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Abstract

In this work, we study hitting times for the appearance of a spanning structure in the Erd6s-Rényi random directed graph processes.
Namely, we are concerned with the appearance of an arborescence, a spanning digraph in which, for a vertex u called the root
and any other vertex v, there is exactly one directed path from u to v. Let D(n,0), D(n, 1),...,D(n,n(n — 1)) be the random
digraph process where for every m € {0, ...,n(n — 1)}, D(n,m) is a digraph with vertex set {1, ...,n}; D(n,0) has no arcs and, for
1 < m < n(n — 1), the digraph D(n, m) is obtained by adding an arc to D(n,m — 1), chosen uniformly at random among the not
present arcs. In this paper we determine the hitting time for the existence of k arc-disjoint arborescences when k = k(n) < +/logn.
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1. Introduction

A spanning tree in a graph is a subgraph that includes all vertices of the graph and in which any two vertices are
connected by exactly one path. Generalising this notion to the digraph setting, we obtain the notion of arborescence.
An arborescence is a spanning digraph in which, for a vertex u called the root and any other vertex v, there is exactly
one directed path from u to v.

Note that in an undirected graph, the existence of a spanning tree is equivalent to the graph being connected. The
study of spanning trees in random graphs goes back about 80 years, to the seminal paper of Erdés and Rényi on random
graphs [4]. In the paper, they started the study of the phase transition in random graphs. In particular, they determined
the “threshold” value of m = nlogn/2 above which a random m-edge undirected graph is typically connected.

Given this threshold, a subsequent natural question is to estimate the number of spanning trees in a random graph at
or above this threshold. Of particular interest is the number of edge-disjoint spanning trees. The spanning tree packing
number or STP number of a graph G is the maximum number of edge-disjoint spanning trees contained in G. One of
the earliest results on the STP number is a min-max relation shown by Tutte [11] and Nash-Williams [9].

Erd6s and Rényi’s work [4] implies that for p = (logn — w(1))/n, the random graph G(n, p) is disconnected with
high probability, and hence the STP number is zero. Palmer and Spencer [10] showed that with high probability the
STP number of G(n, p) equals the minimum degree whenever such value is a constant, which typically happens when
p is around (logn + O(loglogn))/n. In fact, they proved a stronger hitting time result and showed that, with high
probability, the precise time when the minimum degree first becomes k (for constant k) coincides with the time when
k edge-disjoint spanning trees first appear. Other ranges of p were also considered by Catlin, Chen and Palmer [2] and
Chen, Li and Lian [3].

Characterising the entire range of p, Gao, Pérez-Giménez and Sato [6] have shown that the STP number is, with
high probability, the minimum between ¢ and |m/(n—1)] during the whole random graph process. They also determine
the asymptotic value of p at which the STP number changes from ¢ to |[m/(n — 1)].

In the directed case, much less is known. Bal, Bennett, Cooper, Frieze and Pratat [1] considered the random digraph
process D(n,0), D(n, 1),...,D(n,n(n — 1)) on common vertex set [n] = {1,...,n}, the stochastic process in which
we start with n vertices and no arcs, and at each step, we add one new arc chosen uniformly at random from the set
of missing arc. They have shown that the events D(n, m) has an arborescence and at most one vertex of D(n, m) has
in-degree zero have the same hitting time with high probability. It is worth mentioning that they are actually concerned
with the appearance of a rainbow arborescence in a randomly coloured random digraph and obtain the arborescence
result as a corollary.

Concerning packing results for a digraph G, let A(G) denote the largest integer k > 0 such that, for all 0 < £ < k,
we have Zf;ol € -Dv : dZJ(v) = i}] < ¢. One can observe that A(G) is an upper bound on the number of arc-disjoint
arborescences by noticing that in order to pack ¢ arborescences, every vertex of G whose in-degree is £ — i must be
the root of at least i arborescences, since its in-degree would be exhausted. Letting D(n, p) denote the random digraph
(defined by including each of the n(n — 1) arcs independently with probability p), Hoppen, Parente and Sato [7] have
shown that the maximum number of arc disjoint arborescences in D(n, p) is A(D(n, p)) with high probability for every
0 < p < 1. Moreover, they determined A(D(n, p)) asymptotically for values of p such that the minimum in-degree of
D(n, p) is concentrated.

In this paper we determine the hitting time on random digraph processes of k arc-disjoint arborescences when
k = k(n) < +/logn (that is, if k/ 4/log n tends to 0 as n tends to infinity). For this, we are concerned with the following
two events.

Arm = {D(n, m) has k arc-disjoint arborescences}

Zk.m = {at most k vertices of D(n, m) have in-degree less than &}.
Let &, stand for one of the above events. We define a random variable, the hitting time of &, by
m(&E) = min{m € N : &, occurs}.

Establishing an analogue of Palmer and Spencer’s result in the directed setting and a strengthening of Hoppen,
Parente and Sato’s result for k < 4/log n, our main result is the following.

Theorem 1.1. For k = k(n) < +/logn, we have m(Ay) = m(Zy) with high probability.
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Structure of the paper. In Section 2 we present some basic tools about random models and a min-max result
concerning the existence of k arc-disjoint arborescences due to Frank [5]. In Section 3 we present results about in-
degree distributions of sets and vertices. In Section 4 we study the neighbourhood of vertices with in/out-degree close
to minimum in/out-degree. In Section 5 we study the in-degree of sets in the subgraph formed by the vertices with
degree at least k. Finally, in Section 6 we prove our main theorem.

2. Tools

For adigraph D = (V,A)and S, T c V, let A(S, T) denote the set of arcs uv € A withu € § and v € T. We also write
A(T) to denote A(T, T'). Our main deterministic tool provides a necessary and sufficient condition for the existence of
k disjoint arborescences in a digraph. It is a directed analogue of the classic results of Tutte and Nash—Williams, and
one of the main tools in our paper. A subpartition of a set V is a family of pairwise disjoint subsets of V.

Theorem 2.1 (Frank [5]). Let D = (V,A) be a digraph and let k > 0 be an integer. Then D contains k arc-disjoint
arborescences if, and only if, for every subpartition P of V, we have ¥, yep d™(U) > k(1P| — 1), where d™(U) =
JA(V\ U, U).

We now state some tools from the theory of random graphs. Recall that the hypergeometric distribution Hyp(a, b, m)
is the distribution of a random variable |A,, N B|, where A and B are fixed sets such that |[A| = a, B C A has size |B| = b,
and A,, denotes a m-random subset of A. If X ~ Hyp(a, b, m), then E [X] = mb/a.

Theorem 2.2 (Chernoff bounds [8]). Let X be a binomial or hypergeometric random variable. If u = E [X],
2
P(X > 1) < — uo(t < S ——
00> 040 < exp (- i) < exp -5
P(X < u~1) < exp(— pp(=t/p) < exp(~1*/240),
where p(x) = (1 + x)log(1 + x) — x for x > -1, ¢(=1) = 1 and ¢(x) = oo for x < —1.

Although our main result concerns the random digraph process, it will be convenient to prove some results in
D(n, p). Let N = n(n — 1). The following results allow us to transfer such results to D(n, m) with m = pN.

Definition 2.3. A property Q of digraphs is (m, r)-increasing if
P(D(n,m’) has Q) < P(D(n, m) has Q) + o(1) ifm—r<m <m,
P(D(n,m") has Q) = P(D(n, m) has Q) + o(1) ifm<m <m+r.

We define (m, r)-decreasing properties analogously. A property is (m, r)-monotone if it is either (m, r)-decreasing
or (m, r)-increasing. Observe that a monotone property Q is (m, r)-monotone for any 0 < m < N and any r > 0.

Proposition 2.4 (Proposition 1.13 and Remark 1.14 [8]). Let Q be a property for digraphs and 0 <m < N. If Q is

(m, O(\m(N — m)/N))-monotone and holds with high probability in D(n, p) for every p = m/N + O(\/m(N — m)/N?),
then Q holds for D(n, m) with high probability.

We will also use some expansion properties of random graphs.

Lemma 2.5 (Lemma 3.17 [7]). Let { be a positive constant. For p > 1/n, the following holds with high probability.
For disjoint sets S, T C [n], each of size at least {n, we have |A(S,T)| = *n’p/2.

Lemma 2.6 (Lemma 3.18 [7]). Let € be a positive constant. For p > 1/n, the following holds with high probability.
For every S C [n] of size |S| < en we have |A(S)| < 3epn|S|.

3. In-degree distribution

In this section, we define probabilities p; and show that, although D(n, p;) does not contain k arc-disjoint arbores-
cences with high probability, the number of vertices with in-degree k — 1 is reasonably low. Let X = |{v: d"™(v) = k}|
and X = |{v: d"(v) < k).
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Lemma 3.1. Let p > 09logn/(n — 1). With high probability in D(n, p) and in D(n,m) with m = pn(n — 1), every
vertex v € V satisfies d"(v) + d°*(v) > p(n — 1)/5.

Proof. For every 0 < @ < 1, using Theorem 2.2 with t = ap(n — 1), we have
P(Bin(2(n — 1), p) < 2ap(n — 1)) < exp(-2p(n - 1)(1 — a + aloga)).

A simple calculation shows that, fora = 1/10,2p(n—1)- (1 — @+ alog @) > 1.204 log n. Therefore, the result follows
by applying the union bound over all vertices. The same result for D(n, m) follows by applying the hypergeometric
variant of Theorem 2.2. O

Definition 3.2. Let k = k(n) < +/logn. Define
logn+ (1 + (k—1)/logn)((k— 1)loglogn — log(k — 1)!) — (loglogn)/2

n—1

Pk =

Constant terms in the numerator of the above definition may be omitted if desired, which simplifies the formula
slightly when k < /logn/loglogn and considerably when k is bounded.

Lemma 3.3. Let k = k(n) < +/logn. For any p of the form p = py + o(1/n), it holds that Xy, > k, X;—1 < logn and
§"(D(n, p)) = k — 1 with high probability.

Proof. Observe that the events {{d"(v) = k— 1} : v € V(D(n, p))} are independent and identically distributed.
Therefore, X;_; is binomially distributed and we can write

1 k—1 n—k
[Xkl]—n(k 1) (1-p)".

To bound the above, observe that since k> < n, it holds that (Zj) ~ (n = 1)¥1/(k = 1)!. Moreover, since p’n < 1,

pk<land 1 —x = e a5 x — 0, we have (1 — p)"* ~ e?~1_ Substituting, we obtain

n((n = Dp)~'erD

E[Xj-1] ~
[Xi-1] G- 1)
We now use the value of p to conclude that
(n-1p\" (k= 1)((k = Dloglogn — log(k = DY)\
E[X;_1] ~ 41 —_— 1
[Xi1] ogn( logn P logn M

Using that k> < log n, we can bound

- - - -1
(n-1)p 14 (k—1)loglogn —log(k — 1)! +0 loglogn .
logn logn logn

We now use 1 + x = exp(x + O(x?)) (as x tends to 0) and once again k*> < log n to compute

(n-1p -t 3 (k = 1)((k— 1)loglogn — log(k — 1)') (k - 1)(loglog n)?
logn - logn logn ’

@)

The above error term satisfies exp (0 (W)) =1+ o(1), so combining (2) with (1) leads to E[X;_{] ~ /logn.

Therefore, we have X;_; < logn with high probability by Markov’s inequality. Moreover, since Xj—; is binomially
distributed, it holds with high probability (by Chernoff’s inequality) that X;_; > /logn/2 > k if n is large. It only
remains to show that 6”(D(n, p)) = k — 1 with high probability, which is equivalent to showing that X_;_; = 0 with
high probability. To do so, observe that for every i < &,

(1 1-p\ory E[X;]
E[X[—l] = (I’l it 1)(T)E[X,] (l’l )]E[X] <LK — logn

since np ~ logn and k < 4/logn. Summing over i < k, we obtain that E[X;_;] < E[X;_;]/ +/logn < 1. Therefore,
X1 = 0 with high probability by Markov’s inequality, finishing the proof. O
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4. Light vertices

The concept of light vertices will simplify the analysis of subpartitions in the next section.
Definition 4.1. A vertex v € [n] is said to be g-in-light if d"(v) < elog n and, s-out-light if d°(v) < glogn.
Below are some properties of light vertices. Let I'""(v) = {u € V : uv € A} and T (v) = {u € V : vu € A).

Lemmad4.2. Lete < 0.09 and 0.91ogn/(n—1) < p < (1+o(1))logn/(n—1). The following holds with high probability
for D(n, p) and for D(n, m) with m = pn(n — 1):

(a) there is no pair (u,v) of s-in-light vertices such that uv € A or T"(v) N T™(u) + @;
(b) there is no pair (u,v) of e-out-light vertices such that uv € A or I''(v) N\ T (u) + &;

(¢) there is no uv € A such that u is e-out-light and v is e-in-light.

Proof. We will prove the result only for D(n, m), since the proof for D(n, p) can be obtained merely by replacing the
hypergeometric distribution by the binomial distribution in appropriate places.

We start by proving item (a). Let S C V denote the set of e-in-light vertices. For distinct vertices u,v € V, we
estimate the probability that they are e-in-light and that uv € A. There are 2n — 3 arcs (other than uv) that contribute
to d™(u) + d™(v), and if the vertices are e-in-light this sum is at most 2glogn. Let N = n(n — 1) and y = 2n — 3)(m —
1)/(N—-1) ~2m/n =2pn — 1). Since 2elogn < p(n — 1)/5, we have

P({u,v}) € S,uv € A) < p-P(Hyp(N — 1,2n—3,m — 1) < 2elogn) < pn~,

where the last inequality follows from Chernoff bounds (c.f. the proof of Lemma 3.1). Therefore, the probability that
there exists u, v with the above property is at most n” - pn~%3 = o(1), proving the first part of (a); an adaptation of this
argument proves part (c¢). To prove the second part of item (a), observe that for distinct vertices u, v,z € V, we have
by an analogous hypergeometric estimate that

P(zu,zv e A,ue S andv € §) < p> - P(Hyp(N — 2,2n — 4,m — 2) < 2glogn) < p*n~%",

and the probability that there exists a triple (1, v, z) as above is at most n* - p?n~%/ = o(1). Hence, with high probability
none of the events occur, i.e. there is no pair (1, v) of e-in-light vertices such that uv € A or I'"(v) N T (u) # @. By
symmetry, the same argument proves case (b). ]

The next result follows directly from Lemma 4.2.

Corollary 4.3. Let € < 0.09 and 091logn/(n — 1) < p < (1 + o(1))logn/(n — 1). The following holds with high
probability in D(n, p):

(a) For every set S and every set T of e-in-light vertices disjoint from S, |A(S,T)| < |S|.

(b) For every set S of e-out-light vertices and every set T of vertices disjoint from S, |A(S, T)| < |T)|.

5. Frank’s condition

In this section, we verify the conditions of Theorem 2.1 for the subgraph of D(n, p) induced by the set V;, = {v €
[n] : d™(v) > k).

Lemma 5.1. Let 1 < k = o(logn) and V; = {v € [n] : d"(v) > k}. If\Vi| = o(log n), there exists a constant T > 0 such
that, for all 0.91logn/(n—1) < p < (1 +o0(1))logn/(n — 1) the following holds with high probability: for every S C V;
of size 2 < |S| < n, we have d{j’k(S) > k.
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Proof. Lete =0.09 and take 7 = £/48. Let S, C S be the set of vertices of S that are not e-in-light. By the hypothesis
on k, all vertices outside of V} are e-in-light, and therefore there are no arcs between V; and S \ S, by Lemma 4.2(c).
If IS, = |S]/8, we have

. &
AV \ S, 2 JA(Vi \ S, S )l = IS hl(glogn — [Vi]) — |A(S)| > §|Sh|10gn,

where in the last inequality we used that |A(S)| < 37|15 |logn (by Lemma 2.6), together with the hypothesis on [V| and
the value of 7. Finally, when |S ;| < |S|/8, we have

AV \ S, 2 JA(Vie \ S, S\ Sl 2 kIS \ Syl = 1S4l

where the last inequality follows from |A(S,S \ S;)| < S}, (by Corollary 4.3(a)) and the fact that there are no arcs
between V; and § \ S ;. We conclude that [A(V, \ §,8)| = (k+ DIS \ Syl = 1S4l = (IS1/8)(7Tk — 1), finishing the proof
since |S| > 2. O

Lemma 5.2. Let 1 < k = o(logn) and Vi, = {v € [n] : d"(v) > k}. If |V{| = o(logn), there exists T > 0 such that
forall p > 0.91ogn/(n — 1) the following holds with high probability: for every partition (S, T, U) of Vi such that
IS| > (1 — )n, |T| # 0 and either \U| < |T| or |U| < 61p(n — 1), we have diﬁ’k(S) + d%(T) > (IT] + Dk.

Proof. Take T = 1/180. By Lemma 3.1 we have for every v € [n], d"(v) + d°*'(v) > p(n — 1)/5 with high probability.
Note that [T| < 7n, so if |U| < |T| then we have |[A(T U U)| < 6tp(n — 1)|T U U| by Lemma 2.6. Otherwise,
|U| < 6tp(n—1), and so |A(T, U)| < min{|T| - |U|,|A(T U U)|} < 6Tp(n — 1)|T|.

To bound d{j’k S) +d{}1 (T'), we will ignore arcs from U to S. The remaining relevant arcs all intersect 7', and therefore
we may write

dy (S) +dy (T) > Z (d™ ) +d™(v) = 2| V) = 21AD)] - AT, U))
veT

> |T|p(n—1)/5 =2|T||IV{| = 187|T|(n — D)p = |T|p(n — 1)/10 + o(|T|log n).
Since k = o(logn) and p(n — 1) = Q(log n), the result follows. O

1 +o(1))logn/(n—1), the

Lemma 5.3. There exists T > 0 such that for all (logn — 10g(2’8 logn))/(n—1) < p <(
) > k}. Forall S C Vi such that

following holds with high probability. Let 1 < k = o(logn) and V; = {v € [n] : d™(v
p(n—1)/40 < |S| < mn, we have that d“’/‘:’(S) > k.

Proof. Let & = 0.09 and take 7 = £/48. Let S, be the set of e-out-light vertices in S and define S, = S \ S,. We first
treat the case |S;| > |S1/8. For that, notice that |A(S 5, V{)| < |S | by Corollary 4.3(a). Therefore

dy'(S) > Z d™(v) = 1S4l = 1AGS)] > (elogn — DIS | = 3mnIS|p = Q(IS | log n).

veS,

For the case when |S,| > 7|S|/8, let us define X; to be the cardinality of the set of vertices of out-degree zero, i.e.,
Xo = |{v € V(D(n, p)) : d™(v) = 0}|. Using this, we can crudely estimate that |[A(S ¢, [7] \ S¢)| > |S ¢| — Xo. Since there
is no arc from an g-out-light vertex to an e-in-light vertex, |A(S ¢, V)| = 0 and, by Corollary 4.3(b), |A(S ¢, S )l < |l
Hence, d;bk”(S) > A, Vi \S)| = 1Sl — Xo — ISkl = 6]S]/8 — Xp. We claim that X, < |S|/4 with high probability,

which implies d?,‘k"(S ) > |S|/2 > k, as desired. To show our claim, let # = 28 log n. Using the hypothesis on p, we can
compute

E[Xo] <n(1 - P)rkl <278 logn =t. 3)
By Theorem 2.2, we have P(Xy > E [Xy] +1) < exp (_,2/(2(]14: [Xo] + t/3)) < exp (—=3t/8) = o(1). Therefore, using (3),
we obtain that P(X, > 277 logn) = o(1), as claimed. O

Lemma 5.4. Let 1 <k = o(logn) and Vi = {v € [n] : d™(v) > k}. For all p with (logn —log(2 8 logn))/(n-1) < p <
(1 + o(1)logn/n and |V{| = o(logn), the following holds with high probability: for every subpartition P of Vi with
|P| > 2 or of the form P = {X} with |X| < n — (logn)/20, it holds that

Ddix) 2 kPl “

XepP
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Proof. Letp < (1 +o0(1))logn/(n— 1), and € = min (751, 752, T53). We start by noticing the following.
Claim 5.5. If S € P and |S| < |Vi| — p(n — 1)/40, then d{;“k(S) > k.

Proof. We split the analysis into cases according to the size of S. If |[S| = 1, let v be the sole element of S. If v is
g-in-light, then by Lemma 4.2 there are no incoming arcs from V¢, and therefore dﬁ’,’k v) =d"(v) > k, since § c V. If
v is not &-in-light, then d{j’k(v) > d"(v) - Vil = Q(log n).

The other cases follow directly from previous lemmas. To spell out the details, note that if 2 < |S| < en, we can
apply Lemma 5.1. Finally, if en < |S| < (1 —&)n, let T = Vi \ S, and observe that |[S| > en — |V[| > en/2. By
Lemma 2.5, there are at least £2n2/8 arcs from T to S.. O

In order to show (4), note that if all sets S € P satisfy |S| < (1—&)n, we conclude, through the claim, thateach § € P
satisfies d{;’k(S) > k. If, however, there exists S € P with |S| > (1 —&)n, define T = Uyxep X\ S and U = Vi \ (S UT).
If |IT U U| > p(n —1)/40, then Lemma 5.3 implies that d{,”k S)= d;’;k” (T UU) = k. Combining it with the claim applied
to the sets in P \ {S}, we obtain (4). Otherwise, note that [T U U| < p(n —1)/40 < (logn)/20, and therefore |P| # 1 by
hypothesis. Therefore, since |P| > 2, T is nonempty and we can therefore apply Lemma 5.2. O

6. Proof of Theorem 1.1

Proof. Since m(Ay) > m(Z;) deterministically, it is sufficient to show that m(A;) < m(Z;) with high probability. Let
my = [n(n—1)pr]. By Lemmas 3.3 and 5.4, we have that, for p = pi + o(1/n), the following four properties hold with
high probability:

() Xak > k;
(i) X< < logn;
(i) 6" > k- 1;

(iv) for every subpartition P of V; = {v € V : d"(v) > k} with |P| > 2 or of the form P = {X} with [X| < n—(logn)/20,
it holds that Y ycp d{j’k (X) = kIP|.

Properties (i), (i) and (iii) are monotone, and therefore also hold with high probability in D(n, m;) by Lemma 2.4
(observing that m(N —my;)/N3 = o(1/n)). Property (iv) is not monotone, since V; can change as new arcs appear
in the process, increasing the number of subpartitions that need to be checked. We will show, however, that property
(iv) is (my, o(n))-increasing using the following claim. Let By(m) = {v € V : dpm(v) < k}.

Claim 6.1. Let m’ = my — o(n). The event & = {By(m') contains no arcs at time my1} occurs with high probability.

Proof. Every vertex of B = By(m’) is (g/2)-in-light at time m’, since k < +/logn. We now show that, with high
probability, every vertex in B receives fewer than (g/2) log n incoming arcs between time m’ and my.;. Indeed, the
number of incoming arcs a vertex v € B receives is stochastically dominated by a random variable ¥ ~ Hyp(N —
m',n— 1,m; —m'). Since my, —m’ = O(nloglogn), it holds that E[Y] = O(loglogn). Therefore, by Chernoft’s
inequality,

P(Y > (¢/2)logn) < n~*/?,

Since by |B| < logn by property (ii), no vertex of B receives more than (¢/2) log n arcs with high probability by the
union bound. Therefore, all vertices of B are e-light at time m.;. This implies the desired result, since by Lemma 4.2
no two g-light vertices are connected at time m,; with high probability. O

We now prove that property (iv) is (ny, o(n))-increasing. Suppose an arc uv with v € V{ appears, increasing d™(v)
to k. The “new” subpartitions of V; U {v} are obtained by taking a subpartition  of V; and either adding v to an
existing set U € P (in which case (iv) trivially holds) or adding {v} to #. In this last case, by Claim 6.1 we have
dy} (v) = d"(v) = k if & holds, and therefore the addition of {v} to # increases ¥ xep dy; (X) by k and || by 1, which
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does not change the validity of property (iv). Therefore, under event &, (iv) is an increasing property, which implies
that (unconditionally) the property (iv) is (my, o(n))-increasing as desired.

Let m* denote the time in the process such that |By(m*)| = k, i.e., m* = m(Zy). By applying Lemma 3.3 to py
and by monotonicity we have S™(D(n, my+1)) = k, and therefore my, < m* < my.;. Therefore, by Claim 6.1, no two
vertices of By(m*) C Bi(m’) are connected at time m*.

We are now ready to show that Frank’s condition is satisfied on D(n, m*). Let P be a subpartition of V(D(n, m*))
and let %’ be the subpartition of V; = V;(m*) obtained by restricting each set of £ to V} (and deleting empty sets).
We first assume P’ satisfies the hypothesis of property (iv) and let £ be the number of sets in  which lie entirely in
By (m*). Each one of these sets has in-degree at least kK — 1 by Claim 6.1. Using that |P| = |P’| + £ and k(¢ — 1) < k€
(since ¢ < k), we have

Z din(U) > Z dl”(U) + kt > k|P’| + k€ > k(1P| - 1).
Uep Uep

We now deal with the case £’ = {X} with |X| > n — (logn)/20. In this case, |P| < 1 + Bi(m*) = k + 1. We will
show that d"(X) > k> with high probability, which will imply that Frank’s condition is satisfied on D(n, m*), since
k* > (|P| - 1)k. Lemma 3.1, applied to D(n, my), implies that for every v € B(m*), d®“(v) = d®(v) +d"(v) — (k—1) >
pi(n — 1)/5 — (k= 1) = (1/5 + o(1))logn. Therefore, by the condition on |X|, we have |V \ X| < logn/20 and
d"(X) > |ABy(m*),X)| > k- (1/5=1/20 — o(1)) logn > k3, as claimed.

Since Frank’s condition is satisfied, D(n, m*) has k arborescences and we have m(A;) < m(Zy), as desired. ]

The above proof of Theorem 1.1, together with a refined proof of Lemma 3.3 (and the Central Limit Theorem)
gives the following corollary. Due to space limitations, we omit its proof.

Corollary 6.2. Let | < k(n) < +/logn and
m=n (1ogn +(1+ (k—1)/logn)((k — 1)loglogn — log(k — 1)!) — log(k — 1) + (k — 1)*1/%)
for some o = o(n) € R. Then P(D(n, m) has k arc-disjoint arborescences) ~ \/427 L :C e dr.

When £ is constant, a modification of the proof (involving proving convergence of the number of vertices of in-
degree k — 1 to a Poisson distribution) gives the following.

Corollary 6.3. Let k = O(1) and m = n(logn + (k — 1)loglogn — log((k — 1)!) + ¢). Then it holds that
P(D(n, m) has k arc-disjoint arborescences) ~ exp(—e ) Zlgzo et/el.,
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