they are displayed into a matrix-like visual metaphor in VAX. The latter is shown in Fig. 2 
(exploded view) for the 61 materials of the Zincblende dataset, 38 of which have direct gap. This example will be further 
discussed in another gure, without the notes, in the results section.

2.2.1  Patterns and variables

Patterns are arranged as rows ( ) and variables appear as columns ( ). In Fig. 2, patterns p
9
 and p

5
 are placed at the rst 

and second rows, involving variables ‘A_NValence’ and ‘total_N’ at the rst and second columns. Classes are mapped to 
categorical colors, with blue assigned to class “indirect gap” and orange assigned to the class “direct gap”.

2.2.2  Local histograms and selectors

The matrix cells ( ) present, for a particular pattern, local histograms showing the supported data instances distributed 
along the available variables. Moreover, a continuous line frame into the matrix cell represents a variable selector, that 
is a distinct range of values dened by upper and lower bounds. For example, in the histograms using 5 bins in Fig. 2, 
the rule p

9
 (rst row) contains a selector of 7.5 to 29.0 for variable ‘A_NValence’ (rst column). The values in this cell can 

range from 2.0 to 29.0 (min. and max. values for ‘A_NValence’ considering all 61 materials). The pattern p
9
 also contains a 

selector of 51.0 to 132.0 for variable ‘total_N’ (second column) from the possible range from 12.0 to 132.0 (min. and max. 
values). Thus, pattern p

9
 supports (explains) direct gap materials (orange) with values between 7.5 and 29.0 (selector) 

for variable ‘A_NValence’ and 51.0 and 132.0 for variable ‘total_N’. In contrast, pattern p
5
 (second row) has a selector of 

2.0 and 9.5 for variable ‘A_NValence’ (rst column). Despite not having a selector for variable ‘total_N’ (second column), 
the local histogram is also placed into the matrix cell. Hence, pattern p

5
 supports (explains) indirect gap materials (blue) 

with values between 2.0 and 9.5 for variable ‘A_NValence’. Comparing patterns p
9
 and p

5
 , indirect materials tend to have 

lower values than direct materials for both variables ‘A_NValence’ and ‘total_N’.

2.2.3  Global Histograms, Support, and Cumulative Coverage

Global histograms for each class are shown on the top of the matrix ( ) and the patterns’ support (class percentage) is 
mapped onto a column on the matrix’s left side ( ). The cumulative dataset coverage is also mapped onto a column 
on the matrix left side ( ), representing the cumulative percentage of data instances in a dataset covered (explained) 
by the patterns in that row and those in the rows above it. In this context, pattern p

9
 in Fig. 2 has a support value of 

Table 1  Set of features used 
in the zincblende, wurtzite 
and rock salt dataset; A: 
cation features; B: anion 
features. Atomic features were 
extracted from Ref. [25]

Features Description

A_N , B_N Number of electrons
A_group , B_group Group in periodic table
A_row , B_row Row in periodic table
A_NValence , B_NValence Number of valence electrons
A_EA , B_EA Electron Anity
DeltaX Electronegativity dierence among atoms A and B
AB_bond_len A–B distance
A_s,A_p,A_d, B_s, B_p, B_d Delta energy of valence orbital to the closest 

occupied s, p, d, f orbitals (atomic)
A_top − energy , B_top − energy Energy of the highest occupied atomic level
A_top − orbital , B_top − orbital Orbital-type of the highest occupied atomic level
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0.66, which means that 25 of the 38 ( 66% ) direct gap materials are supported (explained) by p
9
 . The local histograms 

for pattern p
9
 (matrix cells at rst row) arrange the 25 supported materials distribution along variables ‘A_NValence’ and 

‘total_N’. The global histograms for the “direct gap” class (orange) display the distribution for each variable on the set 
of all 38 Zincblende materials. Comparing local and global histograms bins for variable ‘A_NValence’ (rst column), 23% 
of the 38 direct gap materials at the rst bin-global (   – rst bucket in the global histogram for direct gap class) are 
completely absent in pattern p

9
 , since it lacks ( 0% ) the rst bin-local (   – rst bucket in the local histogram in the 

rst row). However, from the 32% in the second bin-global, 24% are enclosed by the second bin-local for pattern p
9
 . The 

pattern p
5
 has a support value of 0.57, i.e it explains 13 of 23 ( 57% ) indirect gap materials. For variable ‘A_NValence’ (rst 

column), 78% of indirect materials are at the rst bin-global, from which 52.5% are retained by the rst bin-local for pat-
tern p

5
 . The cumulative coverage for patterns p

9
 and p

5
 is 0.62, i.e. 38 (25 + 13) of 61 materials ( 62% ) are covered by the 

two patterns. Therefore, more than half of the materials are explained by only two patterns ( p
9
 and p

5
).

2.2.4  Variable Importance and FET p‑value

The variable importance is shown visually above the global histograms and textually, next to the variables’ name at the 
bottom ( ). The FET p − value (statistical signicance test) for each pattern is displayed in a column to the matrix right 
side ( ), where green means statistically signicant (p values below 0.05) and purple otherwise. The variable ‘A_NVa-
lence’ in Fig. 2 is more important than ‘total_N’ (0.179 against 0.104). Moreover, both patterns p

9
 and p

5
 are statistically 

signicant (green for FET p).
In addition to the visualization of JEPs, VAX provides similarity maps for data instances using Dimensional Reduc-

tion (DR) layouts [29] and patterns perspectives (dataset extension [30]). Clusters (groups of close data instances) 
and outliers (data instances apart) are often revealed in such maps, and more importantly, are interpreted by 
JEPs visualization analysis. Figure 3 presents a map for the Zincblende dataset, where clusters and outliers can be 

Fig. 2  The matrix-like visual metaphor employed by VAX using the Zincblende dataset.  JEPs are displayed as rows (class color: indirect 
as blue and direct as orange).  Variables are arranged as columns.  Local histograms are shown as cells.  Global histograms (one 
row per class) are placed on the top.  Pattern support.  Cumulative coverage assuming the matrix order (top to bottom).  Variable  
importance, pattern support, cumulative coverage, and variable importance are mapped to size and brightness (gray-scale).  FET (Fisher 
Exact Test) signicance value (p) colored as green (statistically signicant, p ≤ 0.05 ) or purple (not signicant, p > 0.05)
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identified. Each point represents a zincblende material and the color refers to patterns support. Points colored 
in pink identify the materials supported (explained) by pattern p

9
 , whereas those supported by p

5
 are in purple. 

The materials colored in the map compose two clusters, and the difference between such clusters is the differ-
ence between the patterns that originate them ( p

9
 and p

5
 ). So, as noticed from the JEPs visualization in Fig. 2, the 

distinction between the cluster originated by pattern p
9
 and the one formed by pattern p

5
 is that materials in the 

latter trend to have lower values for variables ‘A_NValence’ and ‘total_N’. Moreover, an outlier is highlighted in Fig. 3 
(isolated point on the right), representing a material that does not belong to any of the clusters and is far away 
from other materials as well. A support matrix (binary heat map) can be shown relating patterns (rows) and the 
supported data instances (columns). For the Zincblende dataset, Fig. 4 presents the support matrix for patterns p

9
 

and p
5
 of Fig. 2. Pattern p

9
 supports AgBr, InAs, CdSe, CdTe, GaSb, Agl, CdS, GaAs, Cul, InN, ZnSe, BiB, ZnTe, HgSe, 

TIN, SnC, TIP, HfC, CuBr, InP, SnTe, Sn, HgS, InSb, and HgTe; and pattern p
5
 supports AlAs, AlN, SiC, BSb, BP, YN, ZrC, 

BN, C, AlSb, AlP, BAs, and RuC.
In summary, VAX employs JEPs and visualization of similarity maps to examine multivariate datasets aiming at 

knowledge discovery and phenomena analysis. By displaying JEPs using a matrix-like visual metaphor, meaningful 
visual explanations can be reached by filtering and ordering patterns (rows) and variables (columns). In turn, similar-
ity maps convey an overview of the dataset (e.g., clusters and outliers) using JEPs context. It is worth mentioning 
that VAX was developed for descriptive analyses [20]. Unlike predictive models, which focus on creating generic 
models (splitting datasets into training and testing subsets for estimating performance [31]), descriptive tasks are 
not intended to be generic outside the scope of the data under analysis. Instead, they should offer explanations of 
the phenomena observed in a single dataset [32, 33]. Hence, VAX provides JEPs with “ 100% accuracy” for the dataset 
under examination. This is needed in order for us to be able to obtain patterns that work for all data instances. This 
is why we are able to find patterns even for all outliers. These are some of the advantages of VAX when compared 
to other methodologies.

Fig. 3  Similarity Map for the 
Zincblende dataset within the 
JEPs perspectives. Materials 
whose band gap direct–indi-
rectness are explained by 
patterns p

9
 and p

5
 cluster 

together and are identied as 
pink points (pattern p

9
 ) and 

purple points (pattern p
5
 ). An 

outlier is also highlighted (at 
the most right position)

Fig. 4  Support Matrix for the Zincblende dataset. Materials explained by patterns p
9
 and p

5
 (class color: indirect gap materials as blue and 

direct gap materials as orange). Pattern p
9
 supports 25 direct materials (AgBr, InAs, CdSe, CdTe, GaSb, Agl, CdS, GaAs, Cul, InN, ZnSe, BiB, 

ZnTe, HgSe, TIN, SnC, TIP, HfC, CuBr, InP, SnTe, Sn, HgS, InSb, and HgTe), whereas pattern p
5
 supports 13 indirect (AlAs, AlN, SiC, BSb, BP, YN, 

ZrC, BN, C, AlSb, AlP, BAs, and RuC)
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3  Results and discussion

This section presents the descriptive analyses of the materials datasets using the VAX method [20]. The latter is available 
as a code package 1 for Python programming language. The source code for the results presented here are accessible 
as Python Jupyter notebooks, one for each material family: All Materials ,2 Zincblende ,3 Rock Salt ,4 Wurtzite ,5 and 
Perovskites .6

3.1  All materials

The VAX method was applied to the whole dataset of 10477 (post ltering) materials, 7432 of which have indirect gap 
while 3045 have direct gap. A total of 1495 patterns (JEPs) were obtained, and the patterns with highest support, p

1398
 

and p
842

 , are shown in Fig. 5. Pattern p
1398

 explains ∼ 3% of direct gap materials (80 of 3045), whereas p
842

 supports ∼ 2% 
of indirect gap materials (148 of 7432). These values are statistically signicant (green for FET p), but they together cover 
only 2% (228 of 10477) of the dataset (cumulative coverage). Interestingly, the remaining 1493 patterns (not presented in 
Fig. 5) also can have supports around to 2%. This decreased representativity of these patterns comes from the complexity 
of this dataset, with a huge variety of crystal structures and the lack of good features encoding symmetry.

By inspecting the materials supported by p
1398

 and p
842

 (in Figures S1 and S2 of the supplementary information), 
we noted that the Machine Learning model (descriptive RF post-processed by VAX) put together materials with similar 
spatial atomic arrangements. Pattern p

1398
 supports (explains) only two-dimensional heterostructures in the database. 

There were dierent types of stacking of 2D materials such as MoS
2
/MoSe

2
 , WS

2
/WSe

2
 , all of which have direct band 

gaps. For pattern p
842

 , which works for indirect band gaps, all the materials explained are oxides, mostly containing Bi. 
This motivated us to split the database into dierent families of materials with similar crystal structures. By doing so, we 
avoid the need to specify the crystal structure and symmetry features. Conversely, we infer that crystal structure and 
symmetry should be important to determine whether a material has a direct band gap. In the following subsections, we 
analyze materials grouped according to their crystal structures.

Fig. 5  The two patterns ( p
1398

 and p
842

 ) with the highest support ltered out the 1495 JEPs (extracted, selected, and aggregated) from the 
dataset with all materials (10477 – 7432 indirect gap and 3045 direct gap). Patterns (rows) are ordered by support and the variables (col-
umns) are organized by importance. Pattern p

1398
 holds the highest support among the 1495 patterns; yet it supports only ∼ 3% of direct 

gap materials (80 of 3045). Since pattern p
842

 has ∼ 2% of support, the 10493 remaining patterns (not shown) have equal or less than 2%

1 https:// pypi. org/ proje ct/ vaxm/.
2 https:// popol inneto. gitlab. io/ vaxm/ papers/ 2023/ dm/ allma teria ls/.
3 https:// popol inneto. gitlab. io/ vaxm/ papers/ 2023/ dm/ zincb lende/.
4 https:// popol inneto. gitlab. io/ vaxm/ papers/ 2023/ dm/ salt/.
5 https:// popol inneto. gitlab. io/ vaxm/ papers/ 2023/ dm/ wurtz ite/.
6 https:// popol inneto. gitlab. io/ vaxm/ papers/ 2023/ dm/ perov skites/.
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3.2  Zincblende

The zincblende (ZB) dataset is a good starting point for the analysis, since we can compare our results with those from Yuan 
et al. [17], and evaluate their d-band model. The ZB dataset contains 61 materials, with 38 direct gap materials. This dataset 
is larger than the one used in reference [17], thus permitting a broader analysis. In this dataset were also included elements 
that share the same crystal structure, but are composed by only one type of atom (C, Si, Ge and Sn). In this case, the materi-
als actually have the diamond crystal structure. As shown in Table 1, our feature set includes those necessary to gather the 
information available in the work of Yuan [17], including the presence of d electrons and bond lengths. It also includes fea-
tures such as electronegativity, electronanity, and the rows on the periodic table where the constituent atoms are located.

A total of 9 patterns (JEPs) were obtained for the Zincblende dataset. Figure 6 shows the two highest support patterns: 
p
9
 and p

5
 (rst and second rows). Pattern p

9
 supports 66% of direct materials (25 of 38), whereas p

5
 supports 57% of those 

indirect (13 of 23). Together these patterns explain the majority of the compounds, that is 62% of the zincblende materials 
(38 of 61). The most important variable was the number of valence electrons of the cation, represented by ‘A_NValence’ (rst 
column). The 25 direct gap materials from pattern p

9
 have values between 7.5 to 29.0 (selector) for variable ‘A_NValence’. On 

the other hand, the 13 indirect gap materials from p
5
 have values between 2.0 and 9.5. It is worth mentioning that pattern 

selectors min. and max. values (ranges learned by the Machine Learning model) may not have feasible numbers, e.g. 7.5 for 
variable ‘A_NValence’. In this case, these values must be interpreted by rounding up. Linking the patterns p

9
 and p

5
 with the 

limit of 6 rule found by Yuan et al. [17], if variable ‘A_NValence’ is larger than 6, there will be a high probability for the materi-
als to have a direct band gap. If the number is smaller than 6, indirect band gaps are more frequent. This limit of A_NValence 
= 6 is correlated with the existence of d electrons in the cations: within the pseudopotential approach of our database, A 
cations can only have more than six valence electrons if they have lled d orbitals. This conclusion is the same made by Yuan 
et al. [17] for zincblende compounds. Therefore, we successfully reproduced the main result obtained in that paper. A similar 
analysis holds for the second most important variable (total_N).

Figure S3 in the Supplementary Information presents all 9 patterns for the ZB case, while Figure S4 shows the similarity 
map and Figure S5 shows the support matrix. Most of the 9 patterns returned by VAX are used to explain materials that do 
not t into the ‘d-electron’ rule. Some of the patterns were actually used to explain only a few materials, which means that a 
dierent physical mechanism is needed to explain the directness of their band gap. These include Ge, GaP, CaSe and others. 
Moreover, pattern p

5
explains materials such as C, Si, SiC, BN, BP, AlN, AlP, YN, and ZrC as indirect band gap because they do 

not have d bands.

3.3  Rock salts

The Rock Salt (RS) dataset has the same number of materials as the one for ZB, i.e. 61 in total (32 with direct and 29 with 
indirect band gaps). We used the same variables employed for ZB, and found 9 patterns (JEPs) for the RS dataset. The 

Fig. 6  The two patterns ( p
9
 and p

5
 – rst and second rows) with the highest support ltered out the 9 JEPs resulted (extracted, selected, and 

aggregated) from the Zincblende dataset (61 materials – 23 indirect and 38 direct). Patterns (rows) are ordered by support and the variables 
(columns) are ordered by importance. The variable ‘A_NValence’ (rst column) is the most important, where low values are related to indirect 
materials (blue) and high (also medium) values to those direct (orange). Together, patterns p

9
 and p

5
 explain 62% (38 of 61 – more than half ) 

of the Zincblende materials
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highest support patterns p
8
 and p

9
 are shown in Fig. 7. It is important to note that pattern p

9
 for the RS dataset is dierent 

from pattern p
9
 of the ZB dataset since they involve dierent Machine Learning models. Pattern p

8
 supports 88% of direct 

gap materials (28 of 32), whereas p
9
 supports 79% of those with indirect band gaps (23 of 29). Together these patterns 

explain 84% of the rock salt materials (51 of 61). Even with the same number of patterns (9 JEPs), the coverage for the 
two highest support patterns ( p

8
 and p

9
 ) for RS is larger than for ZB (with patterns p

9
 and p

5
 ), i.e. 84% against 62% . Thus, 

determining the directness of the band gap is easier for RS than for ZB. The remaining results for the RS dataset are shown 
in the Supplementary Information with all the patterns found, the similarity map and the support matrix shown in Figure 
S6, Figure S7 and Figure S8, respectively. By inspecting the second most important variable (second column) for patterns 
p
8
 and p

9
 in Fig. 7, which is ‘A_top_energy’, one notices distinct histogram distributions for direct and indirect band gaps. 

‘A_top_energy’ indicates the energy of the highest occupied atomic level of atom A. 66% of direct gap materials (21 of 32) 
are found in the last bin-local for variable ‘A_top_energy’ in pattern p

8
 in contrast to 7% of indirect gap materials (2 of 29) 

in pattern p
9
 . Hence, if ‘A_top_energy’ is high, there is a strong tendency for the band gap to be direct. This trend is used 

here to explain the indirect gap materials supported by pattern p
9
 , and explicitly listed in Figure S9. By analyzing this list 

we realize that these indirect band gap materials have as cations Be, Mg, Ca, Sr or Ba (smaller ‘A_top_energy’). These are 
compounds where the cation has a completely lled valence s orbital, which can be related to a smaller ‘A_top_energy’.

To further evaluate the explanations provided in patterns p
8
 and p

9
 , we selected two compounds with similar chemi-

cal structures, but with dierent band gap behaviors: CaSe has an indirect band gap, and KBr has a direct band gap. All 
these atoms belong to the same period of the periodic table. Figure 8 shows the band structure of these compounds. 
The conduction band minimum of KBr (direct band gap) is composed of K s orbitals and the band gap is at the Γ point. 
For CaSe, CBM is composed of Se p orbitals and is located at the X point. The Ca s orbitals are higher in energy, turning 
the band gap indirect. The relative position of the K (Ca) s orbitals, related to the variable ‘A_top_energy’, is key in den-
ing the directness of the band gap.

3.4  Wurtzites

The Wurtzite dataset has 38 materials, 29 of which have direct band gaps. Wurtzite (WZ) compounds have a crystal 
structure similar to that of Zincblende materials. Each cation is bound to four anions, but dierently from zincblende, 
one of these bonds has a dierent length than the others. Also, the stacking along the (111) direction is dierent in 
these two crystal structures, with ZB showing an ABCABC... stacking (three dierent layers) and WZ having an ABAB... 
conguration (two dierent layers) [34]. A total of 4 patterns (JEPs) were obtained for the WZ dataset, whose patterns 
are in descending order of support in Fig. 9. Patterns p

3
 and p

2
 (rst and second rows) yield the highest support, covering 

82% of the wurtzite materials (31 of 38). This coverage with the two highest support patterns is almost the same as that 
in the RS database. Pattern p

3
 supports 89% of indirect gap materials (8 of 9), whereas p

2
 supports 79% of the direct gap 

ones (23 of 29). A comparison of the two patterns indicates that the direct gap materials (orange) tend to have higher 

Fig. 7  The two patterns ( p
8
 and p

9
 – rst and second rows) with the highest support ltered out the 9 JEPs (extracted, selected, and aggre-

gated) for the Rock Salt dataset (61 materials – 29 with indirect and 32 with direct band gaps). Patterns (rows) are ordered by support and 
the variables (columns) are ordered by importance. The variables ‘delta_X’ and ‘A_top_energy’ (rst and second columns) are the most 
important. For ‘A_top_energy’ (second column), direct materials (orange) concentrate ( 66% – 21 of 32) in the last histogram bin-local for pat-
tern p

8
 , whereas pattern p

9
 reveals only a few ( 7% – 2 of 29) indirect materials (blue) for such a bin. Together, patterns p

8
 and p

9
 explain 84% 

(51 of 61 – strong generic behaviour) of the rock salt materials
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Fig. 8  Band structures of KBr 
(above) and CaSe (below). 
The colors in the graphs 
indicate the atomic contri-
bution for each eigenvalue. 
These band structures were 
calculated using DFT with a 
GGA exchange correlation 
functional

Fig. 9  All 4 patterns resulted (extracted, selected, and aggregated) from the Wurtzite dataset (38 materials – 9 with indirect and 29 with 
direct gaps). Patterns (rows) are ordered by support and the variables (columns) are ordered by importance. The patterns p

3
 and p

2
 (rst and 

second rows) have the highest support. For variables ‘total_N’ and ‘AB_bond_len’ (second and rst columns – the most important) direct 
gap materials (orange) tend to have higher values than indirect gap compounds (blue). Together, patterns p

3
 and p

2
 explain 82% (31 of 38 – 

strong generic behaviour) of the wurtzite materials
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values for variables ‘total_N’ and ‘AB_bond_len’ (second and rst columns). Note that there is a correlation between these 
variables: compounds with a larger number of electrons tend to have larger bond lengths. This analysis also leads to a 
similar interpretation as that for the ZB dataset: a larger number of electrons appears when the constituting atoms have 
d orbitals. The similarity of the ZB and WZ patterns comes from their similar crystal structures.

The similarity map in Figure S10 in the Supplementary Information highlights two clusters formed by patterns p
3
 and 

p
2
 (pink and purple). A third cluster is formed with pattern p

4
 (maroon) and there is an outlier supported by pattern p

1
 

(emerald). Figure S11 presents the materials supported by patterns p
3
 , p

2
 , p

4
 , and p

1
.

The dierence among clusters (purple and maroon – Figure S10) formed by patterns p
2
 and p

4
 is in variable ‘total_N’ 

(second column) and ‘delta_X’ (fourth column). This last variable indicates the dierence in electronegativity between 
atoms A and B. The materials from pattern p

4
 have large values of ‘delta_X’, indicating they are more ionic. This also leads 

to larger band gaps, making the coupling between d bands and the conduction band smaller, decreasing the importance 
of the d bands and making the band gap direct.

The indirect material AlP, an outlier in Figure S10, is supported by pattern p
1
 (fourth row in Fig. 9) and it diers from the 

8 indirect materials (C, Si, BP, BN, GeC, BaO, BAs, SiC) by pattern p
3
 (rst row in Fig. 9) in variable ‘A_top_energy’ (seventh 

column). The AlP compound has a higher value for variable ‘A_top_energy’ (between −0.11 to −0.1 – variable selector) 
than the 8 materials explained by pattern p

3
 (between −0.22 to −0.11 – variable selector).

3.5  Perovskites

Perovskites are much more complex than the other materials discussed before. They comprise three types of atoms 
( ABX

3
 ), with a variety of chemical formulas and many crystal structures. Although the general chemical formula has an 

ABX
3
 stoichiometry, there are also double perovskites such as A

2
BB


X
6
 [35] and various magnetic congurations [36]. 

As for the crystal structure, perovskites can be cubic, tetragonal, orthorhombic and even polymorphous [37]. All these 
properties can inuence the band gaps [38]. The Perovskite dataset has 132 materials, of which 104 have indirect band 
gaps. For perovskites we used a dierent set of variables compared to the binary compounds. The variables in Table 1 
for binary materials are not able to fully encode their chemical space. Additionally, the dataset contains not only cubic 
perovskites, but also perovskites with rotated octahedra. Thus, we need variables that also discriminate this structural 
degree of freedom.

Fig. 10  The 6 patterns with the highest support ltered out from the 13 JEPs resulted (extracted, selected, and aggregated) for the Perovs-
kites dataset (132 materials – 104 indirect and 28 direct). Patterns (rows) are ordered by support and the variables (columns) are ordered by 
importance. The variable ‘total_N’ (rst column) is the most important; for patterns p

4
 and p

9
 (rst and second rows) medium and low values 

are related to indirect gap materials (blue) while high values refer to direct gap materials (orange). For variable ‘A_p’ (last column), all pat-
terns ( p

9
 , p

13
 , p

2
 , p

12
 , and p

1
 ) for direct gap materials (second to sixth row) contain higher values than for pattern p

4
 (indirect gap materials). 

These six patterns explain 67% (89 of 132) of the Perovskites materials



Vol:.(1234567890)

Research Discover Materials             (2024) 4:6  | https://doi.org/10.1007/s43939-024-00073-x

A total of 13 patterns (JEPs) were obtained for the Perovskite dataset, and Fig. 10 shows the 6 patterns yielding the 
highest support. These 6 patterns are the only ones with statistical signicance. Pattern p

4
 (rst row) supports 58% of 

indirect gap materials (60 of 104), whereas p
9
 supports 50% of those with direct gap (14 of 28). Together these patterns 

explain about half ( 56% ) of the compounds, i.e. 74 of 132 materials. The main dierence between patterns p
4
 and p

9
 is 

in variables ‘total_N’ and ‘A_p’ (rst and last column), since direct gap materials (orange) tend to have higher values than 
the indirect gap materials (blue). These variables respectively indicate the total number of electrons and the relative 
energy of the highest occupied p orbital of atom A.

The 14 direct gap materials from pattern p
9
 contain values between 121 and 190 (selector) for ‘total_N’ and from −0.54 

to 0.0 (selector) for variable ‘A_p’. This latter tendency for variable ‘A_p’ is also found in the remaining patterns p
13

 , p
2
 , p

12
 , 

and p
1
 (third to sixth row) for direct gap materials. As observed for Zincblende and Wurtzites, the trend for the variable 

‘total_N’ indicates that compounds with a larger number of electrons have direct band gaps, which is correlated with 
the existence of lled d bands.

Figure S12 in the Supplementary Information shows all the 13 patterns for the perovskites dataset, while Figures S13 
and S14 display the similarity map and the support matrix, respectively.

4  Conclusions

Machine learning methods in materials science have been mostly used to predict a specic property of a material. 
Examples include models to predict properties such as the value of band gaps [39], stability of 2D compounds [40], or 
the magnetic order of compounds [5]. Recent works [6, 41], however, indicate that Machine Learning can be used in 
more complex tasks, including interpretation of physical phenomena. In this paper, we discovered through using VAX 
that to explain the band gap directness the semiconductors have to be separated into smaller groups with the same 
crystal structure. Indeed, we could determine the rules that explain why a semiconductor structural family has a direct 
or indirect gap. This has been done for zincblende materials, conrming the conclusions from an earlier work [42], and 
for other crystal structures. Overall we observed that two main features are essential to determine if a material has a 
direct or indirect band gap. The rst feature is the symmetry of the crystal, and consequently the symmetry of each high-
symmetry k-point in the reciprocal space. This conclusion was inferred from the fact that we were unable to get a good 
Machine Learning model using all materials. The creation of subsets with the same crystal structure was necessary to 
get good results. The second feature is the existence of specic orbitals (e.g., d-orbitals) and their respective energy and 
occupation. The interaction among these orbitals may push the valence band maximum/conduction band minimum
(VBM/CBM) at specic k-points towards higher/lower energies, leading to changes in the band gap directness.

In addition to providing explanations about the directness of semiconductor band gaps, the use of the VAX in this 
paper showcases new ways to employ machine learning to study materials in an interpretable way. For the VAX method 
can be used in conjunction with any rule-based machine learning algorithm.

Acknowledgements This research was supported by Brazilian funding agencies FAPESP (grants number 17/02317-2, 18/11856-7, 18/11641-
0, 2018/22214-6 and 19/04176-2) and CNPq - INCT (National Institute of Science and Technology on Materials Informatics, grant number 
371610/2023-0). Computer simulations were performed at the Santos Dumont supercomputer.

Author contributions EO retrieved the data from Materials project and worked on data curation. MPN, ONOJ, and FVP performed the VAX 
analysis. EO, CMA, GMN, JN and GMD evaluated the results from VAX and substantiated them with physical principles. All authors participated 
in the discussion of the results and writing and revising the paper.

Data availability All codes and les were made available in the links provided in the manuscript.

Declarations 

Competing interests Authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.



Vol.:(0123456789)

Discover Materials             (2024) 4:6  | https://doi.org/10.1007/s43939-024-00073-x Research

References

 1. Rodrigues JF, Florea L, de Oliveira MCF, Diamond D, Oliveira ON. Big data and machine learning for materials science. Discover Mater. 
2021. https:// doi. org/ 10. 1007/ s43939- 021- 00012-0.

 2. Schleder GR, Padilha ACM, Reily Rocha A, Dalpian GM, Fazzio A. Ab initio simulations and materials chemistry in the age of big data. J 
Chem Inform Modeling. 2019;60:452.

 3. Iten R, Metger T, Wilming H, Rio L, Renner R. Discovering physical concepts with neural networks. Phys Rev Lett. 2020;124:10508. https:// 
doi. org/ 10. 1103/ PhysR evLett. 124. 010508.

 4. Häse F, Roch LM, Friederich P, Aspuru-Guzik A. Designing and understanding light-harvesting devices with machine learning. Nat Com-
mun. 2020. https:// doi. org/ 10. 1038/ s41467- 020- 17995-8.

 5. Acosta CM, Ogoshi E, Souza JA, Dalpian GM. Machine learning study of the magnetic ordering in 2d materials. ACS Appl Mater Interfaces. 
2022;14:9418. https:// doi. org/ 10. 1021/ acsami. 1c215 58.

 6. Oviedo F, Ferres JL, Buonassisi T, Butler KT. Interpretable and explainable machine learning for materials science and chemistry. Accounts 
Mater Res. 2022;3:597–607. https:// doi. org/ 10. 1021/ accou ntsmr. 1c002 44.

 7. Pilania G. Machine learning in materials science: from explainable predictions to autonomous design. Comput Mater Sci. 2021;193: 
110360. https:// doi. org/ 10. 1016/j. comma tsci. 2021. 110360.

 8. Zhong X, Gallagher B, Liu S, Kailkhura B, Hiszpanski A, Han TY-J. Explainable machine learning in materials science. NPJ Comput Mater. 
2022. https:// doi. org/ 10. 1038/ s41524- 022- 00884-7.

 9. Choubisa H, Todorović P, Pina JM, Parmar DH, Li Z, Voznyy O, Tamblyn I, Sargent EH. Interpretable discovery of semiconductors with 
machine learning. NPJ Comput Mater. 2023. https:// doi. org/ 10. 1038/ s41524- 023- 01066-9.

 10. Fadaly EM, Dijkstra A, Suckert JR, Ziss D, van Tilburg MA, Mao C, Ren Y, van Lange VT, Korzun K, Kölling S, Verheijen MA, Busse D, Rödl C, 
Furthmüller J, Bechstedt F, Stangl J, Finley JJ, Botti S, Haverkort JE, Bakkers EP. Direct-bandgap emission from hexagonal Ge and SiGe 
alloys. Nature. 2020;580:205. https:// doi. org/ 10. 1038/ s41586- 020- 2150-y.

 11. Lee M-H, Liu P-L, Hong Y-A, Chou Y-T, Hong J-Y, Siao Y-J. Electronic band structures of Ge1- xSnx semiconductors: a rst-principles density 
functional theory study. J Appl Phys. 2013;113: 063517.

 12. Zhang S, Yan Z, Li Y, Chen Z, Zeng H. Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap 
transitions. Angewandte Chemie. 2015;127:3155.

 13. Desai SB, Seol G, Kang JS, Fang H, Battaglia C, Kapadia R, Ager JW, Guo J, Javey A. Strain-induced indirect to direct bandgap transition in 
multilayer wse2. Nano lett. 2014;14:4592.

 14. Mak KF, Lee C, Hone J, Shan J, Heinz TF. Atomically thin mos2: a new direct-gap semiconductor. Phys Rev Lett. 2010. https:// doi. org/ 10. 
1103/ PhysR evLett. 105. 136805.

 15. Sze SM, Li Y, Ng KK. Physics of semiconductor devices. 4th ed. Hoboken, NJ: Wiley-Blackwell; 2021.
 16. Yin W-J, Yang J-H, Kang J, Yan Y, Wei S-H. Halide perovskite materials for solar cells: a theoretical review. J Mater Chem A. 2015;3:8926. 

https:// doi. org/ 10. 1039/ c4ta0 5033a.
 17. Yuan LD, Deng HX, Li SS, Wei SH, Luo JW. Unied theory of direct or indirect band-gap nature of conventional semiconductors. Phys Rev 

B. 2018;98:1. https:// doi. org/ 10. 1103/ PhysR evB. 98. 245203.
18. Breiman L, Friedman J, Olshen R, Stone C. Classication and Regression Trees. Chapman and Hall/CRC; 1984.
 19. Breiman L. Random forests. Mach Learning. 2001;45:5. https:// doi. org/ 10. 1023/A: 10109 33404 324.
 20. Neto MP, Paulovich FV. Multivariate data explanation by jumping emerging patterns visualization. IEEE Trans Visualizat Comput Graph. 

2022. https:// doi. org/ 10. 1109/ tvcg. 2022. 32235 29.
 21. Novak PK, Lavrac N, Webb GI. Supervised descriptive rule discovery: a unifying survey of contrast set, emerging pattern and subgroup 

mining. J Mach Learn Res. 2009;10:377.
 22. García-Vico A, Carmona C, Martín D, García-Borroto M, del Jesus M. An overview of emerging pattern mining in supervised descriptive 

rule discovery: taxonomy, empirical study, trends, and prospects. WIREs Data Mining Knowl Discovery. 2018;8: e1231. https:// doi. org/ 10. 
1002/ widm. 1231.

 23. Zagorac D, Müller H, Ruehl S, Zagorac J, Rehme S. Recent developments in the inorganic crystal structure database: theoretical crystal 
structure data and related features. J Appl Crystallogr. 2019;52:918–25. https:// doi. org/ 10. 1107/ s1600 57671 90099 7x.

 24. Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson KA. Commentary: the Materials 
Project: a materials genome approach to accelerating materials innovation. APL Mater. 2013;1: 011002. https:// doi. org/ 10. 1063/1. 48123 
23.

 25. u. Mentel, mendeleev – a python resource for properties of chemical elements, ions and isotopes.https:// github. com/ lmmen tel/ mende 
leev.

 26. Tan P-N, Steinbach M, Kumar V. Introduction to data mining, 1st ed., Pearson, 2005;792.
 27. Kane B, Cuissart B, Crémilleux B. Minimal jumping emerging patterns: computation and practical assessment. In: Cao T, Lim E-P, Zhou 

Z-H, Ho T-B, Cheung D, Motoda H, editors. Advances in knowledge discovery and data mining. Cham: Springer International Publishing; 
2015. p. 722–33.

 28. García-Borroto M, Martínez-Trinidad JF, Carrasco-Ochoa JA. Finding the best diversity generation procedures for mining contrast patterns. 
Expert Syst Appl. 2015;42:4859. https:// doi. org/ 10. 1016/j. eswa. 2015. 02. 028.

 29. Nonato LG, Aupetit M. Multidimensional projection for visual analytics: linking techniques with distortions, tasks, and layout enrichment. 
IEEE Trans Visualizat Comput Graphics. 2019;25:2650. https:// doi. org/ 10. 1109/ TVCG. 2018. 28467 35.

 30. Pérez D, Zhang L, Schaefer M, Schreck T, Keim D, Díaz I. Interactive feature space extension for multidimensional data projection. Neuro-
computing. 2015;150:611. https:// doi. org/ 10. 1016/j. neucom. 2014. 09. 061.

 31. James G, Witten D, Hastie T, Tibshirani R. An introduction to statistical learning with applications in R. New York: Springer; 2013. https:// 
doi. org/ 10. 1007/ 978-1- 4614- 7138-7.

 32. Gleicher M. Explainers: expert explorations with crafted projections. IEEE Trans Visualizat Comput Graphics. 2013;19:2042.



Vol:.(1234567890)

Research Discover Materials             (2024) 4:6  | https://doi.org/10.1007/s43939-024-00073-x

 33. Knittel J, Lalama A, Koch S, Ertl T. Visual neural decomposition to explain multivariate data sets. IEEE Trans Visualizat Comput Graphics. 
2020. https:// doi. org/ 10. 1109/ TVCG. 2020. 30304 20.

 34. Dalpian GM, Wei S-H. Hole-mediated stabilization of cubic GaN. Phys Rev Lett. 2004. https:// doi. org/ 10. 1103/ physr evlett. 93. 216401.
 35. Bartel CJ, Sutton C, Goldsmith BR, Ouyang R, Musgrave CB, Ghiringhelli LM, Scheer M. New tolerance factor to predict the stability of 

perovskite oxides and halides. Sci Adv. 2019. https:// doi. org/ 10. 1126/ sciadv. aav06 93.
 36. Varignon J, Grisolia MN, Íñiguez J, Barthélémy A, Bibes M. Complete phase diagram of rare-earth nickelates from rst-principles. npj 

Quantum Mater. 2017. https:// doi. org/ 10. 1038/ s41535- 017- 0024-9.
 37. Zhao X-G, Dalpian GM, Wang Z, Zunger A. Polymorphous nature of cubic halide perovskites. Phys Rev B. 2020. https:// doi. org/ 10. 1103/ 

physr evb. 101. 155137.
 38. Zhao X-G, Wang Z, Malyi OI, Zunger A. Eect of static local distortions vs. dynamic motions on the stability and band gaps of cubic oxide 

and halide perovskites. Mater Today. 2021;49:107. https:// doi. org/ 10. 1016/j. mattod. 2021. 05. 021.
 39. Zhuo Y, Mansouri Tehrani A, Brgoch J. enPredicting the band gaps of inorganic solids by machine learning. J Phys Chem Lett. 2018;9:1668.
 40. Schleder GR, Acosta CM, Fazzio A. Exploring two-dimensional materials thermodynamic stability via machine learning. ACS Appl Mater 

Interfaces. 2019;12:20149. https:// doi. org/ 10. 1021/ acsami. 9b145 30.
 41. Schmidt J, Marques MRG, Botti S, Marques MAL. enRecent advances and applications of machine learning in solid-state materials science. 

npj Comput Mater. 2019;5:83.
 42. Yuan LD, Wang Z, Luo JW, Rashba EI, Zunger A. Giant momentum-dependent spin splitting in centrosymmetric low- z antiferromagnets. 

Phys Rev B. 2020. https:// doi. org/ 10. 1103/ PhysR evB. 102. 014422.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional aliations.


