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Abstract

In this work, we study hitting times for the appearance of a spanning structure in the Erdős-Rényi random directed graph processes.
Namely, we are concerned with the appearance of an arborescence, a spanning digraph in which, for a vertex u called the root
and any other vertex v, there is exactly one directed path from u to v. Let D(n, 0),D(n, 1), . . . ,D(n, n(n − 1)) be the random
digraph process where for every m ∈ {0, . . . , n(n − 1)}, D(n,m) is a digraph with vertex set {1, . . . , n}; D(n, 0) has no arcs and, for
1 ≤ m ≤ n(n − 1), the digraph D(n,m) is obtained by adding an arc to D(n,m − 1), chosen uniformly at random among the not
present arcs. In this paper we determine the hitting time for the existence of k arc-disjoint arborescences when k = k(n) �

√
log n.
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1. Introduction

A spanning tree in a graph is a subgraph that includes all vertices of the graph and in which any two vertices are
connected by exactly one path. Generalising this notion to the digraph setting, we obtain the notion of arborescence.
An arborescence is a spanning digraph in which, for a vertex u called the root and any other vertex v, there is exactly
one directed path from u to v.

Note that in an undirected graph, the existence of a spanning tree is equivalent to the graph being connected. The
study of spanning trees in random graphs goes back about 80 years, to the seminal paper of Erdős and Rényi on random
graphs [4]. In the paper, they started the study of the phase transition in random graphs. In particular, they determined
the “threshold” value of m = n log n/2 above which a random m-edge undirected graph is typically connected.

Given this threshold, a subsequent natural question is to estimate the number of spanning trees in a random graph at
or above this threshold. Of particular interest is the number of edge-disjoint spanning trees. The spanning tree packing
number or STP number of a graph G is the maximum number of edge-disjoint spanning trees contained in G. One of
the earliest results on the STP number is a min-max relation shown by Tutte [11] and Nash-Williams [9].

Erdős and Rényi’s work [4] implies that for p = (log n − ω(1))/n, the random graph G(n, p) is disconnected with
high probability, and hence the STP number is zero. Palmer and Spencer [10] showed that with high probability the
STP number of G(n, p) equals the minimum degree whenever such value is a constant, which typically happens when
p is around (log n + O(log log n))/n. In fact, they proved a stronger hitting time result and showed that, with high
probability, the precise time when the minimum degree first becomes k (for constant k) coincides with the time when
k edge-disjoint spanning trees first appear. Other ranges of p were also considered by Catlin, Chen and Palmer [2] and
Chen, Li and Lian [3].

Characterising the entire range of p, Gao, Pérez-Giménez and Sato [6] have shown that the STP number is, with
high probability, the minimum between δ and �m/(n−1)� during the whole random graph process. They also determine
the asymptotic value of p at which the STP number changes from δ to �m/(n − 1)�.

In the directed case, much less is known. Bal, Bennett, Cooper, Frieze and Prałat [1] considered the random digraph
process D(n, 0),D(n, 1), . . . ,D(n, n(n − 1)) on common vertex set [n] = {1, . . . , n}, the stochastic process in which
we start with n vertices and no arcs, and at each step, we add one new arc chosen uniformly at random from the set
of missing arc. They have shown that the events D(n,m) has an arborescence and at most one vertex of D(n,m) has
in-degree zero have the same hitting time with high probability. It is worth mentioning that they are actually concerned
with the appearance of a rainbow arborescence in a randomly coloured random digraph and obtain the arborescence
result as a corollary.

Concerning packing results for a digraph G, let λ(G) denote the largest integer k ≥ 0 such that, for all 0 ≤ � ≤ k,
we have

∑�−1
i=0 (� − i)|{v : din

G (v) = i}| ≤ �. One can observe that λ(G) is an upper bound on the number of arc-disjoint
arborescences by noticing that in order to pack � arborescences, every vertex of G whose in-degree is � − i must be
the root of at least i arborescences, since its in-degree would be exhausted. LettingD(n, p) denote the random digraph
(defined by including each of the n(n − 1) arcs independently with probability p), Hoppen, Parente and Sato [7] have
shown that the maximum number of arc disjoint arborescences inD(n, p) is λ(D(n, p)) with high probability for every
0 ≤ p ≤ 1. Moreover, they determined λ(D(n, p)) asymptotically for values of p such that the minimum in-degree of
D(n, p) is concentrated.

In this paper we determine the hitting time on random digraph processes of k arc-disjoint arborescences when
k = k(n) �

√
log n (that is, if k/

√
log n tends to 0 as n tends to infinity). For this, we are concerned with the following

two events.

Ak,m = {D(n,m) has k arc-disjoint arborescences}
Zk,m = {at most k vertices ofD(n,m) have in-degree less than k}.

Let Ek,m stand for one of the above events. We define a random variable, the hitting time of Ek, by

m(Ek) = min{m ∈ N : Ek,m occurs}.
Establishing an analogue of Palmer and Spencer’s result in the directed setting and a strengthening of Hoppen,

Parente and Sato’s result for k �
√

log n, our main result is the following.

Theorem 1.1. For k = k(n) �
√

log n, we have m(Ak) = m(Zk) with high probability.
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Structure of the paper. In Section 2 we present some basic tools about random models and a min-max result
concerning the existence of k arc-disjoint arborescences due to Frank [5]. In Section 3 we present results about in-
degree distributions of sets and vertices. In Section 4 we study the neighbourhood of vertices with in/out-degree close
to minimum in/out-degree. In Section 5 we study the in-degree of sets in the subgraph formed by the vertices with
degree at least k. Finally, in Section 6 we prove our main theorem.

2. Tools

For a digraph D = (V, A) and S , T ⊂ V , let A(S , T ) denote the set of arcs uv ∈ A with u ∈ S and v ∈ T . We also write
A(T ) to denote A(T, T ). Our main deterministic tool provides a necessary and sufficient condition for the existence of
k disjoint arborescences in a digraph. It is a directed analogue of the classic results of Tutte and Nash–Williams, and
one of the main tools in our paper. A subpartition of a set V is a family of pairwise disjoint subsets of V .

Theorem 2.1 (Frank [5]). Let D = (V, A) be a digraph and let k ≥ 0 be an integer. Then D contains k arc-disjoint
arborescences if, and only if, for every subpartition P of V, we have

∑
U∈P din(U) ≥ k(|P| − 1), where din(U) =

|A(V \ U,U)|.
We now state some tools from the theory of random graphs. Recall that the hypergeometric distribution Hyp(a, b,m)

is the distribution of a random variable |Am ∩ B|, where A and B are fixed sets such that |A| = a, B ⊂ A has size |B| = b,
and Am denotes a m-random subset of A. If X ∼ Hyp(a, b,m), then E [X] = mb/a.

Theorem 2.2 (Chernoff bounds [8]). Let X be a binomial or hypergeometric random variable. If µ = E [X],

P
(
X ≥ µ + t

) ≤ exp
( − µϕ(t/µ)

) ≤ exp
(
− t2

2(µ + t/3)

)
,

P
(
X ≤ µ − t

) ≤ exp
( − µϕ(−t/µ)

) ≤ exp(−t2/2µ),

where ϕ(x) = (1 + x) log(1 + x) − x for x ≥ −1, ϕ(−1) = 1 and ϕ(x) = ∞ for x < −1.

Although our main result concerns the random digraph process, it will be convenient to prove some results in
D(n, p). Let N = n(n − 1). The following results allow us to transfer such results toD(n,m) with m = pN.

Definition 2.3. A property Q of digraphs is (m, r)-increasing if

P
(D(n,m′) has Q) ≤ P

(D(n,m) has Q) + o(1) if m − r < m′ ≤ m,

P
(D(n,m′) has Q) ≥ P

(D(n,m) has Q) + o(1) if m ≤ m′ < m + r.

We define (m, r)-decreasing properties analogously. A property is (m, r)-monotone if it is either (m, r)-decreasing
or (m, r)-increasing. Observe that a monotone property Q is (m, r)-monotone for any 0 ≤ m ≤ N and any r > 0.

Proposition 2.4 (Proposition 1.13 and Remark 1.14 [8]). Let Q be a property for digraphs and 0 ≤ m ≤ N. If Q is(
m,O
(√

m(N − m)/N
))

-monotone and holds with high probability inD(n, p) for every p = m/N+O
( √

m(N − m)/N3),
then Q holds forD(n,m) with high probability.

We will also use some expansion properties of random graphs.

Lemma 2.5 (Lemma 3.17 [7]). Let ζ be a positive constant. For p � 1/n, the following holds with high probability.
For disjoint sets S , T ⊂ [n], each of size at least ζn, we have |A(S , T )| ≥ ζ2n2 p/2.

Lemma 2.6 (Lemma 3.18 [7]). Let ε be a positive constant. For p � 1/n, the following holds with high probability.
For every S ⊂ [n] of size |S | ≤ εn we have |A(S )| ≤ 3εpn|S |.

3. In-degree distribution

In this section, we define probabilities pk and show that, althoughD(n, pk) does not contain k arc-disjoint arbores-
cences with high probability, the number of vertices with in-degree k − 1 is reasonably low. Let Xk = |{v : din(v) = k}|
and X<k = |{v : din(v) < k}|.
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Lemma 3.1. Let p ≥ 0.9 log n/(n − 1). With high probability in D(n, p) and in D(n,m) with m = pn(n − 1), every
vertex v ∈ V satisfies din(v) + dout(v) > p(n − 1)/5.

Proof. For every 0 < α < 1, using Theorem 2.2 with t = αp(n − 1), we have

P
(

Bin(2(n − 1), p) ≤ 2αp(n − 1)
) ≤ exp

(−2p(n − 1)(1 − α + α logα)
)
.

A simple calculation shows that, for α = 1/10, 2p(n− 1) · (1−α+α logα) ≥ 1.204 log n. Therefore, the result follows
by applying the union bound over all vertices. The same result for D(n,m) follows by applying the hypergeometric
variant of Theorem 2.2.

Definition 3.2. Let k = k(n) �
√

log n. Define

pk =
log n +

(
1 + (k − 1)/ log n

)(
(k − 1) log log n − log(k − 1)!

) − (log log n)/2
n − 1

.

Constant terms in the numerator of the above definition may be omitted if desired, which simplifies the formula
slightly when k �

√
log n/ log log n and considerably when k is bounded.

Lemma 3.3. Let k = k(n) �
√

log n. For any p of the form p = pk + o(1/n), it holds that Xk−1 > k, Xk−1 � log n and
δin(D(n, p)) = k − 1 with high probability.

Proof. Observe that the events
{{din(v) = k − 1} : v ∈ V(D(n, p))

}
are independent and identically distributed.

Therefore, Xk−1 is binomially distributed and we can write

E[Xk−1] = n
(
n − 1
k − 1

)
pk−1(1 − p)n−k.

To bound the above, observe that since k2 � n, it holds that
(

n−1
k−1

)
∼ (n − 1)k−1/(k − 1)!. Moreover, since p2n � 1,

pk � 1 and 1 − x = e−x+O(x2) as x→ 0, we have (1 − p)n−k ∼ e−p(n−1). Substituting, we obtain

E[Xk−1] ∼ n
(
(n − 1)p

)k−1e−p(n−1)

(k − 1)!
.

We now use the value of p to conclude that

E[Xk−1] ∼
√

log n
(

(n − 1)p
log n

)k−1

exp
(
− (k − 1)

(
(k − 1) log log n − log(k − 1)!

)
log n

)
. (1)

Using that k2 � log n, we can bound

(n − 1)p
log n

= 1 +
(k − 1) log log n − log(k − 1)!

log n
+ O
(

log log n
log n

)
.

We now use 1 + x = exp(x + O(x2)) (as x tends to 0) and once again k2 � log n to compute
(

(n − 1)p
log n

)k−1

= exp
(

(k − 1)
(
(k − 1) log log n − log(k − 1)!

)
log n

+ o
(

(k − 1)(log log n)2

log n

))
. (2)

The above error term satisfies exp
(
o
(

(k−1)(log log n)2

log n

))
= 1+ o(1), so combining (2) with (1) leads to E[Xk−1] ∼

√
log n.

Therefore, we have Xk−1 � log n with high probability by Markov’s inequality. Moreover, since Xk−1 is binomially
distributed, it holds with high probability (by Chernoff’s inequality) that Xk−1 ≥

√
log n/2 > k if n is large. It only

remains to show that δin(D(n, p)) = k − 1 with high probability, which is equivalent to showing that X<k−1 = 0 with
high probability. To do so, observe that for every i ≤ k,

E[Xi−1] =
( i
n − i + 1

) (1 − p
p

)
E[Xi] ≤

(
2i
np

)
E[Xi] �

E[Xi]√
log n

,

since np ∼ log n and k �
√

log n. Summing over i < k, we obtain that E[X<k−1] ≤ E[Xk−1]/
√

log n � 1. Therefore,
X<k−1 = 0 with high probability by Markov’s inequality, finishing the proof.
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4. Light vertices

The concept of light vertices will simplify the analysis of subpartitions in the next section.

Definition 4.1. A vertex v ∈ [n] is said to be ε-in-light if din(v) ≤ ε log n and, ε-out-light if dout(v) ≤ ε log n.

Below are some properties of light vertices. Let Γin(v) = {u ∈ V : uv ∈ A} and Γout(v) = {u ∈ V : vu ∈ A}.

Lemma 4.2. Let ε ≤ 0.09 and 0.9 log n/(n−1) ≤ p ≤ (1+o(1)) log n/(n−1). The following holds with high probability
forD(n, p) and forD(n,m) with m = pn(n − 1):

(a) there is no pair (u, v) of ε-in-light vertices such that uv ∈ A or Γin(v) ∩ Γin(u) � ∅;

(b) there is no pair (u, v) of ε-out-light vertices such that uv ∈ A or Γout(v) ∩ Γout(u) � ∅;

(c) there is no uv ∈ A such that u is ε-out-light and v is ε-in-light.

Proof. We will prove the result only forD(n,m), since the proof forD(n, p) can be obtained merely by replacing the
hypergeometric distribution by the binomial distribution in appropriate places.

We start by proving item (a). Let S ⊆ V denote the set of ε-in-light vertices. For distinct vertices u, v ∈ V , we
estimate the probability that they are ε-in-light and that uv ∈ A. There are 2n − 3 arcs (other than uv) that contribute
to din(u) + din(v), and if the vertices are ε-in-light this sum is at most 2ε log n. Let N = n(n − 1) and µ = (2n − 3)(m −
1)/(N − 1) ∼ 2m/n = 2p(n − 1). Since 2ε log n ≤ p(n − 1)/5, we have

P
({u, v} ⊂ S , uv ∈ A

) ≤ p · P(Hyp(N − 1, 2n − 3,m − 1) ≤ 2ε log n
) ≤ pn−6/5,

where the last inequality follows from Chernoff bounds (c.f. the proof of Lemma 3.1). Therefore, the probability that
there exists u, v with the above property is at most n2 · pn−6/5 = o(1), proving the first part of (a); an adaptation of this
argument proves part (c). To prove the second part of item (a), observe that for distinct vertices u, v, z ∈ V , we have
by an analogous hypergeometric estimate that

P
(
zu, zv ∈ A, u ∈ S and v ∈ S

) ≤ p2 · P(Hyp(N − 2, 2n − 4,m − 2) ≤ 2ε log n
) ≤ p2n−6/5,

and the probability that there exists a triple (u, v, z) as above is at most n3 · p2n−6/5 = o(1). Hence, with high probability
none of the events occur, i.e. there is no pair (u, v) of ε-in-light vertices such that uv ∈ A or Γin(v) ∩ Γin(u) � ∅. By
symmetry, the same argument proves case (b).

The next result follows directly from Lemma 4.2.

Corollary 4.3. Let ε ≤ 0.09 and 0.9 log n/(n − 1) ≤ p ≤ (1 + o(1)) log n/(n − 1). The following holds with high
probability inD(n, p):

(a) For every set S and every set T of ε-in-light vertices disjoint from S , |A(S , T )| ≤ |S |.

(b) For every set S of ε-out-light vertices and every set T of vertices disjoint from S , |A(S , T )| ≤ |T |.

5. Frank’s condition

In this section, we verify the conditions of Theorem 2.1 for the subgraph of D(n, p) induced by the set Vk = {v ∈
[n] : din(v) ≥ k}.

Lemma 5.1. Let 1 ≤ k = o(log n) and Vk = {v ∈ [n] : din(v) ≥ k}. If |Vc
k | = o(log n), there exists a constant τ > 0 such

that, for all 0.9 log n/(n− 1) ≤ p ≤ (1+ o(1)) log n/(n− 1) the following holds with high probability: for every S ⊂ Vk

of size 2 ≤ |S | ≤ τn, we have din
Vk

(S ) ≥ k.
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Proof. Let ε = 0.09 and take τ = ε/48. Let S h ⊂ S be the set of vertices of S that are not ε-in-light. By the hypothesis
on k, all vertices outside of Vk are ε-in-light, and therefore there are no arcs between Vc

k and S \ S h by Lemma 4.2(c).
If |S h| ≥ |S |/8, we have

|A(Vk \ S , S )| ≥ |A(Vk \ S , S h)| ≥ |S h|(ε log n − |Vc
k |) − |A(S )| ≥ ε

3
|S h| log n,

where in the last inequality we used that |A(S )| ≤ 3τ|S | log n (by Lemma 2.6), together with the hypothesis on |Vc
k | and

the value of τ. Finally, when |S h| < |S |/8, we have

|A(Vk \ S , S )| ≥ |A(Vk \ S , S \ S h)| ≥ k|S \ S h| − |S h|,
where the last inequality follows from |A(S , S \ S h)| ≤ S h (by Corollary 4.3(a)) and the fact that there are no arcs
between Vc

k and S \ S h. We conclude that |A(Vk \ S , S )| ≥ (k + 1)|S \ S h| − |S h| ≥ (|S |/8)(7k − 1), finishing the proof
since |S | ≥ 2.

Lemma 5.2. Let 1 ≤ k = o(log n) and Vk = {v ∈ [n] : din(v) ≥ k}. If |Vc
k | = o(log n), there exists τ > 0 such that

for all p ≥ 0.9 log n/(n − 1) the following holds with high probability: for every partition (S , T,U) of Vk such that
|S | ≥ (1 − τ)n, |T | � 0 and either |U | ≤ |T | or |U | ≤ 6τp(n − 1), we have din

Vk
(S ) + din

Vk
(T ) ≥ (|T | + 1)k.

Proof. Take τ = 1/180. By Lemma 3.1 we have for every v ∈ [n], din(v) + dout(v) ≥ p(n − 1)/5 with high probability.
Note that |T | ≤ τn, so if |U | ≤ |T | then we have |A(T ∪ U)| ≤ 6τp(n − 1)|T ∪ U | by Lemma 2.6. Otherwise,
|U | ≤ 6τp(n − 1), and so |A(T,U)| ≤ min {|T | · |U | , |A (T ∪ U)|} ≤ 6τp(n − 1) |T |.

To bound din
Vk

(S )+din
Vk

(T ), we will ignore arcs from U to S . The remaining relevant arcs all intersect T , and therefore
we may write

din
Vk

(S ) + din
Vk

(T ) ≥
∑
v∈T

(
din(v) + dout(v) − 2

∣∣∣Vc
k

∣∣∣) − 2 |A(T )| − |A(T,U)|

≥ |T |p(n − 1)/5 − 2|T ||Vc
k | − 18τ|T |(n − 1)p = |T |p(n − 1)/10 + o(|T | log n).

Since k = o(log n) and p(n − 1) = Ω(log n), the result follows.

Lemma 5.3. There exists τ > 0 such that for all (log n − log(2−8 log n))/(n − 1) ≤ p ≤ (1 + o(1)) log n/(n − 1), the
following holds with high probability. Let 1 ≤ k = o(log n) and Vk = {v ∈ [n] : din(v) ≥ k}. For all S ⊂ Vk such that
p(n − 1)/40 ≤ |S | ≤ τn, we have that dout

Vk
(S ) ≥ k.

Proof. Let ε = 0.09 and take τ = ε/48. Let S � be the set of ε-out-light vertices in S and define S h = S \ S �. We first
treat the case |S h| ≥ |S |/8. For that, notice that |A(S h,Vc

k )| ≤ |S h| by Corollary 4.3(a). Therefore

dout
Vk

(S ) ≥
∑
v∈S h

dout(v) − |S h| − |A(S )| ≥ (ε log n − 1)|S h| − 3τn|S |p = Ω(|S | log n).

For the case when |S � | ≥ 7|S |/8, let us define X0 to be the cardinality of the set of vertices of out-degree zero, i.e.,
X0 =

∣∣∣{v ∈ V(D(n, p)) : dout(v) = 0}
∣∣∣. Using this, we can crudely estimate that |A(S �, [n] \ S �)| ≥ |S � | − X0. Since there

is no arc from an ε-out-light vertex to an ε-in-light vertex, |A(S �,Vc
k )| = 0 and, by Corollary 4.3(b), |A(S �, S h)| ≤ |S h|.

Hence, dout
Vk

(S ) ≥ |A(S �,Vk \ S )| ≥ |S � | − X0 − |S h| ≥ 6|S |/8 − X0. We claim that X0 ≤ |S |/4 with high probability,
which implies dout

Vk
(S ) ≥ |S |/2 ≥ k, as desired. To show our claim, let t = 2−8 log n. Using the hypothesis on p, we can

compute

E [X0] ≤ n(1 − p)n−1 ≤ 2−8 log n = t. (3)

By Theorem 2.2, we have P
(
X0 ≥ E [X0]+ t

) ≤ exp
(
−t2/(2(E [X0] + t/3)

)
≤ exp (−3t/8) = o(1). Therefore, using (3),

we obtain that P
(
X0 ≥ 2−7 log n

)
= o(1), as claimed.

Lemma 5.4. Let 1 ≤ k = o(log n) and Vk = {v ∈ [n] : din(v) ≥ k}. For all p with (log n − log(2−8 log n))/(n − 1) ≤ p ≤
(1 + o(1) log n/n and |Vc

k | = o(log n), the following holds with high probability: for every subpartition P of Vk with
|P| ≥ 2 or of the form P = {X} with |X| ≤ n − (log n)/20, it holds that∑

X∈P
din

Vk
(X) ≥ k|P|. (4)
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Proof. Let p ≤ (1 + o(1)) log n/(n − 1), and ε = min (τ5.1, τ5.2, τ5.3). We start by noticing the following.

Claim 5.5. If S ∈ P and |S | < |Vk | − p(n − 1)/40, then din
Vk

(S ) ≥ k.

Proof. We split the analysis into cases according to the size of S . If |S | = 1, let v be the sole element of S . If v is
ε-in-light, then by Lemma 4.2 there are no incoming arcs from Vc

k , and therefore din
Vk

(v) = din(v) ≥ k, since S ⊂ Vk. If
v is not ε-in-light, then din

Vk
(v) ≥ din(v) − |Vc

k | = Ω(log n).
The other cases follow directly from previous lemmas. To spell out the details, note that if 2 ≤ |S | ≤ εn, we can

apply Lemma 5.1. Finally, if εn ≤ |S | ≤ (1 − ε)n, let T = Vk \ S , and observe that |S | ≥ εn − |Vc
k | ≥ εn/2. By

Lemma 2.5, there are at least ε2n2/8 arcs from T to S .

In order to show (4), note that if all sets S ∈ P satisfy |S | < (1−ε)n, we conclude, through the claim, that each S ∈ P
satisfies din

Vk
(S ) ≥ k. If, however, there exists S ∈ P with |S | ≥ (1 − ε)n, define T =

⋃
X∈P X \ S and U = Vk \ (S ∪ T ).

If |T ∪U | ≥ p(n− 1)/40, then Lemma 5.3 implies that din
Vk

(S ) = dout
Vk

(T ∪U) ≥ k. Combining it with the claim applied
to the sets in P \ {S }, we obtain (4). Otherwise, note that |T ∪U | < p(n − 1)/40 < (log n)/20, and therefore |P| � 1 by
hypothesis. Therefore, since |P| ≥ 2, T is nonempty and we can therefore apply Lemma 5.2.

6. Proof of Theorem 1.1

Proof. Since m(Ak) ≥ m(Zk) deterministically, it is sufficient to show that m(Ak) ≤ m(Zk) with high probability. Let
mk = �n(n− 1)pk�. By Lemmas 3.3 and 5.4, we have that, for p = pk + o(1/n), the following four properties hold with
high probability:

(i) X<k > k;

(ii) X<k � log n;

(iii) δin ≥ k − 1;

(iv) for every subpartitionP of Vk = {v ∈ V : din(v) ≥ k}with |P| ≥ 2 or of the formP = {X}with |X| ≤ n−(log n)/20,
it holds that

∑
X∈P din

Vk
(X) ≥ k|P|.

Properties (i), (ii) and (iii) are monotone, and therefore also hold with high probability in D(n,mk) by Lemma 2.4
(observing that

√
mk(N − mk)/N3 = o(1/n)). Property (iv) is not monotone, since Vk can change as new arcs appear

in the process, increasing the number of subpartitions that need to be checked. We will show, however, that property
(iv) is (mk, o(n))-increasing using the following claim. Let Bk(m) = {v ∈ V : dD(n,m)(v) < k}.

Claim 6.1. Let m′ = mk − o(n). The event E = {Bk(m′) contains no arcs at time mk+1} occurs with high probability.

Proof. Every vertex of B = Bk(m′) is (ε/2)-in-light at time m′, since k �
√

log n. We now show that, with high
probability, every vertex in B receives fewer than (ε/2) log n incoming arcs between time m′ and mk+1. Indeed, the
number of incoming arcs a vertex v ∈ B receives is stochastically dominated by a random variable Y ∼ Hyp(N −
m′, n − 1,mk+1 − m′). Since mk+1 − m′ = Θ(n log log n), it holds that E [Y] = O(log log n). Therefore, by Chernoff’s
inequality,

P
(
Y ≥ (ε/2) log n

) ≤ n−ε/2.

Since by |B| � log n by property (ii), no vertex of B receives more than (ε/2) log n arcs with high probability by the
union bound. Therefore, all vertices of B are ε-light at time mk+1. This implies the desired result, since by Lemma 4.2
no two ε-light vertices are connected at time mk+1 with high probability.

We now prove that property (iv) is (mk, o(n))-increasing. Suppose an arc uv with v ∈ Vc
k appears, increasing din(v)

to k. The “new” subpartitions of Vk ∪ {v} are obtained by taking a subpartition P of Vk and either adding v to an
existing set U ∈ P (in which case (iv) trivially holds) or adding {v} to P. In this last case, by Claim 6.1 we have
din

Vk
(v) = din(v) = k if E holds, and therefore the addition of {v} to P increases

∑
X∈P din

Vk
(X) by k and |P| by 1, which
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does not change the validity of property (iv). Therefore, under event E, (iv) is an increasing property, which implies
that (unconditionally) the property (iv) is (mk, o(n))-increasing as desired.

Let m� denote the time in the process such that |Bk(m�)| = k, i.e., m� = m(Zk). By applying Lemma 3.3 to pk+1
and by monotonicity we have δin(D(n,mk+1)) = k, and therefore mk ≤ m� < mk+1. Therefore, by Claim 6.1, no two
vertices of Bk(m�) ⊂ Bk(m′) are connected at time m�.

We are now ready to show that Frank’s condition is satisfied on D(n,m�). Let P be a subpartition of V(D(n,m�))
and let P′ be the subpartition of Vk = Vk(m�) obtained by restricting each set of P to Vk (and deleting empty sets).
We first assume P′ satisfies the hypothesis of property (iv) and let � be the number of sets in P which lie entirely in
Bk(m�). Each one of these sets has in-degree at least k − 1 by Claim 6.1. Using that |P| = |P′| + � and k(� − 1) ≤ k�
(since � ≤ k), we have

∑
U∈P

din(U) ≥
∑
U∈P′

din(U) + k� ≥ k|P′| + k� ≥ k(|P| − 1).

We now deal with the case P′ = {X} with |X| > n − (log n)/20. In this case, |P| ≤ 1 + Bk(m�) = k + 1. We will
show that din(X) ≥ k2 with high probability, which will imply that Frank’s condition is satisfied on D(n,m�), since
k2 ≥ (|P|−1)k. Lemma 3.1, applied toD(n,mk), implies that for every v ∈ Bk(m�), dout(v) = dout(v)+din(v)− (k−1) ≥
pk(n − 1)/5 − (k − 1) = (1/5 + o(1)) log n. Therefore, by the condition on |X|, we have |V \ X| ≤ log n/20 and
din(X) ≥ |A(Bk(m�), X)| ≥ k · (1/5 − 1/20 − o(1)) log n ≥ k3, as claimed.

Since Frank’s condition is satisfied,D(n,m�) has k arborescences and we have m(Ak) ≤ m(Zk), as desired.

The above proof of Theorem 1.1, together with a refined proof of Lemma 3.3 (and the Central Limit Theorem)
gives the following corollary. Due to space limitations, we omit its proof.

Corollary 6.2. Let 1 � k(n) �
√

log n and

m = n
(
log n +

(
1 + (k − 1)/ log n

)(
(k − 1) log log n − log(k − 1)!

) − log(k − 1) + (k − 1)−1/2σ
)

for some σ = σ(n) ∈ R. Then P
(D(n,m) has k arc-disjoint arborescences

) ∼ 1√
2π

∫ σ
−∞ e−t2/2 dt.

When k is constant, a modification of the proof (involving proving convergence of the number of vertices of in-
degree k − 1 to a Poisson distribution) gives the following.

Corollary 6.3. Let k = O(1) and m = n
(

log n + (k − 1) log log n − log((k − 1)!) + c
)
. Then it holds that

P
(D(n,m) has k arc-disjoint arborescences

) ∼ exp(−e−c)
∑k
�=0 e−c�/�!.
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[6] Gao, P., Pérez-Giménez, X., Sato, C.M., 2014. Arboricity and spanning-tree packing in random graphs with an application to load balancing,

in: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics,
USA. p. 317–326.



384	 Maurício Collares  et al. / Procedia Computer Science 195 (2021) 376–384
380 Collares, Kohayakawa, Martins, Parente, and Souza / Procedia Computer Science 00 (2021) 000–000

[7] Hoppen, C., Parente, R., Sato, C., 2019. Packing arborescences in random digraphs. SIAM Journal on Discrete Mathematics 33, 438–453.
URL: https://doi.org/10.1137/17M1151511, doi:10.1137/17M1151511, arXiv:https://doi.org/10.1137/17M1151511.
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